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ABSTRACT

Machine-generated texts (MGTs) of large language models (LLMs) show signifi-
cant potential in many fields but also pose challenges like fake news propagation
and phishing, highlighting the need for MGT detection. Most paragraph-level
detection methods implicitly assume that MGTs are entirely machine-generated
and ignore the scenarios where only part of the MGT is machine-generated or
inconsistent with human-generated text. To this end, this paper first reveals the
prevalence of implicit human-machine mixed texts, which contain subtexts that
are common to human texts, and then theoretically analyzes their impact on detec-
tion. Based on our theoretical findings, we develop a stacked detection enhance-
ment framework decoupled from the detection model, which involves revisiting
the detection optimization objective and the balance between feasibility and effi-
ciency during optimization. Extensive experiments demonstrate its superior im-
provements over existing detectors. Notably, our boosting strategy can also work
in a training-free manner, offering flexibility and scalability. The source code is
available at https://anonymous.4open.science/r/MGTD.

1 INTRODUCTION

The rapid development of large language models (LLMs) (Achiam et al., 2023; Radford et al., 2019)
has led to a surge in Machine-generated texts (MGTs). While these texts have shown significant
potential in many applications, they have also posed severe challenges to fake news propagation
(Zellers et al., 2019), phishing (Hong, 2012), and academic fraud (Alshurafat et al., 2024). For ex-
ample, cybercriminals can create realistic phishing emails to commit fraud or generate fake product
reviews to manipulate consumer decisions. These risks highlight the need for effective MGT detec-
tion to ensure safe and transparent AI systems. This paper will focus on paragraph-based detection,
which can fully utilize contextual information to provide robust detection (Tulchinskii et al., 2024).

Feature-engineering detection methods identify MGT by using distinctive properties of generated
text, e.g., output log probability (Mitchell et al., 2023; Solaiman et al., 2019), objectivity and senti-
ment of the language (Guo et al., 2023), cross entropy (Guo et al., 2024), and intrinsic dimensions
(Tulchinskii et al., 2024). However, such methods require substantial expert knowledge and experi-
ence. Moreover, due to the complexity of textual data, manually extracted features based on limited
data often fail to fully capture intricate patterns and structures, thus, leading to poor generaliza-
tion across various generative models. By contrast, model-based detection methods use entire texts
as inputs, allowing detectors to implicitly learn distinguishing features during training. These ap-
proaches are more flexible than feature engineering methods and have gained more attention, such
as, energy-based models (Tulchinskii et al., 2024), small language models (Mireshghallah et al.,
2023), LLM (Verma et al., 2024), and graph neural networks (Zhong et al., 2020). Besides, the
representation quality of data is crucial for learning detection models, such as using pre-trained text
features (Crothers et al., 2022) and probability lists from open-source LLMs (Wang et al., 2023).

However, these methods implicitly assume texts are entirely human- or machine-generated and ig-
nore the possibility of mixed texts, where only parts are MGTs or inconsistent with human text.
Under the circumstances, at least three key research questions have yet remain to be answered:

• RQ1: How common are human-machine mixed texts, and is it possible that mixed text exists even
if the text is entirely machine-generated?
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• RQ2: If the answer to RQ1 is yes, what are the challenges such mixed text brings to detection,
and what benefits may we achieve by solving these challenges?

• RQ3: For the challenges of RQ2, how can we refine the detection model to overcome them?

This paper aims to study machine-generated text detection by solving these three issues.
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Figure 1: Jaccard similarity of sentence words between
human-written texts and MGTs (ChatGPT and GPT-4). A
notable portion with 100% similarity indicates the existence
of implicit human-machine mixed text.

First, in addition to explicit human-
machine mixed text scenarios, this
paper reveals the prevalence of im-
plicit human-machine mixed texts
(RQ1, Section 2.2). Specifically,
even if the text is entirely machine-
generated, LLMs, with their powerful
generation capabilities, can generate
texts consistent with human writing
in simple sentence structures, fixed
phrases, and so on. This is verified
by examining the Jaccard Similarity
based on sentence words between hu-
mans and LLMs, as shown in Fig. 1
(See Section 2.2 for detailed discus-
sion). The inclusion of common text in machine text allows it to be considered as (implicit) mixed
text. This insight suggests that mixed texts are far more prevalent than we had anticipated.

The common existence of mixed texts requires us to analyze their impact on detection (RQ2, Sec-
tion 2.3). Therefore, we theoretically reveal the sample complexity of the best possible detector to
achieve an AUROC of ϵ. The results indicate that sample complexity is proportional to the propor-
tion of human-generated text within MGTs, and the complexity is lowest when this proportion is 0.
This implies that the existence of mixed texts hinders detection.

To tackle the issues exposed by RQ2 (RQ3, Section 3), we first propose a theoretical enhancement
framework and then gradually model it into a stacked enhancement framework, which includes
identifying the suitable optimization objective that can address the above challenges and proposed a
hard-EM-inspired approach that aids in balancing feasibility and efficiency of detection. Extensive
experiments demonstrate the proposed framework’s boosting effectiveness across various LLMs.

Our contribution mainly lies in (1) revealing the existence of implicit human-machine mixed texts
even if the text is entirely machine-generated, (2) theoretically proving its detrimental impact on de-
tection, and (3) proposing a theory-inspired enhancement framework to boost detection. A detailed
discussion of our contribution is given in Appendix B.

2 MGT DETECTION REQUIRES FEWER MIXED TEXTS

2.1 PRELIMINARY

Text Data Definition. Following Chakraborty et al., 2024, if the set of sentences is denoted as
S, we can define the human-generated sentence distribution as h(s) for s ∈ S, and similarly, the
machine-generated sentence distribution as m(s). This allows us to define texts containing multiple
sentences under IID and non-IID settings.

• Sentence IID Setting. If text S contains n sentences S := {si}ni=1, and each sentence si is i.i.d.
drawn from either the human distribution si ∼ h(s) or machine distribution si ∼ m(s). Then,
the human-generated text can be denoted as S ∼ h⊗n(s), while the machine-generated text is
S ∼ m⊗n(s), where h⊗n := h ⊗ h ⊗ . . . ⊗ h (n times) and m⊗n denote the respective product
distributions.

• Sentence Non-IID Setting. We follow a practical setting (Chakraborty et al., 2024; Loureiro et al.,
2024) for various language tasks. Assume that ρ characterizes the dependency strength between
sentences si, and

∑
i si is considered as the ”average meaning” of these sentences. For instance,

”medical knowledge” + ”medical care” may convey an average meaning similar to ”doctors”. If
Ti is defined as the random variable concerning the i-th sentence, then the dependence between

2
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them is given as

E [Ti | Ti−1 = si−1, · · · , T1 = s1] = ρ

∑i−1
k=1 sk
i− 1

+ (1− ρ)E [Ti] .

We can find that when the strength ρ = 0, this setting degenerates into the IID setting. As ρ
increases, the current sentence becomes more dependent on the previous sentences.

Problem Definition. The task of MGT detection can be formulated as a binary classification prob-
lem. The detector f maps the text S to a real value f(S) ∈ [0, 1], which indicates the confidence
of machine generation. If f(S) is greater than a predefined threshold r, text S is predicted to be
machine-generated; otherwise, it is human-generated. Assuming that text S contains n sentences,
existing work (Chakraborty et al., 2024) has proven that the likelihood-ratio-based detector can
achieve the upper bound of AUROC and is the best possible detector:

f∗(S) :=

{
Machine Text if m⊗n(S) ≥ h⊗n(S),

Human Text if m⊗n(S) < h⊗n(S).

2.2 EXISTENCE OF HUMAN-MACHINE MIXED TEXT

Most detection strategies implicitly assume that the text is entirely generated by either machines
or humans, taking the entire text as input for detection. However, it is common for only parts of
MGTs to be machine-generated. For example, people often use LLMs to modify text rather than
relying entirely on AI to generate the entire text. Moreover, scenarios such as content expansion,
dialogue continuation, and template filling all reflect the collaborative creation of text by humans
and machines. Some works (Zeng et al., 2024; Zhang et al., 2024b) also focus on such mixed text.

In addition to studying explicit human-machine mixed text like existing work, this paper highlights
that ”mixed” text also exists in purely MGTs. Accordingly, we reveal a category of implicit human-
machine mixed text: even if the text is entirely machine-generated, LLMs, with their advanced gen-
erative capabilities, can produce text common to human-written content, thus qualifying as human-
generated to some extent. Examples include simple sentence structures (e.g., ”Hello World”), fixed-
format phrases (e.g., ”Thank you for your letter”), and fixed patterns (e.g., specific places or names).
This finding suggests that mixed texts are far more common than we expect.

For further verification, we calculate the Jaccard similarity based on sentence words between LLMs
and humans. 100% similarity favors the existence of implicit human-machine mixed text. Fig. 1
presents some results, and full results are in Appendix H.3. Although most MGTs are different
from human-written text, a notable portion of MGTs exhibit over 90% similarity (in fact, 100%)
with human-generated texts, suggesting some sentences are challenging to differentiate. 1 For the
convenience of representation, we will refer to the overlapping part as human-generated text and
implicit mixed text as mixed text.

2.3 DETECTION CHALLENGE OF MIXED TEXT

The existence of (implicit) mixed text requires us to revisit MGT detection. This section theoretically
analyzes the challenges that mixed text poses to detection under the IID setting. The theoretical
results of the non-IID setting are shown in Appendix D.1, and we can obtain similar findings.

In the human-machine mixed text setting, we need to redefine text S in Section 2.1. If the MGT
S contains n sentences S := {si}ni=1, with α representing the proportion of human-generated sen-
tences, then (1 − α)n sentences {si}(1−α)n

i=1 are from m(s) and αn sentences {si}ni=(1−α)n+1 are
from h(s). Besides, the human-generated text S = {si}ni=1 consists of sentences i.i.d. drawn from
human h(s). Consequently, the machine-generated text is S ∼ m⊗(1−α)nh⊗αn(s), denoted as
M(S) for convenience, while the human-generated text is S ∼ h⊗n(s), denoted as H(S). Then,
the best possible detector under the mixed text setting is:

f∗(S) :=

{
Machine Text if M(S) ≥ H(S),

Human Text if M(S) < H(S).

1Notably, 100% Jaccard similarity is only used to demonstrate the existence of mixed text. We neither aim
to calculate an exact proportion of this mixing nor use it as an evaluation criterion. The 100% Jaccard similarity
provides a lower bound on the existence, and a nonzero lower bound confirms that mixed text exists.

3
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Sub-text 1: Cooking begins with selecting and
measuring ingredients according to a recipe or
personal preference.

Filter text: [Sub-text 1] Cooking
begins with selecting and measuring
ingredients according to a recipe or
personal preference. [Sub-text 3]
Finally, the cooked food is often
garnished or seasoned before serving
to enhance its flavor and presentation.

Detector

Unlearnable

Learnable

Human-written

AI-generated

Unknown text

Sub-text

Filter text

Unknown Text: Cooking begins with
selecting and measuring ingredients
according to a recipe or personal
preference. Next, these ingredients are
typically prepared by washing, cutting,
or marinating. Finally, the cooked food
is often garnished or seasoned before
serving to enhance its flavor and
presentation.

Sub-text 2: Next, these ingredients are
typically prepared by washing, cutting, or
marinating.

Sub-text 3: Finally, the cooked food is often
garnished or seasoned before serving to enhance
its flavor and presentation.

