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Abstract

Shapley values have several desirable, theoret-
ically well-supported, properties for explaining
black-box model predictions. Traditionally, Shap-
ley values are computed post-hoc, leading to ad-
ditional computational cost at inference time. To
overcome this, a novel method, called ViaSHAP,
is proposed, that learns a function to compute
Shapley values, from which the predictions can be
derived directly by summation. Two approaches
to implement the proposed method are explored;
one based on the universal approximation theorem
and the other on the Kolmogorov-Arnold repre-
sentation theorem. Results from a large-scale em-
pirical investigation are presented, showing that
ViaSHAP using Kolmogorov-Arnold Networks
performs on par with state-of-the-art algorithms
for tabular data. It is also shown that the explana-
tions of ViaSHAP are significantly more accurate
than the popular approximator FastSHAP on both
tabular data and images.

1. Introduction
The application of machine learning algorithms in some
domains requires communicating the reasons behind predic-
tions with the aim of building trust in the predictive models
and, more importantly, addressing legal and ethical con-
siderations (Lakkaraju et al., 2017; Goodman & Flaxman,
2017). Nevertheless, many state-of-the-art machine learn-
ing algorithms result in black-box models, precluding the
user’s ability to follow the reasoning behind the predictions.
Consequently, explainable machine learning methods have
gained notable attention as a means to acquire needed ex-
plainability without sacrificing performance.
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Machine learning explanation methods employ a variety of
strategies to produce explanations, e.g., the use of local inter-
pretable surrogate models (Ribeiro et al., 2016), generation
of counterfactual examples (Karimi et al., 2020; Dandl et al.,
2020; Mothilal et al., 2020; Van Looveren & Klaise, 2021;
Guo et al., 2021; Guyomard et al., 2022), selection of impor-
tant features (Chen et al., 2018; Yoon et al., 2019; Jethani
et al., 2021), and approximation of Shapley values (Lund-
berg & Lee, 2017; Lundberg et al., 2020; Frye et al., 2021;
Covert & Lee, 2021; Jethani et al., 2022). Methods that gen-
erate explanations based on Shapley values are prominent
since they offer a unique solution that meets a set of theoret-
ically established, desirable properties. The computation of
Shapley values can, however, be computationally expensive.
Recent work has therefore focused on reducing the running
time (Lundberg & Lee, 2017; Lundberg et al., 2020; Jethani
et al., 2022) and enhancing the accuracy of approximations
(Frye et al., 2021; Aas et al., 2021; Covert & Lee, 2021;
Mitchell et al., 2022; Kolpaczki et al., 2024). However, the
Shapley values are computed post-hoc, and hence entail a
computational overhead, even when approximated, e.g., as
in the case of FastSHAP (Jethani et al., 2022). Generat-
ing instance-based explanations or learning a pre-trained
explainer always demands further data, time, and resources.
Nevertheless, to the best of our knowledge, computing Shap-
ley values as a means to form predictions has not yet been
considered.

The main contributions of this study are:

• a novel machine learning method, ViaSHAP, that trains
a model to simultaneously provide accurate predictions
and Shapley values

• multiple implementations of the proposed method are
explored, using both the universal approximation theo-
rem and the Kolmogorov-Arnold representation theo-
rem, which are evaluated through a large-scale empiri-
cal investigation

In the following section, we cover fundamental concepts
about the Shapley value and, along the way, introduce our
notation. Section 3 describes the proposed method. In
Section 4, results from a large-scale empirical investigation
are presented and discussed. Section 5 provides a brief
overview of the related work. Finally, in the concluding
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remarks, we summarize the main conclusions and outline
directions for future work.

2. Preliminaries
2.1. The Shapley Value

In game theory, a game in coalitional form is a formal model
for a scenario in which players form coalitions, and the
game’s payoff is shared between the coalition members. A
coalitional game focuses on the behavior of the players and
typically involves a finite set of players N = {1, 2, . . . , n}
(Manea, 2016). A coalitional game also involves a charac-
teristic set function v : 2N → R that assigns a payoff, a real
number, to a coalition S ⊆ N such that: v(∅) = 0 (Owen,
1995.). Different concepts can be employed to distribute the
payoff among the players of a coalitional game to achieve
a fair and stable allocation. Such solution concepts include
the Core, the Nucleolus, and the Shapley Value (Manea,
2016; Ferguson, 2018).

The Shapley Value is a solution concept that allocates pay-
offs to the players according to their marginal contribu-
tions across possible coalitions. The Shapley value ϕi(v) of
player i in game v is given by (Shapley, 1953):

ϕi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).

The term
(

|S|!(n−|S|−1)!
n!

)
is a combinatorial weighting fac-

tor for the different coalitions that can be formed for game
v. The difference term (v(S ∪ {i})− v(S)) represents the
additional value that player i contributes to the coalition S,
i.e., the marginal contribution of player i.

Given a game v, an additive explanation model µ is an
interpretable approximation of v which can be written as
(Lundberg & Lee, 2017; Covert & Lee, 2021):

µ(S) = δ0(v) +
∑
i∈S

δi(v),

with δ0(v) a constant and δi(v) the payoff of player i.

µ is a linear model whose weights are the payoffs of each
player. Using the Shapley values as the payoffs is the only
solution in the class of additive feature attribution methods
that satisfies the following properties (Young, 1985):
Property 1. (Local Accuracy): the solution matches the
prediction of the underlying model:

µ(N) =
∑
i∈N

ϕi(v) = v(N)

Property 2. (Missingness): Players without impact on the
prediction attributed a value of zero. Let i ∈ N :

∀S ⊆ N \ {i}, v(S) = v(S ∪ {i})⇒ ϕi(v) = 0

Property 3. (Consistency): The Shapley value grows or
remains the same if a player’s contribution grows or stays
the same. Let v and v′ two games over N , let i ∈ N :

∀S ⊆ N \ {i}, v(S ∪ {i})− v(S)
≥ v′(S ∪ {i})− v′(S)
⇒ ϕi(v) ≥ ϕi(v′)

2.2. SHAP

In the context of explainable machine learning, the Shap-
ley value is commonly computed post-hoc to explain the
predictions of trained machine learning models. Let f be a
trained model whose inputs are defined on n features and
whose output y ∈ Y ⊆ R. We also define a baseline or
neutral instance, noted 0 ∈ X . For a given instance x, the
Shapley value is computed over each feature to explain the
difference in output x ∈ X and the baseline. The baseline
may be determined depending on the context, but common
examples include the average of all examples in the training
set, or one that is commonly used as a threshold (Izzo et al.,
2021).

In this context, a coalitional game for S can be derived
from the model, where the players are the features, and
the value function v represents how the prediction changes
as different coalitions of features are masked out. In this
game, a player i getting picked for coalition S means that
its corresponding feature’s value is xi, otherwise it remains
at its baseline value 0i.

The Shapley values for this game can then be obtained as
the solution of an optimization problem. The objective
is to determine a set of values that accurately represent
the marginal contributions of each feature while verifying
properties 1 through 3. In the literature, they were obtained
by minimizing the following weighted least squares loss
function (Marichal & Mathonet, 2011; Lundberg & Lee,
2017; Patel et al., 2021):

L(vx, µx) =
∑
S⊆N

ω(S)
(
vx(S)− µx(S)

)2

, (1)

where ω is a weighting kernel, the choice of the kernel can
result in a solution equivalent to the Shapley value (Covert
& Lee, 2021; Covert et al., 2021). Therefore, (Lundberg &
Lee, 2017) proposed the Shapley kernel:

ωShap(S) =
(n− 1)(

n
|S|

)
· |S| · (n− |S|)

. (2)
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Note that, for a d-dimensional output with d > 1, each
output is considered as a different unidimensional model.
That is, each of the d dimensions will define a different
game, and thus a different set of n Shapley values. The
explanation of the output is thus an n× d matrix of Shapley
values, providing the contribution of each input feature to
each output game. This can trivially be obtained through
the same optimization process by stacking d loss functions
such as in (1). Thus, we will consider in the following that
y be unidimensional unless otherwise specified.

2.3. KernelSHAP

Computing the exact Shapley values is a demanding process
as it requires evaluating all possible coalitions of feature val-
ues. There are 2n− 1 possible coalitions for a model with n
features, each of which has to be evaluated to determine the
features’ marginal contributions, which renders the exact
computation of Shapley values infeasible for models with a
relatively large number of features. Consequently, (Lund-
berg & Lee, 2017) proposed KernelSHAP as a more feasible
method to approximate the Shapley values. KernelSHAP
samples a subset of coalitions instead of evaluating all possi-
ble coalitions. The explanation model is learned by solving
the following optimization problem (Covert & Lee, 2021;
Jethani et al., 2022):

ϕ(vx) = argmin
ϕx∈Rn

E
p(S)

[(
vx(S)− vx(0)− 1⊤S ϕx

)2]
(3)

s.t. 1⊤ϕx = vx(S)− vx(0) (4)

where 1S is the mask corresponding to S, i.e., which takes
value 1 for features in S and 0 otherwise, and the distribution
p(S) is proportional to the Shapley kernel (2) (Covert & Lee,
2021; Jethani et al., 2022). Equation (4) is referred to as the
efficiency constraint. Different value functions (v) can be
applied to marginalize features out, such as:

1. Baseline Removal (Sundararajan & Najmi, 2020):
vx(S) = f

(
xS ,E

[
XN\S] ; θ)

2. Interventional/Marginal Expectations (Chen et al.,
2020): vx(S) = E

xS

[
f
(
xS , XN\S ; θ

)]
3. Observational/Conditional Expectations:

vx(S) = E
xS

[
f
(
XS ; θ

)
|XS = xS

]
2.4. FastSHAP

Although KernelSHAP provides a practical solution for the
Shapley value estimation, the optimization problem 3 must

be solved separately for every prediction. Additionally, Ker-
nelSHAP requires many samples to converge to accurate
estimations for the Shapley values, and this problem is ex-
acerbated with high dimensional data (Covert & Lee, 2021).
Consequently, FastSHAP (Jethani et al., 2022) has been pro-
posed to efficiently learn a parametric Shapley value func-
tion and eliminate the need to solve a separate optimization
problem for each prediction. The model ϕfast : X → Rn,
parameterized by θ is then trained to produce the Shapley
value for an input by minimizing the following loss function:

L(θ) = E
q(x)

E
p(S)

[(
vx(S)− vx(0)− 1⊤

S ϕfast(x; θ)
)2]

(5)

where q(x) is the distribution of the input data, and p(S) is
proportional to the Shapley kernel defined in (2). In the case
of a multidimensional output, a uniform sampling is done
over the possible output dimensions.

