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Abstract

Session history is a common way of recording001
user interacting behaviors throughout a brows-002
ing activity with multiple products. For ex-003
ample, if an user clicks a product webpage004
and then leaves, it might because there are cer-005
tain features that don’t satisfy the user, which006
serve as an important indicator of on-the-spot007
user preferences. However, all prior works fail008
to capture and model customer intention ef-009
fectively because insufficient information ex-010
ploitation and only apparent information like011
descriptions and titles are used. There is also a012
lack of data and corresponding benchmark for013
explicitly modeling intention in E-commerce014
product purchase sessions. To address these015
issues, we introduce the concept of an intention016
tree and propose a dataset curation pipeline.017
Together, we construct a sibling multimodal018
benchmark, SESSIONINTENTBENCH, that eval-019
uates L(V)LMs’ capability on understanding020
inter-session intention shift with four subtasks.021
With 1,952,177 intention entries, 1,132,145022
session intention trajectories, and 13,003,664023
available tasks mined using 10,905 sessions, we024
provide a scalable way to exploit the existing025
session data for customer intention understand-026
ing. We conduct human annotations to collect027
ground-truth label for a subset of collected data028
to form an evaluation gold set. Extensive exper-029
iments on the annotated data further confirm030
that current L(V)LMs fail to capture and utilize031
the intention across the complex session set-032
ting. Further analysis show injecting intention033
enhances LLMs’ performances.034

1 Introduction035

Modeling and analyzing customer intention is of036

great importance in the E-commerce domain (Dai037

et al., 2006a; Jammalamadaka et al., 2009; Li et al.,038

2020). This enables us to give better product rec-039

ommendations and provide more personalized ser-040

vices (Hu et al., 2008; Zhao et al., 2015; Zhu et al.,041

2024). Conventional ways of understanding user042

Session Begin

Session End

Perfect fit!
Buy it! 121$

Figure 1: An example of customer intention-shift in the
session. At each session step, the customer interacts
with a new product, may change his purchase intent,
and then looks for items with desired features.

intention always rely on analyzing user profiles or 043

purchasing records, but such information is not eas- 044

ily retrievable or even missing in real world applica- 045

tions. Therefore, we need a data source with better 046

accessibility and applicability, such as the product 047

purchase sessions, which concludes the user be- 048

havior throughout a series of sequential browsing 049

activities. By analyzing the interaction history in 050

this short period of time, we are able to infer the 051

user intention and how it changes over time. The 052

shifting intent behind product searches and inspec- 053

tions can further affect future user interactions. For 054

example, in Figure 1, the customer exposes his in- 055

tention when he switches from flashy red shoes to 056

plain white ones. After that, browsing for shoes at a 057

much lower price shows customers’ need for cheap 058
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and cheerful products. By modeling customer ses-059

