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Abstract

Machine learning could enable an unprecedented level of control in protein engi-
neering for therapeutic and industrial applications. Critical to its use in designing
proteins with desired properties, machine learning models must capture the protein
sequence-function relationship, often termed fitness landscape. Existing bench-
marks like CASP or CAFA assess structure and function predictions of proteins,
respectively, yet they do not target metrics relevant for protein engineering. In this
work, we introduce Fitness Landscape Inference for Proteins (FLIP), a benchmark
for function prediction to encourage rapid scoring of representation learning for
protein engineering. Our curated tasks, baselines, and metrics probe model gener-
alization in settings relevant for protein engineering, e.g. low-resource and extrap-
olative. Currently, FLIP encompasses experimental data across adeno-associated
virus stability for gene therapy, protein domain B1 stability and immunoglobulin
binding, and thermostability from multiple protein families. In order to enable ease
of use and future expansion to new tasks, all data are presented in a standard format.
FLIP scripts and data are freely accessible at https://benchmark.protein.properties.

1 Introduction

Proteins are life’s workhorses, efficiently and precisely performing complex tasks under a wide variety
of conditions. This combination of versatility and selectivity makes them not only critical to life, but
also to a myriad of human-designed applications. Engineered proteins play increasingly essential
roles in industries and applications spanning pharmaceuticals, agriculture, specialty chemicals,
and fuel [1–5]. The ability of a protein to perform a desired function is determined by its amino
acid sequence, often mediated through folding to a three-dimensional structure [6]. Unfortunately,
current biophysical and structural prediction methods cannot reliably map a sequence to its ability to
perform a desired function, termed protein fitness, with sufficient precision to distinguish between
closely-related protein sequences performing complex functions such as catalysis. Therefore, protein
engineering has relied heavily on directed evolution (DE) methods, which stochastically modify
(“mutate") a starting sequence to create a library of sequence variants, measure all variants to find
those with improved fitness, and then iterate until the protein is sufficiently optimized [7]. Directed
evolution is energy-, time-, and material-intensive, in part because it discards information from
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unimproved sequences. Machine-learning methods that predict fitness from sequence can leverage
both positive and negative data to intelligently select variants for screening, reaching higher fitness
levels with fewer measurements than traditional directed evolution, and without necessarily requiring
detailed understanding of structure or mechanism [8, 7, 9–11].

Directed evolution campaigns are often limited by the cost of collecting sequence-fitness data.
Therefore, machine learning approaches for sequence-fitness prediction are most useful in protein
engineering when they can learn from low-N (few sample) labeled datasets or when they can
generalize to types of variation that are unobserved in the training set. Rapid advances in genomic
sequencing technology have led to an explosion of putative protein sequences [12, 13] deposited
in databases like UniProt [14]. Recent efforts in sequence-function prediction [15, 16] have sought
to leverage the information in these unlabeled sequences through pretraining and fine-tuning, and
have successfully engineered proteins with brighter fluorescence and high catalytic efficiency [17].
Unsupervised models were also applied to- or built on evolutionary sequence inputs to model the
effects of mutations [18–21].

In this work, we present a suite of benchmarking tasks for protein sequence-fitness prediction with
the dual aims of enabling protein engineers to compare and choose machine learning methods
representing protein sequences and accelerating research on machine learning for protein fitness
prediction. Our tasks are curated to be diverse in the functions measured and in the types of
underlying sequence variation. For each landscape, we provide one or more train/test splits that
evaluate biologically-relevant generalization and mimic challenges often seen in protein engineering.
Figure 1 and Table 2 summarize the landscape tasks and splits. We also compute the performance of
baseline models against which future models can be compared, and which highlight that our tasks
can distinguish between “better" and “worse" pretraining regimes. Landscapes and baselines are
available at https://benchmark.protein.properties, while a glossary technical terms is provided in the
supplement.

2 Related Work

Well-designed and easily accessible benchmarks have encouraged and measured progress in machine
learning on proteins, especially protein structure prediction. The Critical Assessment of Protein
Structure Prediction (CASP) [22], and retrospective protein training datasets from previous CASP
competitions [23] have lowered the barrier to entry for new research teams and provided a clear
account of progress over the last three decades [24]. DeepMind’s recent landmark results with their
AlphaFold2 predictor in CASP 14 [25] built on these community-driven efforts.