Detector

or

(E-step)

(M-step)

Split

Annotation

Filter

⊙

Figure 2: The framework of the proposed stacked detection enhancement framework.

Furthermore, inspired by the existing theoretical results (Chakraborty et al., 2024), we can derive
the sentence complexity bound of MGT detection as follows.

Theorem 1 (Sentence Complexity of Mixed Text Detection under IID Setting). Assume the total
variation distance between the human and machine distributions is TV (m,h) = δ > 0. Let the text
contain n sentences, with α representing the proportion of human-generated sentences in the mixed
text. To achieve an AUROC of ϵ, the required sentences n for the best possible detector is:

n = Ω

(
1

δ2(1− α)2
ln

(
1

1− ϵ

))
.

The proof is given in Appendix E. This theorem reveals that achieving better detection performance
(i.e., large ϵ) requires higher sentence complexity n, aligning with existing findings (Kirchenbauer
et al., 2024). In addition, the detection difficulty (sample complexity n) is directly proportional to
the mixed degree α. When α = 0 (MGTs are completely machine-generated), the detector has
the lowest complexity bound. Therefore, machine-generated text detection requires fewer human-
machine mixed texts, i.e., smaller α. The empirical evidence for this theoretical result is given in
Appendix H.7.

3 PROPOSED METHOD

In this section, we will start with a theoretical enhancement method (Section 3.1) and then gradually
explain how to model it as a stacked detection framework (Section 3.2).

3.1 CONCEPTUAL IMPROVEMENTS

The theoretical results from the previous section inspire us to filter out the human-generated portions
from mixed texts (i.e., reduce α) to boost detection. However, its prerequisite is knowing which texts
are mixed, contradicting the detection goal. Under the setting of Section 2.3, a compromise is to
filter human-generated sequences on a ratio of αs < α from all text (assuming that a reasonable αs

is obtained and the attribution of sentences is known, to be addressed later), the following results
demonstrate the detection improvement by this compromise.

Theorem 2 (Sentence Complexity of Filtering-based Method under IID Setting). Consider the
MGT detection under the assumption of Theorem 1. If we filter an αs (< α) proportion of human-
generated sentences from all texts, then to achieve an AUROC of ϵ, the required sentences n for the
best possible detector is

n = Ω

(
1− αs

δ2(1− α)
ln

(
1

1− ϵ

))
.

Comparing Theorem 2 with Theorem 1, since 1 − αs < 1, the filtering-based method has a lower
complexity for achieving an AUROC of ϵ, indicating the detection enhancement. Besides, when
αs = 0, i.e., no filtering is performed, Theorem 2 degenerates into Theorem 1. The theoretical
result under the non-IID setting is shown in Appendix D.2, where similar findings are obtained.

4
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3.2 STACKED DETECTION ENHANCEMENT FRAMEWORK

Section 3.1 provides a theoretically guaranteed conceptual enhancement framework by filtering
human-generated parts of texts. In this section, we propose a feasible implementation within the
conceptual enhancement framework: the stacked detection enhancement framework, as shown in
Fig. 2. Briefly, the framework first employs a detector to identify and filter human-generated texts
(upper right), and then the same detector is used to make predictions on the refined text (lower
right). Despite its apparent simplicity, it involves carefully designing the optimization objective,
optimization strategy, and detector design. We will introduce them below.

Optimization Objective. Given a dataset D = {(Si, yi)}i, where yi ∈ {0, 1} indicates whether the
given text Si is machine-generated (yi = 1) or human-generated (yi = 0). Assuming the detection
model is parameterized by θ. Section 3.1 shows that a suitable optimization strategy is not to directly
maximize the log-likelihood function log p(yi, Si, θ) w.r.t. the complete text S, but log p(yi, Ŝi, θ),
where Ŝi is the remaining part after text Si is filtered out of some human parts.

To better characterize Ŝi, we introduce vector zi ∈ {0, 1}ni to represent sentences’ labels, where
ni denotes the number of sentences in text Si, and zi,j indicates whether the j-th sentence in Si is
human-generated (zi,j = 0) or machine-generated (zi,j = 1). Therefore, Ŝi = Si ⊙ zi, where ⊙ is
element-wise multiplication. Then the optimization goal of the detection model is to maximize the
marginal likelihood of the observed data:

θ̂ = argmax
θ

∑
(Si,yi)∈D

log
∑

zi
p (yi, Si, zi; θ) . (1)

Optimization Strategy. Considering Eq. (1) is often intractable due to the unobserved zi, a fea-
sible approach is to use the classical Expectation-maximization (EM) algorithm (Dempster et al.,
1977) to find the maximum likelihood estimate of the marginal likelihood by iteratively applying:
(1) Expectation Step (E-step). Compute expectation of the log-likelihood function of θ, with re-
spect to the current conditional distribution of zi given (Si, yi) and estimates of the parameters
θt: Q(θ; θt) :=

∑
(Si,yi)

∑
zi
p(zi|Si, yi; θ

t) log p(yi, Si, zi; θ). (2) Maximization Step (M-step).
Maximize over θ the expectation Q(θ; θt): θt+1 := argmaxθ Q(θ; θt).

However, directly using the EM algorithm is challenging. Specifically, if we remove an αs propor-
tion of human-generated sentences, the space size of zi is

∑αsni

k=0

(
ni

k

)
. Consequently, the number of

forward passes during the E-step is O(2n), which is computationally infeasible. Additionally, since
the space of zi is large, the classic EM algorithm tends to allocate too much probability mass to the
tail, wasting probability mass on unimportant hidden variables (Samdani et al., 2012).

These considerations make it natural to turn to the hard-EM algorithm (Wen et al., 2023). At this
point, the optimization strategy follows the following coordinate ascent algorithm:

• Hard E-step: The E-step can be accomplished in a hard manner by choosing the best-fit zi:

Q(θ; θt) :=
∑

(Si,yi)
log p(yi, Si, zi; θ), where zi = argmax

zi
p(zi|Si, yi; θ

t).

• Hard M-step: Maximize Q(θ, θt) over θ:

θt+1 := argmax
θ

Q(θ; θt).

Compared with the classical EM algorithm, the hard E-step only selects the best-fitting mode, reduc-
ing the computational complexity of Q(θ; θt). Additionally, the hard M-step focuses more on the
important probability mass, which has been proven by many works (Samdani et al., 2012; Parker &
Yu, 2021; Wen et al., 2023) to perform better. Nevertheless, we also provide a classical EM version,
detailed and evaluated in Appendix G and H.9.

Detector Design. We then show how this optimization strategy can be modeled as the stacked
detection framework of Fig. 2. In the hard E-step, we first need to compute the posterior distribution
p(zi|Si, yi; θ

t) of the latent variable zi for text Si, label yi under current parameters θt. However, yi
is unknown. To this end, revisiting the posterior of the zi:

p
(
zi | Si, yi; θ

t
)
=

p (yi | Si, zi; θ
t) p (zi | Si; θ

t)∑
z′
i
p (yi | Si, z′i; θ

t) p (z′i | Si; θt)
.
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We have zi = argmaxzi p (yi | Si, zi; θ
t) p (zi | Si; θ

t), which also requires O(2n) computations.
This motivates us to the approximation of zi. We find that the effect of zi on p (zi | Si; θ

t) is
often much larger than the change in p (yi | Si, zi; θ

t), which allows us to reasonably approximate
zi ≈ argmaxzi p (zi | Si; θ

t), reducing the calculation to O(n) (See Appendix F.2 for the detail dis-
cussion of this approximation). Since zi denotes sentence’s attribution, p(zi|Si; θ

t) can be obtained
by the detection model f(S, θ), and for the j-th sentence’s attribution zi,j , if I(·) is an indicator
function, we have

zi,j = I(f(Si,j , θ
t) ≥ 0.5), (2)

Algorithm 1 Stacked Detection Framework
1: Input: Train data D = {(Si, yi)}Ni=1, the detection

model f(S, θ0), training epochs T , filtering ratio τ ,
E-step detection threshold re, and learning rate η.

2: procedure TRAIN(D, f(S, θ0)) ▷ Training
3: for t = 0 to T − 1 do
4: for each batch of samples DB ∼ D do
5: Calculate Q(θ, θt) according to Eq. (4),

where each ŷi = Inference (Si, f(S, θ
t)).

6: θt+1 = θ + η∇θQ(θ, θt).
7: end for
8: end for
9: Return the trained model f(S, θT ).

10: end procedure
11: procedure INFERENCE(Si, f(S, θ

t)) ▷ Inference
12: Split Si into a set of sequences {Si,j}, where

each Si,j contains at most k sentences.
13: Calculate zi according to Eq. (3).
14: Ŝi = Si ⊙ zi.
15: Return f(Ŝi, θ).
16: end procedure

However, this may not be appropriate in
practical detection scenarios. Firstly, ex-
isting studies (Wang et al., 2023) high-
light the difficulty of sentence-level de-
tection, e.g., identifying the attribution of
”Please sit down!” is difficult. There-
fore, we extend sentence-level detection
to sequence-level (k sentences as a se-
quence (k ≥ 1), and k = 1 represents
sentence level). Here, we borrow the def-
inition of sentences, that is, the number
of sequences is ni, and the j-th sequence
of Si is Si,j . Besides, we need to ensure
the filtering ratio αs ≤ α to avoid mis-
filtering. Therefore, compared with 0.5 in
Eq. (2), a stricter threshold re is needed
to reduce the risk of mistakenly filtering
MGT, i.e., re ≪ 0.5.

Second, we set a maximum filtering ratio
τ to mitigate the risk of incorrect classi-
fication due to unrestricted filtering. For
example, if 9 out of 10 human-generated
sentences are filtered out, classifying the
entire text as machine-generated based on the remaining single sentence is questionable.

Based on these two constraints, the calculation of zi is as follows:
zi,j = I

(
f(Si,j , θ

t) ≥ re and j ∈ Tτni
({f(Si,j′ , θ

t)}j′)
)
, (3)

where Tτni(·) denotes the index set of top τni largest values. Then, we can get the filtered text
Ŝi = Si ⊙ zi. These two constraints reflects the caution: we would rather leave some potential
”noise” in the text than risk removing sequences that contain valuable signals.

Accordingly, the model prediction ŷi = f(Ŝi, θ), and

Q(θ, θt) =
∑

(Si,yi)

yi log (ŷi) + (1− yi) log (1− ŷi) . (4)

In the hard M-step, we need to maximize Q(θ, θt) to update the model parameters, which can be
achieved by gradient ascent with the learning rate η: θt+1 = θt + η∇θQ(θ, θt).

Overall Framework. Alg. 1 shows the algorithm flow. For model inference (Lines 11-16), the de-
tector is first used to perform sequence-level detection to filter confident human-generated sequences
(Lines 12-14), and then detection on the same detector is made on the remaining texts (Line 15). For
model training (Lines 2-10), a hard-EM-inspired method is used (Lines 5-6).

Framework Analysis. The effectiveness of our framework can be understood through the lens of
information bottleneck theory, which states that during forward propagation, a neural network filters
out information irrelevant to the prediction, gradually focusing on the most crucial parts of the input
(Guan et al., 2019). According to this theory, the proposed framework explicitly filters out much
noise information, enabling more efficient learning of key discriminative sequences. A more formal
validity description is given in Appendix F.5. At the same time, Appendix F.5 also understands the
effectiveness from the perspective of attention mechanism and text granularity. Besides, for more
discussion of the proposed framework (e.g., time complexity, limitations, etc), see Appendix F.

