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Clickbait vs.Quality: How Engagement-Based Optimization
Shapes the Content Landscape in Online Platforms

∗

Abstract
Online content platforms commonly use engagement-based opti-

mization when making recommendations. This encourages content

creators to invest in quality, but also rewards gaming tricks such as

clickbait. To understand the total impact on the content landscape,

we study a game between content creators competing on the basis

of engagement metrics and analyze the equilibrium decisions about

investment in quality and gaming. First, we show the content cre-

ated at equilibrium exhibits a positive correlation between quality
and gaming, and we empirically validate this finding on a Twitter

dataset. Using the equilibrium structure of the content landscape,

we then examine the downstream performance of engagement-

based optimization along two axes. Perhaps counterintuitively, the

average quality of content consumed by users can decrease at equi-

librium as gaming tricks become more costly for content creators

to employ. Moreover, engagement-based optimization can perform

worse in terms of user utility than a baseline with random recom-

mendations. Altogether, our results highlight the need to consider

content creator incentives when evaluating a platform’s choice of

optimization metric.

CCS Concepts
• Information systems → Content ranking; • Theory of com-
putation →Market equilibria.

Keywords
content creator incentives, equilibrium characterization, societal

impacts of online platforms
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1 Introduction
Content recommendation platforms typically optimize engagement
metrics such as watch time, clicks, retweets, and comments (e.g.,

[40, 42]). Since engagement metrics increase with content quality,

one might hope that engagement-based optimization would lead to

desirable recommendations. However, engagement-based optimiza-

tion has led to a proliferation of clickbait [29], incendiary content

[33], divisive content [37] and addictive content [9]. A driver of
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these negative outcomes is that engagement metrics not only re-

ward quality, but also reward gaming tricks such as clickbait that

worsen the user experience.

In this work, we examine how engagement-based optimization

shapes the landscape of content available on the platform. We focus

on the role of strategic behavior by content creators: competition to

appear in a platform’s recommendations influences what content

they are incentivized to create [6, 20, 23]. In the case of engagement-

based optimization, we expect that creators strategically decide how

much effort to invest in quality versus how much effort to spend

on gaming tricks, both of which increase engagement. For exam-

ple, since the engagement metric for Twitter includes the number

of retweets [42]—which includes both quote retweets (where the

retweeter adds a comment) and non-quote retweets (without any

comment)—creators can either increase quote retweets by using

offensive or sensationalized language [32] or increase non-quote

retweets by putting more effort into the quality of their content

(Example 1). When the engagement metric for video content in-

cludes total watch time [40], creators may either increase the “span”

of their videos—by investing in quality—or instead increase the

“moreishness” by leveraging behavioral weaknesses of users such

as temptation [25] (Example 2). When the engagement metric in-

cludes clicks, creators can rely on clickbait headlines [29] or actually

improve content quality (Example 3).

Intuitively, creators must balance two opposing forces when

incorporating quality and gaming tricks in the content that they

create. On one hand, it is expensive for creators to invest in qual-

ity, but it may be much cheaper to utilize gaming tricks that also

increase engagement. On the other hand, gaming tricks generate

disutility for users, which might discourage them from engaging

with the content even if it is recommended by the platform. This

raises the questions: Under engagement-based optimization, how do
creators balance between quality and gaming tricks at equilibrium?
What is the impact on the content landscape and on the downstream
performance of engagement-based optimization?

To investigate these questions, we propose and analyze a game

between content creators competing for user consumption through

a platform that performs engagement-based optimization.Wemodel

the content creator as jointly choosing investment in quality and

utilization of gaming tricks. Both quality and gaming tricks increase

engagement from consumption, and utilizing gaming tricks is rela-

tively cheaper for the creators than investing in quality. However,

gaming decreases user utility, while quality increases user utility,

and a user will not consume the content if their utility from con-

sumption is negative. We study the Nash equilibrium in the game

between the content creators.

We first examine the balance between gaming tricks and quality

amongst content created at equilibrium (Section 3). Interestingly,

we find that there is a positive correlation between gaming and

investment at equilibrium: higher-quality content typically exhibits

higher levels of gaming tricks. We prove that equilibria exhibit this

1
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positive correlation (Figure 1a; Theorem 2), and we also empirically

validate this finding on a Twitter dataset [31] (Figure 2 and Table

1). These results suggest that gaming tricks and quality should be

viewed as complements, rather than substitutes.

Accounting for how the platform’s metric shapes the content

landscape at equilibrium, we then analyze the downstream perfor-

mance of engagement-based optimization (Section 4). We uncover

striking properties of engagement-based optimization along two

performance axes and discuss implications for platform design.

• Content Quality. First, we examine the average quality of con-

tent consumed by users and show that it can decrease as gaming

tricks become more costly for creators (Figure 1b; Theorem 3).

In other words, as it becomes more difficult for content creators

to game the engagement metric, the average content quality at

equilibrium becomes worse. From a platform design perspective,

this suggests that increasing the transparency of the platform’s

metric (which intuitively reduces gaming costs for creators) may

improve the average quality of content consumed by users.

• User Welfare. We next examine the user welfare at equilib-

rium. We show that engagement-based optimization can lead

to lower user welfare at equilibrium than even the conserva-

tive baseline of randomly recommending content (Figure 1c;

Theorem 5). From a platform design perspective, this suggests

that engagement-based optimization may not retain users in a

competitive marketplace in the long-run.

Altogether, these results illustrate the importance of factoring in

the endogeneity of the content landscape when assessing the down-

stream impacts of engagement-based optimization.

1.1 Related Work
Our work connects to research threads on content creator compe-
tition in recommender systems and strategic behavior in machine
learning.

Content-creator competition in recommender systems. An emerg-

ing line of work has proposed game-theoretic models of content

creator competition in recommender systems, where content cre-

ators strategically choosing what content to create [4, 6, 8] or the

quality of their content [15, 36]. Some models embed content in a

continuous, multi-dimensional action space, characterizing when

specialization occurs [23] and the impact of noisy recommenda-

tions [20]. Other models capture that content creators compete for

engagement [43] and general functions of platform “scores” across

the content landscape [44]. These models have also been extended

to dynamic settings, including where the platform learns over time

[14, 21, 28] and where content providers learn over time [8, 35].

However, while these works all assume that creator utility depends

only on winning recommendations (or only on content scores ac-

cording to the platform metric [43, 44]), our model incorporates

misalignment between the platform’s (engagement) metric and user

utility.
1
In particular, our model and insights rely on the fact that

creators only derive utility if their content is recommended and the

content generates nonnegative user utility.

1
A rich line of work (e.g., [11, 25, 30, 41]) has identified sources of misalignment

between engagement metrics and user utility and broader issues with inferring user

preferences from observed behaviors; these sources of misalignment motivated us to

incorporate gaming tricks which increase engagement but reduce user utility into our

model.

Several other works study content creator competition under dif-

ferent modelling assumptions: e.g., where content quality is fixed

and all creator actions are gaming [32], where content creators

have fixed content but may dynamically leave the platform over

time [7], where the platform designs a contract determining pay-

ments and recommendations [45], where the platform creating its

own content [3], and where the platform designs badges to incen-

tivize user-generated content [22]. This line of work also builds on

Hotelling models of product selection from economics (e.g. [19, 38],

see Anderson et al. [2] for a textbook treatment).

Strategic behavior in machine learning. A rich line of work on

strategic classification (e.g. [10, 17]) focuses primarily agents strate-

gically adapting their features in classification problems, whereas

our work focuses on agents competing to win users in recommender

systems. Some works also consider improvement (e.g. [1, 16, 24]),

though also with a focus on classification problems. One exception

is [27], which studies ranking problems; however, the model in

[27] considers all effort as improvement, whereas our model dis-

tinguishes between clickbait and quality. Other topics studied in

this research thread include shifts to the population in response

to a machine learning predictor (e.g. [34]), strategic behavior from

users (e.g. [18]), and incentivizing exploration ([12, 26, 39]).

2 Model
We study a stylized model for content recommendation in which

an online platform recommends to a single user a single piece

of digital content within the content landscape available on the

platform.
2
There are 𝑃 ≥ 2 content creators who each create a

single piece of content and compete to appear in recommendations.

Building on themodels of Ben-Porat and Tennenholtz [6], Hron et al.

[20], Jagadeesan et al. [23], Yao et al. [44], the content landscape is

endogeneously determined by the multi-dimensional actions of the

content creators.

2.1 Creator Costs, User Utility, and Platform
Engagement

Since our focus is on investment versus gaming, we project pieces

of digital content into 2 dimensions 𝑤 = [𝑤
costly

,𝑤
cheap

] ∈ R2≥0.
The more costly dimension𝑤

costly
denotes a measure of the con-

tent’s quality, whereas the cheap dimension 𝑤
cheap

reflects the

extent of gaming tricks present in the content. These measures are

normalized so that 𝑤 = [0, 0] represents content generated by a

creator who exerted no effort on quality or gaming. The costly and

cheap dimensions impact creator costs, user utility, and platform
engagement in different ways, as we specify below.

Creator Costs. Each content creator pays a (one-time) cost of

𝑐 (𝑤) ≥ 0 to create content𝑤 ∈ R2≥0. We assume that 𝑐 is continu-

ously differentiable in𝑤 and satisfies the following additional as-

sumptions. First, investing in quality content is costly: (∇(𝑐 (𝑤)))1 >

0 for all 𝑤 ∈ R2≥0. Moreover, engaging in gaming tricks is either

always free or always incurs a cost: either (∇(𝑐 (𝑤)))2 > 0 for all

𝑤 ∈ R2≥0 or (∇(𝑐 (𝑤)))2 = 0 for all 𝑤 ∈ R2≥0. Finally, producers

2
Our model can also capture a stream of content and a population of homogeneous

users, even though we abstract away from this by focusing on one recommendation

to a single user at a time.

2
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have the option to opt out by not investing costly effort in either

gaming tricks or quality: 𝑐 ( [0, 0]) = 0.

User Utility. The user has relative tolerance for gaming tricks,

specified by a type 𝑡 > 0. The user receives utility 𝑢 (𝑤, 𝑡) ∈ R
from consuming content 𝑤 ∈ R2≥0, where the utility function is

normalized so that the user’s outside option offers 0 utility. We

assume that 𝑢 is continuously differentiable in𝑤 and satisfies the

following additional assumptions. The user derive positive utility

from𝑤
costly

and negative utility from𝑤
cheap

:

• For 𝑤
costly

∈ R≥0: the utility 𝑢 ( [𝑤
costly

,𝑤
cheap

], 𝑡) is strictly
decreasing in𝑤

cheap
and approaches −∞ as𝑤

cheap
→ ∞.

• For 𝑤
cheap

∈ R≥0: the utility 𝑢 ( [𝑤
costly

,𝑤
cheap

], 𝑡) is strictly
increasing in𝑤

costly
and approaches∞ as𝑤

costly
→ ∞.