Table 1: Performance (Spearman’s correlation) on TAPE engineering tasks. Performances reported in
referenced literature. CNNs were replicated from [26] without test set clipping.

Pretraining Fluorescence Stability

ESM [27] masked language model 0.68 0.71

TAPE transformer [28] masked language model 0.68 0.73
TAPE LSTM [28] bidirectional language model 0.67 0.69
TAPE ResNet [28] masked language model 0.21 0.73
UniRep [29] language model + structure 0.67 0.73

CPCProt [30] contrastive 0.68 0.65
CPCProt-LSTM [30] contrastive 0.68 0.68

Linear regression [26] none 0.68 0.48
CNN [26] none 0.67 0.51
Mutation count [31] none 0.45 NA
BLOSUM62 score [31] none 0.50 NA

Inspired by the effectiveness of CASP, there have been attempts at benchmarks for function prediction
and protein pretraining. The Critical Assessment of Function Annotation (CAFA) [32, 33] focuses on
assigning Gene Ontology (GO) classes (categorical definitions of protein functions) to proteins. While
an important benchmark, CAFA does not directly require models to build on sequence inputs, instead
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they could leverage graph inputs from protein-protein interaction networks, and the prediction targets
do not account for fitness variations between very similar sequences that are important for protein
engineering. Tasks Assessing Protein Embeddings (TAPE) [28] aims to evaluate the effectiveness of
different pretraining regimes and models to predict protein properties. Of the five tasks in TAPE, three
(remote homology, secondary structure, and contacts) focus on structure prediction, while only two
(fluorescence and stability) target fitness prediction. These two tasks show little discriminative power
between different models [26], as shown in Table 1. In addition, the use of structure as an evaluation
limits the creation of jointly trained structure- and sequence- based embeddings that may be most
useful in protein engineering tasks [34]. Envision [35] collates several dozen single amino-acid
variation (SAV) datasets, but does not include other types of sequence variation of interest to protein
engineers. DeepSequence [19] collects 42 deep mutational scan (DMS) datasets for evaluation
purposes. These capture single and multiple co-occurring residue substitutions, but do not capture
variation at the proteome scale, or mutational paths from large insertions and deletions. Furthermore,
while DMS landscapes may characterize the effect of co-occurring substitutions, not every sample
with co-occurring residue substitutions may express these at sites relevant for a measured function,
and in turn, evaluations on all possible co-occurring substitutions may not always be expressive
(e.g., if the measured function is binding and a sample has two substitutions, one at a residue at
the interface and one elsewhere, the effect may still be high simply because an interface residue
is involved). Finally, the data from these studies does not come with standard column headers or
train/test splits, hindering use in automated evaluation pipelines.

The limitations of the existing benchmarks have led pretraining methods to be primarily evaluated
by their ability to predict structural information [36, 37]. While the ability to impart structural
knowledge through sequence-only pretraining is impressive, it is not the most important criterion
for protein engineers. Efforts to systematically compare new methods on fitness prediction have
required researchers to both gather their own collection of datasets and compute their own baseline
comparisons [16, 38–40].

3 Landscapes and Splits

We design FLIP to answer two fundamental questions about machine learning model learning protein
sequences:

1. Can a model capture complex fitness landscapes beyond mutations to a parent sequence?

2. Can a model perform well across a range of proteins where fitness is measured for very
different functions?

Existing work such as DeepSequence [19] and Envision [35] succeed at the second criterion but
not the first. TAPE [28], on the other hand, evaluates the first criterion with its fluorescence task
but not the second. We prioritized complex landscapes (with insertions and deletions) rather than
single amino acid variants (e.g. deep mutational scans), to practically cover a larger sequence space,
as well as potentially more functional diversity finalized to ensure model generalization for broad
applicability.

To test the aforementioned questions, we collect three published landscapes and create 15 correspond-
ing dataset splits as desribed in the following and summarized in Table 2. We choose landscapes
and splits that cover a broad range of protein families, sequence variation, and fitness landscapes
with rigorous measurements. Each landscape is transformed into one or more splits to test different
model generalization abilities, as shown in Figure 1; many of the splits were also made to reflect
standard laboratory data-collection practices, thus testing the appropriateness of models to real-world
applications.