6
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Table 1: Performance concerning TPR@FPR-0.5%. Detectors are trained on ChatGPT text.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 80.08±7.56 78.11±10.49 39.12±9.24 94.30±4.04 34.42±5.75 1.60±1.01 54.61
ChatGPT-STK 86.56±9.62 83.61±11.57 46.32±9.41 96.47±3.68 44.98±10.42 4.24±2.98 60.36

OpenAI-D 78.32±39.18 87.70±20.72 70.24±35.62 96.55±5.32 66.70±32.73 22.56±17.88 70.34
OpenAI-STK 96.96±1.83 96.89±1.73 88.48±2.79 98.63±0.94 81.55±7.87 28.24±7.54 81.79

MPU 99.92±0.16 99.26±0.40 67.92±12.35 99.60±0.51 76.14±6.98 59.92±18.84 83.79
MPU-STK 99.92±0.16 99.26±0.40 65.44±16.47 99.60±0.51 79.06±6.65 78.64±19.68 86.99
RADAR 96.88±2.25 96.56±0.56 92.64±4.47 98.96±0.90 65.75±8.58 58.64±8.36 84.90

RADAR-STK 98.16±1.38 95.82±1.78 94.64±3.89 99.12±0.59 70.39±8.22 64.96±7.80 87.18

Reuters

Log-Likelihood 77.84±5.19 14.88±5.98 86.08±3.38 93.76±2.03 11.20±4.45 15.04±6.86 49.80
Rank 48.88±1.59 35.92±2.88 58.40±3.94 40.56±1.85 18.56±2.27 6.24±1.87 34.76

Log-Rank 82.40±5.24 25.92±7.08 90.96±4.12 96.80±0.88 14.00±4.82 17.60±8.29 54.61
DetectGPT 4.40±2.62 0.64±0.54 2.32±1.87 2.56±2.80 0.48±0.47 3.04±1.61 2.24

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 98.00±2.25 94.32±3.97 96.08±2.23 98.48±0.78 59.76±13.36 11.84±6.11 76.41
ChatGPT-STK 99.28±0.39 96.16±1.15 98.08±1.17 98.72±0.47 64.56±8.32 30.32±8.23 81.19

OpenAI-D 96.88±4.26 84.08±9.42 96.56±5.32 98.00±1.13 49.44±5.83 19.92±5.21 74.15
OpenAI-STK 99.52±0.30 95.36±2.19 99.76±0.20 98.48±0.53 62.72±5.44 39.44±7.20 82.55

MPU 100.00±0.00 97.92±1.06 99.92±0.16 99.60±0.25 72.64±7.02 75.68±12.92 90.96
MPU-STK 100.00±0.00 98.08±1.14 100.00±0.00 99.44±0.41 72.80±8.95 84.40±10.39 92.45
RADAR 100.00±0.00 99.92±0.16 99.68±0.30 99.92±0.16 89.68±2.08 95.68±1.53 97.48

RADAR-STK 100.00±0.00 99.92±0.16 99.68±0.30 99.92±0.16 89.68±2.25 95.68±1.53 97.48

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and Baselines. The experiments are conducted on the MGT detection benchmark, MGT-
Bench (He et al., 2023), and we use three datasets: Essay (Verma et al., 2024) and Reuters (Verma
et al., 2024) with implicit mixed text, and SQuAD1 (He et al., 2023) with explicit mixed texts. In Es-
say and Reuters, MGTs are generated by ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and
Claude, while in SQuAD1, MGTs are from ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly,
and StableLM. In addition, we use paraphrasing data from DetectRL (Wu et al., 2024) for robust-
ness evaluation. Baselines include closed-source detector: GPTZero (GPTZero, 2023), feature-
based methods: Log-Likelihood (Solaiman et al., 2019), Rank (Gehrmann et al., 2019), Log-Rank
(Mitchell et al., 2023), DetectGPT (Mitchell et al., 2023), Fast-DetectGPT (F-DetectGPT) (Bao
et al., 2024), as well as model-based detectors: OpenAI-D (Solaiman et al., 2019), ChatGPT-D
(Guo et al., 2023), MPU (Tian et al., 2024), and RADAR (Hu et al., 2023). We apply the proposed
stacked framework to the OpenAI-D, ChatGPT-D, MPU, and RADAR, denoted as OpenAI-STK,
ChatGPT-STK, MPU-STK, and RADAR-STK, respectively. More detailed descriptions and param-
eter settings are given in Appendix H.

Evaluation Metrics. We first use the area under the receiver operating characteristic curve (AU-
ROC). Besides, considering that a low false positive rate (i.e., human-generated texts being misclas-
sified as machines) can mitigate repercussions for users (Fraser et al., 2024), we report performance
as the true positive rate at a fixed false positive rate K (TPR@FPR-K). In the experiments, K is
set to 0.5%. To compare with GPTZero, which outputs hard labels, we also report the performance
concerning Accuracy in Appendix H.6. All experiments are repeated 5 times. The best results are
bolded, and the second-best results are underlined.

4.2 PERFORMANCE COMPARISON

Cross-LLM Performance. The detector usually has no prior knowledge of LLM. Therefore, de-
tectors are trained on texts generated by a specific LLM and tested on texts across various LLMs.
Table 1 presents the comparison of TPR@FPR-0.5% when detectors are trained on ChatGPT texts
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ChatGPT-D ChatGPT-STK

Figure 3: Average detection performance (x-axis) of detectors (ChatGPT-D and our boosting strat-
egy ChatGPT-STK) tested across various LLMs, where these detectors are trained on texts generated
by specific LLM (y-axis).
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Figure 4: Performance (x-axis) of the un-fine-tuned detectors tested on various LLM texts (y-axis).

and tested on various LLM texts. See Table 2 and Table 3 of Appendix H.4 for more performance
comparison results. Firstly, it can be observed that the proposed strategy significantly improves the
detection performance of the original detectors. For example, on the Essay dataset, ChatGPT-STK
increases the TPR@FPR-0.5% of ChatGPT-D from an average of 54.61% to 60.36%. In addition to
the improvement in average performance, for specific LLM text detection (each cell), the proposed
strategy shows enhancement potential in most settings. This property underscores the practicality
of our method, given that real-world scenarios often lack prior knowledge of the specific generative
models involved. Besides, the cross-LLM performance is not necessarily inferior to the intra-LLM
performance in MGT detection. This may depend on the quality of the generated text. For exam-
ple, ChatGLM (cross-LLM) outperforms ChatGPT (intra-LLM). Similar findings are observed in
related work (He et al., 2023). Finally, aligning with existing findings (Wu et al., 2024), feature-
based methods are less effective than model-based methods, echoing the conclusion that manually
designed features struggle to cover the extensive and complex patterns in texts, thus highlighting the
advantages of model-based approaches.

Beyond training on ChatGPT-generated texts, we assess detectors trained extensively on various
other LLM texts. Fig. 3 presents the average performance (x-axis) of detectors (ChatGPT-D and
ChatGPT-STK) tested across various LLMs, with training on different LLM texts (y-axis). Re-
sults for OpenAI-STK, MPU-STK, and RADAR-STK are shown in Fig. 10-12, and more detailed
performances appear in Tables 4-13 in Appendix H.4. The proposed strategy markedly improves
cross-LLM detection capability for these detectors.

Enhancement in a Training-free Manner. Previously, we demonstrated the enhancement effect of
using the proposed stacked framework (architecture + optimization strategy) on existing detectors.
A more stringent setting involves evaluating the enhancement effect on already trained detectors
using only the stacked structure without additional training. Fig. 4 shows the enhancement ef-
fect on ChatGPT-D when only using the proposed stacked structure without fine-tuning (denoted
as ChatGPT-D-No and ChatGPT-STK-No). Encouragingly, even without retraining, the proposed
stacked framework exhibits significant enhancement. This plug-and-play property provides high
flexibility and scalability, making it a practical solution.

Cross-domain Performance. In addition to cross-LLM performance, we also evaluated the cross-
domain performance, with the results shown in Fig. 5. In this evaluation, the Essay dataset served
as the source domain and the Reuters dataset as the target domain. The results indicate that models
employing the proposed enhancement strategy demonstrated superior detection performance in most
setups, strongly supporting the effectiveness of the proposed strategy in improving the detector’s
cross-domain generalization capability.
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Figure 5: Performance under cross-domain setting. The Essay dataset served as the source domain,
and the Reuters dataset as the target domain. The detector is trained on ChatGPT texts.
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Figure 6: Enhancements to GPT2-based
Detector, which is trained on ChatGPT
texts.
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Figure 7: Enhance the robustness of ChatGPT-D. Here
we use three attacks: Dipper, Polish, and Translation.

Enhancement of Auto-regressive-based Detector. Admittedly, the proposed strategy may affect
the performance of auto-regressive-based detectors since filtering will destroy the context at the fil-
tering point. To this end, we use GPT-2 as the detection model (using the last token embedding with
a fully connected layer for binary classification) to explore the impact on auto-regressive models, as
shown in Fig. 6. We can find that the proposed framework still demonstrates enhanced effectiveness.
The possible reason is that the persistent influence of important tokens in the attention mechanism
can alleviate the destructive effect of text structure. For more theoretical discussion, see the second
point of Appendix F.5. This property highlights the broad applicability of the proposed framework.

Robust Performance against Paraphrasing Attack. Existing research (Sadasivan et al., 2023)
generally indicates that MGT detection is susceptible to paraphrase attacks, where attackers attempt
to bypass the detector by rewriting text without altering its semantics. To address this, we evaluated
the robustness enhancement brought by the proposed framework using three types of paraphrase
attack data provided by the DetectRL dataset, with results shown in Fig. 7. For more robustness
evaluation results, please refer to Appendix H.5. It is evident that even in adversarial environments,
the proposed strategy surprisingly enhances the detector’s robustness against these paraphrase at-
tacks, underscoring the broad applicability of the strategy.

5 CONCLUSION

This paper emphasises the importance of human-machine mixed text in MGT detection. Firstly, sta-
tistical analysis of existing datasets has empirically revealed the widespread presence of mixed texts,
even for pure MGTs. Then, we have theoretically demonstrated their negative impact on detection.
Based on our theoretical findings, we have designed a stacked detection enhancement framework.
Through theoretical analysis and extensive experimental evaluation, we have demonstrated the de-
tection enhancement capabilities of the proposed framework. Moreover, the stacked structure can be
seamlessly integrated into existing trained detectors in a training-free manner, thus achieving flexible
enhancement. Notably, our primary technique contribution lies in the conceptual framework (i.e.,
filtering a portion of human-generated text from all texts), and the proposed EM-inspired approach
is merely one feasible implementation within the conceptual framework. This conceptual insight
presents a promising direction for future work to further enhance detection.
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ETHICS STATEMENT

This paper presents work whose goal is to advance MGT detection, and it may potentially have
positive impacts in fields such as news authenticity verification and academic integrity maintenance.
Therefore, it does not involve human subjects, practices to data set releases, potentially harmful in-
sights, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy
and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MGTD. All datasets used
in this study (Essay, Reuters, and SQuAD1) are publicly available. Detailed implementation details
(e.g., learning rate, training epochs, optimizer, and hyperparameters k, τ , and re of the proposed
framework) are provided in the Appendix. We report the average results over five random seeds,
including standard deviations.
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A THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely to help correct grammatical and spelling errors and improve the clarity of the
paper. All technical descriptions, experimental designs, analyses, and conclusions were conceived,
performed, and verified entirely by the authors, without LLMs’ involvement. The authors have
thoroughly reviewed and validated all language model-assisted edits to ensure the accuracy and
integrity of the paper.