The accuracy of ϕfast in approximating the Shapley value
depends on the expressiveness of the model class employed
as well as the data available for learning ϕfast as a post-hoc
function.

3. ViaSHAP
We introduce ViaSHAP, a method that formulates predic-
tions via Shapley values regression. In contrast to the pre-
vious approaches, the Shapley values are not computed in
a post-hoc setup. Instead, the learning of Shapley values
is integrated into the training of the predictive model and
exploits every data example in the training data. Moreover,
unlike (Chen et al., 2023b), ViaSHAP does not impose a
specific neural network design or constrain the explanation
to a subset of input features, as is in (Wang et al., 2021).
At inference time, the Shapley values are used directly to
generate the prediction. The following subsections outline
how ViaSHAP is trained to simultaneously produce accurate
predictions and their corresponding Shapley values.

3.1. Predicting Shapley Values

Let X ⊆ Rn and Y ⊆ Rd, respectively, the input and
output spaces, and M = {1, · · · , d} the set of output di-
mensions. We define a model ViaSHAP : X → Y which, for
a given instance x, computes both the Shapley values and
the predicted output in a single process.

First, ϕVia : X → Rn×d computes a matrix of values
ϕVia(x; θ). Then, ViaSHAP predicts the output vector as
ViaSHAP(x) = 1⊤ϕVia(x; θ) i.e., summing column-wise.
A link function σ can be applied to accommodate a valid
range of outputs

(
y = σ(1⊤ϕVia(x; θ)

)
, e.g., the sigmoid

function for binary classification or softmax for multi-class
classification.
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Figure 1. ViaSHAP generates predictions by first estimating the
Shapley values, whose summation produces the final outcome.

ViaSHAP computes the Shapley values prior to each predic-
tion formulation, as illustrated in Figure 1. Similar to Ker-
nelSHAP and FastSHAP (in equation (3) and equation (5)),
ϕVia is trained by minimizing the weighted least squares
loss of the predicted Shapley values, as shown in equation
(6). However, no pre-defined black-box model is available
beforehand to train the ϕVia explainer. Instead, the ViaSHAP

predictor is provided as a black box at each training step.

Lϕ(θ) =
∑
x∈X

∑
j∈M

E
p(S)

[(
ViaSHAP

j (xS)− ViaSHAP
j (0)

− 1⊤S ϕ
Via
j (x; θ)

)2]
.

(6)

Given that the ground truth Shapley values are inaccessible
during training, the learning process relies solely on sam-
pling input features, based on the principle that unselected
features should be assigned a Shapley value of zero, while
the prediction formulated using the selected features should
be equal to the sum of their corresponding Shapley values.
Since ϕVia and ViaSHAP are essentially the same model,
coalition sampling for both functions is performed within
the same model but at different locations. For ViaSHAP(xS),
the sampling occurs on the input features before feeding
them to the model. While 1⊤

S ϕ
Via sampling is applied to the

predicted Shapley values, given the original set of features
as input to the model, as illustrated in Figure 2. In the follow-
ing, we show that the solution computed by the optimized
ϕVia(x; θ∗) function maintains the desirable properties of
Shapley values for each output dimension. For ease of nota-
tion, we drop the subscript j below and consider one output
at a time. All proofs, unless otherwise specified, can be
found in the Appendix.

Lemma 3.1. ϕVia(x; θ) satisfies the property of local accu-
racy wrt ViaSHAP.

Lemma 3.2. The global minimizer model, ϕVia(x; θ∗), of
the loss function (6), assigns value zero to features that have
no influence on the outcome predicted by ViaSHAP(x) in the
distribution p(S).

Lemma 3.3. Let two ViaSHAP models V and V ′ whose
respective ϕVia are parameterized by θ∗ and θ∗

′
, which

globally optimize loss function (6) over two possibly differ-

ent targets y and y′. Then, given a feature i ∈ N :

∀S ⊆ N \{i},V(xS∪{i})−V(xS) ≥ V ′(xS∪{i})−V ′(xS)

⇒ ϕVia
i (x; θ∗) ≥ ϕVia

i (x; θ∗
′
)

Theorem 3.4. The global optimizer function ϕVia(x; θ∗)
computes the exact Shapley values of the predictions of
ViaSHAP(x).

Theorem 3.4 directly follows from Lemma 3.1, Lemma
3.2, and Lemma 3.3, which demonstrate that ϕVia(x; θ∗)
adheres to properties 1 through 3, as well as the fact that
Shapley values provide the sole solution for assigning credit
to players while satisfying the properties from 1 to 3 (Young,
1985; Lundberg & Lee, 2017).

3.2. Predictor Optimization

The parameters of ViaSHAP are optimized with the follow-
ing dual objective: to learn an optimal function for produc-
ing the Shapley values of the predictions and to minimize
the prediction loss with respect to the true target. Therefore,
the prediction loss is minimized using a function suitable
for the specific prediction task, e.g., binary cross-entropy
for binary classification or mean squared error for regres-
sion tasks. The following presents the loss function for
multinomial classification:

L(θ) =
∑
x∈X

∑
j∈M

(
β · E

p(S)

[(
ViaSHAP

j (xS)− ViaSHAP
j (0)

−1⊤S ϕ
Via
j (x; θ)

)2]
− yj log(ŷj)

)
.

(7)

where β is a predefined scaling hyperparameter and ŷj is
the predicted probability of class yj ∈ Y by ViaSHAP.
The optimization of ViaSHAP is illustrated in Figure 2 and
summarized in Algorithm 1.

The global optimizer of loss function 7 is restricted to pre-
dict 0 if all features are marginalized out. However, this
approach may not be suitable for all prediction tasks, e.g.,
regression problems. Therefore, we also propose a relaxed
variant of the optimization problem 7, where a ViaSHAP
model predicts y = 1⊤ϕVia(x; θ) + δ (further details on
this approach are provided in Appendix G).

3.3. ViaSHAP Approximator

According to the universal approximation theorem, a feed-
forward network with at least one hidden layer and sufficient
units in the hidden layer can approximate any continuous
function over a compact input set to an arbitrary degree of
accuracy, given a suitable activation function (Hornik et al.,
1989; Cybenko, 1989; Hornik, 1991). Consequently, neural
networks and multi-layer perceptrons (MLP) can be em-
ployed to learn ViaSHAP for prediction tasks where there is
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+

Apply the same
set of samples

Figure 2. The optimization of ViaSHAP is conducted using a dual-objective loss function that aims to learn an optimal function for
generating the Shapley values while minimizing the prediction loss.

a continuous mapping function from the input dataset to the
true targets, which also applies to the true Shapley values as
a continuous function.

(Liu et al., 2024) recently proposed Kolmogorov–Arnold
Networks (KAN), as an alternative approach to MLPs in-
spired by the Kolmogorov-Arnold representation theorem.
According to the Kolmogorov-Arnold representation theo-
rem, a multivariate continuous function on a bounded do-
main can be represented by a finite sum of compositions of
continuous univariate functions (Kolmogorov, 1956; 1957;
Liu et al., 2024), as follows:

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Ψq

( n∑
p=1

ψq,p(xp)
)
,

where ψq,p : [0, 1] → R is a univariate function and
Ψq : R → R is a univariate continuous function. (Liu
et al., 2024) defined a KAN layer as a matrix of one-
dimensional functions: Ψ = {ψq,p}, with p = 1, 2, . . . , nin
and q = 1, 2, . . . , nout. Where nin and nout represent the
dimensions of the layer’s input and output, respectively, and
ψq,p are learnable functions parameterized as splines. A
KAN network is a composition of L layers stacked together;
subsequently, the output of KAN on instance x is given by:

y = KAN(x) = ΨL−1 ◦ΨL−2 ◦ · · · ◦Ψ1 ◦Ψ0(x).

The degree of each spline and the number of splines for each
function are both hyperparameters.

4. Empirical Investigation
We evaluate both the predictive performance of ViaSHAP
and the feature importance attribution with respect to the

true Shapley values. This section begins with outlining the
experimental setup. Then, the predictive performance of
ViaSHAP is evaluated. Afterwards, we benchmark the simi-
larity between the feature importance obtained by ViaSHAP
and the ground truth Shapley values. We also evaluate the
predictive performance and the accuracy of Shapley values
on image data. Finally, we summarize the findings of the
ablation study.

Algorithm 1 VIASHAP
Data: training data X , labels Y , scalar β
Result: model parameters θ
Initialize V : ViaSHAP(ϕVia(x; θ))
while not converged do
L ← 0
for each x ∈ X and y ∈ Y do

sample S ∼ p(S)
ŷ ← V(x)
Lpred ← prediction loss(ŷ, y)

Lϕ ←
(
Vy(xS)− Vy(0)− 1⊤S ϕVia

y (x; θ)
)2

L +← Lpred + β · Lϕ

end
Compute gradients∇θL
Update θ ← θ −∇θL

end

4.1. Experimental Setup

We employ 25 publicly available datasets in the experiments,
each divided into training, validation, and test subsets 1. The
training set is used to train the model, the validation set is

1The details of the datasets are available in Table 19
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used to detect overfitting and determine early stopping, and
the test set is used to evaluate the model’s performance. All
the learning algorithms are trained using default settings
without hyperparameter tuning. The training and validation
sets are combined into a single training set for algorithms
that do not utilize a validation set for performance tracking.
During data preprocessing, categorical feature categories
are tokenized with numbers starting from one, reserving
zero for missing values. We use standard normalization so
the feature values are centered around 0. ViaSHAP can be
trained using the baseline removal approach or marginal
expectations as a value function. However, the baseline
removal approach is adopted as the default value function2.
We experimented with four different implementations of
ViaSHAP, using Kolmogorov–Arnold Networks (KANs)
and feedforward neural networks3:

1- KANVia: Based on the method proposed by Liu et al.
(2024) using a computationally efficient implementation4.
Uses spline basis functions and consists of an input layer,
two hidden layers, and an output layer. Layer dimensions:
Input layer maps n features to 64 dimensions, the first hid-
den layer to 128 dimensions, the second hidden layer to 64
dimensions, and the output layer to n× (number of classes).