sion intention and adjusting inferred results when060

needed, we can provide more customized services061

in an accurate and timely manner.062

Existing work either covers session or intention,063

but not collectively. There has been experiment fo-064

cusing on exploiting the product information within065

one session and using it to make direct predic-066

tions (Jin et al., 2023b), which assembles useful in-067

formation based on specific product attributes like068

titles and prices. While some other works explicitly069

model the user intention behind the single purchase070

or co-buy behaviors (Xu et al., 2024; Ding et al.,071

2024). They leverage the most recent user actions072

for intention understanding and inference, covering073

only one or two products, but fall short of explor-074

ing user preference shifts over a longer horizon,075

such as sessions. However, Jin et al. (2023b) have076

shown that session information and fine-grained077

attribute analysis would help LLMs to give better078

next-product recommendations. Considering these079

aspects, it is essential to formulate a method to080

explicitly model intention over a session period.081

But when modeling intention dynamically in082

more complex purchase contexts, such as sessions,083

several gaps remain. Firstly, current works only084

use short-term information and focus on single or085

co-buy purchases. This approach overlooks the po-086

tential motivational intention embedded in earlier087

user interactions, therefore hindering the models’088

capability of making reasonable inferences. Fur-089

thermore, among various attributes, only product ti-090

tles and images are used as product inference hints,091

which omits important dimensions of product infor-092

mation and results in a waste of information from093

the collected knowledge base. Last but not least,094

we lack an automated pipeline to streamline the095

construction of such intention data, there hasn’t096

been any formulation of such tasks or benchmark097

data to evaluate L(V)LM systems.098

To combat this, we first propose SESSIONIN-099

TENTBENCH tasks, consisting of four sequen-100

tial subtasks tailored to systematically evaluate101

L(V)LMs’ capability in understanding customer in-102

tention within session browsing records. Then, we103

design an automated framework to streamline the104

collection of detailed product metadata, customer105

intention, and intention shift within the session by106

prompting L(V)LM in a multi-step manner.107

By applying our method to Amazon-M2 (Jin108

et al., 2023b), we first filter and collect 10,905 ses-109

sions with complete textual and visual data. We110

enrich the original session with intention entries 111

and obtain 1,132,145 possible intention pathways. 112

After that, we further conduct human annotations 113

to 8,980 sampled intention trajectories to form an 114

evaluation benchmark. Then, we carry out exten- 115

sive experiments over more than 20 L(V)LMs by 116

applying different evaluation settings and prompt- 117

ing techniques, along with extra fine-tunings. Our 118

findings indicate that current L(V)LMs struggle 119

with the proposed tasks. Further analyses reveal po- 120

tential underlying causes behind the observed low 121

model accuracy and introduce intention injection 122

as a possible way of assisting models’ understand- 123

ing of session intent and improving performances. 124

We will make our code, data, and models publicly 125

available after acceptance. 126

2 Related Works 127

2.1 Intention Understanding 128

Intention is the internal mental state that affects peo- 129

ple’s decision-making (Alford and Biswas, 2002). 130

By analyzing the inner intention states of the users, 131

service providers are able to present more person- 132

alized products (Dai et al., 2006b) and give back 133

more accurate responses (Zhang et al., 2016). In 134

E-commerce, customer intention is crucial in under- 135

standing their purchase behaviors and preferences 136

(Shim et al., 2001). There has been ongoing re- 137

search trying to decode how to model shopping 138

intention. For example, using history information 139

like tags (Wang et al., 2025) and co-buy behav- 140

iors (Yu et al., 2023; Xu et al., 2024). Recently, 141

studies show that LLMs are struggling to connect 142

the dots between intended products and user inten- 143

tion (Ding et al., 2024). However, figuring out the 144

items the user wanted is even more difficult when 145

it comes to more complex settings like session his- 146

tories (Jin et al., 2023b). To bridge the gap be- 147

tween understanding intention and providing more 148

precise shopping aids, we formulate SESSIONIN- 149

TENTBENCH tasking L(V)LMs to infer intent by 150

leveraging session metadata from multiple angles. 151

2.2 Purchase Session in E-commerce 152

Purchase session is a record of customer interaction 153

history, which has been becoming an increasingly 154

hot area of research (Alves Gomes et al., 2022; Jia 155

et al., 2023; Wang et al., 2024b). Various meth- 156

ods are proposed trying to exploit the abundant 157

information contained here, such as using deep 158

reinforcement learning models (Bharadwaj et al., 159

2



2022), leveraging graph neural networks (Jin et al.,160

2023a), and carrying out complex logical reason-161

ing techniques (Liu et al., 2023b). While Jin et al.162

(2023b) systematically introduces session informa-163

tion as an important factor for understanding se-164

quential interacting behavior, Liu et al. (2023b)165

points out that product attributes play a pivotal role166

in enhancing user intent capture. This shows that167

a more fine-grained framework of session inten-168

tion evaluation is needed. Using the summarization169

and generation ability of L(V)LMs, in SESSIONIN-170

TENTBENCH, we extract and incorporate session171

intent metadata from multiple aspects for more172

comprehensive intention capturing.173

3 Problem Definition174

3.1 SESSIONINTENTBENCH Task Definitions175

First of all, we give definitions to the tasks in SES-176

SIONINTENTBENCH. We propose to model the in-177

tention shift from four aspects as a comprehensive178

formulation, as outlined in Figure 2, to facilitate179

the creation of a L(V)LM shopping agent that is180

able to: (i) Detect the attribute that is decisive in181

the intention shift. (ii) Model intention trajectories182

with mined attributes and leverage them to give bet-183

ter predictions on future interactions. (iii) Compare184

between the most recently viewed product with pre-185

viously interacted ones and use this comparison to186

validate the plausibility of the inferred intent. (iv)187

Leverage modeled intention trajectories to predict188

future product interaction preferences.189

To this end, we propose tasks that each em-190

phasize a different angle of analysis. Assume191

we have collected the customer interaction his-192

tory over time steps t = 1, 2, . . . , T , i.e., the193

interacted products P1, P2, . . . , PT and attributes194

that affect customer decision-making at each step195

A1, A2, . . . , AT . Then the history information196

up till time step t can be summarized as Ht =197

{(Pj , Aj)}tj=1. We denote inferred customer in-198

tention as I1, I2, . . . , IT , and comparisons between199

interacted items and internal intent of the current200

step and previous step C1, C2, . . . , CT .201

TASK 1: Intent-Based Purchasing Likelihood202

Estimation: The first task asks the model to ver-203

ify whether the last proposed intention is a good204

alignment with the new product we are going to205

interact with. The model will be given history in-206

formation Ht−1, the proposed intention It−1, and207

new product Pt. It is asked to output a likelihood208

estimation score S1(Pt, It−1) |Ht−1 ∈ {0, 1, 2, 3}209

for the customer to interact with Pt, where 3 means 210

the most likely and 0 means the least probable. 211

TASK 2: Purchasing Likelihood Inference via 212

Valued Attributes Regularization: The second 213

task requires the model to verify whether the pro- 214

posed valued attributes of the user are an essen- 215

tial element of the actual unseen product. The 216

model is provided with the history information 217

Ht−1, the proposed valued attribute At−1, and the 218

new unseen product Pt. The model is required 219

to output an estimated interaction likelihood score 220

S2(Pt, At−1) |Ht−1 ∈ {0, 1, 2, 3} for the user to 221

interact with Pt under the assumption that the user 222

values the product feature At−1, where 3 means 223

the most likely and 0 means the least probable. 224

TASK 3: Intention Justification via Compari- 225

son: To ensure that the proposed intent is reason- 226

able and to verify against potential hallucinations, 227

the third task ask the model to justify whether the 228

proposed Ct provides a reasonable justification 229

for the user to interact with Pt after seeing Pt−1. 230

Formally, the model is tasked to output a score 231

S3(Ct, Pt−1, It−1, Pt, It) |Ht−1 ∈ {0, 1, 2, 3} indi- 232

cating the plausibility of the generated comparison. 233

TASK 4: Intention Evolution Modeling: The final 234

task we proposed aims to test the model’s ability to 235

help the recommendation systems decide whether 236

to further recommend similar products or not. Pro- 237

viding the model with all the historical information 238

and inferred purchasing intent, we ask it to choose 239

from exposing the user to (a) Similar products un- 240

der the same category, (b) Products with different 241

features but still under the same category, (c) Prod- 242

ucts under different category (exploring more to 243

figure out user preferences). If we map the choices 244

to numerical score {1, 2, 3}, then we formalize the 245

task as questioning for S4(exploration, It) |Ht 246

∈ {1, 2, 3}. Note that the degree of exploitation 247

decreases and exploration increases as the score 248

increases. 249

3.2 Dataset 250

We obtain products in series of sequential interac- 251

tions from Amazon-M2 dataset (Jin et al., 2023b) 252

and product image information from Amazon Re- 253

view Dataset (Hou et al., 2024). We leverage the 254

abundant textual information (such as titles, price, 255

color, material, etc.) mentioned in Amazon-M2 256

and retrieve corresponding product images from 257

Amazon Review Dataset to curate the dataset. Af- 258

ter filtering out products whose links are missing or 259

3



not accessible, we obtained 10,905 sessions with260

complete textual and visual components.261

4 SESSIONINTENTBENCH Construction262

In this section, we present our methodology of con-263

structing the intention tree from the source data264

we collected and how we curated the SESSIONIN-265

TENTBENCH. An overview is presented in Fig-266

ure 2. Our framework consists of four steps: (i)267

Extract attributes for session products to provide268

aids for model inference in later steps. (ii) For269

each time step, prompt the models to mimic cus-270

tomer behavior and infer multiple intentions from271

previous interactions. (iii) Enrich intention tree272

structure with more nuanced inter-session intention273

metadata analyses, which is taken from multiple274

perspectives on how and why intention shifts over275

time. (iv) Conduct human annotations for the con-276

structed tree277

4.1 Multi-modal Attribute Extraction278

The first step aims to extract product attributes that279

can better assist LVLMs in analyzing user intention280

shift in later stages. To achieve this, we use GPT-281

4o-mini (OpenAI, 2024a) as the extraction tool282

and provide it with ensembled textual and visual283

information of session products. The LVLM is284

then asked to output a general classification of the285

product itself, and to categorize then instantiate286

the extractable features of the product, for example287

(e.g., color: white, size: 7.5 inches).288

4.2 Customer Intention Generation289

To build up the intention tree based on the product290

purchase session, we first fill up the tree bones291

with predicted user intention using L(V)LMs. The292

intention are inferred at each time step following293

the session time frame. Starting with the first item294

in the session, we ask the model to infer a list of295

possible intention < It1, It2, It3, . . . >
∣∣
t=1

based296

on textual and visual information of the product297

user interacted, where the prompt is demonstrated298

below. Then, repeat the inference every step as we299

add the next new session product into the visible300

list of items to the model.301

To make the intention instantiation successional,302

we add the intention information of the previous303

time step {Ii}t−1
i=1 (<Prev Intent>) to facilitate304

the model to do the reasoning. And at each time305

we do the inference, we will only use one intention306

chosen from the previous step intention, to ensure307

Genre Property Train Test

Basic Info

# Sessions (uni.) 8963 5306
# Sampled Tasks 28736 7184
Avg. # Products 3.4163 3.4123
Avg. # Intention 3.4163 3.4123

Session Len
# Len = 3 18956 4752
# Len = 4 7598 1902
# Len = 5 2182 530

Task Num

# TASK 1 7153 1827
# TASK 2 7171 1809
# TASK 3 7154 1826
# TASK 4 7258 1722

Table 1: Statistics of the sampled and annotated data for
the SESSIONINTENTBENCH benchmark. uni. means
unique sessions are included. Note that the dataset is ran-
domly shuffled and then sampled by 13,003,664 tasks
or 1,132,145 intention trajectories, not by sessions.

the coherent intention trajectory sampling. More 308

specifically, the model is the constraint to output 309

the five most possible user intentions, denoted as 310

{<New Intent i>}5i=1 , prior to the fifth product 311

at each iteration. This process is referred to as 312

branching, as it resembles the growth of a tree, 313

wherein each new intention branches out from the 314

initial concept, akin to twigs dividing into finer 315

branches. And start from the fifth product, we only 316

infer one possible intention at a time to control 317

the exponential growth of the tree size (by setting 318

|<New Intent>|=1 ). 319

320
<TASK-PROMPT>
<INPUT:>
<Prev Intent><Prev Products><New Product>
<OUTPUT:>
<New Intent 1><Attr 1><Rationale 1><Comp 1>
<New Intent 2><Attr 2><Rationale 2><Comp 2>
. . .
<New Intent 5><Attr 5><Rationale 5><Comp 5>
<INPUT:>
<Prev Intent><Prev Products><New Product>
<OUTPUT:>

321

4.3 Inter-Sessions Intention Shift Analysis 322

Following this, we want to investigate the specific 323

reasons behind each intention shift before and af- 324

ter the customer sees each product and how that 325

might influence the further decision-making of the 326

customer. The prompt we used for generation is 327

given above. To ground the reasoning on the actual 328

product metadata, we require the model to point out 329

the most likely feature <Attr> At that affects the 330

user choices. Furthermore, we ask for a more com- 331

prehensive comparison <Comp> Ct between the last 332

product Pt the previous one Pt−1, providing logi- 333
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I1: The color is too flashy and bold, 
which might not suit me.