Engagement. If the user chooses to consume content𝑤 , this in-

teraction generates platform engagement𝑀E (𝑤) ∈ R. The engage-
ment metric𝑀E (𝑤) depends on the content𝑤 but is independent

of the user’s type 𝑡 (conditional on the user choosing to consume

the content). We assume that𝑀E
is continuously differentiable in

𝑤 and satisfies the following additional assumptions. First, both

cheap gaming tricks and investment in quality increase the en-

gagement metric: (∇𝑀E (𝑤))1, (∇𝑀E (𝑤))2 > 0 for all 𝑤 ∈ R2≥0.
Moreover, the engagement metric is nonnegative:𝑀E (𝑤) ≥ 0 for

all𝑤 ∈ R2≥0. Finally, the relative cost of gaming tricks versus costly

investment is less than the relative benefit:
(∇𝑐 (𝑤 ) )2
(∇𝑐 (𝑤 ) )1 <

(∇𝑀E (𝑤 ) )2
(∇𝑀E (𝑤 ) )1

for all𝑤 ∈ R2≥0. In other words, it is more cost-effective for a cre-

ator to increase the engagement metric via gaming than via quality,

for a user who would choose to consume the content either way.

2.2 Timing and Interaction between the
Platform, Users, and Content Creators

The interaction between the platform, users, and content creators

defines a game that proceeds in stages. The timing is as follows:

Stage 1: Each content creator 𝑖 ∈ [𝑃] simultaneously chooses

what content𝑤𝑖 ∈ R2≥0 to create. These choices give rise

to a content landscape w = (𝑤1, . . . ,𝑤𝑃 ).
Stage 2: A user with type 𝑡 comes to the platform.

Stage 3: The platform observes the user’s type 𝑡 and evaluates

content𝑤 according to a metric𝑀 : R2≥0 → R that maps

each piece of content𝑤𝑖 to a score𝑀 (𝑤𝑖 ). The platform
optimizes𝑀 over content available in the content land-

scape that generates nonnegative utility for the user. More

formally, the platform selects content creator

𝑖∗ (𝑀 ;w) ∈ argmax

𝑖∈[𝑃 ]
(𝑀 (𝑤𝑖 ) · 1[𝑢 (𝑤𝑖 , 𝑡) ≥ 0]),

breaking ties uniformly at random, and recommends the

content𝑤𝑖∗ (𝑀 ;w) to the user.

Stage 4: The user consumes the the recommended content𝑤𝑖∗ (𝑀 ;w)
if and only if 𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) ≥ 0 (i.e., if and only if the

content is at least as appealing as their outside option).

We assume that content creators, the platform, and the user

all know the type 𝑡 and the user utility function 𝑢 (·, 𝑡). Moreover,

the platform can observe observe the full content landscape w.

This provides the platform with sufficient information to solve the

optimization problem argmax𝑖∈[𝑃 ] (𝑀 (𝑤𝑖 ) · 1[𝑢 (𝑤𝑖 , 𝑡) ≥ 0]) in

Stage 3.3 The user can also observe the content𝑤 recommended

to them, so they can evaluate whether 𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) ≥ 0.
4

Equilibrium decisions of content creators. The recommendation

process defines a game played between the content providers, who

strategically choose their content𝑤𝑖 ∈ R2≥0 in Stage 1. We assume

that values are normalized so that a content creator receives a

value of 1 for being shown to a user. Since the goods are digital,

production costs are one-time and incurred regardless of whether

the user consumes the content. Producer 𝑖’s expected utility is

therefore

𝑈𝑖 (𝑤𝑖 ;w−𝑖 ) := E[1[𝑖∗ (𝑀 ;w) = 𝑖]] − 𝑐 (𝑤), (1)

where the expectation is over the randomness of tiebreaking by the

platform. We allow content creators to randomize over their choice

of content, and write 𝜇𝑖 ∈ Δ(R2≥0) for such a mixed strategy. A

(mixed) Nash equilibrium (𝜇1, . . . , 𝜇𝑃 ), for 𝜇𝑖 ∈ Δ(R2≥0), is a profile
ofmixed strategies that aremutual best-responses. Since the content

creators are symmetric in our model, we will focus primarily on

symmetric mixed Nash equilibria in which each creator employs the

same mixed strategy, which must exist (see Theorem 1 below). Note

that the Nash equilibrium specifies the distribution over content

landscapes w.

The platform’s choice of metric𝑀 in Stage 3. We primarily focus

on engagement-based optimization where 𝑀 = 𝑀E
, meaning that

the platform optimizes for engagement. As a benchmark, we also

consider investment-based optimization where 𝑀 (𝑤) = 𝑀 I (𝑤) :=
𝑤
costly

does not reward gaming tricks; however, note that this

baseline is idealized, since 𝑤
costly

is not always identifiable from

observable data in practice. As another baseline, we consider ran-
dom recommendations where𝑀 (𝑤) = 𝑀R (𝑤) := 1 which captures

choosing uniformly at random from all content that generates non-

negative user utility.

2.3 Running examples
We provide instantations of our models that serve as running ex-

amples throughout the paper.

Example 1. Consider an online platform such as Twitter which uses
retweets as one of the terms its objective [42]. However, Twitter does
not differentiate between quote retweets (where the retweeter adds
a comment) and non-quote retweets (where there is no added com-
ment). Creators can cheaply increase quote retweets by increasing
the offensiveness or sensationalism of the content [31], or increase
non-quote retweets by actually improving content quality. As a styl-
ized model for this, let 𝑤cheap be the offensiveness of the content
and let 𝑤costly capture costly investment into content quality. Let
the utility function of a user with type 𝑡 > 0 be the linear function
𝑢 (𝑤, 𝑡) = 𝑤costly − (𝑤cheap/𝑡) +𝛼 , where 𝛼 ∈ R is the baseline utility
from no effort and 𝑡 captures the user’s tolerance to offensive content.

3
The platform may be able to evaluate argmax𝑖∈ [𝑃 ] (𝑀 (𝑤𝑖 ) ·1[𝑢 (𝑤𝑖 , 𝑡 ) ≥ 0] ) with
less information. For example, if𝑀 = 𝑀E

, then𝑀E (𝑤 ) can typically be estimated

from observable data such as user behavior patterns without knowledge of 𝑤costly

and 𝑤cheap . Moreover, since 1[𝑢 (𝑤𝑖 , 𝑡 ) ≥ 0] captures the event that users click on

the content 𝑤𝑖 , if the platform has a predictor for clicks, this would provide them an

estimate of 1[𝑢 (𝑤𝑖 , 𝑡 ) ≥ 0].
4
In reality, the user may not always be able to perfectly observe 𝑤costly and 𝑤cheap

(or gauge their own utility) without consuming the content. Our model makes the

simplifying assumption that user choice is noiseless.

3
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(a) Equilibrium support (b) User consumption of quality (c) User welfare

Figure 1: Analysis of symmetric mixed equilibria for engagement-based optimization (EBO) in Example 1. Left: Equilibrium
support for 𝛾 = 0.1. The support exhibits positive correlation between gaming tricks𝑤cheap and investment in quality𝑤costly
(Theorem 2). The slope varies with the type 𝑡 and the intercept varies with the baseline utility 𝛼 (Theorem 1). Middle and
right: Equilibrium performance for 𝑃 = 2 producers along user consumption of quality (middle) and user welfare (right). The
performance is numerically estimated from 100,000 samples from the equilibrium distributions (Section 2.4). The parameter
settings are 𝑡 = 1 (left) and 𝑡 = 5 (right). The equilibrium performance of investment-based optimization (IBO) and random
recommendations (RR) are analytically computed from the equilibrium distributions (Section 4.3) and shown as baselines. User
consumption of quality can decrease with gaming costs (left; Theorems 3-4), and user welfare can be lower for EBO than for
RR (right; Theorem 5).

Let the platform metric𝑀E (𝑤) = 𝑤costly +𝑤cheap and cost function
𝑐 (𝑤) = 𝑤costly +𝛾 ·𝑤cheap for 𝛾 ∈ [0, 1) also be linear functions. The
platform metric captures the idea that the platform does not distin-
guish between different types of retweets; the cost function captures
the idea that it is relatively easier for producers to insert sensational-
ism into tweets, which requires just a few word changes, compared to
improving content quality, which might require, for example, time-
intensive fact-checking.

Example 2. Consider an online platform such as TikTok [40] that
incorporates watch time into its objective. Creators can increase watch
time by: a) creating “moreish” content that keeps people watching a
video even after they are deriving disutility from it, or b) increasing
“span” by increasing the amount of substantive content, as modelled
in Kleinberg et al. [25]. More formally, let 𝑤costly :=

𝑞
1−𝑞 be a repa-

rameterized version of the span 𝑝 ∈ [0, 1], let 𝑤cheap :=
𝑝

1−𝑝 be a
reparameterized version of the moreishness 𝑞 ∈ [0, 1]. For a given
user, let 𝑣 be the value derived from each time step from watching
substantive content, let𝑊 be the outside option for each time step,
and let 𝑡 := 𝑣/𝑊 −1 > 0 capture the shifted ratio. In this notation, the
engagement metric𝑀E and user utility 𝑢 from Kleinberg et al. [25]
take the following form:𝑀E ( [𝑤cheap,𝑤costly]) := 𝑤costly +𝑤cheap + 1
and 𝑢 (𝑤, 𝑡) :=𝑊 · 𝑡 ·

(
𝑤costly −𝑤cheap/𝑡 + 1

)
We further specify the

cost function based on a linear combination of the expected amount of
“span” time and the expected amount of “moreish” time that the user
consumes: 𝑐 (𝑤) := 𝑤costly +𝛾 ·𝑤cheap where 𝛾 ∈ [0, 1) specifying the
cost of increasing moreishness relative to increasing span.

Example 3. Consider an online platform such as YouTube that
historically used clicks as one of the terms in their objective. Creators
can cheaply increase clicks by leveraging clickbait titles or thumbnails
[29] or by increasing the quality of their content. As a stylized model

for this, let𝑤cheap capture how flashy or sensationalized the title or
thumbnail is, and let𝑤costly capture the quality of the content.

2.4 Equilibrium characterization
We show by construction that a symmetric mixed equilibrium exists

for engagement-based optimization for arbitrary setups. The game

has a complex structure due to its infinite action space and discon-

tinuous utility functions. Nonetheless, for each possible setting of

𝑃 , 𝑐 , 𝑢, and 𝑡 , we construct a symmetric mixed equilibria with a

clean closed-form characterization (Figure 1a).

To state our characterization, we define a distribution 𝜇e (𝑃, 𝑐,𝑢, 𝑡)
overR2≥0. To simplify the notation, we convert the two-dimensional

action space into a one-dimensional curve that specifies the support

of the equilibrium (Figure 1a). We define the minimum-investment
function 𝑓𝑡 : R≥0 → R≥0, which captures the amount of invest-

ment in quality needed to offset the disutility from gaming tricks,

as follows:

𝑓𝑡 (𝑤cheap
) := inf

{
𝑤
costly

| 𝑤
costly

≥ 0, 𝑢 ( [𝑤
costly

,𝑤
cheap

], 𝑡) ≥ 0

}
.