2- KANVia
ϱ : Replaces the spline basis in the original KANs

with Radial Basis Functions (RBFs)5. The architecture
matches that of KANVia.

3- MLPVia: A multi-layer perceptron (MLP) with identical
input and output dimensions per layer as the KAN-based
implementations. Incorporates batch normalization after
each layer and uses ReLU activation functions.

4- MLPVia
θ : Similar to MLPVia, but the number of units in

the hidden layers is raised to match the total number of pa-
rameters in the KANVia models, as KANVia always results
in models with a greater number of parameters compared to
the remaining implementations.

The four implementations were trained with the β of (7)
set to 10 and used 32 sampled coalitions per instance. The
above hyperparameters were determined in a quasi-random
manner.

For the evaluation of the predictive performance, the four
ViaSHAP approximators (KANVia, KANVia

ϱ , MLPVia, and
MLPVia

θ ) are compared against XGBoost, Random Forests,
and TabNet (Arik & Pfister, 2021). All the compared al-
gorithms are trained using the default hyperparameters set-

2Further details regarding the marginal expectations approach
are provided in Appendix H.

3The source code is available here: https://github.
com/amrmalkhatib/ViaSHAP

4https://github.com/Blealtan/
efficient-kan

5https://github.com/ZiyaoLi/fast-kan

tings without tuning, as it has been shown by (Shwartz-Ziv
& Armon, 2022) that deep models typically require more
extensive tuning on each tabular dataset to match the per-
formance of tree ensemble models, e.g., XGBoost. If the
model’s performance varies with different random seeds, it
will be trained using five different seeds, and the average
result will be reported alongside the standard deviation. In
binary classification tasks with imbalanced training data,
the minority class in the training subset is randomly over-
sampled to match the size of the majority class, a common
strategy to address highly imbalanced data (Koziarski et al.,
2017; Huang et al., 2022). On the other hand, no oversam-
pling is applied to multinomial classification datasets. The
area under the ROC curve (AUC) is used for measuring
predictive performance since it is invariant to classification
thresholds. For multinomial classification, we compute the
AUC for each class versus the rest and then weighting it by
the class support. If two algorithms achieve the same AUC
score, the model with a smaller standard deviation across
five repetitions with different random seeds is considered
better. For the explainability evaluation, we generate ground
truth Shapley values by running the unbiased KernelSHAP
(Covert & Lee, 2021) until convergence. It has been demon-
strated that the unbiased KernelSHAP will converge to the
true Shapley values when given a sufficiently large number
of data samples (Covert & Lee, 2021; Jethani et al., 2022).6

We measure the similarity of the approximated Shapley
values by ViaSHAP to the ground truth using cosine simi-
larity, Spearman rank correlation (Spearman, 1904), and the
coefficient of determination (R2), where cosine similarity
measures the alignment between two explanation vectors,
while Spearman rank correlation measures the consistency
in feature rankings. The results are presented as mean val-
ues with standard deviations across all data instances in the
test set.

For image experiments, we use the CIFAR-10 dataset
(Krizhevsky et al., 2014). We provide three ViaSHAP
implementations for image classification: ResNet50Via,
ResNet18Via, and U-NetVia based on ResNet50, ResNet18
(He et al., 2016), and U-Net (Ronneberger et al., 2015), re-
spectively. The accuracy of the Shapley values is estimated
by measuring the effect of excluding and including the top
important features on the prediction, similar to the approach
followed by (Jethani et al., 2022).

4.2. Predictive Performance Evaluation

We evaluated the performance of the seven algorithms
(KANVia, KANVia

ϱ , MLPVia, MLPVia
θ , TabNet, Random

Forests, and XGBoost) across the 25 datasets, with de-
tailed results presented in Table 1. The results show that

6https://github.com/iancovert/
shapley-regression

6
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KANVia obtains the highest average rank with respect to
AUC. KANVia

ϱ came in second place, closely followed by
XGBoost, with only a slight difference between them. We
employed the Friedman test (Friedman, 1939) to determine
whether the observed performance differences are statisti-
cally significant. We tested the null hypothesis that there
is no difference in predictive performance. The Friedman
test allowed the rejection of the null hypothesis, indicating
that there is indeed a difference in predictive performance,
as measured by AUC, at the 0.05 significance level. Subse-
quently, the post-hoc Nemenyi (Nemenyi, 1963) test was
applied to identify which pairwise differences are signif-
icant, again at the 0.05 significance level. The results of
the post-hoc test, summarized in Figure 3, indicate that the
differences between ViaSHAP using KAN implementations
and the tree ensemble models, i.e., XGBoost and Random
Forests, are statistically insignificant, given the sample size
of 25 datasets. However, the differences in predictive per-
formance between KANVia and MLP variants (MLPVia and
MLPVia

θ ) are statistically significant. It is also noticeable
that the MLP variants of ViaSHAP underperform compared
to all other competitors, even when the MLP models have an
equivalent number of parameters to KANVia. We also evalu-
ated the impact of incorporating Shapley loss on the predic-
tive performance of a KAN model by comparing KANVia

to an identical KAN classifier trained without the Shapley
loss. The results show that KANVia significantly outper-
forms identical KAN architecture that is not optimized to
compute Shapley values. The detailed results are available
in Appendix I.

Figure 3. The average rank of the 7 predictors on the 25 datasets
with respect to the AUC (the lower rank is better). The critical
difference (CD) is the largest statistically insignificant difference.

4.3. Explainability Evaluation

The explainability of the various ViaSHAP implementations
is evaluated by measuring the similarity of ViaSHAP’s Shap-
ley values (ϕVia(x; θ) to the ground truth Shapley values
(ϕ), computed by the unbiased KernelSHAP, as discussed
in Subsection 4.1, taking ViaSHAP as the black-box model.
We present results for models trained with the default values
for the hyperparameters. The effect of these settings are
further investigated in the ablation study.

The evaluation of the alignment between ϕVia(x; θ) and ϕ
using cosine similarity generally shows a high degree of sim-

Figure 4. The similarity between KANVia and KernelSHAP’s
approximations. KernelSHAP initially provides approximations
that differ remarkably from the values of ViaSHAP. However, as
KernelSHAP refines its approximations with more samples, the
similarity to ViaSHAP’s values grows.

ilarity between the generated Shapley values and the ground
truth as illustrated in Figure 4. The ranking of the com-
pared implementations of ViaSHAP with respect to their
cosine similarity to the ground truth Shapley values shows
that MLPVia

θ is ranked first, followed by KANVia, KANVia
ϱ ,

and MLPVia, respectively. However, the Friedman test does
not indicate any significant difference between the different
implementations of ViaSHAP. At the same time, the results
of ranking the four implementations of ViaSHAP based
on their Spearman rank correlation with the ground truth
Shapley values reveal that KANVia ranks first, followed by
a tie for second place between KANVia

ϱ and MLPVia
θ , and

MLPVia placing last. In order to find out whether the differ-
ences are significant, the Friedman test is applied once again,
which allows for the rejection of the null hypothesis, indicat-
ing that there is indeed a difference between the compared
models in their ϕVia(x; θ) correlations to the ground truth
ϕ, at 0.05 significance level. The post-hoc Nemenyi test,
at 0.05 level, indicates that differences between MLPVia

and the remaining models are significant, as summarized in
Figure 6. Overall, KANVia is found to be a relatively stable
approximator across the 25 datasets when both similarity
metrics (cosine similarity and Spearman rank correlation)
are considered. Detailed results can be found in Tables 2
and 3 in Appendix E. We also compare the accuracy of
the Shapley values generated by KANVia to those produced
by FastSHAP, with KANVia utilized as black-box within
FastSHAP. The results in Appendix K show that KANVia

significantly outperforms FastSHAP in terms of similarity
to the ground truth.

4.4. Image Experiments

We evaluated the predictive performance of ResNet50Via,
ResNet18Via, and U-NetVia on the CIFAR-10 dataset. All
models were trained from scratch (without transfer learn-
ing). The results, summarized in Table 4, demonstrate that
ViaSHAP can perform accurately in image classification
tasks. We also compared the accuracy of the explanations

7
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obtained by ViaSHAP implementations with those obtained
by FastSHAP (where ViaSHAP models were treated as
black boxes). The results in Table 5 and Figure 8 show that
ViaSHAP models consistently provides more accurate Shap-
ley value approximations than the explanations obtained
using FastSHAP. Figure 5 provides two examples showing
the explanations produced by ResNet18Via and FastSHAP.
The experiment details can be found in Appendix F.

ResNet18Via FastSHAP( ResNet18Via )

Figure 5. The explanations for the predicted class generated by
ViaSHAP and FastSHAP using two randomly selected images
from the CIFAR-10 dataset.

4.5. Ablation Study

The ablation study was conducted after the empirical evalua-
tion to ensure that no prior knowledge of the data or models
influenced the experimental setup. The detailed results of
the ablation study are provided in Appendex J. We began by
examining the effect of β on both predictive performance
and the accuracy of Shapley values. The results demonstrate
that the predictive performance remains robust to changes
in β, unless β is raised to an exceptionally large value, e.g.,
≥200-fold. A more remarkable observation is that the accu-
racy of the computed Shapley values improves as β grows
without sacrificing predictive performance. However, the
model fails to learn properly with substantially large β. Af-
terwards, we evaluated the effect of the number of sampled
coalitions. The results indicate that the number of samples
has little impact on predictive performance and the accuracy
of Shapley values, especially if compared to the impact of
β. We also study the effect of a link function on both pre-
dictive performance and the accuracy of Shapley values of
ViaSHAP. The results show that removing the link function
significantly improves the accuracy of the Shapley values
while maintaining the high predictive performance. Then,
we assessed the impact of the efficiency constraint. The re-
sults indicate that the efficiency constraint has no significant
impact on the predictive performance or the accuracy of the
explanations of ViaSHAP. Finally, we examined the impact
of β on the progression of training and validation loss during
training. The results indicate that ViaSHAP tends to require
a longer time to converge as β values increase.

