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Abstract

Regression on function spaces is typically limited to models with Gaussian process
priors. We introduce the notion of universal functional regression, in which we
aim to learn a prior distribution over non-Gaussian function spaces that remains
mathematically tractable for functional regression. To do this, we develop Neural
Operator Flows (OPFLOW), an infinite-dimensional extension of normalizing flows.
OPFLOW is an invertible operator that maps the data space into a Gaussian process,
allowing for exact likelihood estimation of point evaluations of functions. OPFLOW

enables robust and accurate uncertainty quantification via drawing posterior sam-
ples. We empirically study the performance of OPFLOW on regression tasks with
data generated from Gaussian processes with known closed-form posterior distri-
bution as well as highly non-Gaussian real-world earthquake time-series with an
unknown closed-form posterior distribution.

1 Introduction
Inference on function spaces is essential to the physical sciences and engineering. It is often desirable
to infer the function given a sparse number of observations. There are numerous problems in
which functional regression plays an important role, such as inverse problems, forecasting, and data
imputation/assimilation. However, regression on function spaces can be particularly challenging in
real world problems where the underlying stochastic process is often unknown.

Much of the work on functional regression and inference has relied on Gaussian processes (GPs)
[18]. GP regression (GPR) provides several advantages for function space inference including
robustness and mathematical tractability. Despite widespread adoption, the assumption of a GP prior
for functional inference problems can be rather limiting, particularly in scenarios where the data
is heavy-tailed or distributions are multimodal. This underscores the need for models with greater
expressiveness, allowing for regression on data arising from unknown stochastic processes. We refer
to such regression problems as universal functional regression (UFR).

To solve UFR problems, we believe it requires a model with two primary components. First, the
model needs to be capable of learning priors over data that lies in function spaces. There has been
much recent progress on learning priors on function spaces [17, 13, 19, 7, 16, 1, 6, 8, 5]. Second, the
models need a framework for performing functional regression with learned function space priors
and likelihoods–a component that is critically missing from the previous works described above.
Addressing these challenges not only expands the models available for functional regression but also
enhances our capacity to extract meaningful insights from complex datasets.
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Figure 1: OPFLOW is composed of invertible operators. For the universal function regression task
(UFR), OPFLOW is the learned prior which provides likelihoods for function point evaluation. ũobs

is the noisy observations, uϕ is the posterior function, and uϕ = Gθ(aϕ), where Gθ is the learned
forward operator.

We aim to address this gap by developing a viable formulation for UFR with a novel learnable
bijective operator, OPFLOW, that extends normalizing flows to function spaces. OPFLOW consists
of an invertible neural operator trained to map the data point-process distribution to a known and
easy-to-sample GP distribution. Given point value samples of a data function, OPFLOW allows for
computing the likelihood of the observed values, a principled property held a priori by GPs. Using
this property, we formally define the problem setting for UFR and develop an approach for posterior
estimation with Stochastic Gradient Langevin Dynamics (SGLD) [21]. We demonstrate UFR with
OPFLOW on various Gaussian and non-Gaussian processes.

2 Related work
Neural Operators. Unlike traditional neural networks that primarily work with fixed-dimensional
vectors, neural operators are a new paradigm in deep learning designed to operate on functions. Neural
operators learn maps between infinite-dimensional function spaces making them inherently suitable
for a wide range of scientific tasks involving partial differential equations (PDEs) [10, 11, 12].

Function space generative modeling with Neural Operators. Several discretization invariant
generative models on function spaces have been recently developed using Neural Operators including
Generative Adversarial Neural Operator (GANO) [17], Denoising Diffusion models (DDO) [13], and
Variational Autoencoding Neural Operator (VANO) [19]. All of these methods have exhibited supe-
rior performance over their finite-dimensional counterparts by directly learning mappings between
function spaces. However, they lack the ability to evaluate exact likelihoods of samples.
Normalizing Flows. Normalizing flows are a class of flow-based finite-dimensional generative
models, that are usually composed of a sequence of invertible transformations [9, 4, 3]. By gradually
transforming a simple probability distribution into a more complex target distribution using an
invertible architecture, normalizing flows enable exact likelihood evaluation and direct sampling.
Traditional normalizing flows are defined on finite-dimensional spaces and constrained to evaluating
likelihoods on fixed, regular-size grids.