Simple random splits are notoriously misleading in classical protein sequence-to-function prediction
as protein sequences are not sampled I.I.D., but with correlations induced by evolutionary history.
This means that random splits reflect a notion of generalization not of interest to most biologists [46].
While there are standard heuristics for approximating the correlation structure due to evolution (such
as sequence-identity deduplication\redundancy reduction), in the protein engineering setting there
are not similarly standardized approaches. As such, we resorted to landscape-specific approaches
informed by the conditions of each experiment, as detailed in Figure 1.

3



B

C
Increasing sequence diversity

GB1: Highly epistatic, only
mutates four positions

AAV: Mutations targeted to 
binding interface

Temp.

Thermostability: Property 
shared across tree of life

...

...

Rest
Rest

Rest
...

One
Train

One/Two

One/Two/Three Test

up to 39
mutations,
insertions,
or deletions

Random 80%

Rest

Random to 
Designed

Designed to 
Random

80% of Random

20% of Random

...

...

≤7 8+

Evaluate on
cluster 

representatives

A

L
an
d
sc
ap
es

Choose Landscape(s) Choose Split(s) Train and Predict Compare to baselines

S
p
lit
s

...

One Rest

...

One/Two Rest

Leaderboard
1
2
3
4

Train Test

Human
sequences

Human
cell line 

sequences

Sequences 
across life

Train Test

Fitness Fitness

WT WT

...

≤7

...

≤78+ 8+

Figure 1: Summary of the workflow, landscapes, and splits. (A) General FLIP workflow: choose
landscapes and splits that match user needs, train models and make predictions on the test set, and
then compare to baseline models. (B) We choose landscapes that cover different types of sequence
diversity. The GB1 landscape focuses on simultaneous mutation of four epistatic sites with nearly
complete coverage [41] (PDB ID: 2GI9 [42]). The AAV capsid protein landscape sparsely samples
sequences with up to 28 mutations, including insertions and deletions, to the the binding interface [43]
(PDB ID: 6IH9 [44]). The thermostability landscape [45] measures a property shared by proteins
from multiple functional groups across different domains of life. (C). We also provide up to seven
suggested data splits for each landscape, which are described in Section 3.

Table 2: Landscapes and split statistics. The sampled splits (*) are mainly used for discourse in this
manuscript, as such splits are rarely observed in practice when working with biological data.

Landscape Split Total samples Train samples Test samples

AAV Mut-Des 284, 009 82, 583 201, 426
Des-Mut 284, 009 201, 426 82, 583
1-vs-rest 82, 583 1, 170 81, 413
2-vs-rest 82, 583 31, 807 50, 776
7-vs-rest 82, 583 70, 002 12, 581
low-vs-high 82, 583 47, 546 35, 037
Sampled* 82, 583 66, 066 16, 517

Thermostability Mixed 27, 951 24, 817 3, 134
Human 10, 093 8, 148 1, 945
Human-cell 7, 156 5, 792 1, 366

GB1 1-vs-rest 8, 733 29 8, 704
2-vs-rest 8, 733 427 8, 306
3-vs-rest 8, 733 2, 968 5, 765
low-vs-high 8, 733 5, 089 3, 644
Sampled* 8, 733 6, 961 1, 772
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The vast majority of representation learning on protein sequences models entire sequences [27, 37,
15, 34]. As such, we use entire protein sequences as inputs, even for landscapes derived from studies
examining mutations at a small subset of positions. While we include a naïve validation set for
each split for comparison purposes, we encourage users to engineer their own validation splits from
the training data. All tasks and splits are provided in a consistent, easy-to-use CSV format and
are available at https://benchmark.protein.properties. Original datasets were either supplemented to
published research (Wu et al.) under CC BY 4.0, or were obtained with written permission from the
authors (Jarzab et al., Bryant et al.). Data derivatives proposed as tasks are licensed under AFL-3.