5. Related Work
In addition to KernelSHAP and the real-time method Fast-
SHAP, alternative approaches have been proposed to reduce
the time required for Shapley value approximation. Meth-
ods that exploit specific properties of the explained model
can provide faster computations, e.g., TreeSHAP (Lundberg
et al., 2020) and DASP (Ancona et al., 2019), while others
limit the scope to specific problems, e.g., image classifica-
tions or text classification (Chen et al., 2019; Teneggi et al.,
2022). Additionally, directions to improve Shapley value
approximation by enhancing data sampling have also been
explored (Frye et al., 2021; Aas et al., 2021; Covert et al.,
2021; Mitchell et al., 2022; Chen et al., 2023a; Kolpaczki
et al., 2024). Nevertheless, traditional methods for comput-
ing Shapley values have typically been considered post-hoc
solutions for explaining predictions, requiring additional
time, data, and resources to generate explanations. In con-
trast, ViaSHAP computes Shapley values during inference,
eliminating the need for a separate post-hoc explainer.

Research on generating explanations using pre-trained mod-
els has explored several approaches. (Chen et al., 2018),
(Yoon et al., 2019), and (Jethani et al., 2021) trained models
for important features selection. (Schwab & Karlen, 2019)
trained a model to estimate the influence of different in-
puts on the predicted outcome. (Situ et al., 2021) proposed
to distill any explanation algorithm for text classification.
Pretrained explainers, similar to other post-hoc methods, re-
quire further resources for training, and the fidelity of their
explanations to the underlying black-box model can vary.

Many approaches for creating explainable neural networks
have been proposed. Such approaches not only generate
predictions but also include an integrated component that
provides explanations, which is trained alongside the predic-
tor (Lei et al., 2016; Alvarez Melis & Jaakkola, 2018; Guo
et al., 2021; Al-Shedivat et al., 2022; Sawada & Nakamura,
2022; Guyomard et al., 2022). Explainable graph neural net-
works (GNNs) have also been studied for graph-structured
data, which typically exploit the internal properties of their
models to generate explanations, e.g., the similarity between
nodes (Dai & Wang, 2021), finding patterns and common
graph structures(Feng et al., 2022; Zhang et al., 2022; Cui
et al., 2022), or analyzing the behavior of different compo-
nents of the GNN (Xuanyuan et al., 2023). GNNs have also
been employed to learn explainable models for data types
beyond graphs, e.g., tabular data (Alkhatib et al., 2024;
Alkhatib & Boström, 2025) and images (Chaidos et al.,
2025). However, explanations generated by explainable
neural networks do not always correspond to Shapley val-
ues, in contrast to ViaSHAP. Moreover, the explanations
lack fidelity guarantees and do not elaborate on how exactly
the predictions are computed, whereas ViaSHAP generates
predictions directly from their Shapley values.
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6. Concluding Remarks
We have proposed ViaSHAP, an algorithm that computes
Shapley values during inference. We evaluated the perfor-
mance of ViaSHAP using implementations based on the uni-
versal approximation theorem and the Kolmogorov-Arnold
representation theorem. We have presented results from a
large-scale empirical investigation, in which ViaSHAP was
evaluated with respect to predictive performance and the
accuracy of the computed Shapley values. ViaSHAP using
Kolmogorov-Arnold Networks showed superior predictive
performance compared to multi-layer perceptron variants
while competing favorably with state-of-the-art algorithms
for tabular data XGBoost and Random Forests. ViaSHAP
estimations showed a high similarity to the ground truth
Shapley values, which can be controlled through the hy-
perparameters. One natural direction for future research is
to implement ViaSHAP using state-of-the-art algorithms.
Another direction is to use ViaSHAP to study possible ad-
versarial attacks on a predictive model.
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A. Proof of Lemma 3.1
By definition of ViaSHAP:

ViaSHAP(x) = 1⊤ϕVia(x; θ) =
∑
i∈N

ϕVia
i (x; θ)

This is the definition of local accuracy for the game v : S 7→ ViaSHAP(xS).

B. Proof of Lemma 3.2
Assume that the global minimizer ϕVia(x; θ∗) of the loss function (6) does not satisfy the missingness property, i.e., there
exists a feature i that has no impact on the prediction:

ViaSHAP(xS∪{i}) = ViaSHAP(xS), ∀S ⊆ N \ {i} (8)

However, the Shapley value ϕi assigned by ϕVia(x; θ∗) is not zero (ϕi ̸= 0).

We recall the optimized loss function:

Lϕ(θ) =
∑
x∈X

E
p(S)

[(
ViaSHAP(xS)− ViaSHAP(0)− 1⊤

S ϕ
Via(x; θ)

)2]
,

This loss is non-negative, and is thus minimized for a value of 0, implying all terms in the expectancy are equal to 0. In
particular, for any set S ⊆ N \ {i}, we have:

0 =

{
ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤

S∪{i}ϕ
Via(x; θ)

ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕVia(x; θ)

⇒ ViaSHAP(xS∪{i})− 1⊤S∪{i}ϕ
Via(x; θ) = ViaSHAP(xS)− 1⊤

S ϕ
Via(x; θ)

⇒ ViaSHAP(xS)− 1⊤
S∪{i}ϕ

Via(x; θ) = ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

⇒
∑

j∈S∪{i}

ϕVia
j (x; θ∗) =

∑
j∈S

ϕVia
j (x; θ∗)

⇒ ϕVia
i (x; θ∗) = 0

In practice, it is unlikely for a loss to exactly reach its global optimum. Instead, it approximates it. We assume here that the
loss has reached a value ϵ2 for an ϵ ≥ 0. We propose an upper bound on ϕVia

i (x; θ) conditioned on ϵ.

Since the loss is composed only of non-negative terms, this means that:

∀S ⊆ N,
(
ViaSHAP(xS)− ViaSHAP(0)− 1⊤

S ϕ
Via(x; θ)

)2

≤ ϵ2

⇒
∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤S ϕ

Via(x; θ)
∣∣∣ ≤ ϵ
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ϵ ≥


∣∣∣ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤S∪{i}ϕ

Via(x; θ)
∣∣∣∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤

S ϕ
Via(x; θ)

∣∣∣
⇒

∣∣∣ViaSHAP(xS∪{i})− ViaSHAP(0)− 1⊤S∪{i}ϕ
Via(x; θ)− ViaSHAP(xS) + ViaSHAP(0) + 1⊤S ϕ

Via(x; θ)
∣∣∣ ≤ 2ϵ

⇒
∣∣∣ViaSHAP(xS)− 1⊤S∪{i}ϕ

Via(x; θ)− ViaSHAP(xS) + 1⊤
S ϕ

Via(x; θ)
∣∣∣ ≤ 2ϵ by (8)

⇒
∣∣∣ ∑
j∈S∪{i}

ϕVia
j (x; θ)−

∑
j∈S

ϕVia
j (x; θ)

∣∣∣ ≤ 2ϵ

⇒
∣∣∣ϕVia

i (x; θ)
∣∣∣ ≤ 2ϵ

⇒
∣∣∣ϕVia

i (x; θ)
∣∣∣ ≤ 2Lϕ(θ)

Thus, as the loss function converges to 0, so does the importance attributed to features with no influence on the outcome.

C. Proof of Lemma 3.3
Since both V and V ′ optimize their respective targets, they satisfy efficiency, i.e.:

∀S ⊆ N, V(xS) = 1⊤S ϕ
Via(x; θ∗); V ′(xS) = 1⊤S ϕ

′Via(x; θ∗
′
) (9)

Then:

∀S ⊆ N \ {i},
V(xS∪{i})− V(xS) ≥ V ′(xS∪{i})− V ′(xS)

⇒
∑

j∈S∪{i}

ϕVia
j (x; θ∗)−

∑
j∈S

ϕVia
j (x; θ∗) ≥

∑
j∈S∪{i}

ϕVia
j (x; θ∗

′
)−

∑
j∈S

ϕVia
j (x; θ∗

′
)

⇒ϕVia
i (x; θ∗) ≥ ϕVia

i (x; θ∗
′
)

In the same way as for the Lemma 2, the proof assumes perfect minimization of the loss. Thus, we propose a relaxed variant,
where the loss term Lϕ(θ) was minimized down to ϵ2 with ϵ ≥ 0. Thus, following similar reasoning as in the proof of
Lemma 2, we have that ∀S:

∣∣∣ViaSHAP(xS)− ViaSHAP(0)− 1⊤
S ϕ

Via(x; θ)
∣∣∣ ≤ ϵ

We also have:

∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

∣∣∣ = ∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)− ViaSHAP(0) + ViaSHAP(0)

∣∣∣
By the triangle inequality on the right-hand side:

∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

∣∣∣ ≤ ∣∣∣ViaSHAP(xS)− 1⊤
S ϕ

Via(x; θ)− ViaSHAP(0)
∣∣∣+ ∣∣∣ViaSHAP(0)

∣∣∣
But observe that all features in 0 are non-contributive since, ∀S ⊆ N , 0S = 0 by definition of the masking operation. Thus,
by the bound found in Lemma 2: ∀i ∈ N,

∣∣∣ϕi(0, θ)∣∣∣ ≤ 2ϵ. Thus
∣∣∣ViaSHAP(0)

∣∣∣ ≤ 2nϵ.

Thus:
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∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)− ViaSHAP(0)

∣∣∣+ ∣∣∣ViaSHAP(0)
∣∣∣ ≤ ϵ+ 2nϵ

and we thus derive the following upper bound on the ϕi-wise error as:∣∣∣ViaSHAP(xS)− 1⊤S ϕ
Via(x; θ)

∣∣∣ ≤ ϵ(2n+ 1).