Nonparametric Bayesian and Gaussian Process Regression. Nonparametric Bayesian models are
defined on an infinite-dimensional parameter space, yet they can be evaluated using only a finite subset
of parameter dimensions to explain observed data samples [15]. These models provide a flexible
regression framework by offering analytically tractable posteriors. Despite the great advantages
of these models, they heavily depend on the chosen prior, which can restrict their adaptability in
complex real-world scenarios [2, 20]. Within the family of nonparmateric Bayesian models, GPR is a
robust framework characterized by its analytical posteriors [18]. However, GPR assumes both the
prior and posterior are Gaussian, which can limit its applicability.

3 Neural Operator Flow
We introduce the Neural Operator Flow (OPFLOW), an innovative framework that extends finite-
dimensional normalizing flows to infinite-dimensional function spaces. The architecture is shown
schematically in Fig. 1. OPFLOW retains the invertible structure of normalizing flows, while directly
operating on function spaces. It allows for exact likelihood estimation for point estimated functions.
OPFLOW is composed of a sequence of layers, each containing actnorms [9], domain partitioning, and
affine coupling. In particular, domain partitioning mimics the checkerboard pattern in [4, 9].

Training. The goal of OPFLOW is to learn a mapping between samples from the data space U to
the latent space A where a ∈ A, a : DA → RdA and u ∈ U , u : DU → RdU . Let PU and PA as
probability measures defined on U and A, respectively. Since OPFLOW is a bijective operator, we only
need to learn the inverse mapping Fθ : U → A, as the forward mapping is immediately available.
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Figure 2: OPFLOW regression on GP data. (a) Ground truth GP regression with observed data and
predicted samples (b) OpFlow regression with observed data and predicted samples. (c) Uncertainty
comparison between true GP and OpFlow predictions.

We train OPFLOW in a similar way to other infinite-dimensional generative models [17, 19, 13] with
a special addition of domain alignment. The space of functions for A is taken to be drawn from a
GP, which allows for exact likelihood estimation and efficient training of OPFLOW by minimizing
the negative log-likelihood. Since OPFLOW is discretization agnostic [17, 10], it can be trained on
various discretizations of DU and can be later applied to a new set of discretizations. In the limit, it
can be applied to the whole of DU [10]. We now define the training objective L for OPFLOW training
as follows,

L = −min
θ∈Θ

Eu∼PU [log pθ(u|D)], log pθ(u|D) = log p(a|DA) +

s∑
i=1

log |det(
∂(vi|Di

V
)

∂(vi−1|Di−1
V

)
)|. (1)

The inverse operator is composed of s invertible operator layers with Fθ := Fs
θ ◦ Fs−1

θ · · · F0
θ , and

gradually transforms v0 to v1, · · · vs−1, vs, where v0 = u, vs = a. The alignment naturally holds
within the domains associated with v0, v1, · · · vs as each layer of Fθ is an invertible operator. Vi is
the collection of positions for function vi with D0

V = D, Ds
V = DA, and each data point has its own

discretization D.

Universal Functional Regression with OPFLOW. We outline an algorithm for UFR with OPFLOW

for general Bayesian inference problems. We assume that OPFLOW has been trained previously and
sufficiently approximates the true stochastic process of the data. We thus have an invertible mapping
between function spaces U and A. We use the trained OPFLOW as a learned prior distribution and fix
the parameters for functional regression.