(2)

Within the one-dimensional curve, the content𝑤 is entirely speci-

fied by the cheap component𝑤
cheap

, which motivates us to define

a one-dimensional cost function for content along each curve:

𝐶𝑡 (𝑤cheap
) := 𝑐 ( [𝑓𝑡 (𝑤cheap

),𝑤
cheap

]). (3)

For example, the functions 𝑓𝑡 and 𝐶𝑡 take the following form in

Example 1:

Example 1 (Continued). The functions 𝑓𝑡 and 𝐶𝑡 are as follows:

𝑓𝑡 (𝑤cheap) = max(0, (𝑤cheap/𝑡) − 𝛼)

𝐶𝑡 (𝑤cheap) =
{
𝑤cheap (𝛾 + 1/𝑡) − 𝛼 if𝑤cheap > max(0, 𝑡 · 𝛼)
𝑤cheap · 𝛾 if𝑤cheap ≤ 𝑡 · 𝛼.

4
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As 𝑡 increases (and users becomes more tolerant to gaming tricks),
the slope of 𝑓𝑡 and 𝐶𝑡 both decrease. The minimum-investment 𝑓𝑡 is
independent of 𝛾 , but the cost function increases with 𝛾 .

We define (𝑊
cheap

,𝑊
costly

) ∼ 𝜇e (𝑃, 𝑐,𝑢, 𝑡) as follows. The mar-

ginal distribution𝑊
cheap

is

P[𝑊
cheap

≤ 𝑤
cheap

] =
(
min(1,𝐶𝑡 (𝑤cheap

))
)
1/(𝑃−1)

.

For each𝑤
cheap

∈ supp(𝑊
cheap

), the conditional distribution𝑊
costly

|
𝑊

cheap
= 𝑤

cheap
is a point mass at 𝑓𝑡 (𝑤cheap

) if 𝑤
cheap

> 0 and a

point mass at 0 if 𝑤
cheap

= 0. For example, the distribution takes

the following form within Example 1.

Example 1 (Continued). Let 𝑃 = 2, 𝛾 = 0.1, and 𝛼 = 0.5. Then,
𝑊cheap and𝑊costly are both distributed as uniform distributions and
𝜇e (𝑃, 𝑐,𝑢, 𝑡) is supported on a line segment (Figure 1a).

We prove that 𝜇e (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed equilibrium.
5

Theorem 1. The distribution 𝜇e (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed
equilibrium in the game with𝑀 = 𝑀E.

The proof is deferred to Appendix B.

We also compute a symmetric mixed equilibrium for investment-

based optimization and random recommendations (Section 4.3).

3 Positive correlation between quality and
gaming tricks

When the platform optimizes engagement metrics𝑀E
, each content

creator jointly determines how much to utilize gaming tricks and

invest in quality. The creators’ equilibrium decisions of how to

balance gaming and quality in turn determine the properties of

content in the content landscape. In this section, we show that

there is a positive correlation between gaming and quality: that

is, content that exhibits higher levels of gaming typically exhibits

higher investment in quality. We prove that the equilibria satisfy

this property (Section 3.1), and we empirically validate this property

on a dataset [31] of Twitter recommendations (Section 3.2).

3.1 Theoretical analysis of balance between
gaming and quality

We theoretically analyze the balance of gaming and quality at equi-

librium as follows. Since the content landscape w = [𝑤1, . . . ,𝑤𝑃 ]
at equilibrium consists of content 𝑤𝑖 ∼ 𝜇𝑖 for 𝑖 ∈ [𝑃], the set

of content that shows up in the content landscape with nonzero

probability is equal to ∪𝑖∈[𝑃 ]supp(𝜇𝑖 ). We examine the relation-

ship between the quality𝑤
costly

and the level of gaming𝑤
cheap

for

𝑤 ∈ ∪𝑖∈[𝑃 ]supp(𝜇𝑖 ).
We show that for any (possibly asymmetric) mixed strategy

equilibrium
5
, the support satisfies the following positive correlation

property: a creator’s investment in quality content weakly increases

with the creator’s utilization of gaming tricks (Figure 1a).

Theorem 2. Suppose that gaming is not costless (i.e. (∇(𝑐 (𝑤)))2 >

0 for all 𝑤 ∈ R2≥0). Let (𝜇1, 𝜇2, . . . , 𝜇𝑃 ) be any mixed Nash equilib-
rium, and let𝑤1,𝑤2 ∈ ∪𝑖∈[𝑃 ]supp(𝜇𝑖 ) be any two pieces of content
in the support. If𝑤2

cheap ≥ 𝑤1

cheap, then𝑤
2

costly ≥ 𝑤1

costly.

5
There can exist asymmetric equilibria: for example, if 𝑃 = 3, the mixed strategy profile

where 𝜇1 is a point mass at [0, 0] and 𝜇2 = 𝜇3 = 𝜇e (2, 𝑐,𝑢, 𝑡 ) is an equilibrium.

Theorem 2 illustrates a positive correlation between gaming

tricks and investment in quality in the content landscape. Per-

haps surprisingly, this positive correlation indicates that even high-

quality content on the content landscape will have clickbait head-

lines or exhibit other gaming tricks. Thus, gaming tricks and in-

vestment should be viewed as complements rather than substitutes.

We provide a proof sketch of Theorem 2.

Proof sketch of Theorem 2. For the symmetric mixed equi-

librium 𝜇e (𝑃, 𝑐,𝑢, 𝑡), this result can derived from the closed-form

characterization along with the fact that 𝑓𝑡 is weakly increasing

in 𝑤
cheap

. We generalize this to any possibly asymmetric mixed

equilibrium by showing that the support ∪𝑖∈[𝑃 ]supp(𝜇𝑖 ) is always
contained in:{

(𝑓𝑡 (𝑤cheap
),𝑤

cheap
) | 𝑤

cheap
≥ 0

}︸                                         ︷︷                                         ︸
(𝐴)

∪ {(0, 0)}︸  ︷︷  ︸
(𝐵)

,

where 𝑓𝑡 is the minimum-investment function. The set (A) corre-

sponds to investing the minimum amount in quality to maintain

nonnegative user utility, and The set (B) captures creators “opting

out” of the game by not expending any costly effort in producing

their content. The intuition for ∪𝑖∈[𝑃 ]supp(𝜇𝑖 ) being contained in

the union of (B) and (A) is that a creator is either incentivized to

opt out or to set𝑤
costly

as low as possible to achieve nonnegative

user utility. We defer the full proof to Appendix C. □

3.2 Empirical analysis on Twitter dataset
We next provide empirical validation for the positive correlation

between gaming and investment on a Twitter dataset [31]. The

dataset consists of survey responses from 1730 participants, each

of whom was asked several questions about each of the top ten

tweets in their personalized and chronological feeds. Using the user

survey responses, we associate each tweet with a tuple:

(𝑓 , 𝑔, 𝑎, 𝑙) ∈ {𝐸,𝐶} × {𝑃,¬𝑃} × {0, 1, 2, 3, 4} × Z≥0 .
The feed 𝑓 ∈ {𝐸,𝐶} captures whether the tweet was in the user’s

engagement-based feed (𝑓 = 𝐸) or chronological feed (𝑓 = 𝐶). The

genre 𝑔 ∈ {𝑃,¬𝑃} captures whether the user labelled the content as
in the political genre (𝑔 = 𝑃) or not (𝑔 = ¬𝑃). The angriness level
𝑎 ∈ {0, 1, 2, 3, 4} captures the reader’s evaluation of how angry the

author appears in their tweet, rated numerically between 0 and 4.
6

The number of favorites 𝑙 ∈ Z≥0 captures the number of favorites

(i.e. “heart reactions”) of the tweet. Let𝐷 be the multiset𝐷 of tuples

from the tweets in the dataset, and let D be the distribution where

(𝑓 , 𝑔, 𝑎, 𝑙) is drawn uniformly from the multiset 𝐷 .

We map this empirical setup to Example 1 as follows. Since

𝑤
cheap

is intended to capture the offensiveness of content in Ex-

ample 1, we estimate𝑤
cheap

by the angriness level 𝑎. Since𝑤
costly

is intended to capture the costly investment into content quality

in Example 1, we estimate 𝑤
costly

by the number of favorites 𝑙 .

We expect that increasing author angriness𝑤
cheap

decreases user

utility, drawing upon intuition from Munn [33] that incendiary or

divisive content drives engagement by provoking outrage in users.

Furthermore, we expect that higher quality content would generally

receive more favorites𝑤
costly

and lead to higher user utility.

6
The survey question asked: “How is [author-handle] feeling in their tweet?” [31]
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Figure 2: Cumulative distribution function 𝐻𝑎,𝑓 ,G of the number of favorites (𝑤costly = 𝑙) conditioned on different angriness
levels (𝑤cheap = 𝑎) on a dataset [31] of tweets from the engagement-based feeds (𝑓 = 𝐸) and chronological feeds (𝑓 = 𝐶). The
tweet genre is unrestricted (left), restricted to political tweets (middle), and restricted to not political tweets (right). The cdf for
higher values of 𝑎 appears to stochastically dominate the cdf for lower values of 𝑎, suggesting a positive correlation between
𝑤cheap and 𝑤costly. The stochastic dominance is more pronounced for political tweets than for non-political tweets, and it
occurs for engagement-based and chronological feeds.

G = {𝑃,¬𝑃} G = {𝑃} G = {¬𝑃}
𝑓 = 𝐸 0.131 0.092 0.048

(2 · 10−76) (2 · 10−10) (3 · 10−9)
𝑓 = 𝐶 0.086 0.138 0.004

(2 · 10−33) (4.49 · 10−19) (3 · 10−1)
Table 1: Correlation coefficient 𝜌 𝑓 ,G (with 𝑝-value 𝑝 𝑓 ,G in
parentheses) between the number of favorites (𝑤costly = 𝑙)
and the angriness level (𝑤cheap = 𝑎) on a dataset [31] of tweets
from the engagement-based feeds (𝑓 = 𝐸) and chronologi-
cal feeds (𝑓 = 𝐶) and across political (𝑃) and non-political
(¬𝑃) tweets. The correlation coefficient is positive (though
weak) and statistically significant in all cases except for non-
political tweets in the chronological feed. Moreover, correla-
tions are stronger for political than for non-political tweets.

We analyze the relationship between the number of favorites

(𝑤
costly

) and the angriness (𝑤
cheap

) with two different approaches:

• Stochastic dominance of conditional distributions: Given an an-

griness level 𝑎 ∈ {0, 1, 2, 3, 4}, feed 𝑓 ∈ {𝐸,𝐶} and subset of

genres G ⊆ {𝑃,¬𝑃}, consider the random variable ln(𝐿) where
(𝐹,𝐺,𝐴, 𝐿) is drawn from the conditional distribution D | (𝐴 =

𝑎, 𝐹 = 𝑓 ,𝐺 ∈ G). We let 𝐻𝑎,𝑓 ,G denote the cumulative density

function of this random variable. We visually examine the extent

to which 𝐻𝑎,𝑓 ,G stochastically dominates 𝐻𝑎′,𝑓 ,G when 𝑎 > 𝑎′.
• Correlation coefficient: Given a feed 𝑓 ∈ {𝐸,𝐶} and subset of

genres G ⊆ {𝑃,¬𝑃}, we compute the multiset

𝑆𝑓 ,G :=
{
(𝑎, 𝑙) | (𝑓 , 𝑔, 𝑎, 𝑙) ∈ 𝐷 | 𝑓 = 𝑓 ′, 𝑔′ ∈ G

}
(4)

We compute the Spearman’s rank correlation coefficient 𝜌 𝑓 ,G ∈
[−1, 1] of the multiset 𝑆𝑓 ,G and a corresponding p-value 𝑝 𝑓 ,G .