D. Predictive Performance
We evaluated the performance of the four variants of ViaSHAP implementations mentioned in the experimental setup, i.e.,
KANVia, KANVia

ϱ , MLPVia, and MLPVia
θ , are compared to the following algorithms for structured data: Random Forests,

XGBoost, and TabNet, where Random Forests and XGBoost result in black-box models, while TabNet is explainable by
visualizing feature selection masks that highlight important features. The predictive performance evaluation is conducted
using 25 datasets. The results show that KANVia comes in first place as the best-performing classifier, followed by XGBoost
and KANVia

ϱ , based on AUC values.

The Friedman test confirmed that the differences in predictive performance are statistically significant at the 0.05 level.
A subsequent post-hoc Nemenyi test revealed that while the differences between KAN-based implementations and tree
ensemble models (XGBoost and Random Forests) are statistically insignificant, the performance differences between
KANVia and MLP variants are significant. Moreover, the differences between KANVia and TabNet are also statistically
significant. The ranking of the seven models on the 25 datasets and the results of the post-hoc Nemenyi test are illustrated in
Figure 3. The detailed results on the 25 datasets are shown in Table 1.

While the MLP implementations of ViaSHAP significantly underperformed compared to the KAN variants, their performance
can still be enhanced by using, for instance, deeper and more expressive models, particularly for datasets with high
dimensionality and large training sets. However, we defer the task of improving MLP-based ViaSHAP implementations to
future work, as the core concept of ViaSHAP can be integrated with any deep learning model. More importantly, ViaSHAP
is not limited to structured data and can be incorporated easily into the training loop of models in computer vision and
natural language processing.
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Table 1. The AUC of KANVia, KANVia
ϱ , MLPVia, and MLPVia

θ , TabNet, Random Forests, and XGBoost. The best-performing model is
colored in light green , and the second best-performing is colored in light blue .
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E. Explanations Accuracy Evaluation
The explainability of the four implementations of ViaSHAP, based on MLP and KAN, were evaluated by comparing their
Shapley values (ϕVia(x; θ)) to the ground truth Shapley values (ϕ). As mentioned in the experimental set, the ground truth
Shapley values were generated by KernelSHAP after convergence on each example in the test set. In the explainability
evaluation, we used the models trained with default hyperparameters in the predictive performance evaluation, which
generally showed high similarity to the ground truth, as demonstrated by the cosine similarity measurements. The Friedman
test found no significant differences in the cosine similarity between the compared algorithms over the 25 datasets. The
detailed results are available in Table 2.

Table 2. The cosine similarity of the ground truth Shapley values to the Shapley values obtained from KANVia, KANVia
ϱ , MLPVia, and

MLPVia
θ . The best-performing model is colored in light green .

Dataset KANVia KANVia
ϱ MLPVia MLPVia

θ

Abalone 0.969 ± 0.0166 0.966 ± 0.013 0.647 ± 0.21 0.807 ± 0.214
Ada Prior 0.935 ± 0.046 0.982 ± 0.006 0.663 ± 0.142 0.908 ± 0.045
Adult 0.931 ± 0.049 0.992 ± 0.011 0.574 ± 0.16 0.947 ± 0.032
Bank32nh 0.779 ± 0.163 0.713 ± 0.187 0.794 ± 0.166 0.876 ± 0.084
Electricity 0.970 ± 0.02 0.971 ± 0.017 0.912 ± 0.131 0.913 ± 0.09
Elevators 0.966 ± 0.024 0.966 ± 0.026 0.976 ± 0.025 0.976 ± 0.02
Fars 0.886 ± 0.253 0.886 ± 0.28 0.95 ± 0.104 0.943 ± 0.058
Helena 0.856 ± 0.092 0.715 ± 0.157 0.840 ± 0.099 0.789 ± 0.104
Heloc 0.844 ± 0.111 0.671 ± 0.182 0.759 ± 0.176 0.832 ± 0.125
Higgs 0.917 ± 0.068 0.925 ± 0.062 0.92 ± 0.093 0.912 ± 0.097
LHC Identify Jet 0.971 ± 0.021 0.952 ± 0.065 0.97 ± 0.042 0.972 ± 0.041
House 16H 0.919 ± 0.048 0.922 ± 0.043 0.927 ± 0.06 0.944 ± 0.048
Indian Pines 0.796 ± 0.121 0.241 ± 0.07 0.304 ± 0.077 0.325 ± 0.084
Jannis 0.852 ± 0.141 0.546 ± 0.189 0.675 ± 0.13 0.439 ± 0.164
JM1 0.88 ± 0.044 0.667 ± 0.217 0.795 ± 0.203 0.839 ± 0.159
Magic Telescope 0.922 ± 0.067 0.935 ± 0.058 0.973 ± 0.035 0.962 ± 0.058
MC1 0.466 ± 0.268 0.794 ± 0.084 0.777 ± 0.127 0.887 ± 0.055
Microaggregation2 0.938 ± 0.049 0.610 ± 0.149 0.840 ± 0.099 0.81 ± 0.096
Mozilla4 0.953 ± 0.023 0.948 ± 0.016 0.975 ± 0.018 0.979 ± 0.022
Satellite 0.841 ± 0.116 0.870 ± 0.077 0.766 ± 0.159 0.861 ± 0.093
PC2 0.534 ± 0.183 0.905 ± 0.053 0.786 ± 0.137 0.827 ± 0.098
Phonemes 0.811 ± 0.162 0.868 ± 0.082 0.873 ± 0.126 0.916 ± 0.083
Pollen 0.952 ± 0.059 0.945 ± 0.023 0.464 ± 0.476 0.592 ± 0.439
Telco Customer Churn 0.81 ± 0.108 0.904 ± 0.051 0.43 ± 0.189 0.592 ± 0.231
1st order theorem proving 0.725 ± 0.179 0.464 ± 0.517 0.387 ± 0.182 0.539 ± 0.144

We also measured similarity in ranking the important features between the computed Shapley values (ϕVia(x; θ)) and the
ground truth Shapley values (ϕ) using the Spearman rank correlation coefficient. KANVia is ranked first with respect to
the correlation values across the 25 datasets, followed by both KANViaϱ and MLPViaθ in the second place, and MLPVia in
the last place. The Spearman rank test revealed that the observed differences are significant. Subsequently, the post-hoc
Nemenyi test confirmed that MLPVia significantly underperformed the compared algorithms, while the differences between
the remaining algorithms are insignificant. Overall, if both the cosine similarity and the Spearman rank are considered,
KANVia proved to be a more stable approximator, as detailed in Tables 2 and 3.
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Figure 6. The average rank of KANVia, KANVia
ϱ , MLPVia, and MLPVia

θ on the 25 datasets with respect to the Spearman correlation
between the ground truth Shapley values and the values obtained from the compared models. A lower rank is better and the critical
difference (CD) represents the largest difference that is not statistically significant.

Table 3. The Spearman rank correlation between the ground truth Shapley values and the Shapley values obtained from KANVia, KANVia
ϱ ,

and MLPVia. The best-performing model is colored in light green .

Dataset KANVia KANVia
ϱ MLPVia MLPVia

θ

Abalone 0.663 ± 0.234 0.879 ± 0.14 0.529 ± 0.246 0.649 ± 0.236
Ada Prior 0.876 ± 0.088 0.962 ± 0.025 0.576 ± 0.163 0.869 ± 0.081
Adult 0.959 ± 0.035 0.932 ± 0.034 0.398 ± 0.214 0.864 ± 0.084
Bank32nh 0.432 ± 0.151 0.433 ± 0.139 0.349 ± 0.15 0.486 ± 0.129
Electricity 0.798 ± 0.183 0.838 ± 0.142 0.751 ± 0.206 0.848 ± 0.137
Elevators 0.920 ± 0.064 0.888 ± 0.072 0.883 ± 0.07 0.902 ± 0.06
Fars 0.347 ± 0.328 0.106 ± 0.133 0.512 ± 0.164 0.491 ± 0.115
Helena 0.669 ± 0.152 0.475 ± 0.188 0.656 ± 0.159 0.660 ± 0.168
Heloc 0.741 ± 0.147 0.673 ± 0.159 0.589 ± 0.173 0.701 ± 0.143
Higgs 0.674 ± 0.12 0.718 ± 0.112 0.535 ± 0.143 0.568 ± 0.139
LHC Identify Jet 0.857 ± 0.119 0.726 ± 0.184 0.737 ± 0.164 0.724 ± 0.146
House 16H 0.888 ± 0.092 0.858 ± 0.102 0.823 ± 0.112 0.864 ± 0.095
Indian Pines 0.699 ± 0.116 0.057 ± 0.054 0.099 ± 0.07 0.181 ± 0.056
Jannis 0.477 ± 0.131 0.314 ± 0.174 0.343 ± 0.132 0.227 ± 0.137
JM1 0.756 ± 0.202 0.682 ± 0.223 0.59 ± 0.188 0.715 ± 0.189
Magic Telescope 0.9 ± 0.098 0.91 ± 0.087 0.882 ± 0.098 0.828 ± 0.141
MC1 0.621 ± 0.157 0.885 ± 0.088 0.619 ± 0.169 0.716 ± 0.108
Microaggregation2 0.876 ± 0.096 0.411 ± 0.183 0.656 ± 0.159 0.705 ± 0.2
Mozilla4 0.942 ± 0.092 0.971 ± 0.063 0.909 ± 0.161 0.913 ± 0.137
Satellite 0.746 ± 0.212 0.786 ± 0.151 0.677 ± 0.208 0.8 ± 0.132
PC2 0.733 ± 0.161 0.924 ± 0.09 0.675 ± 0.154 0.737 ± 0.135
Phonemes 0.941 ± 0.103 0.954 ± 0.083 0.807 ± 0.213 0.862 ± 0.159
Pollen 0.285 ± 0.442 0.171 ± 0.484 0.297 ± 0.498 0.407 ± 0.545
Telco Customer Churn 0.848 ± 0.098 0.938 ± 0.043 0.262 ± 0.297 0.471 ± 0.211
1st order theorem proving 0.623 ± 0.188 0.082 ± 0.145 0.183 ± 0.146 0.367 ± 0.14
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F. Image Experiments
We implemented ViaSHAP for image classification using three architectures: ResNet50 (He et al., 2016) (ResNet50Via),
ResNet18 (ResNet18Via), and U-Net (Ronneberger et al., 2015) (U-NetVia). The predictive performance of these models
was evaluated using Top-1 Accuracy, with the results summarized in Table 4. All models were trained on the CIFAR-10
(Krizhevsky et al., 2014) dataset without transfer learning or pre-trained weights (i.e., trained from scratch) using four masks
(samples) per data instance. The training incorporated early stopping, terminating after ten epochs without improvement on
a validation split (10% of the training data). The results of evaluating the performance of the trained models on the test set
demonstrate that ViaSHAP can achieve high predictive performance on standard image classification tasks.