I2: This seems to exceed my budget 
by a small margin.

Task 1 Task 2

Task 3 Task 4

… …

The likelihood of a customer 
purchasing the product is high.

The comparison between the 
two products is reasonable.

The likelihood of a customer 
purchasing the product is low.

Exposing the user to 
different kinds of products.

…

Although beautiful,      isn't 
practical for daily use;       is more 
durable and affordable.

Intention-Shift Metadata Analysis

…
A1, C1, A2, C2, … AT, CT

Figure 2: Overview of SESSIONINTENTBENCH and the construction pipeline. Multi-modal attribute extraction is
conducted first as an aid for further step intention generation. Metadata analyses are conducted afterward to provide
a more fine-grained and detailed inspection of intention shifts in the session interaction. Here, Ai, Ci stands for
attributes and comparisons at i-th step. Different task is associated with different collections of metadata.

cal supports for the modeled intention pathways. In334

order to help models reason better, we require the335

model to provide rationales (<Rationale>) behind336

the generations as part of the output. We collect337

this analysis metadata in the format of one general338

categorization plus one detailed instantiation, e.g.,339

book type: fiction, price: $20.340

4.4 Human Annotation341

We hire Amazon Mechanical Turk annotators to342

label a randomly sampled subset of our data to343

balance cost and quality. We ask the workers to an-344

notate emphasizing the following perspectives: (1)345

The alignment of proposed intention It and session346

products Pt+1. (2) The consistency between the347

inferred valued attribute At and actual interacted348

products Pt+1. (3) The plausibility of the generated349

intention comparison Ct. (4) Predictions on further350

intention pathways based on historical information.351

In this way, the session intention could not only352

provide insights into the thinking process of cus-353

tomers but also meaningful references for when to354

explore and when to exploit product recommenda-355

tion systems. To simplify the annotation process,356

the annotators are only asked to assign a likelihood357

score or plausibility score for each task in a format358

roughly similar to yes, maybe yes, maybe no, no359

(corresponds to S = 3, 2, 1, 0). We carried out mul-360

tiple rounds of annotation worker selections with361

different criteria to ensure high annotation quality.362

More details are in Appendix B.363

5 Evaluations and Analyses364

5.1 Intrinsic Evaluations365

We present our detailed statistics in Table 1. By366

filling up the tree with intention on 10,905 sessions,367

we obtain more than 1,950,000 intention entries368

and 1,100,000 intention trajectories. The majority 369

of these sessions contains less than four products, 370

though long sessions also exist with up to 18 prod- 371

ucts. To sample a subset of sessions to form the 372

SESSIONINTENTBENCH, we first retrieve candi- 373

date sessions with lengths three to five. We then 374

sample 2,000 sessions with 2 trajectories per ses- 375

sion and later add another disjoint 1,445 sessions 376

with 4 trajectories per session. That gives 9,780 377

trajectories in total. To grant the model with full 378

information available, we only query the tasks at 379

the end of each session time step, that is, using all 380

the products available and masking the last product 381

when querying the TASK 1, 2. 382

5.2 Baselines and Model Selections 383

Evaluation Metric We use accuracy and Macro- 384

F1 score as evaluation metrics. Accuracy is defined 385

as the percentage of questions that are correctly 386

answered. We regard scoring 0,1 in TASK 1-3 as 387

the true positive label and scoring 0 as the one for 388

TASK 4. To start with, we include the Random 389

Selection and Majority Vote score of each task. 390

Model Selections Then, we test out a diverse set 391

of L(V)LMs on SESSIONINTENTBENCH. Since 392

all the tasks we proposed belong to classification 393

setups, we choose accuracy and Macro-F1 score 394

as evaluation metrics. The models we selected, as 395

given in Table 2, can be classified into three genres: 396

(I) OPEN L(V)LMS WITH ZERO-SHOT: Firstly, 397

we select a vast collection of models from differ- 398

ent companies or organizations. Text-to-text mod- 399

els includes Llama3.1, Llama3.2 (Grattafiori et al., 400

2024), Gemma2 (Team et al., 2024), Mistral (Jiang 401

et al., 2023), Falcon (Almazrouei et al., 2023), and 402

Qwen2.5 (Qwen et al., 2025). Image-text-to-text 403

models includes LLaVA (Liu et al., 2023a), Qwen2- 404
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Models Intent-Based Inference Valued Attributes Reg. Comparison Just. Evolution Modeling

Acc Ma-F1 Acc Ma-F1 Acc Ma-F1 Acc Ma-F1

Random 50.00 50.00 50.00 50.00 50.00 50.00 54.38 35.00
Majority 62.30 76.77 54.35 NaN 71.80 83.58 63.15 NaN

LLM (Zero-Shot)
Meta-Llama-3.1-8B 56.87 70.98 49.36 55.10 71.30 83.24 39.26 53.01
Meta-Llama-3.2-1B 57.53 72.03 32.39 48.37 60.13 74.98 37.69 53.49
Meta-Llama-3.2-3B 54.68 63.97 52.02 43.48 33.13 49.48 51.34 36.61
Gemma-2-2B 59.33 72.89 52.29 52.03 46.33 61.11 37.57 53.83
Gemma-2-9B 57.03 69.37 52.18 49.44 41.68 44.19 53.77 34.54
Mistral-7B-v0.3 62.17 76.52 47.65 64.08 71.30 83.24 39.61 53.53
Ministral-8B 56.98 69.33 51.58 50.48 68.02 80.48 38.27 54.08
Mistral-Nemo-12B 53.09 63.82 51.63 35.04 56.79 69.71 47.15 45.11
Falcon-3-7B 57.31 71.74 52.24 49.17 67.36 79.41 44.36 49.68
Falcon-3-10B 54.95 66.93 51.35 48.59 65.49 78.24 43.84 45.89
Qwen-2.5-1.5B 61.36 75.50 49.47 58.87 61.88 74.39 39.90 52.59
Qwen-2.5-3B 54.19 64.42 51.96 41.87 68.62 81.01 37.63 53.98
Qwen-2.5-7B 58.62 71.92 51.02 56.18 70.59 82.61 40.07 51.86

LVLM (Zero-Shot)
LLaVA-v1.6-mistral-7b 58.29 71.90 47.48 62.27 62.94 75.11 37.62 54.20
LLaVA-v1.6-vicuna-7b 62.01 76.55 46.93 63.88 71.27 83.22 37.21 54.24
Qwen-2-VL-2B 58.07 71.58 48.53 61.73 69.35 81.76 42.50 53.63
Qwen-2-VL-7B 58.73 71.48 50.63 56.37 70.61 82.73 37.67 53.95
Meta-Llama-3.2-11B-V 45.10 61.38 38.41 52.35 42.11 59.20 36.33 53.23

L(V)LM (Fine-tuned)
Meta-Llama-3.1-8B 52.82 63.84 51.46 46.27 70.76 82.82 51.92 33.01
Meta-Llama-3.2-1B 52.22 61.86 50.47 45.89 71.08 83.09 52.85 36.26
Meta-Llama-3.2-3B 55.67 66.80 51.80 46.70 69.61 81.93 51.63 32.66
Mistral-7B-v0.3 57.47 68.56 50.64 44.64 67.69 79.88 55.69 31.69
Ministral-8B 58.35 69.55 51.24 45.01 66.54 79.10 55.57 35.11
Mistral-Nemo-12B 56.10 66.80 52.02 46.68 67.74 79.81 55.81 32.95
Qwen-2.5-7B 54.02 65.63 52.02 46.75 69.50 81.66 54.47 31.59
Falcon-3-7B 55.77 65.02 52.85 48.46 71.41 83.30 54.65 36.86

L(V)LM (Proprietary API)
GPT4o-mini 57.44 69.34 51.95 43.81 71.19 83.13 38.39 53.90
GPT4o-mini (5-shots) 58.83 71.86 49.32 53.01 65.25 78.11 46.51 46.96
GPT4o-mini (COT) 57.26 69.02 51.87 43.33 68.86 81.22 42.81 49.42
GPT4o 55.05 65.33 49.75 36.27 56.30 67.51 41.64 52.39
GPT4o (5-shots) 53.10 63.58 44.20 38.61 54.94 65.01 43.44 48.41
GPT4o (COT) 53.30 61.91 52.00 36.08 49.50 50.87 58.42 13.73

Table 2: Evaluation results (%) of various (L)LMs on the annotated testing sets of SESSIONINTENTBENCH. The
best performances within each method are underlined, and the best among all methods are bold-faced.