B DETAILED DISCUSSION OF OUR CONTRIBUTIONS

Our contribution lies in revealing the existence of implicit human-machine mixed texts and their
theoretical harm to detection, as well as how theoretical results could really help develop better
detection methods even in the presence of mixed texts.

• We reveal the existence of implicit human-machine mixed texts (Section 2.2). Existing works
(Zhang et al., 2024b; Wang et al., 2024) emphasize purely mixed text scenarios, where the text is
a mix of human-written and machine-generated content. However, we extend this to more general
mixed scenarios, even if the text is entirely machine-generated. LLMs, with their advanced gener-
ative capabilities, can produce text indistinguishable from human-written content, thus qualifying
as mixed text to some extent. Considering the difficulty of detecting mixed texts (Zhang et al.,
2024b), this study highlights that the actual detection challenge may be far more severe than rec-
ognized, advocating for attention to (implicit) mixed text detection, even when the text is entirely
machine-generated.

• We theoretically demonstrate the impact of mixed texts on detection (Section 2.3). Intuitively,
the human-generated text mixed into MGT acts as noise, and ignoring its treatment may affect
detection. Existing work (Zhang et al., 2024b; Wang et al., 2024) has empirically shown that
detecting such mixed texts is challenging, lacking theoretical guarantees in machine learning.
Therefore, we take the first step to provide a theoretical guarantee of the impact of mixed texts
on detection. This theoretical foundation is not only more general but also systematically reveals
the mechanism by which mixed texts affect the performance of detection models, guiding the
development of more effective detection strategies (i.e., our stacked detection framework).

• We develop a theoretically inspired detection enhancement framework (Section 3), which
involves ensuring theoretical validity (Section 3.1), revisiting the detection optimization objec-
tive, and the balance between the feasibility and efficiency of the optimization process (Section
3.2). Notably, our primary technique contribution and novelty lies in the conceptual framework
rather than just specific implementation details (i.e., EM algorithm). Although our current imple-
mentation is based on the hard-EM algorithm, this is merely one feasible implementation within
the framework; alternatives include using EM algorithm variants Neal & Hinton (1998); Cheung
(2005) and variational inference Jordan et al. (1999). This conceptual insight and framework
design can inspire future research in this field.

• We demonstrate our effectiveness from both theoretical and experimental aspects (Section
3.1, 4, and H). Theorem 2 and 4 provide theoretical bounds for the proposed framework, and they
have a smaller complexity when compared with Theorem 1 and 3. Extensive experiments on cross-
LLM, cross-domain, and resistance to paraphrasing attacks demonstrate the enhancement of the
proposed framework. Remarkably, the proposed strategy can also enhance detection in a training-
free manner (i.e., simply configuring the proposed stacked structure without optimization). This
plug-and-play property makes it more flexible and scalable.

C RELATED WORKS

Existing detection efforts can be categorized into watermark-based, language feature-based, and
deep learning-based methods (Fraser et al., 2024).
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The watermarks hidden in the text indicate that the text is AI-generated. Existing work (Kirchen-
bauer et al., 2023) suggested mildly promoting the use of predefined ”green” tokens during text
generation and proposed a statistical test method to detect watermarks. Unigram-Watermark (Zhao
et al., 2024) was proposed by extending existing approaches with a simplified fixed grouping strat-
egy. Obviously, watermark-based methods require high privileges over the model, which limits their
wide applicability. Furthermore, recent work (Zhang et al., 2024a; Jovanović et al., 2024) has shown
that strong watermarking is difficult to achieve and is vulnerable to watermark attacks.

Language feature-based methods exploit the unique properties of text to distinguish between natural
and generated text. DetectGPT (Mitchell et al., 2023) based on the observation that minor perturba-
tions in generated text result in a lower log probability for the rewritten text than the original sample.
Similar work (Solaiman et al., 2019) achieved good performance by detecting based on the higher
log probabilities of generated text compared to natural text. Through analyzing the characteristics of
generated text, existing work (Guo et al., 2023) found that responses from ChatGPT tend to be more
objective, formal, and less emotional. In addition, the intrinsic dimension of the text is a good metric
(Tulchinskii et al., 2024), where the average intrinsic dimension of the generated text is about 1.5
lower than that of natural text. These methods, based on specific data (generative models), extract
different features and struggle to comprehensively consider the features of generated text.

Deep learning-based methods do not involve explicit feature extraction but instead use the entire text
as input, allowing the detector to learn implicit features during training. The energy-based model
was utilized to differentiate between real and generated text (Tulchinskii et al., 2024). Recent work
found that smaller and partially trained language models are better general detectors of machine-
generated text (Mireshghallah et al., 2023), and the detector should maximize performance for more
advanced generation models (Pagnoni et al., 2022). Considering the difficulty existing detection
models have in capturing the factual structure of documents, a graph-based model (Zhong et al.,
2020) was proposed to represent the factual structure of a given document. SeqXGPT (Wang et al.,
2023) used a probability list from open-source models as input for the detector model, rather than
the raw text itself. These methods focus on supervised training of specific data, and extensive re-
search has found that under these settings, the models’ generalization ability significantly decreases
(Liang et al., 2023; Ippolito et al., 2020). For example, Detectors frequently misclassify texts writ-
ten by non-native English speakers (Liang et al., 2023). Besides, certain categories, such as recipes,
are easier to detect than others, such as stories or news (Tulchinskii et al., 2024). Different sam-
pling strategies also significantly affect detection performance, with texts generated using nucleus
sampling being the most challenging to detect (Ippolito et al., 2020).

D MORE THEORETICAL RESULTS

D.1 SENTENCE COMPLEXITY OF MIXED TEXT DETECTION UNDER NON-IID SETTING

Following the non-IID setting from Section 2.1, assume that text S contains L independent se-
quences {vi}Li=1, where each sequence vi consists of ci dependent sentences. This assumption is
reasonable due to factors such as topic independence and context switching. Then, we can derive
the following result.
Theorem 3 (Sentence Complexity of Mixed Text Detection under Non-IID Setting). Assume the
total variation distance between the human and machine distributions is TV (m,h) = δ > 0. Let
the text contain n sentences, with α representing the proportion of human-generated sentences in
the mixed text. To achieve an AUROC of ϵ, the required sentences n for the best possible detector is:

n = Ω

 1

(1− α)2δ2
ln

(
1

1− ϵ

)
+

1

(1− α)δ

L∑
j=1

(cj − 1)ρj

+

 1

(1− α)3δ3
·

 L∑
j=1

(cj − 1) ρj

 · ln
(

1

1− ϵ

)1/2
 .

(5)

We can get similar findings as Theorem 1. Besides, when the dependence coefficient ρj = 0 for all
j, then Theorem 3 under the non-IID setting degenerates into Theorem 1 under the IID setting. In
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summary, Theorem 1 and Theorem 3 inspire us that machine-generated text detection requires fewer
human-machine mixed texts.

D.2 SENTENCE COMPLEXITY OF FILTERING-BASED METHOD UNDER NON-IID SETTING

Theorem 4 (Sentence Complexity of Filtering-based Method under Non-IID Setting). Consider
the MGT detection under the assumption of Theorem 3. If we filter an αs (< α) proportion of human-
generated sentences from all texts, then to achieve an AUROC of ϵ, the required sentences n for the
best possible detector is

n = Ω

 1− αs

(1− α)2δ2
ln

(
1

1− ϵ

)
+

1

(1− α)δ

L∑
j=1

(cj − 1)ρj

+

 1− αs

(1− α)3δ3
·

 L∑
j=1

(cj − 1) ρj

 · ln
(

1

1− ϵ

)1/2
 .

E PROOFS

E.1 PROOF OF THEOREM 1

Proof. Our proof follows the proof of Theorem 1 in existing work (Chakraborty et al., 2024). First,
according to our assumption, the Total Variance Distance TV (m,h) between machine-generated
sentence distribution and human-generated sentence distribution is δ where δ > 0. According to the
definition of TV distance, there exists some set A ∈ S such that given the sentences sm ∼ m(s) and
sh ∼ h(s), it holds

p(sm ∈ A)− p(sh ∈ A) = δ

If we set p
(
sh ∈ A

)
= q, it implies that p (sm ∈ A) = q+δ. For convenience, we define β = 1−α,

which denotes the proportion of machine-generated sentences in the human-machine mixed text.
Then, in the human-machine mixed text of n sentences {si}ni=1, βn sentences {si}βni=1 are from
m(s) and αn sentences {si}ni=βn+1 are from h(s). Given p

(
sh ∈ A

)
= q and p (sm ∈ A) = q+ δ,

we can deduce that, on average, (q + βδ)n number of sentences will be in A. Similarly, for purely
human-generated text of n sentences {si}ni=1 from h(s), on average, qn number of sentences will
be in A. Therefore, applying the Chernoff bound, we have

P
(

at least
(
q +

βδ

2

)
n sentences of human-machine mixed text are in A

)
≤ exp−

β2δ2n
2 (6)

and

P
(

at most

(
q +

βδ

2

)
n sentences of human-generated text are in A

)
≤ exp−

β2δ2n
2 (7)

Let A′ denote the set of n-tuples containing more than
(
q + βδ

2

)
n sentences of A. If the mixed

text distribution is defined as m⊗βnh⊗αn and the human-generated text distribution is h⊗n, we can
bound

TV
(
m⊗βnh⊗αn, h⊗n

)
≥ p

(
{smi }βni=1 ∪ {shi }αni=1 ∈ A′

)
− p

({
shi
}n
i=1

∈ A′
)

≥
(
1− exp−

β2δ2n
2

)
− exp−

β2δ2n
2

= 1− 2 exp−
β2δ2n

2 .

(8)
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Invoking existing theoretical result (Proposition 1 in Chakraborty et al., 2024), we have

AUROC ≤ 1

2
+ TV

(
m⊗βnh⊗αn, h⊗n

)
−

TV
(
m⊗βnh⊗αn, h⊗n

)2
2

(9)

If we need the AUROC of the best possible detector to satisfy AUROC ≥ ϵ, then we need

1

2
+ TV

(
m⊗βnh⊗αn, h⊗n

)
−

TV
(
m⊗βnh⊗αn, h⊗n

)2
2

≥ ϵ (10)

Since the left-hand side is the monotonically increasing function of TV
(
m⊗βnh⊗αn, h⊗n

)
, com-

bined with Eq. (8), it holds from the minimum value that

1

2
+

(
1− 2 exp−

β2δ2n
2

)
−

(
1− 2 exp−

β2δ2n
2

)2
2

≥ ϵ (11)

After expanding the squares and rearranging the terms, we get

1− ϵ

2
≥ exp−nβ2δ2 (12)

Taking the logarithm of both sides of the inequality and sorting them, we can get

n ≥ 1

β2δ2
ln

(
2

1− ϵ

)
=

1

(1− α)2δ2
ln

(
2

1− ϵ

)
(13)

The theorem is proved.

E.2 PROOF OF THEOREM 3

Proof. This proof also follows the existing work (Chakraborty et al., 2024). First, we need to intro-
duce a lemma from existing work (Dhurandhar, 2013) to support our proof.