Table 4. A comparison of the predictive performance of ResNet50Via, ResNet18Via, and U-NetVia measured in AUC.

AUC 0.95 Confidence Interval

U-NetVia 0.983 (0.981, 0.986)
ResNet18Via 0.968 (0.964, 0.971)
ResNet50Via 0.96 (0.956, 0.964)

In order to assess the accuracy of the Shapley values computed by ViaSHAP implementations, we followed a methodology
similar to (Jethani et al., 2022). Specifically, we selected the top 50% most important features identified by the explainer and
evaluated the predictive performance of the explained model under two conditions: using only the selected top features
(Inclusion Accuracy) and excluding the top features (Exclusion Accuracy).

We compared the accuracy of Shapley value approximations of the three models (ResNet50Via, ResNet18Via, and U-NetVia).
We also evaluated the accuracy of FastSHAP’s approximations where the three ViaSHAP implementations for image
classification are provided as black boxes to FastSHAP. The results indicate that the ViaSHAP implementations consistently
provide more accurate Shapley value approximations than those generated by FastSHAP, as shown in Table 5. Figure 7
presents two examples illustrating the explanations generated by ViaSHAP models and FastSHAP, where the latter treats
the ViaSHAP models as black-box predictors. We also show the effects of using different percentages of the top features
considered for inclusion and exclusion on the top-1 accuracy in Figure 8.

Table 5. The accuracy of the Shapley values is evaluated using the top 50% of the most important features (according to their Shapley
values). The Inclusion AUC (higher values are better) and the Exclusion AUC (lower values are better) are computed using the top 1
accuracy.

Dataset Exclusion AUC 0.95 Confidence Interval Inclusion AUC 0.95 Confidence Interval

U-NetVia 0.773 (0.747, 0.799) 0.988 (0.981, 0.995)
FastSHAP(U-NetVia) 0.864 (0.843, 0.885) 0.978 (0.969, 0.987)
ResNet18Via 0.611 (0.581, 0.642) 0.99 (0.983, 0.996)
FastSHAP(ResNet18Via) 0.755 (0.728, 0.782) 0.954 (0.941, 0.967)
ResNet50Via 0.554 (0.523, 0.585) 0.997 (0.994, 1.0)
FastSHAP(ResNet50Via) 0.778 (0.753, 0.804) 0.978 (0.969, 0.987)

ResNet18Via FastSHAP( ResNet18Via ) ResNet50Via FastSHAP( ResNet50Via ) U-NetVia FastSHAP( U-NetVia )

Figure 7. The explanations generated by ViaSHAP models and FastSHAP using two randomly selected images from the CIFAR-10
dataset.
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Figure 8. The inclusion and exclusion curves of ViaSHAP implementations as well as their FastSHAP explainers. We show how the top-1
accuracy of the predictive model changes as we exclude or include an increasing share of the important features, where the important
features are determined by each explainer in the comparison.

Figure 9. The explanations of ResNet18Via for 10 randomly selected predictions on the CIFAR-10 dataset. Each column corresponds to a
CIFAR-10 class, and the predicted probability by ResNet18Via displayed beneath each image.
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G. Relaxed Expected Prediction
ViaSHAP is optimized to minimize the loss function (7) and predict 0 if all features are marginalized out (ViaSHAP(0) = 0),
which can be a limitation if the baseline removal approach (Sundararajan & Najmi, 2020), for instance, is applied to mask
features using their mean values, i.e., ViaSHAP(E(x)) = 0. In some cases, particularly with heavily imbalanced data, the
“average values” E(x) might strongly represent one class over others. Moreover, in regression problems, the prediction of an
accurate estimator using the expected values is unlikely to be 0. Therefore, we propose a relaxed variant of the optimization
problem, where ViaSHAP(0) is not obliged to predict 0 in order to minimize the Shapley loss. We introduce a bias term δ to
ViaSHAP, modifying the predictions such that y = 1⊤ϕVia(x; θ) + δ. Accordingly, the relaxed loss function is formulated
as follows:

Lϕ(θ) =
∑
x∈X

∑
j∈M

(
β ·

(
E

p(S)

[(
(1⊤ϕVia(xS ; θ) + δ)− (1⊤ϕVia(0; θ) + δ)− 1⊤S ϕ

Via
j (x; θ)

)2])
−

(
yj log(1⊤ϕVia

j (x; θ) + δ)
))
, (10)

Consequently, ViaSHAP explains ViaSHAP(x)− δ, where δ is optimized through the prediction loss function to minimize
the overall prediction error. In the case of baseline removal using the expected values, ViaSHAP(E(x)) ≈ δ.

To measure the effect of the relaxed loss function on the predictive performance as well as the accuracy of the Shapley value
approximations, we conduct an experiment where we compare the performance of two identical KAN implementations:
one trained with the default loss function (7) and the other trained with the relaxed variant of the loss function (10). The
two implementations are trained using the default setting without a link function applied to the predicted outcome. The
detailed results of predictive performance are presented in Table 6, while the accuracy of the Shapley value approximations
is provided in Table 7.

We test the null hypothesis that no significant difference exists in predictive performance, as measured by AUC, between
ViaSHAP trained using the default architecture and its relaxed variant. Given that only two approaches are compared, the
Wilcoxon signed-rank test (Wilcoxon, 1945) is employed. The results indicate that the null hypothesis cannot be rejected at
the 0.05 significance level, i.e., there is no significant difference in the predictive performance of the compared approaches.
Although the datasets used in the experiments include 19 imbalanced datasets, the results of both variants of ViaSHAP are
performing remarkably well.

The results regarding the similarity of the approximated Shapley values to the ground truth show no significant difference
between the compared approaches, as measured by the three similarity metrics: cosine similarity, Spearman’s rank, and R2.
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Table 6. The predictive performance of KANVia optimized for ViaSHAP(0) = 0 vs. the relaxed version of the optimization function
(ViaSHAP(0) = δ). The predictive performance is measured by AUC. The best-performing model is colored in light green .

Dataset KANVia (ViaSHAP(0) = 0) KANVia (ViaSHAP(0) = δ)

Abalone 0.883 ± 0.0002 0.883 ± 0.0002
Ada Prior 0.898 ± 0.003 0.900 ± 0.003
Adult 0.919 ± 0.0005 0.919 ± 0.003
Bank32nh 0.883 ± 0.003 0.887 ± 0.002
Electricity 0.934 ± 0.004 0.936 ± 0.006
Elevators 0.936 ± 0.003 0.937 ± 0.001
Fars 0.958 ± 0.002 0.958 ± 0.001
Helena 0.868 ± 0.006 0.873 ± 0.003
Heloc 0.792 ± 0.001 0.793 ± 0.001
Higgs 0.801 ± 0.001 0.801 ± 0.001
LHC Identify Jet 0.939 ± 0.0005 0.938 ± 0.003
House 16H 0.949 ± 0.001 0.951 ± 0.001
Indian Pines 0.982 ± 0.001 0.981 ± 0.002
Jannis 0.861 ± 0.001 0.858 ± 0.003
JM1 0.686 ± 0.025 0.703 ± 0.025
Magic Telescope 0.921 ± 0.002 0.925 ± 0.002
MC1 0.952 ± 0.011 0.942 ± 0.013
Microaggregation2 0.764 ± 0.008 0.766 ± 0.011
Mozilla4 0.965 ± 0.001 0.965 ± 0.001
Satellite 0.944 ± 0.010 0.964 ± 0.022
PC2 0.659 ± 0.060 0.689 ± 0.031
Phonemes 0.923 ± 0.003 0.922 ± 0.002
Pollen 0.501 ± 0.002 0.502 ± 0.004
Telco Customer Churn 0.857 ± 0.003 0.852 ± 0.006
1st order theorem proving 0.810 ± 0.006 0.761 ± 0.003
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Table 7. A comparison to evaluate the similarity to the ground truth explanations between KANVia optimized for ViaSHAP(0) = 0 and the
relaxed version of the optimization function (ViaSHAP(0) = δ). The similarity is measured using cosine similarity, Spearman’s rank, and
R2. The best-performing model is colored in light green.
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H. ViaSHAP with Marginal Expectations
We evaluate the predictive performance and the similarity of the approximate Shapley values to the ground truth values
when ViaSHAP is trained using marginal expectations (Chen et al., 2020) as the strategy for marginalizing out features(
ViaSHAP(xS) = E

xS

[
1⊤ϕVia(xS , XN\S ; θ)

])
.

In the experiment, we compare ViaSHAP trained using baseline removal vs. marginal expectations. The compared models
are trained using the default settings of ViaSHAP without link functions. The marginal expectations models employ 128
data instances as background data selected from the validation set. The results of the experiment, presented in Tables 8 and
9, indicate that ViaSHAP trained using the marginal expectations value function significantly underperforms the baseline
removal approach. Furthermore, ViaSHAP trained with marginal expectations fails to accurately approximate the solutions
provided by the unbiased KernelSHAP that employs marginal expectations. The results indicate that employing the marginal
expectations value function can hinder the learning of an accurate predictor.

Table 8. The predictive performance of KANVia optimized using marginal expectations for masking features vs. using baseline removal.
The predictive performance is measured by AUC. The best-performing model is colored in light green .