3.1 GB1

Motivation. One challenge confronting protein engineering is the ability to predict the effects of
interactions between mutations, termed epistasis. These interactions result in non-additive effects on
protein fitness and have been shown to constrain the paths available to evolution, especially evolution
via a greedy walk. Furthermore, as more mutations are made simultaneously, these interactions
become more complex and more difficult to predict. Therefore, we wish to assess model predictions
on an exhaustive, combinatorial, and highly epistatic mutational landscape, focusing on learning from
variants with fewer mutations to predict the activity of variants with more mutations.

Landscape. We use the GB1 landscape [41], which has become a gold standard for investigating
epistatic interactions [10]. GB1 is the binding domain of protein G, an immunoglobulin binding
protein found in Streptococcal bacteria [47, 48]. In their original study, Wu et al. measured the fitness
of 149, 361 of 160, 000 possible combinations of mutations at 4 positions.

Splits. Over 96% of the amino acid mutations in this set yield non- or poorly-binding sequences
– 143, 539 out of 149, 361 sequences have fitness value below 0.5, where wild-type fitness is 1 and
a fitness of 0 is non-binding. Thus, models trained on the full experimental data can achieve high
performance by predicting low fitness regardless of inputs. To ensure that models learn nontrivial
signal, we downsample non-functional sequences prior to creating the training sets. Specifically,
we include all 5822 sequences with fitness above 0.5 and 2911 randomly-sampled sequences with
fitness less than or equal to 0.5. From this set, we curate five dataset splits to test generalization
from few-mutation sequences to many-mutation sequences, from low fitness to high, and one extra
randomly sampled split for discussion purposes:

• Train on single mutants (1-vs-rest): Wild type and single mutants are assigned to train,
while the rest are assigned to test. This split is one of the most commonly observed in an
applications setting, where a researcher has gathered data for many single mutations of
interest and wishes to predict the best combinations of mutations.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants
are assigned to train, while the rest are assigned to test. This is also a commonly observed
split in an applications setting, albeit, at a lesser frequency than 1-vs-rest.

• Train on single, double and triple mutants (3-vs-rest): Wild type, single, double and
triple mutants are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): Sequences with fitness value equal or
below wild type are used to train, while sequences with fitness value above wild type are
used to test.

• Sampled: Sequences are randomly partitioned in 80% train and 20% test. This split serves
mostly for discussion purposes in this manuscript.

3.2 AAV

Motivation. Mutations for engineering are often focused in a specific region of a protein. For
example, this is done if a protein-protein interface is known to be at a subset of positions. Successfully
predicting fitness for a long sequence being mutated at a subset of positions is a task of wide
applicability.
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Landscape. Adeno-associated virus (AAV) capsid proteins are responsible for helping the virus
integrate a DNA payload into a target cell [49], and there is great interest in engineering versions
of these proteins for gene therapy [43, 50, 51]. Bryant et al. prepared a rich mutational screening
landscape of different VP-1 AAV proteins (UniProt [14] Accession: P03135), and this data has been
successfully used as a basis for machine learning-guided design [52, 53]. In their study, Bryant
et al. mutagenize a 28-amino acid window from position 561 to 588 of VP-1 and measure the fitness
of resulting variants with between 1 and 39 mutations, which we refer to as the sampled pool. In
addition they measured the fitness of sequences chosen or designed using various machine-learning
models. We refer to these as the designed pool.

Splits. We derive seven splits from this landscape that probe model generalization:

• Sampled-designed (Mut-Des): All sampled sequences are assigned to train; all designed
sequences are assigned to test.

• Designed-sampled (Des-Mut): All designed sequences are assigned to train; all sampled
sequences are assigned to test.

• Train on single mutants (1-vs-rest): Wild type and single mutants in the sampled pool are
assigned to train, while the rest are assigned to test. As with the GB1 1-vs-rest split, this
reflects a common dataset split observed in protein engineering applications.

• Train on single and double mutants (2-vs-rest): Wild type, single and double mutants in
the sampled pool are assigned to train, while the rest are assigned to test. Again, as with
the GB1 2-vs-rest split, this reflects a common dataset split observed in protein engineering
applications.

• Train on mutants with up to seven changes (7-vs-rest): Mutants with up to and including
seven changes in the sampled pool are assigned to train, while the rest are assigned to test.

• Train on low fitness, test on high (low-vs-high): For sequences in the in the sampled pool,
sequences with fitness value equal or below wild type are used to train, while sequences
with fitness value above wild type are used to test.