Lemma 5. Let n be the number of samples drawn sequentially from P (S1, S2 · · ·Sn) =
∏L

j=1 τj ,
where τj are independent subsets consisting of cj dependent sequences

(
s1, s2 · · · scj

)
such that∑L

j=1 cj = n. Under dependence structure in (16), for any δ >
∑L

l=1(cj−1)ρj

n , it holds that

P(S̄ − E[S̄] ≥ δ) ≤ exp
−2
(
nδ −

∑L
j=1 (cj − 1) ρj

)2
n

P(E[S̄]− S̄ ≥ δ) ≤ exp
−2
(
nδ −

∑L
j=1 (cj − 1) ρj

)2
n

where S̄ = 1
n

∑n
n=1 si and E [Si | Si−1 = si−1, · · · , S1 = s1] =

ρ
i−1

∑i−1
k=1 sk + (1− ρ)E [Si].

This lemma provides a theoretical upper bound in the non-iid setting. When the dependence strength
ρ = 0, it degenerates to the Chernoff bound.

Based on this lemma, we can follow a similar proof in the iid setting. If we set p
(
sh ∈ A

)
= q,

it implies that p (sm ∈ A) = q + δ. For convenience, we define β = 1 − α, which denotes the
proportion of machine-generated sentences in the human-machine mixed text. Then, in the human-
machine mixed text of n sentences {si}ni=1, βn sentences {si}βni=1 are from m(s) and αn sentences
{si}ni=βn+1 are from h(s). Given p

(
sh ∈ A

)
= q and p (sm ∈ A) = q + δ, we can deduce that,

on average, (q + βδ)n number of sentences will be in A. Similarly, for purely human-generated
text of n sentences {si}ni=1 from h(s), on average, qn number of sentences will be in A. Therefore,
applying the above lemma, we have
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P
(

at least
(
q +

βδ

2

)
n sentences of mixed text are in A

)
≤ exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n (14)

and

P
(

at most

(
q +

βδ

2

)
n sentences of human-written text are in A

)
≤ exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n

(15)

Let A′ denote the set of n-tuples containing more than
(
q + βδ

2

)
n sentences of A. If the mixed text

distribution is defined as m⊗βnh⊗αn and the human-generated text distribution is h⊗n, we have

TV
(
m⊗βnh⊗αn, h⊗n

)
≥ p

(
{smi }βni=1 ∪ {shi }αni=1 ∈ A′

)
− p

({
shi
}n
i=1

∈ A′
)

≥

(
1− exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n

)
− exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n

= 1− 2 exp
−2(βn δ

2
−

∑L
j=1(cj−1)ρj)

2

n .

(16)

If we need the AUROC of the best possible detector to satisfy AUROC ≥ ϵ, then we need

1

2
+ TV

(
m⊗βnh⊗αn, h⊗n

)
−

TV
(
m⊗βnh⊗αn, h⊗n

)2
2

≥ ϵ (17)

Since the left-hand side is the monotonically increasing function of TV
(
m⊗βnh⊗αn, h⊗n

)
, com-

bined with Eq. (16), it holds from the minimum value that

1

2
+

(
1− 2 exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n

)
−

(
1− 2 exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n

)2

2
≥ ϵ (18)

After expanding the squares and rearranging the terms, we get

1− ϵ

2
≥ exp

−4(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

n (19)

Let’s denote α =
∑L

j=1 (cj − 1) ρj and γ(ϵ) = ln
(

2
1−ϵ

)
. Further rearranging, we get

ln γ(ϵ) ≤ 4

n

(
βn

δ

2
− α

)2

= nβ2δ2 − 4αβδ +
4

n
α2 (20)

Further rearranging the terms, we can get
β2δ2n2 − n (4βαδ + γ(ϵ)) + 4α2 ≥ 0 (21)

The solution of the quadratic equation is given by

n ≥ γ(ϵ)

2β2δ2
+ 2

α

βδ
+

1

2β2δ2

√
(4αβδ + γ(ϵ))2 − 16α2β2δ2

=
γ(ϵ)

2β2δ2
+ 2

α

βδ
+

1

2β2δ2

√
γ(ϵ)2 + 8αβδγ(ϵ)

=
γ(ϵ)

2β2δ2
+ 2

α

βδ
+

1

2β2δ2

√
2γ(ϵ)2 + 16αβδγ(ϵ)

2

≥ γ(ϵ)

2β2δ2
+ 2

α

βδ
+

1

2β2δ2

(√
2γ(ϵ) + 4

√
αβδγ(ϵ)

2

)

=
(2 +

√
2)γ(ϵ)

4β2δ2
+ 2

α

βδ
+

√
αγ(ϵ)

β3δ3

(22)
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If using the order notation, we will obtain

n = Ω

 1

(1− α)2δ2
ln

(
1

1− ϵ

)
+

1

(1− α)δ

L∑
j=1

(cj − 1)ρj

+

 1

(1− α)3δ3
·

 L∑
j=1

(cj − 1) ρj

 · ln
(

1

1− ϵ

)1/2
 .

(23)

Then the theorem is proved.

E.3 PROOF OF THEOREM 2

Proof. Similar to the proof for Theorem 1, if we define p
(
sh ∈ A

)
= q, it implies that

p (sm ∈ A) = q + δ. Then, in the human-machine mixed text of (1− αs)n sentences {si}(1−αs)n
i=1 ,

where βn sentences {si}βni=1 are from m(s) and (α − αs)n sentences {si}(1−αs)n)
i=βn+1 are from h(s).

Given p
(
sh ∈ A

)
= q and p (sm ∈ A) = q+ δ, we can deduce that, on average, (1−αs)qn+ βδn

number of sentences will be in A. Similarly, for human-generated text, we collect (1 − αs)n sen-
tences {si}(1−αs)n

i=1 from h(s) and on average (1− αs)qn number of sentences will be in A. There-
fore, applying the Chernoff bound, we have

P
(

at least
(
(1− αs)q +

βδ

2

)
n sentences of mixed text are in A

)
≤ exp−

β2δ2n
2(1−αs) (24)

and

P
(

at most

(
(1− αs)q +

βδ

2

)
n sentences of human-written text are in A

)
≤ exp−

β2δ2n
2(1−αs)

(25)

Let A′ denote the set of (1−αs)n-tuples containing more than
(
(1− αs)q +

βδ
2

)
n sentences of A.

If the mixed text distribution is defined as m⊗βnh⊗(α−αs)n, and the human-generated distribution
is h⊗(1−αs)n, we can bound

TV
(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)
≥ p

(
{smi }βni=1 ∪ {shi }

(α−αs)n
i=1 ∈ A′

)
− p

({
shi
}(1−αs)n

i=1
∈ A′

)
≥
(
1− exp−

β2δ2n
2(1−αs)

)
− exp−

β2δ2n
2(1−αs)

= 1− 2 exp−
β2δ2n

2(1−αs) .

If we define βs =
β√

1−αs
, then TV

(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)
≥ 1− 2 exp−

β2
sδ2n

2 . Similar to
the proof of Theorem 1, we have

n ≥ 1

β2
sδ

2
ln

(
2

1− ϵ

)
=

1− αs

(1− α)2δ2
ln

(
2

1− ϵ

)
(26)

The theorem is proved.

E.4 PROOF OF THEOREM 4

Proof. Similar to the proof for Theorem 3, if we define p
(
sh ∈ A

)
= q, it implies that

p (sm ∈ A) = q + δ. Then, in the human-machine mixed text of (1− αs)n sentences {si}(1−αs)n
i=1 ,
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where βn sentences {si}βni=1 are from m(s) and (α − αs)n sentences {si}(1−αs)n)
i=βn+1 are from h(s).

Given p
(
sh ∈ A

)
= q and p (sm ∈ A) = q+ δ, we can deduce that, on average, (1−αs)qn+ βδn

number of sentences will be in A. Similarly, for human-generated text, we collect (1 − αs)n sen-
tences {si}(1−αs)n

i=1 from h(s) and on average (1− αs)qn number of sentences will be in A. There-
fore, applying Lemma 5, we have

P
(

at least
(
(1− αs)q +

βδ

2

)
n sentences of mixed text are in A

)
≤ exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

(27)
and

P
(

at most

(
(1− αs)q +

βδ

2

)
n sentences of human text are in A

)
≤ exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

(28)

Let A′ denote the set of (1−αs)n-tuples containing more than
(
(1− αs)q +

βδ
2

)
n sentences of A.

If the mixed text distribution is defined as m⊗βnh⊗(α−αs)n, and the human-generated distribution
is h⊗(1−αs)n, we can bound

TV
(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)
≥ p

(
{smi }βni=1 ∪ {shi }

(α−αs)n
i=1 ∈ A′

)
− p

({
shi
}(1−αs)n

i=1
∈ A′

)
≥

(
1− exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

)
− exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

= 1− 2 exp
−2(βn δ

2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n .
(29)

If we need the AUROC of the best possible detector to satisfy AUROC ≥ ϵ, we need

1

2
+
(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)
−
(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)2
2

≥ ϵ (30)

Since the left-hand side is the monotonically increasing function of
TV

(
m⊗βnh⊗(α−αs)n, h⊗(1−αs)n)

)
, combined with Eq. (29), it holds from the minimum

value that

1

2
+

(
1− 2 exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

)
−

(
1− 2 exp

−2(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n

)2

2
≥ ϵ (31)

After expanding the squares and rearranging the terms, we get

1− ϵ

2
≥ exp

−4(βn δ
2
−

∑L
j=1(cj−1)ρj)

2

(1−αs)n (32)

Let’s denote α =
∑L

j=1 (cj − 1) ρj and γ(ϵ) = (1− αs) ln
(

2
1−ϵ

)
. Further rearranging, we get

ln γ(ϵ) ≤ 4

n

(
βn

δ

2
− α

)2

= nβ2δ2 − 4αβδ +
4

n
α2 (33)

Then similar to the proof of Theorem 3 and using (1− αs) ln
(

2
1−ϵ

)
to replace ln

(
2

1−ϵ

)
, we have

n = Ω

 1− αs

(1− α)2δ2
ln

(
1

1− ϵ

)
+

1

(1− α)δ

L∑
j=1

(cj − 1)ρj

+

 1− αs

(1− α)3δ3
·

 L∑
j=1

(cj − 1) ρj

 · ln
(

1

1− ϵ

)1/2
 .
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The theorem is proved.

F MORE DISCUSSION OF THE PROPOSED FRAMEWORK

F.1 THEORETICAL RESULTS

Relation between Theory and Detection Methods. The proposed theoretical bounds aimed at ex-
ploring the relationship between maximum detection potential and data (mixed texts), rather than
specific detection methods. This data-driven perspective allows us to propose a conceptually en-
hanced framework rather than designing specific detectors, making it more applicable. Therefore, in
the paper, we are pleased to see enhancements to various detection methods, rather than proposing
a specific detection method.

Relation between Theory and the Proposed Stacked Enhancement Framework. Theorem 1
and 3 reveal that the detection challenge (sample complexity n) is directly proportional to the mixed
degree α. This finding motivates us to filter human parts in mixed texts (i.e., reduce the mixed degree
α) to enhance detection, which is the core idea of the proposed framework. Meanwhile, Theorem 2
and 4 provide theoretical bounds for the proposed framework. They have a smaller complexity when
compared with Theorems 1 and 3 (Theorem 1 vs. 2, Theorem 3 vs. 4), thus theoretically proving its
enhanced effectiveness.