7

7
The p-value is for a one-sided hypothesis test with null hypothesis that 𝑎 and 𝑙 have

no ordinal correlation, calcuated using the scipy.stats.spearmanr Python library.

Stochastic dominance of conditional distributions. Figure 2 shows
the cumulative distribution function 𝐻𝑎,𝑓 ,G for different values of

𝑎, 𝑓 , and G. The primary finding is that in all of the plots, the cdf

for higher values of 𝑎 visually appears to stochastically dominate

the cdf for lower values of 𝑎. This stochastic dominance reflects a

higher author’s angriness level𝑤
cheap

= 𝑎 leads to higher numbers

of favorites 𝑤
costly

= 𝑙 , thus suggesting that content with higher

levels of gaming𝑤
cheap

also exhibit higher quality𝑤
costly

.

Interestingly, the stochastic dominance ismost pronouncedwhen

G = {𝑃,¬𝑃} and G = {𝑃}, but less pronounced when G = {¬𝑃}.
This aligns with the intuition that increasing author angriness more

effectively increases engagement for political tweets than for non-

political tweets.
8
Moreover, within G = {𝑃,¬𝑃} and G = {𝑃}, the

stochastic dominance occurs for both 𝑓 = 𝐸 and 𝑓 = 𝐶 . We view

each of 𝑓 = 𝐸 and 𝑓 = 𝐶 as capturing a different slice of the con-

tent landscape: the fact that stochastic dominance occurs in two

different slices suggests it broadly occurs in the content landscape.

Correlation coefficient. Table 1 shows 𝜌 𝑓 ,G for different genres of

tweets and feeds. Interestingly, the correlation coefficient is positive

in all cases, which suggests that content with higher levels of gam-

ing tend to exhibit higher levels of investment in quality. However,

the correlation is somewhat weak: this may be due to angriness

ratings being incomparable across different survey participants.

Nonetheless, the correlation is stronger for political content, which

again aligns with the intuition that increasing author angriness is

more effective in increasing engagement for political tweets.

4 Performance of engagement-based
optimization at equilibrium

In this section, taking into account the structure of the the content

landscape at equilibrium, we investigate the downstream perfor-

mance of engagement-based optimization. As baselines, we con-

sider investment-based optimization (an idealized baseline that

8
For non-political tweets, we expect other types of gaming tricks are employed.
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optimizes directly for quality𝑀 I (𝑤) = 𝑤
costly

) and random recom-

mendations (a trivial baseline that results in randomly choosing

from content that achieves nonnegative user utility). We highlight

striking aspects of these comparisons (Figures 1b-1c), considering

two qualitatively different performance axes: user consumption of

quality (Section 4.1) and user utility (Section 4.2).

Our comparisons take into account the endogeneity of the content
landscape: i.e., that the content landscape at equilibrium depends

on the choice of metric. The possibility of multiple equilibria casts

ambiguity on which equilibrium to consider.
5
To resolve this ambi-

guity, we focus on the (symmetric mixed) equilibria in our charac-

terization results throughout this section. For engagement-based

optimization, we focus on 𝜇e (𝑃, 𝑐,𝑢, 𝑡) as defined in Section 2.4.

For our baseline approaches, we characterize a symmetric mixed

equilibrium 𝜇i (𝑃, 𝑐,𝑢, 𝑡) for investment-based optimization and a

symmetric mixed equilibrium 𝜇r (𝑃, 𝑐,𝑢, 𝑡) for random recommen-

dations in Section 4.3.

Our results in this section focus on Example 1 across different

settings of the baseline utility 𝛼 and gaming cost 𝛾 . Our results hold

for any number of producers 𝑃 ≥ 2 and any type 𝑡 > 0.

4.1 User consumption of quality
We first consider the average quality of content consumed by the

user (formalized below), focusing on Example 1. We show that

as gaming costs increase, the performance of engagement-based

optimization worsens; in fact, unless gaming is costless, engagement-

based optimization performs strictly worse than investment-based

optimization.

We formalize user consumption of quality by:

UCQ(𝑀 ;w) := E
[
𝑀 I (𝑤𝑖∗ (𝑀 ;w) ) · 1[𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) ≥ 0]

]
,

which only counts content quality if the content is actually con-

sumed by the user. Taking into account the endogeneity of the

content landscape, the user consumption of quality at a symmetric

mixed Nash equilibrium 𝜇𝑀 is:

Ew∼(𝜇𝑀 )𝑃 [UCQ(𝑀 ;w)] .

The following result shows that in Example 1 the average user

consumption of quality strictly decreases as gaming costs (parame-

terized by 𝛾 ) become more expensive (Figure 1b).

Theorem 3. For any sufficiently large baseline utility 𝛼 > −1 and
for bounded gaming costs 𝛾 ∈ [0, 1), the user consumption of quality
Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UCQ(𝑀

E
;w)] for engagement-based optimization

is strictly decreasing in 𝛾 .

Proof sketch of Theorem 3. For sufficiently large values of

𝑤
costly

, creators compete their utility down to 0, so the only remain-

ing strategic choice is how they choose to trade off effort spent on

gaming versus investment. If gaming is costly, then creators need to

expend more of their effort on gaming to achieve a desired increase

in engagement, so they will necessarily devote less effort to invest-

ment in quality. In contrast, if gaming is costless, creators devote

all of their effort to investment. To formalize this intuition, we ex-

plicitly compute user consumption of quality using the equilibrium

characterization. We defer the proof to Appendix E.1. □

Theorem 3 thus has a striking consequence for platform design:

to improve user consumption of quality, it can help to reduce the

costs of gaming tricks as much as possible. One concrete approach

for reducing gaming costs is to increase the transparency of the

platform’s metric, for example by publishing the metric in an inter-

pretable manner. In particular, if a content creator does not have

access to the platform’s metric, they would have to expend effort to

learn the metric to game it; on the other hand, transparency would

reduce these costs. Perhaps countuitively, our results suggest that

increasing transparency can improve user consumption of quality

in the presence of strategic content creators.
9
In particular, our re-

sults suggest the recent trend of recommender systems publishing

their algorithms (e.g., Twitter [42]) may improve user consump-

tion of quality content, and encourage the continued release of

recommendation algorithms more broadly.

To further understand the impact of gaming costs 𝛾 , we compare

the performance of engagement-based optimization with the perfor-

mance of investment-based optimization (which does not depend

on 𝛾 ). We treat the performance of investment-based optimization

as an “idealized baseline” for UCQ: the reason is that for any fixed
content landscapew, investment-based optimization maximizes the

UCQ(𝑀 ;w) across all possible metrics 𝑀 , because the objectives

exactly align. The following result shows that engagement-based

optimization performs strictly worse than investment-based opti-

mization unless gaming tricks are costless (Figure 1b).

Theorem 4. For any sufficiently large baseline utility 𝛼 > −1 and
for bounded gaming costs 𝛾 ∈ [0, 1), it holds that:
Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UCQ(𝑀

E
;w)] ≤ Ew∼(𝜇i (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UCQ(𝑀

I
;w)],

with equality if and only if 𝛾 = 0.

Theorem 4 illustrates that reducing the gaming costs to 0 is

necessary for engagement-based optimization to perform as well

as the idealized baseline. This serves as a further motivation for a

social planner to try to reduce gaming costs as much as possible,

for example through increased transparency as discussed above.

4.2 User welfare
We next consider user utility realized by user consumption patterns,

which can be interpreted as user welfare. We show that engagement-

based optimization can alarmingly perform worse than random

recommendations in terms of user welfare.
10

We formalize user welfare by

UW(𝑀 ;w) := E[𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) · 1[𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) ≥ 0]] .
Taking into account the endogeneity of the content landscape,

the user welfare at a symmetric mixed Nash equilibrium 𝜇𝑀 is

Ew∼(𝜇𝑀 )𝑃 [UW(𝑀 ;w)].
The following result shows that engagement-based optimization

always performs at least as poorly as random recommendations,

9
This finding bears some resemblance to results in the strategic classification literature

[5, 13]. For example, Ghalme et al. [13] shows that transparency is the optimal policy

in terms of optimizing the decision-maker’s accuracy. However, a lack of transparency

is suboptimal in [13] because it prevents the decision-maker from being able to fully

anticipating strategic behavior; in contrast, a lack of transparency is suboptimal in our

setting because it leads effort to be spent on figuring how to game the classifier rather

than investing in quality.

10
We view random recommendations as a conservative baseline, since𝑀R

does not

reward investment or gaming.
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and can even perform strictly worse than random recommendations

under certain conditions (Figure 1c).

Theorem 5. Suppose that gaming costs 𝛾 ∈ [0, 1) are bounded.
If baseline utility 𝛼 > 0 is positive, the user welfare of engagement-
based optimization is strictly lower than the user welfare of random
recommendations:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E
;w)] < Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R

;w)] .

If baseline utility 𝛼 ≤ 0 is nonpositive, engagement-based optimiza-
tion and random recommendations both result in zero user welfare:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E
;w)] = Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R

;w)] = 0.

Proof sketch of Theorem 5. We first focus on the simple case

where gaming tricks are free (𝛾 = 0) and the baseline utility is

positive (𝛼 ≥ 0). For engagement-based optimization, creators will

increase gaming tricks until the user utility drops down to 0, which

means the user welfare at equilibrium is 0. In contrast, for random

recommendations, creators do not expend effort on either gaming

tricks or investment; thus, the user welfare at equilibrium is 𝛼 > 0,

which is strictly higher than the user welfare for engagement-based

optimization. The other cases, though a bit more involved, follow

from similar intuition: for engagement-based optimization, creators

choose the balance between gaming tricks and investment in quality

that drives user utility as close to zero as possible, whereas for

random recommendations, creators choose the minimum amount

of investment to achieve nonzero user utility. We defer the full

proof to Appendix F. □

From a platform design perspective, Theorem 5 highlights the

pitfalls of engagement-based optimization for users. In particular,

the user welfare of engagement-based optimization can fall below

the conservative baseline where users randomly select content on

their own (and the content landscape shifts in response). This sug-

gests that engagement-based optimization may not retain users in

the long-run, especially in a competitive marketplace with multiple

platforms.

4.3 Closed-form equilibrium characterizations
for baseline approaches

Our analysis in Section 4.1 and Section 4.2 relied on the following

closed-form equilibrium characterizations for investment-based op-

timization and random recommendations. To state these character-

izations, we define a distribution 𝜇i (𝑃, 𝑐,𝑢, 𝑡) for investment-based

optimization and a distribution 𝜇r (𝑃, 𝑐,𝑢, 𝑡) for random recommen-

dations.