• Sampled: Sequences in the sampled pool are randomly partitioned in 80% train and 20%
test. This split serves mostly for discussion purposes in this manuscript.

3.3 Thermostability

Motivation. Thermostability is very often a desirable trait that complements more application-
specific functions. For example, thermostable enzymes not only allow operation at higher reaction
temperatures with faster reaction rates, but are also better starting points for directed evolution
campaigns [54, 55]. This explains why thermostability has been a consistent target for multi-objective
optimization in protein engineering [56–58]. Thermostability can be challenging to predict, because
it is not necessarily a smooth function landscape; in certain protein families, a single amino acid
substitution can confer or destroy thermostability [59].

Landscape. We curate an extensive screening landscape from the Meltome Atlas [45], which used
a mass spectrometry-based assay to measure protein melting curves across 13 species and 48,000
proteins. Unlike the other landscapes, which measure the effects of sequence variation from a single
starting point on a function specific to that protein, this landscape includes both global and local
variation.

Splits. We derive three splits from this landscape, considering biological realities and common
dataset regularizations for cross-spices and sequence-diverse sets:

• Mixed: We cluster all available sequences and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all
sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human: We cluster sequences in human and select cluster representatives using MM-
seqs2 [12] at a threshold of 20% sequence identity to create one split. In this split, all
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sequences in 80% of clusters are assigned to train, while only cluster representatives from
the remaining 20% of clusters are assigned to test.

• Human-cell: We cluster sequences of one cell line for human and select cluster representa-
tives using MMseqs2 [12] at a threshold of 20% sequence identity to create one split. In this
split, all sequences in 80% of clusters are assigned to train, while only cluster representatives
from the remaining 20% of clusters are assigned to test.

4 Baseline algorithms

We evaluate three major groups of baselines (Table 3) – parameter-free, supervised, and pretrained.
These three classes correspond to common approaches from different communities. In particular,
we seek to clarify the value of transfer learning for protein engineering by benchmarking pretrained
models against purely supervised methods systematically. We also hope to simplify algorithm
selection for practitioners by providing a single place to compare many commonly used methods.
Note that we do not use Potts models [60], popular in protein structure prediction [61], because of
the need to build high-quality multiple sequence alignments, which would be impractical for the
thermostability dataset. Furthermore, Potts models use artificial constructs when dealing with datasets
with large insertions and deletions (e.g., modeling sequence deletions through special characters), as
is the case for the AAV landscape. However, in the presence of well curated MSAs, these approaches
can be successful in modeling the effect of residue substitutions [62].

Table 3: Baseline methods

Method Description

Levenshtein Levenshtein distance to wild-type.
BLOSUM62 BLOSUM62-score relative to wild-type.
Ridge regression Ridge regression model on one-hot encoding.
Convolutional network Simple convolutional network on one-hot encoding.
ESM-untrained 750M parameter transformer with randomly-initialized weights
ESM-1b [27] 750M parameter transformer pretrained on UniRef50.
ESM-1v [16] 750M parameter transformer pretrained on UniRef90. Only one

element of ensemble used due to compute constraints.

For baselines using protein language models, which compute an embedding for every amino acid, we
pool embeddings in three ways:

• Per amino acid (per AA): A supervised model is tasked to learn how to pool over the
sequence using a 1D attention layer to return a regression prediction.

• Mean: Sequence embeddings are mean pooled per amino acid over the length of the protein
sequence to obtain a fixed-size input for each sequence.

• Mean over subset (mut mean): Sequence embeddings are mean pooled per amino acid
for the residues in the mutated region of interest to obtain a fixed-size, region specific input
from the sequence.