F.2 RATIONALITY OF THE APPROXIMATION OF zi

In the main text, we argue the effect of different zi on p(zi|Si; θ
t) is usually much greater than

p(yi|Si, zi; θ
t), which allows us to reasonably approximate zi ≈ argmaxzi p(zi|Si; θ

t). We use
proof by contradiction to show that this approximation is mild.

Specifically, let z1 = argmaxzi p(zi|Si; θ
t), z2 = argmaxzi p(yi|Si, zi; θ

t)p(zi|Si; θ
t). If

the approximation is unreasonable, then z1 ̸= z2, let us assume that there are k positions be-
tween z1 and z2 that are different. For a well-trained detector, the detection results are usually
close to 0 or 1. For example, it is reasonable to assume that p(zi,j |Si; θ

t) > 0.95 or < 0.05,
which is often more serious in reality. Then, we know p(z1|Si; θ

t) > 20kp(z2|Si; θ
t). If

z2 = argmaxzi p(yi|Si, zi; θ
t)p(zi|Si; θ

t) ̸= z1, then at least p(yi|Si, z1; θ
t) > 20kp(yi|Si, z2; θ

t)
must be satisfied. Since p(yi|Si, z1; θ

t) represents the detection probability of paragraph Si ⊙ z1,
this means that modifying two subsequences of a paragraph can change the detection probability by
a factor of 400, which is generally difficult. Therefore, our approximation is mild.

F.3 DIFFERENCES FROM EXISTING MIXED TEXT DETECTION WORKS

Despite some recent attention (Zhang et al., 2024b; Wang et al., 2024) to human-machine mixed text
detection, our work differs significantly from them in several key aspects:

• Scenario. Different from previous research focused solely on pure mixed texts combining human-
written and machine-generated content, we extend our investigation to implicit human-machine
mixed texts: even if the text is entirely machine-generated, LLMs, with their advanced generative
capabilities, can produce text indistinguishable from human-written content. Considering the dif-
ficulty of detecting mixed texts, our work highlights that the actual detection challenge may be far
more severe than recognized, even when the text is entirely machine-generated.

• Evaluation. Previous studies experimentally demonstrated the challenges of mixed text detection
in specific datasets, lacking theoretical guarantees in machine learning. Accordingly, our work
takes the first step to theoretically elucidate the detrimental impact of mixed texts on detection ef-
forts. Furthermore, our theoretical findings help identify factors influencing detection and inspire
innovative detection algorithms.

• Methodology. Unlike previous research, which did not design detectors specifically for mixed-
text scenarios, we propose a theory-inspired enhancement strategy. This strategy is applicable to
existing model-based detectors and has been extensively validated through comprehensive exper-
iments.
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F.4 DIFFERENCES FROM OTHER HARD-EM-BASED METHODS

Although hard-EM has also been used in areas such as weak supervision to estimate unknown
(noisy) labels, our application is tailored specific to MGT detection. Specifically, in MGT detection,
it is necessary to jointly model multiple subsequences. Directly applying hard-EM here requires
enumerating all possible label combinations for these sequences, yielding an exponential complex-
ity of O(2n), where n is the number of subsequences. To this end, we leverage the fact that the
effect of zi on p(zi|Si; θt) is often much larger than the change in p(yi|Si, zi; θt), and introduce a
mild assumption zi ≈ argmaxzi p(zi|Si; θ

t), thereby reducing the estimation problem back to a
linear, tractable O(n).

F.5 FORMAL DESCRIPTION OF THE PROPOSED FRAMEWORK’S VALIDITY

The effectiveness of the proposed framework can be understood from three aspects: information
bottleneck theory, attention mechanism, and the granularity of text processing:

• Bottleneck theory, which states that during forward propagation, a neural network filters out
information irrelevant to the prediction, gradually focusing on the most crucial parts of the input
(Guan et al., 2019). According to this theory, the effectiveness of existing detectors in mixed
texts arises from the layer-by-layer filtering of noise information (i.e., human-generated text in
machine-generated text). Our proposed stacked framework explicitly filters out a large portion of
noise information, enabling more efficient learning of key discriminative sequences. Let us denote
information in a random variable Z as I(Z), the machine part text in the mixed text S as Sm, the
original detector and our enhanced version as forigin and four, then we have I(S) ≥ I(Ŝ) ≥
I(Sm) ≥ I(four(Sm)) according to the architecture in the framework. Furthermore, according
to the prediction goal of the detector, we have I(four(Sm)) = I(forigin(S)). Therefore, I(S) ≥
I(Ŝ) ≥ I(Sm) ≥ I(four(Sm)) = I(forigin(S)).

• Attention mechanism. Existing theoretical results (Theorem 3.1 in (Liu et al., 2023)) establish
the time consistency of attention weights: if the l-th token’s attention weight αt,l is large at step
t, it αt+1,l likely remains large at step t + 1. Thus, once important tokens are identified, they
continue to impact detection, regardless of other unimportant tokens. Corresponding to the pro-
posed framework, since it retains the key machine text (i.e., the important tokens that determine
the prediction as machine) in the mixed text, these influential sub-sequences consistently affect
detection over time, even if the other human text (tokens that are not important for prediction as
machine) is removed.

• Granularity of text processing. Most models default to categorizing a text S as either machine
or human (the format S, where S ∼ h(S) or m(S)), while we refine this to the sentence level (the
format S = [s1; s2; ...; sn] where each si ∼ h(s) or m(s)). This allows us to focus on key local
inconsistencies between machine-generated and human-generated text during detection, leading
to better detection. Our work takes the first step from the paragraph level to the sentence level, but
undeniably, an even finer granularity is to further understand from sentence level to clause level
(the format si = ”a1, a2, ..., and an” where each ai ∼ h(s) or ai ∼ m(s)), which may provide
valuable insights for future detection enhancements.

The effectiveness of the proposed framework can also be understood from the granularity of text
processing. Specifically, most models default to categorizing a text S as either machine or human
(the format S, where S ∼ h(S) or m(S)), while we refine this to the sentence level (the format S =
[s1; s2; ...; sn] where each si ∼ h(s) or m(s)). This allows us to focus on key local inconsistencies
between machine-generated and human-generated text during detection, leading to better detection.
Our work takes the first step from the paragraph level to the sentence level, but undeniably, an
even finer granularity is to further understand from sentence level to clause level (the format si =
”a1, a2, ..., and an” where each ai ∼ h(s) or ai ∼ m(s)), which may provide valuable insights
for future detection enhancements.

F.6 TIME COMPLEXITY

For Transformer-based detectors, assuming the text length is N and the embedding dimension is d,
the time complexity of the original detector is O(dN2). In our stacked detection framework, the
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E-step divides the long text into several sequences of lengths {Ni}i, resulting in a time complexity
of O(

∑
i dN

2
i ) = O(dN2), which is usually lower than that of the original detector in practice. For

the M-step, the complexity is also O(dN2). Since the length of the filter text does not exceed N , it
is also not higher than that of the original detector. Therefore, our complexity is O(dN2), and the
actual running time does not exceed twice that of the original detector. We will further discuss the
time complexity from the perspective of empirical experiments in Appendix H.12.

F.7 LIMITATION

The proposed framework has the following potential limitations:

• To maintain the framework’s flexibility and efficiency, we adopt a simple fixed-length sequence
approach, which may split non-independent sequences. Encouragingly, extensive experimental
results (Table 1-14) demonstrate that this straightforward approximation strategy already achieves
satisfactory enhancement effects. Even so, this indeed presents a promising direction for future
work to further enhance detection.

• The proposed framework is applied only to model-based detectors, but its core idea of filtering
human portions from mixed texts is universal, which may inspire future research.

• The effectiveness of the proposed stacked framework lies in accurately determining whether a
subsequence belongs to the MGT in the first step. If a detector is incapable of recognizing subse-
quences (i.e., very weak detectors), we cannot guarantee our effectiveness. However, the signif-
icance of enhancing such detectors is minimal, as poor detection capability makes them difficult
to apply in practice. We encourage more attention to enhancing detectors that perform well.

• The proposed method is generally limited to short texts. We believe that starting with paragraph-
level detection and exploring shorter texts in future research is promising and likely to be an
ongoing trend.

G SOFT STACKED DETECTION ENHANCEMENT FRAMEWORK

In addition to the default stacked detection framework optimized by the hard EM algorithm, we
provide a soft (traditional) EM version. For the soft E-step, we calculate the expected value of the
log-likelihood function of θ, with respect to the current conditional distribution of zi given (Si, yi)
and the current estimates of the parameters θt:

Q(θ; θt) :=
∑

(Si,yi)∈D

∑
zi

p(zi|Si, yi; θ
t) log p(yi, Si, zi; θ).

For the posterior distribution p(zi|Si, yi; θ
t), similar to the approximation of the hard-EM ver-

sion, we approximate p(zi|Si, yi; θ
t) ≈ p(zi|Si; θ

t). This can be predicted by the detection model
f(S, θ), i.e.,

p(zi | Si; θ
t) :=

ni∏
j=1

f
(
Si,j , θ

t
)zi (

1− f
(
Si,j , θ

t
))1−zi

For each zi, we can model p(yi|Si, zi; θ) as:

p(yi|Si, zi; θ) = f(Si ⊙ zi, θ)

Therefore, we have

Q(θ, θt) =
∑

(Si,yi)

∑
zi

ni∏
j=1

f
(
Si,j , θ

t
)zi (

1− f
(
Si,j , θ

t
))1−zi

(yi log (f(Si ⊙ zi, θ)) + (1− yi) log (1− f(Si ⊙ zi, θ)))

(34)

In the M-step, we need to maximize Q(θ, θt) to update the model parameters:

θt+1 = argmax
θ

Q(θ, θt), (35)
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Algorithm 2 Soft Stacked Detection Enhancement Framework
1: Input: Train data D = {(Si, yi)}Ni=1, the detection model f(S, θ0), training epochs T , filtering

ratio τ , E-step detection threshold re, and learning rate η.
2: procedure TRAIN(D) ▷ Detector Training
3: for t = 0 to T − 1 do
4: for each batch of samples DB ∼ D do
5: Calculate Q(θ, θt) according to Eq. (34). ▷ E-step
6: θt+1 = θ + η∇θQ(θ, θt). ▷ M-step
7: end for
8: end for
9: Return the trained model f(S, θT ).

10: end procedure
11: procedure INFERENCE(Si, f(S, θ

t)) ▷ Detector Inference
12: Split Si into a set of sequences {Si,j}, where each Si,j contains at most k sentences.
13: Calculate zi according to Eq. (3).
14: Ŝi = Si ⊙ zi.
15: Return f(Ŝi, θ).
16: end procedure

which can be updated by the gradient descent algorithm.

For the inference phase, we use the same processing as the hard version described in the main text
and calculate zi according to Eq. (3), and the model’s prediction is f(Si ⊙ zi, θ). The detailed
algorithm flow is shown in Alg. 2. Besides, an experimental evaluation of this version is given in
Appendix H.9.

H ADDITIONAL EXPERIMENTS

H.1 DATASETS AND BASELINES

The detailed descriptions of the dataset are shown as follows:

• Essay (Verma et al., 2024). This dataset comprises 1,000 samples derived from essays found on
IvyPanda, spanning a range of subjects and educational levels, from high school to university.
For the dataset construction, the researchers employ ChatGPT-turbo to create a < prompt > that
aligns with each essay’s content. Subsequently, this crafted prompt serves as input for various
LLMs (ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude) to produce correspond-
ing essays. This process allows for the generation of diverse essay samples based on the original
content.