Since neither baseline approach directly incentivizes gaming

tricks, the distributions 𝜇i (𝑃, 𝑐,𝑢, 𝑡) and 𝜇r (𝑃, 𝑐,𝑢, 𝑡) both satisfy

𝑤
cheap

= 0 for all 𝑤 in the support (i.e., the marginal distribu-

tion of𝑊
cheap

is a point mass at 0). We can thus convert the two-

dimensional action space into a one-dimensional action space spec-

ified by𝑤
costly

, where the cost function is

𝐶𝐼
𝑏
(𝑤

costly
) := 𝑐 ( [𝑤

costly
, 0]) (5)

and the utility function is:

𝑈 𝐼
𝑏
(𝑤

costly
, 𝑡) := 𝑢 ( [𝑤

costly
, 0], 𝑡) . (6)

We now specify the marginal distribution of quality𝑊
costly

for each

baseline approach.

Investment-based optimization. We define the marginal distribu-

tion of𝑊
costly

for 𝜇i (𝑃, 𝑐,𝑢, 𝑡) by:

P[𝑊
costly

≤ 𝑤
costly

] =

min

(
1,

(
𝐶𝐼
𝑏
(𝑤

costly
)
)
1/(𝑃−1)

· 1[𝑈 𝐼
𝑏
(𝑤

costly
, 𝑡) ≥ 0]

]
.

We show that 𝜇i (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed equilibrium.

Theorem 6. The distribution 𝜇i (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed
Nash equilibrium in the game with𝑀 = 𝑀 I.

Random recommendations. Let

𝜅 := min

(
min

𝑤costly

{
𝐶𝐼
𝑏
(𝑤

costly
) | 𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡) ≥ 0

}
, 1

)
be minimum cost to achieve 0 user utility, truncated at 1. Let the

probability 𝜈 be defined as follows: 𝜈 = 0 if 𝜅 ≤ 1/𝑃 , and otherwise

𝜈 ∈ [0, 1] is the unique value such that that

∑𝑃−1
𝑖=0 𝜈𝑖 = 𝑃 · 𝜅. We

define the marginal distribution of𝑊
costly

for 𝜇r (𝑃, 𝑐,𝑢, 𝑡) by

P[𝑊
costly

= 𝑤
costly

] =
𝜈 if𝑤

costly
= 0

1 − 𝜈 if𝑤
costly

= argmin𝑤′
costly

{
𝐶𝐼
𝑏
(𝑤 ′

costly
) | 𝑈 𝐼

𝑏
(𝑤 ′

costly
, 𝑡) ≥ 0

}
0 otherwise.

We show that 𝜇r (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed equilibrium.

Theorem 7. The distribution 𝜇r (𝑃, 𝑐,𝑢, 𝑡) is a symmetric mixed
Nash equilibrium in the game with𝑀 = 𝑀R.

We defer the proofs of Theorem 6 and Theorem 7 to Section 4.3.

5 Discussion
In this work, we study content creator competition for engagement-

based recommendations that reward both quality and gaming tricks

(e.g. clickbait). Our model further captures that a user only tolerates

gaming tricks in sufficiently high-quality content, which also shapes

content creator incentives. Our first result (Theorem 2) suggests

that gaming and quality are complements for the content creators,

which we empirically validate on a Twitter dataset. We then analyze

the downstream performance of engagement-based optimization at

equilibrium. We show that higher gaming costs can lead to lower

average consumption of quality (Theorem 3) and the user welfare

of engagement-based optimization can fall below that of random

recommendations (Theorem 5).

More broadly, our results illustrate how content creator incen-

tives can influence the downstream impact of a content recom-

mender systems, which poses challenges when evaluating a plat-

form’s metric. In particular, there is a disconnect between how a

platform’s engagement metric behaves on a fixed content landscape

and how the same metric behaves on an endogeneous content land-

scape shaped by the metric. Interestingly, this disconnect manifests

in two different performance measures relevant to society as a

whole. We hope that our work encourages future evaluations of

recommendation policies—for both of platform metrics and societal

impacts—to carefully account for content creator incentives.

8
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A Auxiliary definitions and lemmas
In our analysis of equilibria, it will be helpful to work with several quantities. We first define C𝑡 to be the set of content that achieves 0

utility for that type. That is:

C𝑡 :=
{
[𝑤

costly
,𝑤

cheap
] | 𝑢 ( [𝑤

costly
,𝑤

cheap
], 𝑡) = 0.

}
. (7)

We also define an augmented version of these sets that also includes content with𝑤
costly

= 0 that achieving positive utility.

Caug

𝑡 :=
{
[𝑤

costly
,𝑤

cheap
] | 𝑢 ( [𝑤

costly
,𝑤

cheap
], 𝑡) = 0

}
∪
{
(0,𝑤

cheap
) | 𝑤

cheap
∈ [0, min

𝑤′ |𝑢 (𝑤′,𝑡 )=0
𝑤 ′
cheap

)]
}
, (8)

The set Caug

𝑡 turns out to be closely related to the function 𝑓𝑡 defined in (2).

Lemma 8. The set Caug
𝑡 can be written as:

Caug
𝑡 =

{
[𝑓𝑡 (𝑤cheap),𝑤cheap] | 𝑤cheap ≥ 0

}
where 𝑓𝑡 is defined by (2).

Proof. First, we show that Caug

𝑡 ⊆
{
(𝑓𝑡 (𝑤cheap

),𝑤
cheap

) | 𝑤
cheap

≥ 0

}
. If 𝑤 ∈ Caug

𝑡 , then either 𝑢 (𝑤, 𝑡) = 0 or 𝑤
costly

= 0 and

𝑤
cheap

∈ [0,min𝑤′ |𝑢 (𝑤′,𝑡 )=0𝑤
′
cheap

)]. If 𝑢 (𝑤, 𝑡) = 0, since investing in quality is costly, it must hold that𝑤
costly

= 𝑓𝑡 (𝑤cheap
). Next, suppose

that𝑤
cheap

∈ [0,min𝑤′ |𝑢 (𝑤′,𝑡 )=0𝑤
′
cheap

)].We observe thatmin𝑤′ |𝑢 (𝑤′,𝑡 )=0𝑤
′
cheap

is the unique value of𝑤 ′
cheap

such that𝑢 ( [0,𝑤 ′
cheap

], 𝑡) = 0.

This implies that 𝑢 ( [0,𝑤
cheap

], 𝑡) ≥ 0, so 𝑓𝑡 (𝑤cheap
) = 0 as desired.

Next, we show that

{
[𝑓𝑡 (𝑤cheap

),𝑤
cheap

] | 𝑤
cheap

≥ 0

}
⊆ Caug

𝑡 . Let 𝑤 = [𝑓𝑡 (𝑤cheap
),𝑤

cheap
] for some 𝑤

cheap
≥ 0. If 𝑢 (𝑤, 𝑡) = 0, then

𝑤 ∈ Caug

𝑡 as desired. If 𝑢 (𝑤, 𝑡) > 0, then it must hold that𝑤
costly

= 0 (otherwise, it would be possible to lower𝑤
costly

while keeping utility

nonnegative, which contradicts the fact that 𝑓𝑡 (𝑤cheap
) = 𝑤

costly
), so𝑤 ∈ Caug

𝑡 . □

We prove that the function 𝑓𝑡 is weakly increasing.

Lemma 9. The function 𝑓𝑡 as defined in (2) is weakly increasing. Moreover, the function 𝑀E ( [𝑓𝑡 (𝑤cheap),𝑤cheap]) is strictly increasing in
𝑤cheap.

Proof. Suppose that𝑤1

cheap
≥ 𝑤2

cheap
. We claim that 𝑓𝑡 (𝑤1

cheap
) ≥ 𝑓𝑡 (𝑤2

cheap
). To see this, note that

𝑢 ( [𝑓𝑡 (𝑤1

cheap
),𝑤2

cheap
]) > 𝑢 ( [𝑓𝑡 (𝑤1

cheap
),𝑤1

cheap
]) ≥ 0,

which proves the first statement.

To see that 𝑀E ( [𝑓𝑡 (𝑤cheap
),𝑤

cheap
]) is increasing, note that 𝑓𝑡 is a weakly increasing function (see Lemma 9) and that 𝑀 is strictly

increasing in both of its arguments. □

Finally, we define an induced cost function for engagement, given by the optimization program

𝐶𝐸
𝑡 (𝑚) := inf

𝑤∈R2≥0
𝑐 (𝑤) s.t. 𝑢 (𝑤, 𝑡) ≥ 0, 𝑀platform (𝑤) ≥ 𝑚, (9)

which captures the minimum production cost to create content with engagement at least𝑚 and nonnegative user utility. We show the

following properties of the optima of (9).

Lemma 10. The optimization program inf𝑤∈R2≥0
𝑐 (𝑤) s.t. 𝑢 (𝑤, 𝑡) ≥ 0, 𝑀platform (𝑤) ≥ 𝑚 satisfies the following properties:

(1) For any𝑚 ∈
{
𝑀E (𝑤) | 𝑤 ∈ Caug

𝑡

}
, the optimization program is feasible and any optimum𝑤∗ satisfies𝑤∗ ∈ Caug

𝑡 .
(2) If𝑚 ∈

{
𝑀E (𝑤) | 𝑤 ∈ Caug

𝑡

}
and 𝐶𝐸

𝑡 (𝑚) > 0, the optimization program has a unique optimum𝑤∗ and moreover𝑀platform (𝑤∗) =𝑚.

Proof. Suppose that𝑚 ∈
{
𝑀E (𝑤) | 𝑤 ∈ Caug

𝑡

}
.

First, we show that the optimization program is feasible. Suppose that𝑤 is such that𝑀E (𝑤) =𝑚. Using the fact that 𝑢 ( [𝑤 ′
costly

,𝑤
cheap

], 𝑡)
approaches∞ as𝑤 ′

costly
→ ∞, we see that there exists𝑤 ′

costly
≥ 𝑤

costly
such that𝑀E ( [𝑤 ′

costly
,𝑤

cheap
]) ≥ 𝑀E (𝑤) =𝑚 and𝑢 ( [𝑤 ′

costly
,𝑤

cheap
], 𝑡) ≥

0, as desired.

Next, we show that there exists𝑤 ∈ R2≥0 such that 𝑢 (𝑤, 𝑡) ≥ 0,𝑀E (𝑤) ≥ 𝑚, and 𝑐 (𝑤) = 𝐶𝐸
𝑡 (𝑚). To make the domain compact, observe

that there exists𝑤 ′ ∈ R2≥0 such that𝑀E (𝑤 ′) =𝑚 by assumption, which means that 𝐶𝐸
𝑡 (𝑚) ≤ 𝑐 (𝑤 ′). The set{

𝑤 ∈ R2≥0 | 𝑐 (𝑤) ≤ 𝑐 (𝑤 ′), 𝑢 (𝑤, 𝑡) ≥ 0, 𝑀E (𝑤) ≥ 𝑚

}
=

{
𝑤 ∈ R2≥0 | 𝑀E (𝑤) ≥ 𝑚

}
∩
{
𝑤 ∈ R2≥0 | 𝑢 (𝑤, 𝑡) ≥ 0

}
∩ 𝑐−1

(
[0, 𝑐 (𝑤 ′)]

)
.

The first two terms are closed, and the last term is compact (because the preimage of a continuous function of a compact set is compact).

This means that the intersection is compact. Now, we use the fact that the inf of a continuous function over compact set is achievable.