To train the models, 10% of each training set is sampled at random as a validation set. For Ridge, we
use the scikit-learn implementation of ridge regression with default parameters. The CNN consists of
a convolution with kernel width 5 and 1024 channels, a ReLU non-linearity, a linear mapping to 2048
dimensions, max pool over the sequence, and a linear mapping to 1 dimension. CNNs are optimized
using Adam [63] with a batch size of 256 (GB1, AAV) or 32 (thermostability) and a learning rate of
0.001 for the convolution weights, 0.00005 for the first linear mapping, and 0.000005 for the second
linear mapping. Both linear mappings have a weight decay of 0.05. For ESM models, by far the most
computationally expensive baselines, we train with a batch size of 256, a learning rate of 0.001, and
the Adam optimizer. CNNs and the ESM models are trained with early stopping with a patience of
20 epochs. Models are trained on a NVidia Quadro RTXA6000 GPU. Code, data, and instructions
needed to reproduce results can be found at https://benchmark.protein.properties.
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5 Results

Overall, we observe that for landscapes around a wild type (Tables 4 & 5), pretraining offered by
ESM-1b [27] or ESM-1v [16] does not help much when sufficient training data is available (see Table
2 for statistics), at least in the setting explored here: using these protein language models to collect
frozen embeddings as inputs to subsequent prediction models. Conversely, for the split involving
diverse sequences (Table 6), pretraining yields a large boost over pure supervision. The best method
of pooling residue-embeddings for whole sequences varies depending on task (Table 4, 5 & 6). Most
remarkably, training simple models (CNN, ridge regression) is competitive over a wide range of
regimes. We exclude results for per-AA ESM models for the AAV Des-Mut task (Table 5), as we
estimated that it would require a month of compute using for Nvidia A6000 GPUs, which appeared
unjustified for a baseline metric computation. Hyperparameter search results are reported in the
supplement, as are evaluations using different metrics.

Table 4: GB1 baselines (metric: Spearman correlation)

Model 1-vs-rest 2-vs-rest 3-vs-rest low-vs-high
ESM-1b (per AA) 0.28 0.55 0.79 0.59
ESM-1b (mean) 0.32 0.36 0.54 0.13
ESM-1b (mut mean) -0.08 0.19 0.49 0.45
ESM-1v (per AA) 0.28 0.28 0.82 0.51
ESM-1v (mean) 0.32 0.32 0.77 0.10
ESM-1v (mut mean) 0.19 0.19 0.80 0.49

ESM-untrained (per AA) 0.06 0.06 0.48 0.23
ESM-untrained (mean) 0.05 0.05 0.46 0.10
ESM-untrained (mut mean) 0.21 0.21 0.57 0.13
Ridge 0.28 0.59 0.76 0.34
CNN 0.17 0.32 0.83 0.51

Levenshtein 0.17 0.16 -0.04 -0.10
BLOSUM62 0.15 0.14 0.01 -0.13

GB1. Table 4 summarizes baseline results for the biologically motivated GB1 splits. When models
are trained only on single mutants, all variations on ESM-1b [27] and ESM-1v [16] outperform
supervised models. This regime has little training data (29 samples, Table 2), giving the most
opportunity for pretraining to compensate. The difference between pretrained and supervised models
largely disappears once models are trained on both single and double mutants (2-vs-rest, Table 4).
The various pooling choices for embeddings perform inconsistently across datasets and splits; for
example, mut-mean does best on 1-vs-rest but worst on 3-vs-rest. The low-vs-high split suggests.
The sampled split reported separately in Table 7 confirms: random sampling sequences in biology is
bound to overestimate results.

AAV. Table 5 summarizes baseline results for the biologically motivated AAV splits. Across all
splits, purely supervised models are competitive with pretrained models. This suggests that the large
sizes of training sets are past the threshold where pretraining improves performance. The particular
choice of pooling that performs best is inconsistent across splits. The BLOSUM62 baseline could not
be applied as the mutations in this set include insertions and deletions. In this case too, the sampled
split reported separately in Table 7 strongly suggest that random sampling sequences in biology may
lead to overestimated results.

Thermostability. Table 6 summarizes baseline results for thermostability. Pretrained models
consistently outperform supervised models on this task, suggesting that this landscape is not yet past
the threshhold where pretraining improves performance. Interestingly, the supervised baselines based
on untrained ESM embeddings do better than either ridge or CNN. Mean over subset (mut mean) and
BLOSUM62 are not applicable for the Meltome landscape as the sequences are not evolutionarily
related.