• Reuters (Verma et al., 2024). This dataset is based on the Reuters 50-50 authorship identification
dataset, encompassing 1,000 news articles authored by 50 different journalists, with each con-
tributing 20 pieces. Similar to the generated process of the Essay dataset, the researchers initially
utilized ChatGPT-turbo to generate a < headline > for each article. These generated headlines
were then employed to formulate prompts, which were subsequently used to query various LLMs
(ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude) to produce MGTs.

• SQuAD1 (He et al., 2023). This dataset is derived from the SQuAD1 dataset (Rajpurkar, 2016)
and comprises 1000 entries of context-based inquiries. Each entry features a single human-
provided response alongside six answers generated by LLMs (ChatGPT, GPT-4, ChatGPT-turbo,
ChatGLM, StableLM). To simulate the mixed text scenario, each sample in this dataset is concate-
nated into a question and an answer, e.g., Q1+human answer, Q1+machine answer. Therefore, the
common question part makes them considered as mixed text, and the question parts can be con-
sidered human texts.

• DetectRL (Wu et al., 2024). The text of this dataset is collected from arXiv academic abstracts,
XSum news, Writing Prompts stories, and Yelp Reviews, and MGTs are generated using four
LLMs: GPT-3.5-turbo (ChatGPT), PaLM-2-bison (PaLM), Claude-instant (Claude), and Llama-
2-70b (Llama-2). The paraphrased text is generated by Dipper paraphraser (Krishna et al., 2023),

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Polish (polished using LLM), and Back Translation (Google Translate from English to Chinese
and then to English).

All datasets are randomly divided into the training, validation, and test sets with a ratio of 2: 1: 1.

The specific details of the baseline methods are shown as follows:

• GPTZero (GPTZero, 2023). It is a commercially available AI detector that employs an end-to-
end deep learning approach, trained on text datasets from the web, education, and AI generated
from a range of LLMs.

• Likelihood (Solaiman et al., 2019). It is a simple “zero-shot” baseline using a threshold on the
total probability of an LLM. Here, the LLM is gpt2-medium.

• Rank (Gehrmann et al., 2019). It uses a threshold on the average rank of words to identify whether
the text is sampled from the top of the distribution of the LLM. Here gpt2-medium is also adopted.

• Log-Rank (Mitchell et al., 2023). It uses a threshold on the average log-rank of each word in the
text, and the calculated LLM is also gpt2-medium.

• DetectGPT (Mitchell et al., 2023). It assumes that the text generated by LLM is usually located
near the local minimum point in the log-probability range of the model, and thus evaluates the text
by quantifying how small perturbations affect the log-probability under LLM.

• Fast-DetectGPT (Bao et al., 2024). The idea is similar to DetectGPT, but a more efficient sam-
pling step is used to replace the perturbation step of DetectGPT.

• ChatGPT-D (Guo et al., 2023). It uses pure answered text or QA pairs to train a detection model
(here using the RoBERTa model) using the HC3 dataset.

• OpenAI-D (Solaiman et al., 2019). It fine-tunes a RoBERTa model with GPT2-generated texts,
which is designed mainly for detecting GPT2 outputs.

• MPU (Tian et al., 2024). It proposes a Multiscale Positive-Unlabeled (MPU) training framework
and is trained with MPU from a pretrained RoBERTa-Base model.

• RADAR (Hu et al., 2023). It learns a robust detection model by using adversarial training of a
paraphraser and a detector, where the paraphraser aims to generate realistic content to evade AI
text detection, while the detector tries to detect such content.

H.2 IMPLEMENTATION DETAILS

For fair comparison, both the model-based baselines (i.e., ChatGPT-D, OpenAI-D, MPU, RADAR)
and the enhanced version are fine-tuned on the training set and use the same hyperparameters.
Specifically, all detection models are fine-tuned for 5 epochs, and the Adam optimizer is used for
training, with a learning rate of 5e-5. By default, for ChatGPT-STK, the E-step detection threshold
re is set to 0.01 in Essay, Reuters, and SQuAD1 datasets, the length k is set to 3, 3, 1, and the
maximum filter ratio τ is set to 0.2, 0.2, and 0.8. For OpenAI-STK, the E-step detection threshold
re is set to 0.01, 0.005, 0.005 in Essay, Reuters, and SQuAD1 datasets, the length k is set to 4, 4, 1,
and the maximum filter ratio τ is set to 0.5. For MPU-STK and RADAR-STK, the E-step detection
threshold re is set to 0.005 in Essay, Reuters, and SQuAD1 datasets, the length k is set to 7, 3, 1,
and the maximum filter ratio τ is set to 0.5. For more parameter analysis, see Appendix H.11. No-
tably, the default settings are obtained through grid search, aiming to show the maximum potential
of detection enhancement. Our sensitivity analysis (Appendix H.11) shows that compared to the
original detection models (with the x-axis value of 0), the enhanced models generally outperform
them across various hyperparameter settings, reducing the need for performance tuning and have
wide practical applicability. For the sentence split, we use the sent tokenize function from the nltk
tool library to divide texts into sentences. For feature-based methods, we use the default implemen-
tation of MGTBench 2. The experiments are conducted on a PC with an Inter(R) Xeon(R) Gold
6230 CPU @ 2.10GHz, 60GB memory, and a NVIDIA Tesla V100.

2https://github.com/xinleihe/MGTBench
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Figure 8: Sencence word’s Jaccard similarity between human-written texts and MGTs in the Essay
dataset. A notable portion with over 90% overlap indicates the existence of implicit human-machine
mixed text.
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Figure 9: Sencence word’s Jaccard similarity between human-written texts and MGTs in the Reuters
dataset. A notable portion with over 90% overlap indicates the existence of implicit human-machine
mixed text.

H.3 ADDITIONAL RESULTS FOR IMPLICITLY MIXED TEXT

It is worth noting that the Jaccard similarity is calculated as follows: for each MGT sentence in the
dataset, the human-generated sentences in the dataset are traversed, and the sentence with the great-
est Jaccard similarity to the MGT sentence is selected as the Jaccard similarity between the MGT
and the human text. Fig. 8 and Fig. 9 show the Jaccard similarity of words in LLMs and human-
generated sentences in two pure MGT datasets (the SQuAD1 dataset consists of explicit mixed text
and is therefore not evaluated). It can be seen that even with a small amount of human text used for
evaluation, using this strict similarity, the existence of implicit mixed text can be demonstrated.

H.4 MORE RESULTS FOR PERFORMANCE COMPARISON

In addition to the performance comparison of detectors trained on ChatGPT texts shown in Table 1
in the main text, we also extensively evaluated the effectiveness of the detectors trained on different
LLM texts to demonstrate the versatility of the proposed strategy. The results of these evaluations
are presented in Table 2-13. From these tables, it is evident that the proposed strategy effectively
enhances original detectors (i.e., ChatGPT-D, OpenAI-D, and MPU) in most settings. For exam-
ple, the proposed strategy demonstrates a significant improvement for ChatGPT-D in approximately
98% of the settings (194 out of 198), and it offers a competitive improvement for OpenAI-D in ap-
proximately 86% of the settings (169 out of 198). The widespread enhancement on unknown LLM
texts underscores the practical applicability of the proposed strategy, as it aligns more closely with
real-world scenarios.

In addition to the enhancements shown in Fig. 3 for ChatGPT-D, Fig. 10-12 demonstrate the
improved performance for three other model-based detectors used in the experiments, OpenAI-D,
MPU, and RADAR. We observe similar findings as in Section 4.2, where the original models’ de-
tection performance is enhanced in most settings, with a more pronounced improvement for weaker
detectors.

H.5 MORE RESULTS FOR ROBUSTNESS COMPARISON

In addition to the robustness results shown in the main text, Fig. 13 shows the robust performance on
OpenAI-D. It can be seen that the proposed strategy can also improve the robustness of the detection
model in adversarial environments, which is very valuable.
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Figure 10: Average detection performance (x-axis) of detectors (OpenAI-D and our boosting strat-
egy OpenAI-STK) tested across various LLMs, where these detectors are trained on texts generated
by specific LLM (y-axis).
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Figure 11: Average detection performance (x-axis) of detectors (MPU and our boosting strategy
MPU-STK) tested across various LLMs, where these detectors are trained on texts generated by
specific LLM (y-axis).

H.6 PERFORMANCE COMPARISON W.R.T. ACCURACY

In addition to demonstrating the performance in terms of TPR@FPR-0.5% and AUROC, we also
present a performance comparison in terms of accuracy to compare with GPTZero, as shown in Table
14. Consistent with the previous results, the proposed enhancement strategy significantly improves
detection accuracy in most settings. For example, in the Essay dataset, the accuracy of OpenAI-D
increased from 91.86 to 92.64. Moreover, the zero-shot performance of GPTZero is inferior to the
fine-tuned model-based detectors. This is particularly evident in the SQuAD1 dataset, which has
more mixed texts, indicating its limitations in detecting mixed texts.

H.7 PERFORMANCE COMPARISON UNDER DIFFERENT MIXED DEGREES

We constructed explicit mixed test texts with different mixing levels based on the Essay dataset.
Specifically, for each test text in the Essay dataset, we replaced n random sentences (ranging from
1 to 5) with human-written ones for the same prompt. The detection performance is presented in
Table 14. First, as the level of text mixing increases, all detectors’ performance gradually decreases,
which verifies our theoretical results that mixed text hurts detection. Second, the superiority of
the proposed enhancement framework becomes significant, underscoring the inherent challenge of
mixed text detection and highlighting the effectiveness of our method.

H.8 VISUALIZATION

To more intuitively demonstrate the effectiveness of the proposed enhancement framework, we use
t-SNE tool to visualize the last hidden state of ChatGPT-D (first row) and ChatGPT-STK (second
row) when detecting different LLM texts (different columns), as shown in Fig. 15. Firstly, it can be
observed that compared with the original detectors (first row), the enhanced detectors (second row)
can better distinguish between human and machine texts. Secondly, MGTs lack diversity compared
to human texts, which is consistent with existing findings (Fröhling & Zubiaga, 2021).
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Figure 12: Average detection performance (x-axis) of detectors (RADAR and our boosting strategy
RADAR-STK) tested across various LLMs, where these detectors are trained on texts generated by
specific LLM (y-axis).