VL (Wang et al., 2024a), and Llama with Vision405

(Grattafiori et al., 2024). Models under this cat-406

egory are prompted using zero-shot. (II) FINE-407

TUNED L(V)LMS WITH ZERO-SHOT: Follow-408

ing that, we fine-tuned Llama3.1, Llama3.2, Mis-409

tral, Falcon3, Qwen2.5 on partitioned training set410

and evaluate them on the testing set. (III) PRO-411

PRIETARY L(V)LM API WITH SEVERAL DIF-412

FERENT PROMPTING TECHNIQUES : Lastly, we413

test out GPT-4o and GPT-4o-mini (OpenAI et al.,414

2024; OpenAI, 2024a) using zero-shot prompting,415

5-shots prompting and Chain-of-Thought prompt-416

ing (Wei et al., 2023).417

5.3 Main Evaluation Results418

INTENTION EVOLUTION MODELING (TASK 4)419

is the most challenging task. Our experiments420

show that the average accuracy of the zero-shot 421

models on TASK 4 is 42.34%. Compared to the sec- 422

ond hardest task (Purchasing Likelihood Inference 423

via Valued Attributes Regularization), which mod- 424

els scored 49.63%, there is a great gap of 7.29% on 425

TASK 4. After being fine-tuned, all open models 426

are able to achieve a minimum accuracy of 51.92%, 427

while the top performing one (Mistral-Nemo-12B) 428

scores 55.81%, just above the RANDOM vote accu- 429

racy. It is worth noticing that GPT-4o with Chain- 430

of-Thought prompting is able to achieve the high- 431

est rate of 58.42% among all models and methods. 432

This might be because the larger model size and 433

the trick of enabling reasoning at run time could 434

help the model to better mimic the thinking process 435

of a real-life customer. This result shows that more 436

works need to be done to level up the model’s capa- 437
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Training Data Backbone Intent-Based Inference Valued Attributes Reg. Comparison Just. Evolution Modeling

Acc Ma-F1 Acc Ma-F1 Acc Ma-F1 Acc Ma-F1

Zero-shot

Llama-3.1-8B 56.87 70.98 49.36 55.10 71.30 83.24 39.26 53.01
Llama-3.2-3B 54.68 63.97 52.02 43.48 33.13 49.48 51.34 36.61
Mistral-7B-v0.3 62.17 76.52 47.65 64.08 71.30 83.24 39.61 53.53
Ministral-8B 56.98 69.33 51.58 50.48 68.02 80.48 38.27 54.08
Falcon-3-7B 57.31 71.74 52.24 49.17 67.36 79.41 44.36 49.68
Qwen-2.5-7B 58.62 71.92 51.02 56.18 70.59 82.61 40.07 51.86

SIB

Llama-3.1-8B 52.82 63.84 51.46 46.27 70.76 82.82 51.92 33.01
Llama-3.2-3B 55.67 66.80 51.80 46.70 69.61 81.93 51.63 32.66
Mistral-7B-v0.3 57.47 68.56 50.64 44.64 67.69 79.88 55.69 31.69
Ministral-8B 58.35 69.55 51.24 45.01 66.54 79.10 55.57 35.11
Qwen-2.5-7B 54.02 65.63 52.02 46.75 69.50 81.66 54.47 31.59
Falcon-3-7B 55.77 65.02 52.85 48.46 71.41 83.30 54.65 36.86

MIND + SIB

Llama-3.1-8B 60.10 68.81 55.33 48.67 70.54 82.54 57.72 39.74
Llama-3.2-3B 59.88 67.92 55.28 50.15 64.02 75.48 58.54 40.50
Mistral-7B-v0.3 60.04 69.96 52.90 45.87 67.69 79.56 59.93 37.16
Ministral-8B 58.24 67.33 53.95 47.44 65.44 77.01 58.77 40.93
Qwen-2.5-7B 59.00 67.65 53.95 48.62 63.09 74.98 57.84 39.30
Falcon-3-7B 58.57 68.42 55.94 50.22 71.30 83.25 58.36 40.00

Table 3: Evaluation results (%) of transfering knowledge from MIND to aid SESSIONINTENTBENCH. The best
performances among each method are underlined, and the best ones among all methods are bold-faced. We
abbreviate SESSIONINTENTBENCH as SIB.

bility of capturing long-term user intention trends.438

Fine-tuning can greatly improve the poor439

performing models, but struggle to help the440

mediocre ones. Poor performing models, which441

we referred to as the ones that receive a low score442

compared to models under the same category in443

some evaluation tasks, can quickly pick up rele-444

vant capabilities by being fine-tuned on the training445

set before testing. For example, LLAMA-3.2-3B446

shows poor performance on TASK 3 (Intention Jus-447

tification via Comparison), but after being fine-448

tuned on SESSIONINTENTBENCH, it shows a leap449

of performance by 36.5% and demonstrates compa-450

rable outcome with other larger 7B or 8B models.451

The mediocre performing models, which we re-452

ferred to as the ones that score near the highest453

among the models but still struggle to surpass the454

top accuracy records. Among the proposed tasks,455

the largest maximum accuracy raise from zero-shot456

to fine-tuned happens at TASK 4, with a lift of457

2.04% in the highest score. As a result of these458

two factors, the variance between different models459

shrinks after fine-tuning.460

LVLMs struggle to make good usage of visual461

signals. In comparison to LLMs, which only462

use textual signals as the input, LVLMs can refer463

to image information to facilitate their question-464

answering and inference reasoning. However, as465

shown in Table 2, the highest accuracy scores of466

LVLMs all lag behind compared to the highest ones467

of LLMs. When evaluated on TASK 4 using direct468

zero-shot, the best LVLM outcome is even behind469

Task 1 Acc

Task 1 Ma-F1

Task 2 Acc
Task 2 Ma-F1

Task 3 Acc

Task 3 Ma-F1

Task 4 Acc
Task 4 Ma-F1

Task 1 Acc

20 30 40 50 60 70 80

Mistral-7B-v0.3
LLaVA-v1.6-vicuna-7b
Falcon-3-7B
GPT4o-mini (5-shots)

GPT4o (COT)
Meta-Llama-3.1-8B
Ministral-8B
GPT4o-mini

Figure 3: Radar chart of models that have the best per-
formances in multiple tasks within each method. No
single model can produce a boundary that encompasses
all the data points from other models.

the best LLM by a huge gap of 11.27%. Possible 470

issues could be the low signal-noise ratio of the 471

images collected, and sellers usually include more 472

comprehensive and concise features of products in 473

text format. 474

No model dominates. The overall scoring result is 475

quite close, especially after fine-tuning, where the 476

variance between models shrinks. The open mod- 477

els that achieve the best accuracy within their cate- 478

gory are Mistral-7B-v0.3 (zero-shot LLM), LLaVA- 479

v1.6-vicuna-7b (zero-shot LVLM), and Falcon-3- 480
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Task1 Task2 Task3 Task4
50

55

60

65

70

75
Ac

cu
ra

cy
 (%

)

Max Acc Over All Baselines
Zero-shot

SIB
MIND+SIB

Figure 4: Comparison between best performances
across different methods on different tasks. All base-
line’s max accuracy line is consistent with the max ac-
curacy line over open models of all methods (i.e., Zero-
shot, fine-tuning with SESSIONINTENTBENCH (SIB),
and sequential fine-tuning with MIND then SIB). Pay-
ing for proprietary API does not add extra value in this
case.