Let𝑤∗
be an optima. We show the following two properties:

(P1) If𝑤∗
costly

,𝑤∗
cheap

> 0, then𝑀E (𝑤∗) =𝑚.

11
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(P2) If𝑤∗
costly

> 0, then 𝑢 (𝑤∗, 𝑡) = 0.

First, we show (P1). Assume for sake of contradiction that𝑀E (𝑤) > 𝑚. Let 𝑑 be the direction normal to ∇𝑢 (𝑤) where the costly coordinate
is negative and the cheap coordinate is negative. We see that

⟨𝑑,∇𝑀E (𝑤∗)⟩ = −|𝑑1 | (∇𝑀E (𝑤∗))1 − |𝑑2 | (∇𝑀E (𝑤∗))2 < 0

⟨𝑑,∇𝑐 (𝑤∗)⟩ = −|𝑑1 | (∇𝑐 (𝑤∗))1 − |𝑑2 | (∇𝑐 (𝑤∗))2 < 0

⟨𝑑,∇𝑢 (𝑤∗)⟩ = 0.

This proves there exists 𝜖 > 0 such that𝑤 ′ = 𝑤 + 𝜖𝑑 satisfies𝑀E (𝑤 ′) ≥ 𝑚, 𝑢 (𝑤 ′, 𝑡) ≥ 0, and 𝑐 (𝑤 ′) < 𝑐 (𝑤∗), which is a contradiction.

Next, we show (P2). Assume for sake of contradiction that 𝑢 (𝑤∗, 𝑡) > 0. Let 𝑑 be the normal direction to ∇𝑀E (𝑤∗) where the costly
coordinate is negative and the cheap coordinate is positive. We see that

⟨𝑑,∇𝑢 (𝑤∗, 𝑡)⟩ = −|𝑑1 | (∇𝑢 (𝑤))1 + 𝑑2 (∇𝑢 (𝑤))2 < 0

⟨𝑑,∇𝑀E (𝑤∗)⟩ = 0,

Moreover, we can see that ⟨𝑑,∇𝑐 (𝑤∗)⟩ = −|𝑑1 | (∇𝑐 (𝑤))1 + 𝑑2 (∇𝑐 (𝑤))2 < 0, since this can be written as:

(∇𝑐 (𝑤))1
(∇𝑐 (𝑤))2

>
|𝑑2 |
|𝑑1 |

=
(∇𝑀E (𝑤))1
(∇𝑀E (𝑤))2

,

which holds by assumption. This proves there exists 𝜖 > 0 such that𝑤 ′ = 𝑤 + 𝜖𝑑 satisfies 𝑀E (𝑤 ′) ≥ 𝑚, 𝑢 (𝑤 ′, 𝑡) ≥ 0, and 𝑐 (𝑤 ′) < 𝑐 (𝑤∗),
which is a contradiction.

We now show that𝑤∗ ∈ Caug

𝑡 . First, suppose that𝑤∗
costly

= 0. Then, using the fact that 𝑢 (𝑤∗, 𝑡) ≥ 0, we see that 𝑓𝑡 (𝑤∗
cheap

) = 0 = 𝑤
costly

∗,
so by Lemma 8,𝑤∗ ∈ Caug

𝑡 . Next, suppose that𝑤∗
costly

> 0. Then we see that 𝑢 (𝑤∗, 𝑡) = 0 by (P2), so𝑤∗ ∈ Caug

𝑡 .

For the remainder of the analysis, we assume that 𝑐 (𝑤∗) = 𝐶𝐸
𝑡 (𝑚) > 0.

If gaming is costless ((∇(𝑐 (𝑤)))2 = 0 for all 𝑤 ) and 𝑐 (𝑤∗) > 0, then it must hold that 𝑤∗
costly

> 0. This implies that 𝑢 (𝑤∗, 𝑡) = 0. This

means that there is a unique value 𝑤 ∈ Caug

𝑡 such that 𝑐 (𝑤) = 𝐶𝐸
𝑡 (𝑚), so this implies that 𝑤∗

is the unique optima. If 𝑤∗
cheap

> 0, then

we can apply (P1) to see that𝑀E (𝑤∗) =𝑚. If𝑤∗
cheap

= 0, the fact that [0,𝑤∗
costly

] ∈ Caug

𝑡 implies that𝑀E (𝑤∗) = inf𝑤∈Caug

𝑡
𝑀E (𝑤). By the

assumption that𝑚 ∈
{
𝑀E (𝑤) | 𝑤 ∈ Caug

𝑡

}
, this means that𝑚 = 𝑀E (𝑤∗) as desired.

If gaming is costly ((∇(𝑐 (𝑤)))2 = 0 for all𝑤 ) and𝐶𝐸
𝑡 (𝑚) > 0, then there is a unique value𝑤 ∈ Caug

𝑡 such that 𝑐 (𝑤) = 𝑐 (𝑤∗), which shows

there is a unique optima. If𝑤∗
cheap

> 0 and𝑤∗
costly

> 0, then (P1) implies that𝑚 = 𝑀E (𝑤∗). If𝑤∗
cheap

= 0, then the fact that [0,𝑤∗
costly

] ∈ Caug

𝑡

implies that 𝑀E (𝑤∗) = inf𝑤∈Caug

𝑡
𝑀E (𝑤). Finally, suppose that 𝑤∗

costly
= 0. Assume for sake of contradiction that 𝑀E ( [0,𝑤∗

cheap
]) > 𝑚.

Then there exists𝑤
cheap

< 𝑤∗
cheap

such that 𝑀E ( [0,𝑤
cheap

]) ≥ 𝑚, 𝑐 ( [0,𝑤 ′
cheap

]) < 𝑐 ( [0,𝑤∗
cheap

]), and 𝑢 ( [0,𝑤 ′
cheap

], 𝑡) ≥ 𝑢 ( [0,𝑤∗
cheap

], 𝑡),
which would mean that𝑤∗

is not an optima, which is a contradiction. □

B Proofs for Section 2
Before proving Theorem 1, we prove the following properties of 𝜇e (𝑃, 𝑐,𝑢, 𝑡).

Lemma 11. The distribution 𝜇e (𝑃, 𝑐,𝑢, 𝑡) satisfies the following properties:
(P1) The only possible atom in the distribution 𝜇e (𝑃, 𝑐,𝑢, 𝑡) is at (0, 0), and moreover that (0, 0) is an atom when 𝑓𝑡 (0) > 0.
(P2) Suppose that (𝑤cheap,𝑤costly) ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡)). If (𝑤cheap,𝑤costly) ≠ (0, 0) or if 𝑓𝑡 (0) = 0, then it holds that𝑢 ( [𝑤cheap,𝑤costly], 𝑡) ≥

0.
(P3) If (0, 0) is an atom of 𝜇e (𝑃, 𝑐,𝑢, 𝑡), then 𝑢 ( [0, 0], 𝑡) < 0.

Proof. To prove (P1), note that if (𝑤
cheap

,𝑤
costly

) ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡)) is an atom, then 𝑤
cheap

must be an atom in the marginal

distribution𝑊
cheap

. The specification of the cdf shows that the only possible atom is at𝑊
cheap

= 0. Moreover, 0 is an atom of𝑊
cheap

if and

only if 𝑐 (𝑓𝑡 (0), 0) > 0, which occurs if and only if 𝑓𝑡 (0) > 0. When 𝑓𝑡 (0) > 0, we further see that the conditional distribution𝑊
costly

is a

point mass at 0, as desired.

To prove (P2), note that𝑊
costly

is a point mass at 𝑓𝑡 (𝑤cheap
). By the definition of 𝑓𝑡 , it holds that 𝑢 ( [𝑤cheap

,𝑤
costly

], 𝑡) ≥ 0.

To prove (P3), note that the first property showed that (0, 0) is an atom if and only if 𝑓𝑡 (0) > 0. By the definition of 𝑓𝑡 , we see that

𝑢 ( [0, 0], 𝑡) < 0 as desired.

□

We prove Theorem 1.
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Proof of Theorem 1. Let 𝜇 = 𝜇e (𝑃, 𝑐,𝑢, 𝑡) for notational convenience. We analyze the expected utility of 𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )]
of a content creator if all of the creators choose the strategy 𝜇. It suffices to show that any𝑤∗ ∈ supp(𝜇) is a best response𝑤∗ ∈ argmax𝑤 𝐻 (𝑤).
We use the properties (P1)-(P4) in Lemma 11.

First, we observe that we can write 𝐻 (𝑤) as:
𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )]

= 1[𝑢𝑡 (𝑤) ≥ 0] · P𝑊cheap
[𝑀E (𝑤) > 𝑀E ( [𝑓𝑡 (𝑊cheap

),𝑊
cheap

])]𝑃−1 − 𝑐 (𝑤),

because (P1) implies that the only possible atom occurs at [0, 0], (P3) implies that 𝑢 ( [0, 0], 𝑡) < 0 if [0, 0] is an atom, and (P2) implies that

1[𝑢 (𝑤, 𝑡) ≥ 0] = 0 for (𝑤
cheap

,𝑤
costly

) ≠ (0, 0).
If 𝑤 ∈ supp(𝜇), then we claim that 𝐻 (𝑤) = 0. If 𝑤

cheap
= 0 and 𝑓𝑡 (𝑤cheap

) = 0, it is immediate that 𝐻 (𝑤) = 0. Otherwise, if

𝑤 = [𝑓𝑡 (𝑤cheap
),𝑤

cheap
]. By (P2), it holds that 𝑢𝑡 (𝑤) ≥ 0. This means that:

𝐻 (𝑤) = P𝑊cheap
[𝑀E ( [𝑓𝑡 (𝑤cheap

),𝑤
cheap

]) > 𝑀E ( [𝑓𝑡 (𝑊cheap
),𝑊

cheap
])]𝑃−1 − 𝑐 (𝑤)

=(1) P𝑊cheap
[𝑤

cheap
>𝑊

cheap
]𝑃−1 − 𝑐 (𝑤)

= 0,

where (1) uses the fact that𝑀E ( [𝑓𝑡 (𝑤cheap
),𝑤

cheap
]) is strictly increasing in𝑤

cheap
(Lemma 9).

The remainder of the proof boils down to showing that 𝐻 (𝑤) ≤ 0 for any𝑤 . If 𝑢𝑡 (𝑤, 𝑡) < 0, then 𝐻 (𝑤) ≤ 0. If 𝑢𝑡 (𝑤, 𝑡) ≥ 0, then

𝐻 (𝑤) = P𝑊cheap
[𝑀E (𝑤) > 𝑀E ( [𝑓𝑡 (𝑊cheap

),𝑊
cheap

])]𝑃−1 − 𝑐 (𝑤) .

It suffices to show that 𝐻 (𝑤) ≤ 0 at any best-response𝑤 such that 𝑢 (𝑤, 𝑡) ≥ 0. If𝑤 is a best response and 𝑢 (𝑤, 𝑡) ≥ 0, then it must be true

that𝑤 is a solution to (9). By Lemma 10, this means that𝑤 ∈ Caug

𝑡 , and by Lemma 8, this means that𝑤 is of the form [𝑓𝑡 (𝑤cheap
),𝑤

cheap
],

which means that:

𝐻 (𝑤) = P𝑊cheap
[𝑤

cheap
>𝑊

cheap
]𝑃−1 − 𝑐 (𝑤) ≤ 0,

which proves the desired statement.