8



Table 5: AAV baselines (metric: Spearman correlation)

Model Mut-Des Des-Mut 1-vs-rest 2-vs-rest 7-vs-rest low-vs-high
ESM-1b (per AA) 0.76 — 0.03 0.65 0.65 0.39
ESM-1b (mean) 0.63 0.59 0.04 0.26 0.46 0.18
ESM-1b (mut mean) 0.70 0.70 0.31 0.65 0.61 0.33
ESM-1v (per AA) 0.79 — 0.10 0.70 0.70 0.34
ESM-1v (mean) 0.55 0.44 0.18 0.16 0.45 0.20
ESM-1v (mut mean) 0.70 0.71 0.44 0.64 0.64 0.31

ESM-untrained (per AA) 0.56 — 0.18 0.22 0.42 0.08
ESM-untrained (mean) 0.27 0.34 0.01 0.14 0.22 0.22
ESM-untrained (mut mean) 0.62 0.64 0.26 0.16 0.56 0.24
Ridge 0.64 0.53 0.22 0.03 0.65 0.12
CNN 0.71 0.75 0.48 0.74 0.74 0.34

Levenshtein 0.60 -0.07 -0.11 0.57 0.53 0.25
BLOSUM62 NA NA NA NA NA NA

Table 6: Thermostability baselines (metric: Spearman correlation)

Model Mixed Human Human-Cell
ESM-1b (per AA) 0.68 0.71 0.76
ESM-1b (mean) 0.68 0.70 0.75
ESM-1b (mut mean) NA NA NA
ESM-1v (per AA) 0.65 0.77 0.78
ESM-1v (mean) 0.67 0.75 0.74
ESM-1v (mut mean) NA NA NA

ESM-untrained (per AA) 0.44 0.44 0.46
ESM-untrained (mean) 0.36 0.48 0.49
ESM-untrained (mut mean) NA NA NA
Ridge 0.17 0.15 0.24
CNN 0.34 0.50 0.49

Levenshtein NA NA NA
BLOSUM62 NA NA NA

6 Discussion

The prediction tasks in FLIP probe complex fitness landscapes across different protein functions. We
curate three landscapes published in existing literature and formulate 15 corresponding splits of the
data to mimic protein engineering tasks. The main criteria to include a landscape was whether it
could be used to assess interesting types of generalization, and if it was amenable to interpretable
assessment metrics. As no standard approach exists to partition landscapes arising from mutagenesis
of a parent sequence, we propose ideas that may be applied to future landscapes. In particular, we
explore the concept of training on sequences only a few mutations from a parent while predicting on
data many mutations from a parent in a step-by-step fashion.

The need for more challenging splits is illustrated in Table 7, which shows results for the sampled
splits, based on simple random sampling. Almost all models do drastically better for the sampled
splits, and differences between models are exaggerated. This indicates the importance of biologically-
motivated generalization in task design.

In general, results on baselines highlight that while pretraining approaches perform well on tasks with
diverse sequences (Thermostability, Table 6), they do not outperform simpler models on mutational
landscapes (GB1, Table 4 &, AAV, Table 5). In addition, large pretrained models require amounts
of compute (up to 50 days on an NVidia A6000 GPU) to train on some tasks, which is out of
the reach of most academic research groups. It is important to note that while we performed a
modest hyperparameter search, more extensive sweeps combined with training data regularization
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Table 7: Optimistic results for random splits (Sampled) on the AAV and GB1 sets (metric: Spearman
correlation)

Landscape AAV GB1
ESM-1b (per AA) 0.90 0.92
ESM-1v (per AA) 0.92 0.92

ESM-untrained (per AA) 0.78 0.79
Ridge 0.83 0.82
CNN 0.92 0.91

like different validation splits, may yield better absolute and relative performance. The landscapes
and derived prediction splits offered in FLIP highlight directions for future work, such as better
pretraining or embedding methods for protein mutational landscapes.

7 Conclusion

The proliferation of protein sequence data, along with advanced experimental techniques for func-
tional measurement of proteins, presents a ripe environment for machine learning-enabled solutions
in protein engineering. With the introduction of FLIP, we focus on sequence-fitness prediction
and aim to encourage rigorous evaluation of model generalization in multiple tasks and settings
relevant to protein engineering. We hope to seed advances in this emerging interdisciplinary field
with downstream applications for solutions in human health and the environment. FLIP data and
scripts are available under free licenses at https://benchmark.protein.properties.
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