7B (fine-tuned LLM). They belong to different481

companies or organizations, and none of them482

achieves the best accuracy in more than two tasks,483

as shown in Figure 3. It is an indicator that no484

specific model can dominate the session intention485

modeling game. Although the GPT-4o with Chain-486

of-Thought techniques gives the best Intention487

Evolution Modeling results, surpassing the best488

fine-tuned one (Mistral-Nemo-12B) with 2.59%, it489

might not be cost-effective due to expensive pricing490

and large token consumption required.491

5.4 The Impact of Intention Injection492

Observing Table 2, we find L(V)LMs struggling493

with directly leveraging intention for next product494

inference (Intent-Based Inference) and mastering495

long term trend of shifting intention from session496

history (Intention Evolution Modeling). However,497

this can be caused by many factors, such as failing498

to capture diverse user characteristics and prefer-499

ences. Given this, we hypothesize that fine-tuning500

models on intention knowledge bases beforehand501

might enhance their ability to adapt according to502

different background setups and help them gener-503

alize better. Therefore, we tried to first fine-tune504

models on MIND (Xu et al., 2024), an large-scale505

intention knowledge base grounded on co-buy be-506

haviors.507

After sequentially fine-tuning first on MIND508

and then on SESSIONINTENTBENCH, we find a509

leap in performance in the proposed tasks. By510

injecting intention from MIND to aid SESSION-511

INTENTBENCH, we improved TASK 1 by 1.75%, 512

TASK 2 by 3.09%, TASK 4 by 4.24% (another great 513

improvement compared to zero-shot baseline), as 514

demonstrated in Figure 4. This demonstrates that 515

intention injection can be an effective technique to 516

improve the model’s ability to identify user inten- 517

tion from a short yet complex series of interactions. 518

5.5 Error Analyses 519

We randomly sample 200 tasks where GPT-4o with 520

Chain-of-Thought commits an error. And we re- 521

cruit experts to analyze the causes behind them 522

manually. Our results show that: 523

• 47.5% errors are caused by incorrect understand- 524

ing of the provided metadata. This may be be- 525

cause the model fails to incorporate past product 526

information for deeper comprehension. 527

• 24% errors are caused by incorrect ground-truth 528

labels. For objective factors, this might be due to 529

internal conflict of session products and metadata 530

from the intention tree or incorporating compli- 531

cated metadata in the label instruction. 532

• 7% errors are due to models’ failure to capture 533

important product features contained in the ses- 534

sion products, which might be aligned with or 535

different from the metadata described in the prob- 536

lem assumption. 537

• 6.5% errors are due to irrelevant reasoning or 538

model hallucinations, where the model is often 539

heading towards a different reasoning direction 540

due to some misleading, unimportant features. 541

• 15% the errors are due to models’ inability to 542

capturethe overall intention of the customer when 543

the provided metadata is vague or not decisive 544

when estimating the likelihood. 545

6 Conclusions 546

In conclusion, we propose an automated pipeline 547

to construct a large-scale knowledge base and fur- 548

ther construct a sample dataset SESSIONINTENT- 549

BENCH for L(V)LMs evaluations. Extensive ex- 550

periments show that current models struggle to un- 551

derstand and infer customers’ intentions while in- 552

jecting intention from other knowledge bases can 553

level up the performance. We hope our work can 554

bridge the gap between intention understanding in 555

simplified research cases like co-buy intention and 556

more complex yet practical scenarios like session 557

history. We hope this framework can benefit the 558

community by providing better services with future 559

models. 560
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Limitations561

We implemented our intention tree construction562

pipeline using GPT-4o-mini as the metadata gener-563

ator. As LLM space advance, more advanced mod-564

els like GPT-o1 (OpenAI, 2024b), GPT-o3-mini565

(OpenAI, 2025) will become more accessible to566

researches, which would potentially better mimic567

customer thinking process and behavior and gener-568

ate intention and metadata in higher standard. This569

would enables our knowledge base and dataset gen-570

eration with even higher quality.571

Our current intention modeling process does not572

incorporate additional personalized factors such573

as past purchases, user characteristics, and social574

relationships with other customers. Incorporating575

these variables, which can be precomputed, could576

enhance model reasoning during inference, thereby577

providing more accurate modeling of session intent578

for specific customers.579

The modeling setting we proposed contains mul-580

tiple perspectives of session intent metadata, includ-581

ing attributes, intention, and comparisons. How-582

ever, more metadata mined from the session can583

possibly be added for further knowledge integra-584

tions and better utilization of available information.585

More work can be done to explore what other inter-586

nal factors can be incorporated within the session587

itself.588

Ethics Statement589

Offensive Content Inspection We leverage the590

generation capability of L(V)LMs to construct a591

knowledge base and carry out experiments. The592

generated intention at the dataset construction step593

is closely related to the session product information594

itself. The remaining metadata is based on the rea-595

soning and comparison within products and related596

intentions. As the experiment setting, we only ask597

models to give out specific scores of likelihood or598

generate content with constraint reasoning, which599

is also closely related to sessions and products.600

Annotation Wage The annotators are paid a601

wage in compliance with the local law, on an aver-602

age of 15 USD per hour. They have all agreed to603

participate in annotation voluntarily.604

Licenses Amazon-M2 dataset are released under605

the license of Apache 2.0. This grants our access606

to the dataset for free. Our code and data will be607

shared under the MIT license. It will allow the free608

distribution of assets we proposed and curated. All609

associated licenses permit user access for research 610

purposes, and we have agreed to follow all terms 611

of use. 612
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Appendices1132

A Implementation Details1133

A.1 Attribute Extraction1134

To extract attributes from the given session prod-1135

ucts using GPT-4o-mini, we use the following 3-1136

shot prompt as a general template:1137

Your goal is to extract the attribute1138

type and attribute values of the1139

product.1140

You will be provided with the product1141

names and their corresponding product1142

images, and you will output for the1143

product:1144

Category: general category name of the1145

product. Keep the category name simple1146

and within 3 words.1147

Attributes: attribute(s) of the product.1148

You can infer new ones from the image.1149

Keep the attribute simple and within1150

3 words each. Separate different1151

attributes by |. Generate in the format1152

of attribute: value1153

Below are three examples:1154

. . .1155

Input:1156

Product Name: Adidas Ultraboost1157

21 Women’s Running Shoes on sale,1158

White/Pink special, Size 8 only, best1159

for daily runs!1160

Output:1161

Category: Clothing1162

Attributes: brand: Adidas | model:1163

Ultraboost 21 | gender: Women’s | type:1164

Running Shoes | color: White/Pink |1165

size: 81166

Input:1167

Product Name: Lightweight and powerful1168

Dell XPS 13 Laptop, with newly released1169

Intel i7, 16GB RAM, enhanced 512GB SSD,1170

Silver version1171

Output:1172

Category: Electronics1173

Attributes: brand: Dell | model: XPS1174

13 | processor: Intel i7 | RAM: 16GB |1175

storage: 512GB | color: Silver1176

Input:1177

Product Name: baking enthusiasts’ good1178

friend - KitchenAid Artisan Series1179

5-Quart Stand Mixer, Empire Red1180

Output: 1181

Category: Kitchen Applianc 1182

Attributes: brand: KitchenAid | model: 1183

Artisan Series | capacity: 5-Quart | 1184

type: Stand Mixer | color: Empire Red 1185

. . . 1186

Input: 1187

<INPUT MESSAGE> 1188

Output: 1189

1190

A.2 Intention Tree Construction 1191

To construct the intention tree by filling in the nec- 1192

essary intention entries, pivotal attributes and un- 1193

derlying comparison, we use the following 5-shots 1194