□

C Proofs for Section 3
To prove Theorem 2, we first show that the support of the equilibrium is contained in Caug

𝑡 .

Lemma 12. Let (𝜇1, . . . , 𝜇𝑃 ) be any mixed Nash equilibrium. Then supp(𝜇𝑖 ) ⊆ Caug
𝑡 ∪ {𝑤 | 𝑐 (𝑤) = 0} for all 𝑖 ∈ [𝑃].

Proof. Assume for sake of contradiction that𝑤 ′ ∈ supp(𝜇𝑖 ) satisfies𝑤 ′ ∉ ∪𝑡 ∈𝑡Caug

𝑡 ∪ {𝑤 | 𝑐 (𝑤) = 0}. (This immediately implies that

𝑐 (𝑤 ′) > 0.) We will show that𝑤 ′
is not a best response. We split into two cases: (1) 𝑢 (𝑤 ′, 𝑡) < 0, and (2) 𝑢 (𝑤 ′, 𝑡) ≥ 0.

First, suppose that 𝑢 (𝑤 ′, 𝑡) < 0. Then the user will not consume the content. Since 𝑐 (𝑤 ′) > 0, it holds that

Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ′
;w−𝑖 )] < 0.

However, if the creator were to instead choose the content [0, 0] which incurs 𝑐 ( [0, 0]) = 0 cost, they would get nonnegative utility:

Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 ( [0, 0];w−𝑖 )] ≥ 0 > Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ′
;w−𝑖 )] .

Thus,𝑤 ′
is not a best response, which is a contradiction.

Next, suppose that 𝑢 (𝑤 ′, 𝑡) ≥ 0. Let𝑚 = 𝑀E (𝑤 ′) be the engagement metric evaluated at𝑤 ′
. We see that the optimization program

min

𝑤
𝑐 (𝑤) s.t. 𝑢 (𝑤, 𝑡) ≥ 0, 𝑀platform (𝑤) ≥ 𝑚

is feasible, since𝑤 ′
satisfies the constraints by definition. Let𝑤∗

be an optimal solution to the optimization program.

We first claim that 𝑐 (𝑤∗) < 𝑐 (𝑤 ′). To see this, first observe that 𝐶𝐸
𝑡 (𝑚) = 𝑐 (𝑤∗) by definition. If 𝐶𝐸

𝑡 (𝑚) = 0, then:

𝑐 (𝑤∗) = 𝐶𝐸
𝑡 (𝑚) = 0 < 𝑐 (𝑤 ′).

If 𝐶𝐸
𝑡 (𝑚) > 0, then we apply Lemma 10 to see that𝑤∗

is the unique optima, so 𝑐 (𝑤∗) < 𝑐 (𝑤 ′).
This means that:

Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤∗
;w−𝑖 )] > Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ′

;w−𝑖 )],
so𝑤 ′

is not a best response which is a contradiction. □

Since𝑤 ′
is a best response,𝑤 ′

must be a solution to the optimization program

min

𝑤
𝑐 (𝑤) s.t. 𝑢 (𝑤, 𝑡) ≥ 0, 𝑀platform (𝑤) ≥ 𝑚.

We now prove Theorem 2 using Lemma 12 together with the properties in Appendix A.
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Proof of Theorem 2. By Lemma 12, the support of each 𝜇𝑖 satisfies:

supp(𝜇𝑖 ) ⊆ Caug

𝑡 ∪ {𝑤 | 𝑐 (𝑤) = 0} .
Since gaming is costly by assumption, it holds that {𝑤 | 𝑐 (𝑤) = 0} = {[0, 0]}. We now apply Lemma 8 to see that:

supp(𝜇𝑖 ) ⊆
{
[𝑓𝑡 (𝑤cheap

),𝑤
cheap

]
}
∪ {(0, 0)} .

The statement follows from the fact that 𝑓𝑡 is weakly increasing (Lemma 9). □

D Proofs for Section 4.3
We prove Theorem 6.

Proof of Theorem 6. Let 𝜇 = 𝜇i (𝑃, 𝑐,𝑢, 𝑡) for notational convenience, and let (𝑊
costly

,𝑊
cheap

) ∼ 𝜇. We analyze the expected utility of

𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )]

of a content creator if all of the creators choose the strategy 𝜇. We show that 𝐻 (𝑤) = 0 if𝑤 ∈ supp(𝜇) and 𝐻 (𝑤) ≤ 0 for any𝑤 ∈ R2≥0.
Let𝑤 ∈ R2≥0 be any content vector, and let𝑤 ′ = [𝑤

costly
, 0] be the vector with identical quality but no gaming tricks. Since

𝑈 𝐼
𝑏
(𝑤

costly
, 𝑡) = 𝑢 (𝑤 ′, 𝑡) ≥ 𝑢 (𝑤, 𝑡),

𝑀 I (𝑤) = 𝑀 I (𝑤 ′), and 𝑐 (𝑤) ≥ 𝑐 (𝑤 ′), it holds that 𝐻 (𝑤) ≤ 𝐻 (𝑤 ′). Since all𝑤 ′′ ∈ supp(𝜇) also satisfy𝑤 ′′
cheap

= 0, we can restrict the rest of

our analysis to𝑤 such that𝑤
cheap

= 0.

Moreover, we see that:

𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ′
;𝑤−𝑖 )]

=

(
min

(
1,

(
𝐶𝐼
𝑏
(𝑤

costly
)
)
· 1[𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡) ≥ 0]

] )
· 1[𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡)] −𝐶𝐼

𝑏
(𝑤

costly
)

≤ 𝐶𝐼
𝑏
(𝑤

costly
) −𝐶𝐼

𝑏
(𝑤

costly
)

= 0.

Moreover, we see that if𝑤
costly

∈ supp(𝑊
costly

), then either𝑤
costly

= 0 and 𝐻 (𝑤) = 0, or𝑤
costly

> 0 and

𝐻 (𝑤) =
(
min

(
1,

(
𝐶𝐼
𝑏
(𝑤

costly
)
)
· 1[𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡) ≥ 0]

] )
· 1[𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡)] −𝐶𝐼

𝑏
(𝑤

costly
) = min

(
1,𝐶𝐼

𝑏
(𝑤

costly
)
)
−𝐶𝐼

𝑏
(𝑤

costly
) = 0.

This proves that 𝜇 is an equilibrium as desired. □

We prove Theorem 7.

Proof. Let 𝜇 = 𝜇r (𝑃, 𝑐,𝑢, 𝑡) for notational convenience, and let (𝑊
costly

,𝑊
cheap

) ∼ 𝜇. Moreover, let

𝑤∗
costly

= argmin

𝑤′
costly

{
𝐶𝐼
𝑏
(𝑤 ′

costly
) | 𝑈 𝐼

𝑏
(𝑤 ′

costly
, 𝑡) ≥ 0

}
.

We analyze the expected utility of

𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )]
of a content creator if all of the creators choose the strategy 𝜇. We show that𝑤 ∈ argmax𝑤′ 𝐻 (𝑤 ′) for any𝑤 ∈ supp(𝜇).

Let𝑤 ∈ R2≥0 be any content vector, and let𝑤 ′ = [𝑤
costly

, 0] be the vector with identical quality but no gaming tricks. Since

𝑈 𝐼
𝑏
(𝑤

costly
, 𝑡) = 𝑢 (𝑤 ′, 𝑡) ≥ 𝑢 (𝑤, 𝑡),

𝑀R (𝑤) = 𝑀R (𝑤 ′), and 𝑐 (𝑤) ≥ 𝑐 (𝑤 ′), it holds that 𝐻 (𝑤) ≤ 𝐻 (𝑤 ′). Since all𝑤 ′′ ∈ supp(𝜇) also satisfy𝑤 ′′
cheap

= 0, we can restrict the rest

of our analysis to𝑤 such that𝑤
cheap

= 0.

We split into two cases: 𝜅 ≤ 1/𝑃 and 𝜅 ∈ (1/𝑃, 1].
If 𝜅 ≤ 1/𝑃 , then𝑊

costly
is a point mass at𝑤∗

costly
. Note that:

𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )] =
1[𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡) ≥ 0]

𝑃
−𝐶𝐼

𝑏
(𝑤) ≤ 1

𝑃
− 𝜅.

Moreover, for𝑤
costly

= 𝑤∗
costly

, it holds that 𝐻 (𝑤) = 1

𝑃
− 𝜅. This proves that𝑤 ∈ argmax𝑤′ 𝐻 (𝑤 ′) for any𝑤 ∈ supp(𝜇), as desired.

If 𝜅 ∈ (1/𝑃, 1], then we see that 𝜈 is the unique value such

∑𝑃−1
𝑖=1 𝜈𝑖 = 𝑃 · 𝜅. Note that𝑊

costly
is𝑤∗

costly
with probability 1 − 𝜈 and 0 with

probability 𝜈 . Moreover, note that:

𝐻 (𝑤) = Ew−𝑖∼𝜇−𝑖 [𝑈𝑖 (𝑤 ;𝑤−𝑖 )] = 1[𝑈 𝐼
𝑏
(𝑤

costly
, 𝑡) ≥ 0] · E𝑌

[
1

1 + 𝑌

]
−𝐶𝐼

𝑏
(𝑤),

14
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where 𝑌 ∼ Bin(𝑃 − 1, 1 − 𝜈) is distributed as a binomial random variable with success probability 1 − 𝜈 . (The second equality holds because

𝑌 is distributed as the number of creators 𝑗 ≠ 𝑖 who choose content generating nonnegative utility for the user.) A simple calculation shows

that:

E𝑌

[
1

1 + 𝑌

]
=

1

𝑃

𝑃−1∑︁
𝑖=0

𝜈𝑖 = 𝜅,

where the last equality follows from the definition of 𝜂. This means that 𝐻 (𝑤) ≤ 0 for all𝑤 . For𝑤
costly

= 𝑤∗
costly

and𝑤
costly

= 0, it holds

that 𝐻 (𝑤) = 0. This means that𝑤 ∈ argmax𝑤′ 𝐻 (𝑤 ′) for any𝑤 ∈ supp(𝜇), as desired. □

E Proofs for Section 4.1

E.1 Proofs of Theorem 3 and Theorem 4
The main lemma is the following characterization of user consumption of utility as the maximum investment in quality across the content

landscape.

Lemma 13. Consider the setup of Theorem 3. For w ∈ supp(𝜇i (𝑃, 𝑐,𝑢, 𝑡))𝑃 , it holds that

UCQ(𝑀 I
;w) = max

𝑤∈w
𝑤costly

and for w ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 , it holds that
UCQ(𝑀E

;w) = max

𝑤∈w
𝑤costly .

We now prove Lemma 13.

Proof of Lemma 13. We observe that for 𝑤 ∈ supp(𝜇i (𝑃, 𝑐,𝑢, 𝑡)), it holds that if 1[𝑢 (𝑤, 𝑡)] < 0, then 𝑤 = [0, 0]. Thus, for w ∈
supp(𝜇i (𝑃, 𝑐,𝑢, 𝑡))𝑃 , it holds that:

UCQ(𝑀 I
;w) = E

[
𝑤
costly

𝑖∗ (𝑀 I
;w) · 1[𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡) ≥ 0]

]
= E

[
𝑤
costly

𝑖∗ (𝑀 I
;w)

]
.