Dataset Marginal Expectations Baseline Removal

Abalone 0.860 ± 0.005 0.883 ± 0.0002
Ada Prior 0.833 ± 0.010 0.898 ± 0.003
Adult 0.888 ± 0.004 0.919 ± 0.000
Bank32nh 0.833 ± 0.007 0.883 ± 0.003
Elevators 0.875 ± 0.006 0.936 ± 0.003
Helena 0.850 ± 0.003 0.868 ± 0.006
House 16H 0.929 ± 0.003 0.949 ± 0.001
Indian Pines 0.939 ± 0.039 0.982 ± 0.001
JM1 0.711 ± 0.009 0.686 ± 0.025
MC1 0.936 ± 0.019 0.952 ± 0.011
Microaggregation2 0.758 ± 0.017 0.764 ± 0.008
Mozilla4 0.924 ± 0.006 0.965 ± 0.001
Phonemes 0.907 ± 0.006 0.923 ± 0.003
Telco Customer Churn 0.824 ± 0.010 0.857 ± 0.003
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Table 9. The similarity to the ground truth explanations when KANVia optimized using marginal expectations for masking features vs.
using baseline removal. The similarity is measured using cosine similarity, Spearman’s rank, and R2. The best-performing model is
colored in light green.
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I. A Comparison Between ViaSHAP and a KAN Model with the Same Architecture
We conducted an experiment to assess the impact of incorporating Shapley loss in the optimization process on predictive
performance of a KAN model. Consequently, we compared KANVia to a KAN model with an identical architecture that does
not compute Shapley values. As summarized in Table 10, the results indicate that KANVia generally outperforms the KAN
model with the same architecture. In order to determine the statistical significance of these results, the Wilcoxon signed-rank
test (Wilcoxon, 1945) was employed to test the null hypothesis that no difference exists in predictive performance, as
measured by AUC, between KANVia and the identical KAN model without Shapley values. The test results allowed for the
rejection of the null hypothesis, indicating that KANVia significantly outperforms the KAN architecture that is not optimized
to compute Shapley values with respect to the predictive performance as measured by the AUC.

Table 10. A comparison between the predictive performance of KANVia and a KAN model with an identical architecture to KANVia but
does not compute the Shapley values. The results are reported in AUC.

Dataset KAN KANVia

Abalone 0.882 ± 0.001 0.87 ± 0.003
Ada Prior 0.895 ± 0.005 0.89 ± 0.005
Adult 0.917 ± 0.001 0.914 ± 0.003
Bank32nh 0.886 ± 0.001 0.878 ± 0.001
Electricity 0.924 ± 0.005 0.93 ± 0.004
Elevators 0.935 ± 0.003 0.935 ± 0.002
Fars 0.957 ± 0.001 0.96 ± 0.0003
Helena 0.883 ± 0.001 0.884 ± 0.0001
Heloc 0.793 ± 0.002 0.788 ± 0.002
Higgs 0.801 ± 0.002 0.801 ± 0.001
LHC Identify Jet 0.944 ± 0.0003 0.944 ± 0.0001
House 16H 0.948 ± 0.001 0.949 ± 0.0007
Indian Pines 0.935 ± 0.001 0.985 ± 0.0004
Jannis 0.860 ± 0.002 0.864 ± 0.001
JM1 0.725 ± 0.008 0.732 ± 0.003
Magic Telescope 0.931 ± 0.001 0.929 ± 0.001
MC1 0.933 ± 0.019 0.94 ± 0.003
Microaggregation2 0.783 ± 0.002 0.783 ± 0.002
Mozilla4 0.967 ± 0.001 0.968 ± 0.0008
Satellite 0.987 ± 0.003 0.996 ± 0.001
PC2 0.458 ± 0.049 0.827 ± 0.009
Phonemes 0.945 ± 0.002 0.946 ± 0.003
Pollen 0.491 ± 0.005 0.515 ± 0.006
Telco Customer Churn 0.848 ± 0.005 0.854 ± 0.003
1st order theorem proving 0.805 ± 0.005 0.822 ± 0.002
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J. Ablation Study
In this section, we explore the influence of key hyperparameters on the performance and behavior of ViaSHAP. Specifically,
we investigate the effects of the scaling hyperparameter β and the number of sampled coalitions per data instance. We begin
by analyzing how variations in β impact both predictive performance and the accuracy of the Shapley values generated by
ViaSHAP. We then examine the role of the number of sampled coalitions in model performance, followed by an evaluation
of how changes in β affect the progress of the computed loss values during training. The findings provide valuable insights
into the robustness and efficiency of ViaSHAP under different hyperparameter settings.

J.1. The Impact of Scaling Hyperparameter β on the Performance of ViaSHAP

We evaluated the performance of the models trained with different β values (in equation 7), where exponentially increasing
values are tested. The models were trained using the default hyperparameter settings described in the experimental setup,
except for the values of β. The AUC of the trained models is measured on the test set, as well as the similarity of the
predicted Shapley values to the ground truth. The results indicate that the predictive performance of ViaSHAP, as measured
by the area under the ROC curve, remains largely unaffected by the value of β, even when β is increased exponentially. On
the other hand, the similarity between the computed Shapley values and the ground truth improves as β increases. However,
the model struggles to learn effectively after β exceeds 200, as shown in Figures 10 and 11.

Figure 10. The effect of different values of β on the predictive performance (AUC), alignment with the true Shapley values (cosine
similarity), and the similarity in the order of features to the ground truth (Spearman rank).
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Figure 11. The effect of different values of β on the predictive performance (AUC), alignment with the true Shapley values (cosine
similarity), and the similarity in the order of features to the ground truth (Spearman rank).

J.2. The Number of Samples

We assessed the impact of the number of sampled coalitions per data example on the performance of ViaSHAP, retraining the
model using the default hyperparameters with the exception of the sample size. We investigated an exponentially increasing
range of sample sizes (2s), from 1 to 128. The findings suggest that the number of samples has a smaller effect on the
performance of the trained models compared to β, which allows for effective training of ViaSHAP models with as few as
one sample per data instance. The results are illustrated in Figures 12 and 13.

Figure 12. The effect of different number of samples on the predictive performance (AUC), alignment with the true Shapley values (cosine
similarity), and the similarity in the order of features to the ground truth (Spearman rank).
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Figure 13. The effect of different number of samples on the predictive performance (AUC), alignment with the true Shapley values (cosine
similarity), and the similarity in the order of features to the ground truth (Spearman rank).
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J.3. The Effect of Applying a Link Function to the Predicted Outcome

To examine the impact of employing a link function on the predictive performance of ViaSHAP and the accuracy of its
Shapley value approximations, we trained KANVia without applying a link function at the output layer and compared the
predictive performance to that of KANVia with the default settings mentioned in the experimental setup. The results of the
predictive comparison are summarized in Table 11. To evaluate the null hypothesis that there is no difference in predictive
performance, measured by the AUC, between KANVia with and without a link function, the Wilcoxon signed-rank test was
employed, given that only two methods were compared. The results indicate that the null hypothesis can be rejected at the
0.05 significance level. Therefore, the results indicate that the presence of a link function does not significantly influence
predictive performance in general.

The similarity between the ground truth and the approximated Shapley values by KANVia, both with and without link
functions, are reported in Table 12. The similarity of KANVia’s approximations to the ground truth is measured using the
cosine similarity and the Spearman’s Rank as described in the experimental setup, which allow for measuring the similarity
even if two explanations are not on the same scale, since ViaSHAP allows for applying a link function to accommodate
a valid range of outcomes which can lead ViaSHAP’s approximations to be on a different scale than the ground truth
obtained using the unbiased KernelSHAP. However, since we measure the effect of using the link function on the accuracy
of Shapley values, we can also apply a metric that measures the similarity on the same scale for models without a link
function. Therefore, we also apply R2 as a similarity metric to the ground truth Shapley values for models without link
functions. The results presented in Table 12 demonstrate that ViaSHAP without a link function significantly outperforms its
counterpart with a link function. In order to test the null hypothesis that no difference exists in the accuracy of Shapley
value approximations by KANVia with and without a link function, the Wilcoxon signed-rank test was applied. The test
results confirm that the null hypothesis can be rejected in both cases, whether Spearman’s rank or cosine similarity is used
as the similarity metric. Furthermore, the results show that R2 as a similarity metric is consistent with both Spearman’s rank
and cosine similarity.

30



Prediction via Shapley Value Regression

Table 11. The effect of the link function on the predictive performance of KANVia as measured by AUC. The best-performing model is
colored in light green .

Dataset KANVia (without a link function) KANVia (default settings)

Abalone 0.883 ± 0.0002 0.87 ± 0.003
Ada Prior 0.898 ± 0.003 0.89 ± 0.005
Adult 0.919 ± 0.0005 0.914 ± 0.003
Bank32nh 0.883 ± 0.003 0.878 ± 0.001
Electricity 0.934 ± 0.004 0.93 ± 0.004
Elevators 0.936 ± 0.002 0.935 ± 0.002
Fars 0.958 ± 0.001 0.96 ± 0.0003
Helena 0.868 ± 0.006 0.884 ± 0.0001
Heloc 0.792 ± 0.001 0.788 ± 0.002
Higgs 0.801 ± 0.001 0.801 ± 0.001
LHC Identify Jet 0.939 ± 0.0005 0.944 ± 0.0001
House 16H 0.949 ± 0.001 0.949 ± 0.0007
Indian Pines 0.982 ± 0.001 0.985 ± 0.0004
Jannis 0.861 ± 0.001 0.864 ± 0.001
JM1 0.686 ± 0.024 0.732 ± 0.003
Magic Telescope 0.921 ± 0.002 0.929 ± 0.001
MC1 0.952 ± 0.011 0.94 ± 0.003
Microaggregation2 0.764 ± 0.008 0.783 ± 0.002
Mozilla4 0.965 ± 0.001 0.968 ± 0.0008
Satellite 0.944 ± 0.01 0.996 ± 0.001
PC2 0.659 ± 0.06 0.827 ± 0.009
Phonemes 0.923 ± 0.003 0.946 ± 0.003
Pollen 0.501 ± 0.002 0.515 ± 0.006
Telco Customer Churn 0.857 ± 0.003 0.854 ± 0.003
1st order theorem proving 0.810 ± 0.006 0.822 ± 0.002
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Table 12. The effect of the link function on the similarity of the approximated Shapley values by KANVia. The best-performing model is
colored in light green .
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J.4. The Effect of the Efficiency Constraint

We investigate the impact of the efficiency constraint (4) on the predictive performance of ViaSHAP and the similarity
of its approximate Shapley values to the ground truth. The experimental results, presented in Tables 13 and 14, indicate
that imposing the efficiency constraint has no significant effect on either the predictive performance of ViaSHAP or the
accuracy of its explanations. To formally test this, we evaluate the null hypothesis that no significant difference exists in
predictive performance, measured by AUC, between models trained with or without the efficiency constraint. Since only two
approaches are compared, the Wilcoxon signed-rank test (Wilcoxon, 1945) is employed. The results confirm that the null
hypothesis cannot be rejected at the 0.05 significance level, indicating no significant difference in predictive performance
between the two approaches. Significance tests are also applied to evaluate the similarity of the approximated Shapley
values to the ground truth based on cosine similarity, Spearman’s rank, and R2. The results indicate no significant difference
between ViaSHAP models trained with and without the efficiency constraint.