template: 1195

Act as a customer who is browsing a 1196

series of products. 1197

For each input, you are required to 1198

generate several intentions as output, 1199

and each intention should only contain 1200

the following lines of information: 1201

New Intention: new intention you may 1202

have after interacting with the new 1203

product 1204

Attribute: attribute(s) of the new 1205

product that caused the change in 1206

intention. You can infer new ones from 1207

the image. Generate in the format of 1208

attribute: value 1209

Rationale: a short rationale explaining 1210

why the attribute of the new product 1211

reflects the new intention. Generate in 1212

the format of facets: reasoning 1213

Comparison: a comparison between the 1214

new product and the previous product to 1215

justify why the new product caused the 1216

change in intention. Generate in the 1217

format of aspects: comparison 1218

Here is one example with five 1219

intentions: 1220

. . . 1221

Input: 1222

Previous Intention: Looking for stylish 1223

and modern footwear that complements 1224

their athletic look. 1225

Previous Product: Nike Free Metcon 1226

5 Women’s Workout Shoes (varieties: 1227

runner, target consumers: women, size: 1228

3.5, price: $100). 1229

New Product: LV Glove Loafer (varieties: 1230
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loafer, target consumers: men, size:1231

3.5, price: $200, structure: cushioned1232

insole).1233

Output:1234

New Intention: Invest in premium quality1235

footwear for long-lasting style and1236

comfort.1237

Attribute: design: luxury material and1238

craftsmanship.1239

Rationale: durability: The LV Glove1240

Loafer is crafted from high-quality1241

materials, offering durability and1242

style that ensures it will last longer1243

than ordinary shoes.1244

Comparison: collectability: compared to1245

the Nike Free Metcon 5, which focuses1246

on performance, the LV offers a blend1247

of luxury and longevity, making it a1248

worthy investment.1249

New Intention: Own a versatile pair1250

of shoes suitable for both casual and1251

formal settings.1252

Attribute: varieties: loafer.1253

Rationale: usages: The loafer style of1254

the LV Glove Loafer makes it versatile1255

enough to be worn in both casual1256

and formal settings, unlike the more1257

specialized athletic design of the Nike1258

Free Metcon 5.1259

Comparison: versatility: While the Nike1260

Free Metcon 5 is primarily designed for1261

workouts, the LV Glove Loafer’s loafer1262

style offers versatility for various1263

occasions.1264

New Intention: Enhance your wardrobe1265

with a statement piece that reflects1266

personal style.1267

Attribute: design: unique and luxurious.1268

Rationale: aesthetics: The unique and1269

luxurious design of the LV Glove Loafer1270

makes it a statement piece that can1271

elevate any outfit, reflecting personal1272

style.1273

Comparison: uniqueness: Unlike the more1274

common athletic design of the Nike Free1275

Metcon 5, the LV Glove Loafer stands1276

out as a unique and stylish addition to1277

the wardrobe.1278

New Intention: Prioritize comfort1279

without compromising on style.1280

Attribute: comfort: cushioned insole.1281

Rationale: comfort: The cushioned 1282

insole of the LV Glove Loafer ensures 1283

comfort for long periods, making it a 1284

practical choice without compromising 1285

on style. 1286

Comparison: comfort: While the Nike 1287

Free Metcon 5 is designed for athletic 1288

performance, the LV Glove Loafer offers 1289

a balance of comfort and style for 1290

everyday wear. 1291

New Intention: Choose a high-end brand 1292

to reflect social status. 1293

Attribute: brand: Louis Vuitton. 1294

Rationale: status: Owning a product 1295

from a high-end brand like Louis Vuitton 1296

reflects social status and prestige. 1297

Comparison: brand prestige: Compared to 1298

Nike, which is known for athletic wear, 1299

Louis Vuitton is a luxury brand that 1300

signifies higher social status. 1301

. . . 1302

Input: 1303

Previous Intention: <Previous 1304

Intention> 1305

Previous Product: <PREVIOUS PRODUCTS> 1306

New Product: <THE LAST PRODUCT> 1307

Output: 1308

1309

For smaller branching sizes, we just need to 1310

delete some of the examples provided. And for 1311

extending to more branches every step, we add 1312

additional examples as needed. 1313

A.3 Intention Generator Model Selection 1314

We first tried out free open LVLM models like 1315

Mantis and LLaVA families. However, the mod- 1316

els fail to achieve the desired outcome since most 1317

of them cannot output in pre-assigned formatting. 1318

This is possible because models are not able to han- 1319

dle the potentially long, complex product textual 1320

descriptions and attributes provided. For example, 1321

repeatedly generating a single word or outputting a 1322

large number of special symbols like "###." After 1323

careful examination, it is not caused by prompts 1324

and product information included. We switched to 1325

GPT-4o-mini later and found the generated inten- 1326

tion and metadata result is in the desired format, 1327

and it demonstrates comparable results with GPT- 1328

4o. Therefore, we opt for GPT-4o-mini as the major 1329

generating force for the intention tree construction 1330

part. 1331
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A.4 Model Evaluation1332

We evaluate the model on the tasks using differ-1333

ent prompt techniques including zero-shot prompts1334

(see Table 5), 5-shots prompts (see Table 6, 7, 8,1335

9) and Chain-of-Thought prompts (see Table 10).1336

The detailed prompts we used can be found in the1337

corresponding tables.1338

B Annotation Details1339

B.1 Worker Selection Protocol1340

We carry out strict quality control to ensure high1341

quality human annotation result. To start with, we1342

send qualification round invitations only to work-1343

ers who satisfy the following constraints: (i) pass1344

over 2,000 HITs, (ii) score over 90% on historical1345

approval rate. We curate a qualification test with1346

sampled sessions, whose gold label are provided1347

by the authors. We first retain those with an ac-1348

curacy of over 75% on the qualification test and1349

completing over 20 questions at the same time.1350

Following that, we disqualify those spammers1351

or underperforming workers. More specifically,1352

we filter out those workers who are simply pick-1353

ing one side of the choices for the majority of the1354

time. After conducting another round of testing,1355

results shows that least 7 people picking one side1356

of the answer 80 percent of the time, so we elim-1357

inate out those people and proceed to main round1358

annotations.1359

11 workers left after the selection process out of1360

300 initial candidates. This gives a worker selec-1361

tion rate of 3.67%.1362

B.2 Annotation Instructions1363

We give instruction to workers in layman’s terms,1364

with both detailed question definitions and specific1365

explanations for important information included.1366

We tried to include more information and less1367

distractions. The question definitions are closely1368

aligned to what we defined earlier in Section 3. For1369

each of the first three questions, workers are asked1370

to annotate using a four-point 0 to 3 likelihood1371

scale, where 0 stands for the least probable or the1372

least plausible, and 3 means the most likely or the1373

most plausible. For the forth question, annotation1374

result are constraint to a three point scale, from 11375

to 3. Larger the number, larger the likelihood of1376

exploring more diverse products.1377

C Evaluation Task Performances Metrics 1378

We display our summarized task performance met- 1379

rics for each of the tasks in Table 4. Statistics in 1380

both counting and percentage format are included.

Metric Task No.

TASK 1 TASK 2 TASK 3 TASK 4

Count

# TP 781 415 527 57
# FN 354 434 775 585
# TN 234 515 309 949
# FP 458 445 215 131

Percentage

TP (%) 42.75% 22.94% 28.86% 3.31%
FN (%) 19.38% 24.00% 42.44% 33.97%
TN (%) 12.81% 28.47% 16.92% 55.11%
FP (%) 25.07% 24.60% 11.77% 7.61%

Table 4: Task performance metrics for error analyses
of GPT-4o with Chain-of-Thought answering SESSION-
INTENTBENCH. Where TP, FN, TN, FP stand for true
positive, false negative, true negative, and false positive
answers respectively. 1381
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Survey Instructions (Click to Collapse)

How Intentions Evolve with Changing Attributes?
Welcome to our Main Round HITs. Congratulations on passing the qualification test and thanks for participating in our HITs!