Moreover, since𝑤
cheap

= 0 for all𝑤 ∈ supp(𝜇i (𝑃, 𝑐,𝑢, 𝑡)) and by the definition of𝑀 I
, we see that𝑤

costly

𝑖∗ (𝑀 I
;w) = max𝑤∈w𝑤

costly
. This means

that:

UCQ(𝑀 I
;w) = E

[
max

𝑤∈w
𝑤
costly

]
.

Similarly, we observe that for𝑤 ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡)), it holds that if 1[𝑢 (𝑤, 𝑡)] < 0, then𝑤 = [0, 0]. Thus, for w ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 ,
it holds that:

UCQ(𝑀E
;w) = E

[
𝑤
costly

𝑖∗ (𝑀 ;w) · 1[𝑢 (𝑤𝑖∗ (𝑀 ;w) , 𝑡)] ≥ 0

]
= E

[
𝑤
costly

𝑖∗ (𝑀 ;w)

]
.

Moreover, by the definition of supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡)) and by the definition of𝑀E
, we see that𝑤

costly

𝑖∗ (𝑀E
;w) = max𝑤∈w𝑤

costly
. This means that:

UCQ(𝑀E
;w) = E

[
max

𝑤∈w
𝑤
costly

]
.

□

Using Lemma 13, we prove Theorem 3 and Theorem 4.

Proof of Theorem 3 and Theorem 4. By Lemma 13, it suffices to analyze

Ew∼𝜇𝑃
[
max

𝑤∈w
𝑤
costly

]
where 𝜇 ∈

{
𝜇e (𝑃, 𝑐,𝑢, 𝑡), 𝜇i (𝑃, 𝑐,𝑢, 𝑡)

}
.

To analyze these expressions, let 𝛽𝑡 = min

{
𝑤
costly

| 𝑢 ( [𝑤
costly

, 0]) ≥ 0

}
. If (𝑊

costly
,𝑊

cheap
) ∼ 𝜇e (𝑃, 𝑐,𝑢, 𝑡), then:

P[𝑊
costly

≤ 𝑤
costly

] =

(min(1, 𝑐 ( [𝛽𝑡 , 0])))1/(𝑃−1) if 0 ≤ 𝑤

costly
≤ 𝛽𝑡(

min(1, 𝑐 ( [𝑤
costly

, 𝑓 −1𝑡 (𝑤
costly

)]))
)
1/(𝑃−1)

if𝑤
costly

≥ 𝛽𝑡 .

If (𝑊
costly

,𝑊
cheap

) ∼ 𝜇i (𝑃, 𝑐,𝑢, 𝑡), then:

P[𝑊
costly

≤ 𝑤
costly

] =

(min(1, 𝑐 ( [𝛽𝑡 , 0])))1/(𝑃−1) if 0 ≤ 𝑤

costly
≤ 𝛽𝑡(

min(1, 𝑐 ( [𝑤
costly

, 0]))
)
1/(𝑃−1)

if𝑤
costly

≥ 𝛽𝑡 .
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Using the specification in Example 1, where 𝑐 ( [𝑤
costly

, 0]) = 𝑤
costly

and 𝑢 (𝑤, 𝑡) = 𝑤
costly

− (𝑤
cheap

/𝑡) + 𝛼 , we can simplify these

expressions. In particular, we see that 𝛽𝑡 = max(0,−𝛼) ≤ 1 (since 𝛼 > −1 by assumption). This means that if (𝑊
costly

,𝑊
cheap

) ∼ 𝜇e (𝑃, 𝑐,𝑢, 𝑡),
then:

P(𝑊costly,𝑊cheap )∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) ) [𝑊costly
≤ 𝑤

costly
] =


(−𝛼)1/(𝑃−1) if 0 ≤ 𝑤

costly
≤ −𝛼(

min(1,𝑤
costly

+ 𝛾 · 𝑓 −1𝑡 (𝑤
costly

)])
)
1/(𝑃−1)

if𝑤
costly

≥ max(0,−𝛼) .

Moreover, if (𝑊
costly

,𝑊
cheap

) ∼ 𝜇i (𝑃, 𝑐,𝑢, 𝑡), then:

P(𝑊costly,𝑊cheap )∼(𝜇i (𝑃,𝑐,𝑢,𝑡 ) ) [𝑊costly
≤ 𝑤

costly
] =


(−𝛼)1/(𝑃−1) if 0 ≤ 𝑤

costly
≤ −𝛼(

min(1,𝑤
costly

)
)
1/(𝑃−1)

if𝑤
costly

≥ max(0,−𝛼) .

Proof of Theorem 3. The marginal distribution of 𝑊
costly

for 𝜇e (𝑃, 𝑐,𝑢, 𝑡) implies for engagement-based optimization, the distribu-

tion of𝑊
costly

for higher values of 𝛾 is stochastically dominated by the distribution of𝑊
costly

for lower values of 𝛾 . This implies that

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃
[
max𝑤∈w𝑤

costly

]
is strictly increasing in 𝛾 , which implies that Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃

[
UCQ(𝑀E

;w)
]
is strictly increasing in 𝛾 .

Proof of Theorem 4. Observe that the marginal distribution of𝑊
costly

for 𝜇i (𝑃, 𝑐,𝑢, 𝑡) stochastically dominates the distribution of𝑊
costly

for 𝜇e (𝑃, 𝑐,𝑢, 𝑡), with strict stochastic dominance. This implies that if 𝛾 > 0:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃
[
max

𝑤∈w
𝑤
costly

]
< Ew∼(𝜇i

𝑃,𝛼,𝑡
)𝑃

[
max

𝑤∈w
𝑤
costly

]
,

which implies that

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃
[
UCQ(𝑀E

;w)
]
< Ew∼(𝜇i

𝑃,𝛼,𝑡
)𝑃

[
UCQ(𝑀 I

;w)
]
.

Moreover, if 𝛾 = 0, the two distributions are equal, which implies that

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃
[
max

𝑤∈w
𝑤
costly

]
= Ew∼(𝜇i

𝑃,𝛼,𝑡
)𝑃

[
max

𝑤∈w
𝑤
costly

]
,

which implies that

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃
[
UCQ(𝑀E

;w)
]
= Ew∼(𝜇i

𝑃,𝛼,𝑡
)𝑃

[
UCQ(𝑀 I

;w)
]
.

□

F Proofs for Section 4.2
The proof of Theorem 5 follows from the following characterizations of the realized user utility for engagement-based optimization (Lemma

15) and random recommendations (Lemma 14) , stated and proved below.

Lemma 14. Consider the setup of Theorem 5. Then it holds that:

Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R
;w)] =

{
𝛼 if 𝛼 > 0

0 if 𝛼 ≤ 0.

Proof. If 𝛼 > 0, then we see that𝑈 𝐼
𝑏
(0, 𝑡) = 𝛼 . This means that:

min

𝑤costly

{
𝐶𝐼
𝑏
(𝑤

costly
) | 𝑈 𝐼

𝑏
(𝑤

costly
, 𝑡) ≥ 0

}
= 0

and moreover the min is achieved at𝑤 = [0, 0]. This means that 𝜈 = 0 and 𝜇r (𝑃, 𝑐,𝑢, 𝑡) is a point mass at [0, 0]. This means that:

Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R
;w)] = 𝑈 𝐼

𝑏
(0, 𝑡) = 𝛼.

If 𝛼 ≤ 0, then

𝑤∗
costly

:= argmin

𝑤′
costly

{
𝐶𝐼
𝑏
(𝑤 ′

costly
) | 𝑈 𝐼

𝑏
(𝑤 ′

costly
, 𝑡) ≥ 0

}
satisfies𝑈 𝐼

𝑏
(𝑤∗

costly
, 𝑡) = 0. This means that if (𝑊

costly
,𝑊

cheap
) ∼ 𝜇r (𝑃, 𝑐,𝑢, 𝑡), it holds that supp(𝑊

costly
) ⊆

{
𝑤∗
costly

, 0

}
. Moreover, for any

content landscape w ∈ supp(𝜇r (𝑃, 𝑐,𝑢, 𝑡))𝑃 , we see that:

UW(𝑀R
;w) := E[𝑢 (𝑤𝑖∗ (𝑀R

;w) , 𝑡) · 1[𝑢 (𝑤𝑖∗ (𝑀R
;w) , 𝑡) ≥ 0]] = 0.

This means that:

Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R
;w)] = 𝑈 𝐼

𝑏
(𝑤∗

costly
) = 0.

□
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Lemma 15. Consider the setup of Theorem 5. If 𝛼 > 0, then it holds that:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E
;w)] < 𝛼.

If 𝛼 ≤ 0, then it holds that:
Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E

;w)] = 0.

Proof. First, suppose that 𝛼 ≤ 0. In this case, we see that 𝑢 (𝑤, 𝑡) ≤ 0 for all𝑤 ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 ). This implies that for any content

landscape w ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 , we see that:
UW(𝑀E

;w) := E[𝑢 (𝑤𝑖∗ (𝑀E
;w) , 𝑡) · 1[𝑢 (𝑤𝑖∗ (𝑀E

;w) , 𝑡) ≥ 0]] = 0.

This means that:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E
;w)] = 0.

For 𝛼 > 0, we see that 𝑤 = [0, 0] is the unique value such that 𝑤 ∈ Caug

𝑡 and 𝑢 (𝑤, 𝑡) ≥ 𝛼 . Moreover, by Lemma 8, we know that{
[𝑓𝑡 (𝑤cheap

),𝑤
cheap

] | 𝑤
cheap

≥ 0

}
= Caug

𝑡 . We observe that supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 is contained in

{
[𝑓𝑡 (𝑤cheap

),𝑤
cheap

] | 𝑤
cheap

≥ 0

}
= Caug

𝑡 .

This means that 𝑢 (𝑤, 𝑡) < 𝛼 for all 𝑤 ∈ supp(𝜇e (𝑃, 𝑐,𝑢, 𝑡))𝑃 such that 𝑤 ≠ [0, 0]. Since there is no point mass at 0, this means that the

probability [0, 0] shows up in the content landscape is 0, so

P[UW(𝑀E
;w) < 𝛼] = P

[
E[𝑢 (𝑤𝑖∗ (𝑀E

;w) , 𝑡) · 1[𝑢 (𝑤𝑖∗ (𝑀E
;w) , 𝑡) ≥ 0]] < 𝛼

]
= 1.

This means that:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀E
;w)] < 𝛼.

□

Using Lemma 15 and Lemma 14, we prove Theorem 5.

Proof of Theorem 5. We apply Lemma 15 and Lemma 14. When 𝛼 > 0, we see that:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝜇e;w)] < 𝛼 = Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R
;w)] .

When 𝛼 ≤ 0, we see that:

Ew∼(𝜇e (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝜇e;w)] = 0 = Ew∼(𝜇r (𝑃,𝑐,𝑢,𝑡 ) )𝑃 [UW(𝑀R
;w)]

□
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