Table 13. The effect of the efficiency constraint on the predictive performance of KANVia as measured by AUC. The best-performing
model is colored in light green .

Dataset Unconstrained Constrained

Abalone 0.883 ± 0.0003 0.883 ± 0.0002
Ada Prior 0.897 ± 0.003 0.898 ± 0.003
Adult 0.919 ± 0.0007 0.919 ± 0.0005
Bank32nh 0.884 ± 0.002 0.883 ± 0.003
Electricity 0.936 ± 0.004 0.934 ± 0.004
Elevators 0.933 ± 0.002 0.936 ± 0.003
Fars 0.959 ± 0.001 0.958 ± 0.002
Helena 0.870 ± 0.005 0.868 ± 0.006
Heloc 0.792 ± 0.002 0.792 ± 0.001
Higgs 0.800 ± 0.002 0.801 ± 0.001
LHC Identify Jet 0.939 ± 0.0006 0.939 ± 0.0005
House 16H 0.948 ± 0.001 0.949 ± 0.001
Indian Pines 0.982 ± 0.002 0.982 ± 0.001
Jannis 0.860 ± 0.003 0.861 ± 0.001
JM1 0.691 ± 0.026 0.686 ± 0.025
Magic Telescope 0.921 ± 0.002 0.921 ± 0.002
MC1 0.942 ± 0.011 0.952 ± 0.011
Microaggregation2 0.763 ± 0.009 0.764 ± 0.008
Mozilla4 0.965 ± 0.001 0.965 ± 0.001
Satellite 0.926 ± 0.006 0.944 ± 0.010
PC2 0.670 ± 0.046 0.659 ± 0.060
Phonemes 0.919 ± 0.006 0.923 ± 0.003
Pollen 0.499 ± 0.002 0.501 ± 0.002
Telco Customer Churn 0.853 ± 0.004 0.857 ± 0.003
1st order theorem proving 0.809 ± ± 0.007 0.810 ± 0.006
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Table 14. The similarity to the ground truth explanations when KANVia optimized with and without the efficiency constraint. The
similarity is measured using cosine similarity, Spearman’s rank, and R2. The best-performing model is colored in light green.
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J.5. The Progress of Training and Validation Losses

In this subsection, we report the progression of training and validation losses with different values of the hyperparameter β
using six datasets. A common trend observed across models trained on the six datasets is that, with different values of β, the
Shapley loss (scaled by β) consistently decreases quickly below the level of the classification loss, except for the First Order
Theorem Proving dataset (Figure 15), which is a multinomial classification dataset. For the First Order Theorem Proving
dataset, the Shapley loss remains at a scale determined by the β factor throughout the training time. However, the model
for the First Order Theorem Proving dataset can still learn a function that estimates Shapley values with good accuracy, as
shown in Tables 2 and 3. Moreover, it benefits from larger β values to achieve accurate Shapley value approximations, as
illustrated in Figure 10. Additionally, the results indicate that ViaSHAP generally tends to take longer to converge as β
values increase.

Figure 14. The effect of β value on the progress of the training and the validation loss values.
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Figure 15. The effect of β value on the progress of the training and the validation loss values.
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Figure 16. The effect of β value on the progress of the training and the validation loss values.
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Figure 17. The effect of β value on the progress of the training and the validation loss values.

38



Prediction via Shapley Value Regression

Figure 18. The effect of β value on the progress of the training and the validation loss values.
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Figure 19. The effect of β value on the progress of the training and the validation loss values.
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K. A Comparison Between ViaSHAP and FastSHAP
We compared the accuracy of ViaSHAP’s Shapley value approximations to FastSHAP, using ViaSHAP as a black-box model
within the FastSHAP framework. ViaSHAP is implemented using KANVia without a link function, while FastSHAP is using
the default settings. The evaluation employed metrics such as R2, cosine similarity, and Spearman’s rank correlation to
measure the similarity between the computed Shapley values and the ground truth. The results demonstrate that ViaSHAP
achieves significantly higher similarity to the ground truth compared to FastSHAP. This conclusion is supported by the
Wilcoxon signed-rank test, which enabled rejection of the null hypothesis that there is no difference in similarity to the
ground truth Shapley values between ViaSHAP and FastSHAP. The test confirmed significant differences using all evaluated
similarity metrics, including R2, cosine similarity, and Spearman’s rank correlation. The detailed results are available in
Table 16.

L. A Comparison Between the Inference Time of ViaSHAP and KernelSHAP
In Table 15, we report the time required to explain 1000 instances using KernelSHAP and ViaSHAP (KANVia) on six
datasets using an NVIDIA Tesla V100f GPU and 16 cores of an Intel Xeon Gold 6338 processor.

Table 15. The time (in seconds) required to explain 1000 predictions from 6 different datasets using KernelSHAP and ViaSHAP.

Dataset KernelSHAP KANVia

Adult 56.92 0.0026
Elevators 54.22 0.0021
House 16 53.12 0.0052
Indian Pines 43124.66 0.0023
Microaggregation 2 79.97 0.0022
First order proving theorem 436.25 0.0022

M. Limitations of ViaSHAP
ViaSHAP operates under the assumption that the selected base model can be optimized using backpropagation. Hence,
models that employ other optimization algorithms, such as decision trees, are not suitable for this approach. Nevertheless,
ViaSHAP can be extended to work with methods that are not based on backpropagation. For example, we can train one
regressor per dimension of ϕVia(x).

The empirical results presented in Appendix H indicate that ViaSHAP does not yield accurate models when trained using
the marginal expectations value function, which requires further investigation. Furthermore, as demonstrated in Appendix D,
ViaSHAP does not produce accurate predictors when trained using a small-sized MLP consisting of two hidden layers.
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Table 16. A comparison between ViaSHAP and FastSHAP with respect to the similarity of the approximated Shapley values to the ground
truth values. The best-performing model is colored in light green .
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N. Computational Cost
The experiments were conducted using an NVIDIA Tesla V100f GPU and 16 cores of an Intel Xeon Gold 6338 processor.
The training time required for both KANVia and MLPVia are recorded on 1,000 data examples with varying numbers of
coalitions (Table 17). The inference time is also recorded on 1,000 data example for both KANVia and MLPVia as shown in
Table 18. All the results are reported as the mean and standard deviation across five different runs. Generally, MLPVia is
faster than KANVia in both training and inference. Additionally, while the number of samples per data example increased
exponentially, the computational cost during training did not rise at the same rate, as depicted in Figure 20.

Figure 20. The training time and prediction time on 1000 data instance of KANVia and MLPVia.
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Table 17. The training time in seconds for 1000 data instances using KANVia and MLPVia.
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Prediction via Shapley Value Regression

Table 18. The prediction running time in seconds for 1000 data instances using KANVia and MLPVia.

Dataset KANVia MLPVia

Abalone 0.0024 ± 0.0003 0.0004 ± 0.00003
Ada Prior 0.003 ± 0.0008 0.0006 ± 0.000005
Adult 0.0026 ± 0.0004 0.0006 ± 0.000005
Bank32nh 0.0021 ± 0.0002 0.0004 ± 0.0001
Electricity 0.0024 ± 0.0003 0.0005 ± 0.0002
Elevators 0.0021 ± 0.0002 0.0005 ± 0.0003
Fars 0.0031 ± 0.0005 0.0009 ± 0.0001
Helena 0.0023 ± 0.0004 0.0004 ± 0.0001
Heloc 0.0022 ± 0.0002 0.0003 ± 0.000005
Higgs 0.0022 ± 0.0002 0.0003 ± ´0.00001
LHC Identify Jet 0.0023 ± 0.0004 0.0004 ± 0.00001
House 16H 0.0052 ± 0.0005 0.0004 ± 0.0001
Indian Pines 0.0023 ± 0.0003 0.0004 ± 0.0001
Jannis 0.0023 ± 0.0003 0.0004 ± 0.00001
JM1 0.0026 ± 0.0012 0.0003 ± 0.00001
MagicTelescope 0.0022 ± 0.0002 0.0003 ± 0.00001
MC1 0.0023 ± 0.0003 0.0004 ± 0.0001
Microaggregation 2 0.0022 ± 0.0002 0.0004 ± 0.00001
Mozilla 4 0.0022 ± 0.0002 0.0004 ± 0.0001
Satellite 0.0022 ± 0.0003 0.0004 ± 0.0001
PC2 0.0021 ± 0.0003 0.0003 ± 0.00001
Phonemes 0.0021 ± 0.0001 0.0003 ± 0.000005
Pollen 0.0022 ± 0.0003 0.0004 ± 0.0001
Telco Customer Churn 0.003 ± 0.0005 0.0009 ± 0.0001
1st Order Theorem Proving 0.0022 ± 0.0003 0.0004 ± 0.000004
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Prediction via Shapley Value Regression

O. Dataset Details
Table 19 presents an overview of the datasets used in the experiments. The table includes the number of classes, number of
features, dataset size, training, validation, and test split sizes. Additionally, the table provides the corresponding dataset ID
from OpenML.

Table 19. The dataset information.
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