In this survey, you will be provided a session of products and asked to evaluate alterations in purchasing intentions as the product attributes changes.

Before the questions: You will be provided with a list of Session Products that will be used throughout the questions.

Answer each question: Select the option that best describes your evaluation of the model's output based on the criteria provided.

Question Formalization
Q1: Changing Intentions

After reviewing the listed products (including their titles, attributes, images, etc.), and assuming you have the provided purchasing intention, we want to
understand how likely you are to purchase a specific product based on this intention. Your task is to decide whether you would consider purchasing
the product given your current intentions.

You'll be provided with four rating options: Yes, Maybe yes, Maybe no and No.

Q2: Attribute that Matters

After reviewing the listed products, and assuming you highly value a specific attribute of the listed products, we want to understand how likely you are
to purchase another product based on this valued attribute. Your task is to decide whether you would consider purchasing the product given your
focus on the specific characteristic.

You'll be provided with four rating options: Yes, Maybe yes, Maybe no and No.

Q3: Comparisons

After reviewing the listed products, and assuming you have the provided purchasing intentions, we want to understand if the comparison between the
products provides a detailed and reasonable justification for your purchasing impulse. Your task is to decide whether the comparison is thorough
enough to justify your change in intention.

You'll be provided with four rating options: Yes, Maybe yes, Maybe no and No.

Q4: Changing Desire

After reviewing the listed products, and assuming you have the provided purchasing intention, we want to understand if you still wish to explore similar
products. Your task is to decide whether you want to continue exploring products within the same category or look for products in different categories.

You'll be provided with three rating options: Yes, Maybe yes, and No.

Session Products List

Session Products List is a list of products that you browsed (possibly consider purchasing) in a short period of time on Amazon.

The list of products will contain the following information:

(1) Product title: The name of the product you viewed.
(2) New intention: You should imagine yourself as a customer who has the mentioned intention/impulse when browsing the products. The word
"New" means it's the intention you hypothetically have after seeing the last product in the current list.
(3) Attributes: The features, functions, or characteristics of the product that you may consider when making a purchase decision. They are
complementary information for the title/image to facilitate your decision process.

Each Session Products List is in one-to-one correspondence with the question following it.

Additional Hints
Read the Session Products List carefully: Understand the previous intention, previous product, and new product details.
Submit your response: Once you have answered all questions, click the Submit button to complete the HIT.

Session Products List

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Figure 5: The annotation instruction we shown to workers, with detailed question definitions in layman’s terms and
specific explanations for important information (e.g., a preview of information contained in Session Product List).
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Task Zero-shot Prompt

TASK 1

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you are a customer who has the intention of <second last intention>.
How likely are you to purchase <last product> based on the assumed intention?

A. Yes: The product is a logical and reasonable outcome of the purchasing intention.
B. Maybe yes: I may consider this, but it’s not a strong impulse.
C. Maybe no: The product is not directly related to my intention.
D. No: I would never purchase it if I were the customer with the given intention.

Your Answer (Answer A or B or C or D only):

TASK 2

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you are a customer who highly value the feature <second last intention attribute>
of <second last product>.
How likely are you to purchase <last product>?

A. Yes: The product logically and reasonably matches the characteristics I value.
B. Maybe yes: I might consider this product, but it doesn’t strongly appeal to me.
C. Maybe no: The product does not directly relate to the characteristic I value.
D. No: I would not purchase this product if I were focused on the given characteristic.

Your Answer (Answer A or B or C or D only):

TASK 3

Act as a customer who is browsing a series of products given as follows.
<session product information>

Comparing between <last two products>,
and assuming you have the intention of <last two intention>,
Does this comparison <last intention comparison> provide an in-depth justification of your impulse?

A. Yes: the comparison is reasonable and detailed enough to justify the change.
B. Maybe yes: The comparison could be more detailed and thorough but can be ignored.
C. Maybe no: The comparison is not entirely reasonable or lacks sufficient in-depth detail.
D. No: The comparison does not provide any underlying reasons or insights.

Your Answer (Answer A or B or C or D only):

TASK 4

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you have the intention of <previous intention>,
do you still want to explore similar products?

A. Yes: I want to explore products under the same category.
B. Maybe yes: I want to explore products under the same category but with different features.
C. No: I want to explore products under other categories.

Your Answer (Answer A or B or C only):

Table 5: Zero-shot prompts for model evaluation. TASK 1 stands for Intent-Based Purchasing Likelihood
Estimation, TASK 2 stands for Purchasing Likelihood Inference via Valued Attributes Regularization, TASK 3
stands for Intention Justification via Comparison, TASK 4 stands for Intention Evolution Modeling.
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Task 5-shots Prompt

TASK 1

Act as a customer who is browsing a series of products given as follows.
<session product information>
You hold an assumed intention, which will be provided later.
After seeing the products, you will be asked to determine the likelihood of purchasing the last product \
based on the assumed intention.
You will be given four options to choose from: Yes, Maybe yes, Maybe no, No.
Please select the most appropriate option based on the given context.
A. Yes: The product is a logical and reasonable outcome of the purchasing intention.
B. Maybe yes: I may consider this, but it’s not a strong impulse.
C. Maybe no: The product is not directly related to my intention.
D. No: I would never pruchase it if I were the customer with the given intention.

Here are a few examples:
Q: After seeing Eco-friendly laundry detergent, bamboo dish brush, reusable kitchen cloths,
and assuming you are a customer who have the intention of Reducing household chemical usage.
How likely are you to purchase A biodegradable dish soap based on the assumed intention?
A: A. Yes

Q: After seeing Instant Pot, KitchenAid Stand Mixer, Ninja Air Fryer,
and assuming you are a customer who have the intention of Upgrading kitchen equipment for home cooking.
How likely are you to purchase A set of gourmet spices based on the assumed intention?
A: C. Maybe no

Q: After seeing Columbia hiking boots, North Face backpack, Garmin GPS watch,
and assuming you are a customer who have the intention of Planning for outdoor adventures.
How likely are you to purchase A formal suit for weddings based on the assumed intention?
A: D. No

Q: After seeing "1984" by George Orwell, "To Kill a Mockingbird" by Harper Lee, \
"The Catcher in the Rye" by J.D. Salinger,
and assuming you are a customer who have the intention of Finding new reading material for leisure.
How likely are you to purchase "The Da Vinci Code" by Dan Brown based on the assumed intention?
A: B. Maybe yes

Q: After seeing Rolex Submariner, Omega Seamaster, Tag Heuer Monaco,
and assuming you are a customer who have the intention of Finding a timeless gift for a special occasion.
How likely are you to purchase A limited edition Patek Philippe watch based on the assumed intention?
A: A. Yes

Q: After seeing <previous products>,
and assuming you are a customer who have the intention of <second last intention>.
How likely are you to purchase <last product> based on the assumed intention?
A:

Table 6: 5-shots prompts for model evaluation. TASK 1 stands for Intent-Based Purchasing Likelihood Estimation
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Task 5-shots Prompt

TASK 2

Act as a customer who is browsing a series of products given as follows.
<session product information>
You have a valued feature/attribute, which will be provided later.
After seeing the products, you will be asked to determine the likelihood of purchasing the last product \
based on the valued attribute.
You will be given four options to choose from: Yes, Maybe yes, Maybe no, No.
Please select the most appropriate option based on the given context.
A. Yes: The product logically and reasonably matches the characteristics I value.
B. Maybe yes: I might consider this product, but it doesn’t strongly appeal to me.
C. Maybe no: The product does not directly relate to the characteristic I value.
D. No: I would not purchase this product if I were focused on the given characteristic.