Similar to GPR, suppose we are given ũobs which consists of pointwise and potentially noisy
observations of a function u observed at points in the set D ⊂ DU . We refer to the noise-free
evaluations at D as uobs, with the additive noise ϵ ∼ N (0, σ2). We aim to infer the function’s values
on a set of new points D′ where D ⊂ D′ given the observation ũobs. For the likelihood of the values
on points in D′, i.e., the likelihood of uϕ, we have,

log pθ(uϕ|ũobs) = −
∥ũobs − uϕ|D∥22

2σ2
+ log pθ(uϕ)− r log σ − 1

2
r log(2π)− log pθ(ũobs), (2)

where pθ(u|D) denotes the probability of u evaluated on D with the learned prior (OPFLOW), and r is
the cardinality of the set D with r = |D|. Maximizing Eq. 2 results in the maximum a posteriori
(MAP) estimate pθ(uϕ|ũobs) where uϕ denotes the MAP estimate given ũobs. For sampling the
posterior in Eq. 2, we utilize the fact that OPFLOW is a bijective operator and the target function uϕ

uniquely defines aϕ. Therefore, drawing posterior samples of uϕ is equivalent to drawing posterior
samples of aϕ in latent space where we can use SGLD with Gaussian random field perturbation. We
utilize SGLD to sample pθ(uϕ|ũobs). We initialize aϕ|ũobs with the MAP estimate of pθ(uϕ|ũobs),
i.e., uϕ, and follow Langevin dynamics in the latent space to sample uϕ.

4 Universal Functional Regression, Experiments
In this section, we aim to provide an evaluation of OPFLOW’s capabilities for UFR, as well as genera-
tion tasks. We consider several datasets, composed of both Gaussian and non-Gaussian processes,
as well as a real-world dataset of earthquake recordings with highly non-Gaussian characteristics.

Here, we show UFR experiments using OPFLOW. For training, we take A ∼ GP(µ, k) with k being
the Matern covariance parameterized by length scale l and roughness ν. The mean function µ is set
to zero over D. The noise level (σ2) of observations in Eq. 2 is 0.01 for all regression tasks.
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Gaussian Processes. This experiment aims to duplicate the results of classical GPR with OPFLOW.
For training we use 30,000 GP samples with a Matern covariance parameterized by lU = 0.5, νU =
1.5. For the latent space GP, we use lA = 0.1, νA = 0.5. The resolution of D is set to 128. Although
GPR requires the GP mean and covariance of the data distribution to be known, OPFLOW learns
them instead. For regression, we infer the posterior from just 6 random observation points in D.
Fig. 2 displays the observed points and analytical solution for GP regression, along with the posterior
from OPFLOW. The predicted mean and uncertainty of OPFLOW agree well with the ground truth,
demonstrating the ability to accurately capture the posterior distribution.
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Figure 3: OPFLOW regression on a 32×32 Gaussian random field. (a) 32 random spatial observations.
(b) Predicted mean from OPFLOW. (c) True mean from GP regression. (d) Error of the predicted
mean. (e) Error of predicted uncertainty. (f) Samples from OPFLOW. (g) Samples from GP regression.

Gaussian random fields. We build a 2D dataset of 20,000 32x32 Gaussian random fields with
lU = 0.5 and νU = 1.5. To train the OPFLOW prior, we use a GP latent space with lA = 0.1, νA = 0.5.
In this experiment, the posterior can be computed analytically. In Fig. 3, we perform inference with
only 32 random spatial observations. OPFLOW reliably recovers the true posterior mean and variance
without assuming that the true data are from a Gaussian Process a priori. However, OPFLOW does
have a large amount of error in the upper right corner where there are few observations.

Seismic waveforms regression. In this experiment, OPFLOW regression is applied to a real-world non-
Gaussian dataset consisting of earthquake ground motion records from Japan [14]. We downsampled
the time-series to 10Hz and used lA = 0.05, νU = 0.5. After training, we perform inference on an
unseen time series and show results from UFR (Fig. 4). OPFLOW is able to generate samples that
match the data and accurately capture key characteristics including various types of seismic waves
arriving at different times. The standard GP model struggles in this complex setting.

5 Conclusion
We introduced Neural Operator Flows (OPFLOW), an invertible infinite-dimensional generative model
that offers a learning-based solution for end-to-end universal functional regression, which has the
potential to outperform functional regression with Gaussian processes. Looking ahead, OPFLOW may
enable new avenues for analyzing functional data by learning directly from the data.
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Figure 4: OPFLOW regression on seismic time series data.
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