Here are a few examples:
Q: After seeing Noise-canceling headphones, wireless earbuds, Bluetooth speaker,
and assuming you are a customer who highly value the feature High audio quality of Bluetooth speaker.
How likely are you to purchase A premium soundbar?
A: A. Yes

Q: After seeing adjustable standing desk, monitor with blue light filter, Ergonomic office chair,
and assuming you are a customer who highly value the feature Ergonomics of Ergonomic office chair.
How likely are you to purchase A desk lamp with a USB port?
A: C. Maybe no

Q: After seeing Organic facial cleanser, natural moisturizer, chemical-free sunscreen,
and assuming you are a customer who highly value the feature Natural ingredients of chemical-free sunscreen.
How likely are you to purchase A synthetic fragrance?
A: D. No

Q: After seeing DSLR camera, camera tripod, external flash,
and assuming you are a customer who highly value the feature Professional photography of external flash.
How likely are you to purchase A photo editing software?
A: A. Yes

Q: After seeing High SPF sunscreen, UV-blocking sunglasses, wide-brimmed hat,
and assuming you are a customer who highly value the feature Sun protection of wide-brimmed hat.
How likely are you to purchase An aloe vera gel?
A: B. Maybe yes

Q: After seeing <previous products>,
and assuming you are a customer who highly value the feature <second last intention attribute> \
of <second last product>.
How likely are you to purchase <last product>?
A:

Table 7: 5-shots prompts for model evaluation. TASK 2 stands for Purchasing Likelihood Inference via Valued
Attributes Regularization.

20



Task 5-shots Prompt

TASK 3

Act as a customer who is browsing a series of products given as follows.
<session product information>
You have an assumed intention, which will be provided later.
You will be asked to evaluate the provided comparison between the last two products \
based on the assumed intention.
You will be given four options to choose from: Yes, Maybe yes, Maybe no, No.
Please select the most appropriate option based on the given context.
A. Yes: the comparison is reasonable and detailed enough to justify the change.
B. Maybe yes: The comparison could be more detailed and thorough but can be ignored.
C. Maybe no: The comparison is not entirely reasonable or lacks sufficient in-depth detail.
D. No: The comparison does not provide any underlying reasons or insights.

Here are a few examples:
Q: Comparing between a budget smartphone with a long battery life and A high-end smartphone with \
superior low-light performance,
and assuming you have the intention of Finding a device with the best camera quality,
Does this comparison The high-end smartphone boasts advanced camera technology \
provide in-depth justification of your impulse?
A: A. Yes

Q: Comparing between A compact car and a mid-size SUV,
and assuming you have the intention of Prioritizing fuel efficiency,
Does this comparison the mid-size SUV, although spacious, consumes more fuel due to its larger engine \
and heavier body provide in-depth justification of your impulse?
A: B. Maybe yes

Q: Comparing between A luxury wristwatch and a fitness tracker,
and assuming you have the intention of Tracking health metrics,
Does this comparison Finding a more affordable watch provide in-depth justification of your impulse?
A: D. No

Q: Comparing between A leather office chair with plush cushioning and \
a mesh office chair with lumbar support
and assuming you have the intention of Seeking maximum comfort during long working hours,
Does this comparison The mesh office chair offers better breathability and ergonomic support \
provide in-depth justification of your impulse?
A: A. Yes

Q: Comparing between A hardcover book and an e-reader,
and assuming you have the intention of Enhancing the reading experience,
Does this comparison The hardcover book provides a tactile, while the e-reader offers portability, \
adjustable text size provide in-depth justification of your impulse?
A: C. Maybe no

Q: Comparing between <last two products>,
and assuming you have the intention of <last two intention>,
Does this comparison <last intention comparison> provide in-depth justification of your impulse?
A:

Table 8: 5-shots prompts for model evaluation. TASK 3 stands for Intention Justification via Comparison.
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Task 5-shots Prompt

TASK 4

Act as a customer who is browsing a series of products given as follows.
<session product information>
You will be provided with a sequence of intention.
You will be asked to determine whether you still want to explore similar products \
based on the sequence of intention.
You will be given three options to choose from: Yes, Maybe yes, No.
Please select the most appropriate option based on the given context.
A. Yes: I want to explore products under the same category.
B. Maybe yes: I want to explore products under the same category but with different features.
C. No: I want to explore products under other categories.

Here are a few examples:
Q: After seeing Stainless steel kitchen knives, non-stick frying pans, silicone spatulas,
and assuming you have the intention of Upgrading kitchen tools for home cooking,
do you still want to explore similar products?
A: B. Maybe yes

Q: After seeing Fitness tracker, yoga mat, resistance bands,
and assuming you have the intention of Tracking fitness progress,
do you still want to explore similar products?
A: A. Yes

Q: After seeing Stainless steel refrigerator, smart oven, induction cooktop,
and assuming you have the intention of Making the kitchen more energy efficient,
do you still want to explore similar products?
A: C. No

Q: After seeing Smart thermostat, LED light bulbs, energy-efficient washing machine,
and assuming you have the intention of Saving on utility bills,
do you still want to explore similar products?
A: B. Maybe yes

Q: After seeing Indoor plants, plant stands, watering can,
and assuming you have the intention of Creating a greener living space,
do you still want to explore similar products?
A: A. Yes

Q: After seeing <previous products>,
and assuming you have the intention of <previous new intention>,
do you still want to explore similar products?
A:

Table 9: 5-shots prompts for model evaluation. TASK 4 stands for Intention Evolution Modeling.
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Task Chain-of-Thought Prompt

TASK 1

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you are a customer who have the intention of <second last intention>.
How likely are you to purchase <last product> based on the assumed intention?

A. Yes: The product is a logical and reasonable outcome of the purchasing intention.
B. Maybe yes: I may consider this, but it’s not a strong impulse.
C. Maybe no: The product is not directly related to my intention.
D. No: I would never pruchase it if I were the customer with the given intention.

Answer with a brief rationale then make your final choice \
by answering the option alphabet A/B/C/D only in the last line of your response.
Your Answer:

TASK 2

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you are a customer who highly value the feature <second last intention attribute> \
of <second last product>.
How likely are you to purchase <last product>?

A. Yes: The product logically and reasonably matches the characteristic I value.
B. Maybe yes: I might consider this product, but it doesn’t strongly appeal to me.
C. Maybe no: The product does not directly relate to the characteristic I value.
D. No: I would not purchase this product if I were focused on the given characteristic.

Answer with a brief rationale then make your final choice \
by answering the option alphabet A/B/C/D only in the last line of your response.
Your Answer:

TASK 3

Act as a customer who is browsing a series of products given as follows.
<session product information>

Comparing between <last two products>,
and assuming you have the intention of <last two new intention>,
Does this comparison <last intention comparison> provide in-depth justification of your impulse?

A. Yes: the comparison is reasonable and detailed enough to justify the change.
B. Maybe yes: The comparison could be more detailed and thorough but can be ignored.
C. Maybe no: The comparison is not entirely reasonable or lacks sufficient in-depth detail.
D. No: The comparison does not provide any underlying reasons or insights.

Answer with a brief rationale then make your final choice \
by answering the option alphabet A/B/C/D only in the last line of your response.
Your Answer:

TASK 4

Act as a customer who is browsing a series of products given as follows.
<session product information>

After seeing <previous products>,
and assuming you have the intention of <previous new intention>,
do you still want to explore similar products?

A. Yes: I want to explore products under the same category.
B. Maybe yes: I want to explore products under the same category but with different features.
C. No: I want to explore products under other categories.

Answer with a brief rationale, then make your final choice \
by answering the option alphabet A/B/C only in the last line of your response.
Your Answer:

Table 10: Chain-of-Thought prompts for model evaluation. TASK 1 stands for Intent-Based Purchasing Likelihood
Estimation, TASK 2 stands for Purchasing Likelihood Inference via Valued Attributes Regularization, TASK 3
stands for Intention Justification via Comparison, TASK 4 stands for Intention Evolution Modeling.
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