Table 2: Performance concerning TPR@FPR-0.5%. Detectors are trained on ChatGPT text.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.35±0.69 0.36±0.48 0.47±0.44 0.58±0.73 0.58±0.37 0.81±0.28 0.52

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.39±1.07 1.19±0.84 1.64±1.07 0.81±0.46 1.28±1.13 5.43±1.85 1.96
ChatGPT-STK 1.16±0.73 4.52±1.67 1.17±0.64 0.81±0.46 1.51±1.36 6.01±3.61 2.53

OpenAI-D 41.85±16.81 45.00±18.20 37.54±16.76 29.48±11.36 58.02±24.87 72.83±14.76 47.45
OpenAI-STK 44.86±17.81 50.48±23.10 41.64±21.26 29.83±13.42 66.40±22.81 73.41±12.49 51.10

MPU 30.64±27.70 29.40±29.38 51.23±29.07 23.01±18.60 61.05±31.23 58.38±13.31 42.28
MPU-STK 37.80±17.68 67.26±22.09 59.88±22.36 28.44±12.41 59.65±30.22 57.92±11.15 51.83
RADAR 27.05±14.62 30.71±10.01 34.27±10.12 19.54±13.00 31.74±4.38 29.48±11.57 28.80

RADAR-STK 33.18±11.40 32.26±8.40 38.25±5.54 24.16±9.88 32.33±1.93 33.53±11.31 32.28

H.9 COMPARISON WITH SOFT STACKED DETECTION ENHANCEMENT FRAMEWORK

This section compares two EM-inspired detection enhancement frameworks to highlight the ratio-
nality of the hard EM-based approach. Due to the significant memory and computational costs of the
soft version, we only experimented on the SQuAD1 dataset with fewer sequence numbers, setting
the sequence number to 2. The results are shown in Fig. 16, where variants with the ”soft” suffix
represent the soft version. As can be seen, the overall performance of the soft version is inferior
to the hard version, which aligns with many existing findings (Samdani et al., 2012; Parker & Yu,
2021; Wen et al., 2023) that the soft EM algorithm tends to allocate too much probability mass
to the tail, wasting probability mass on unimportant hidden variables, thereby resulting in poorer
performance. Additionally, the soft version is competitive on the poorer-performing ChatGPT-D
but underperforms on the stronger detectors (OpenAI-D and MPU). This observation is consistent
with existing findings (Spitkovsky et al., 2010) that for better parameter models, EM tends to drift
further than hard EM (thus losing accuracy). In summary, the experimental results demonstrate the
rationality of optimization based on the hard EM algorithm.

H.10 ENHANCEMENTS TO SENTENCE-BASED DETECTOR

In this section, we apply the proposed strategy to the sentence-based detector SeqXGPT (Wang
et al., 2023), and the results are shown in Table 15. First, the proposed framework significantly
boosts SeqXGPT’s detection performance, demonstrating the flexibility and broad effectiveness of
our method. Second, while SeqXGPT outperforms feature-based approaches (Table 3), it is less
competitive among model-based methods. We suspect that its direct approach of aggregating sen-
tence labels may not be optimal for paragraph-level detection. For instance, it is likely to classify
mixed text as human text, which might be inappropriate.

H.11 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

Sensitivity of Sequence Length k. Fig. 17 illustrates the detection performance comparison under
different sequence lengths (number of sentences per sequence). Notably, on the x-axis, 0 indicates
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Table 3: Performance concerning AUROC. Detectors are trained on ChatGPT text.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 98.71±0.98 98.14±1.63 91.31±2.24 99.73±0.16 86.39±7.11 48.70±11.69 87.16
ChatGPT-STK 98.98±1.26 98.41±1.91 92.78±1.29 99.80±0.25 89.96±6.56 61.59±13.52 90.25

OpenAI-D 99.55±0.78 99.73±0.34 99.25±0.53 99.87±0.20 98.59±0.86 87.63±2.72 97.44
OpenAI-STK 99.87±0.14 99.82±0.13 99.57±0.10 99.95±0.03 98.75±0.44 90.64±1.32 98.10

MPU 100.00±0.01 99.91±0.07 98.63±0.21 99.99±0.02 97.74±0.46 98.14±0.55 99.07
MPU-STK 100.00±0.00 99.91±0.07 98.50±0.27 99.99±0.01 98.07±0.39 99.41±0.29 99.31
RADAR 99.93±0.02 99.78±0.09 99.85±0.05 99.97±0.02 97.61±0.59 98.22±0.26 99.22

RADAR-STK 99.94±0.03 99.72±0.13 99.86±0.06 99.97±0.01 97.88±0.62 98.20±0.42 99.26

Reuters

Log-Likelihood 97.59±0.37 74.85±0.50 98.54±0.38 99.54±0.22 60.09±2.13 85.66±1.04 86.05
Rank 84.00±0.88 74.12±1.24 91.82±0.60 70.97±1.65 54.88±2.45 67.78±1.14 73.93

Log-Rank 97.86±0.35 79.95±0.29 98.82±0.37 99.65±0.20 61.24±2.15 84.88±1.13 87.07
DetectGPT 92.78±1.34 85.71±2.02 49.24±1.65 91.59±1.67 83.41±1.73 66.59±2.53 78.22

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 99.79±0.23 99.14±0.65 99.64±0.37 99.46±0.49 89.21±5.80 68.66±12.94 92.65
ChatGPT-STK 99.89±0.17 99.29±0.48 99.86±0.20 99.54±0.17 91.13±3.36 84.61±6.87 95.72

OpenAI-D 99.80±0.20 99.46±0.31 99.82±0.20 99.68±0.23 96.95±0.51 87.26±1.08 97.16
OpenAI-STK 99.99±0.01 99.83±0.07 100.00±0.00 99.83±0.12 98.00±0.37 91.69±1.10 98.22

MPU 100.00±0.00 99.81±0.08 99.99±0.02 99.99±0.01 97.55±0.63 98.69±0.35 99.34
MPU-STK 100.00±0.00 99.80±0.14 100.00±0.00 99.98±0.01 98.02±0.58 99.36±0.36 99.53
RADAR 100.00±0.00 100.00±0.00 99.99±0.01 99.99±0.02 99.60±0.20 99.82±0.11 99.90

RADAR-STK 100.00±0.00 100.00±0.00 99.99±0.01 99.99±0.01 99.60±0.20 99.82±0.11 99.90

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 52.60±2.74 47.47±1.42 52.05±1.87 50.88±2.47 50.24±2.20 51.12±2.44 50.73

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 56.27±1.38 43.03±2.98 54.69±1.29 53.76±1.57 54.41±1.32 63.75±2.58 54.32
ChatGPT-STK 56.99±0.85 58.55±1.43 55.14±1.48 55.03±1.41 55.28±0.59 64.33±1.40 57.55

OpenAI-D 99.19±0.28 99.34±0.27 98.63±0.75 94.95±1.21 97.74±0.28 99.53±0.22 98.23
OpenAI-STK 99.30±0.28 99.31±0.28 98.73±0.75 94.90±0.98 97.84±0.39 99.62±0.15 98.28

MPU 98.61±0.54 98.79±0.71 98.71±0.83 93.53±1.36 96.45±0.94 98.85±0.48 97.49
MPU-STK 98.70±0.35 99.21±0.59 98.74±0.73 93.71±1.47 96.51±0.77 98.84±0.45 97.62
RADAR 82.07±1.92 80.63±1.26 81.19±1.82 78.14±1.21 77.76±2.07 81.53±2.07 80.22

RADAR-STK 83.45±1.85 81.46±1.00 83.17±0.73 79.05±0.96 79.00±1.69 82.37±2.33 81.42
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Figure 13: Enhance the robustness of OpenAI-D. Here we use three attacks: Dipper, Polish, and
Translation.

the original detector without the proposed strategy configured. From the figure, we observe that
within a certain range of sequence lengths, detection performance improves as the sequence length
increases. This is because short sequences are difficult to detect, and longer sequences allow for
better identification of human-generated text within mixed texts, thus enhancing detection accuracy.
However, when the sequence length becomes excessively long, performance starts to decline. We
suspect that when the sequence length increases too much, human text is more likely to be mixed
with machine-generated text, which causes the proportion of pure human text to decrease and, in
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Table 4: Performance concerning AUROC. Detectors are trained on GPT-4 texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 99.38±0.45 99.43±0.65 91.96±3.77 99.96±0.03 94.81±2.35 68.44±12.85 92.33
ChatGPT-STK 99.66±0.12 99.66±0.06 93.04±1.65 99.92±0.07 94.63±1.05 72.64±2.02 93.26

OpenAI-D 99.72±0.34 99.66±0.26 98.51±0.73 99.89±0.14 98.39±0.83 81.29±4.23 96.24
OpenAI-STK 99.84±0.22 99.81±0.16 99.15±0.58 99.95±0.04 98.44±1.14 86.54±5.25 97.29

MPU 99.99±0.01 99.95±0.03 98.77±0.34 99.99±0.01 98.02±0.37 97.09±0.60 98.97
MPU-STK 99.99±0.00 99.91±0.09 98.83±0.21 99.99±0.01 98.15±0.29 97.92±0.57 99.13
RADAR 99.92±0.02 99.89±0.05 99.89±0.10 99.98±0.01 98.66±0.24 98.98±0.26 99.55

RADAR-STK 99.93±0.01 99.91±0.04 99.90±0.08 99.98±0.01 98.99±0.23 99.09±0.23 99.63

Reuters

Log-Likelihood 97.59±0.37 74.85±0.50 98.54±0.38 99.54±0.22 60.09±2.13 85.66±1.04 86.05
Rank 84.00±0.88 74.12±1.24 91.82±0.60 70.97±1.65 54.88±2.45 67.78±1.14 73.93

Log-Rank 97.86±0.35 79.95±0.29 98.82±0.37 99.65±0.20 61.24±2.15 84.88±1.13 87.07
DetectGPT 92.78±1.34 85.71±2.02 49.24±1.65 91.59±1.67 83.41±1.73 66.59±2.53 78.22

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 99.59±0.53 99.29±0.78 99.37±0.57 99.07±0.76 90.45±3.16 67.02±7.87 92.47
ChatGPT-STK 99.73±0.17 99.56±0.36 99.39±0.51 99.65±0.24 92.08±0.68 74.16±7.11 94.10

OpenAI-D 99.65±0.44 99.63±0.44 99.63±0.42 99.58±0.48 98.51±0.78 80.91±1.35 96.32
OpenAI-STK 99.76±0.25 99.82±0.20 99.78±0.25 99.75±0.24 99.09±0.43 83.85±2.12 97.01

MPU 100.00±0.00 99.94±0.05 100.00±0.00 99.99±0.01 99.48±0.33 97.62±0.97 99.51
MPU-STK 100.00±0.00 99.90±0.09 100.00±0.00 99.99±0.01 99.39±0.27 98.13±0.77 99.57
RADAR 100.00±0.00 100.00±0.00 99.96±0.02 100.00±0.01 99.53±0.16 99.66±0.14 99.86

RADAR-STK 100.00±0.00 100.00±0.00 99.96±0.02 100.00±0.01 99.53±0.16 99.66±0.14 99.86

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 49.18±3.68 52.08±2.03 48.92±2.56 50.32±2.60 48.93±1.94 49.87±2.69 49.88

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 57.52±0.82 61.68±3.26 55.34±0.48 54.90±0.69 55.55±1.19 66.07±2.47 58.51
ChatGPT-STK 57.38±0.50 59.11±0.81 55.74±0.67 55.09±0.41 55.50±0.82 66.01±1.32 58.14

OpenAI-D 91.19±1.69 99.72±0.16 89.44±1.71 86.38±1.76 88.06±1.10 96.31±1.27 91.85
OpenAI-STK 99.45±0.23 99.05±0.46 98.85±0.73 95.83±0.83 98.09±0.25 99.71±0.17 98.50

MPU 73.14±5.54 99.11±0.50 69.43±6.64 68.98±5.69 71.34±5.03 87.73±2.94 78.29
MPU-STK 99.11±0.19 98.96±0.74 98.91±0.56 94.88±1.20 97.53±0.47 99.10±0.23 98.08
RADAR 82.32±2.14 80.70±0.82 81.86±1.18 78.54±0.60 78.42±2.00 82.04±2.07 80.65

RADAR-STK 83.62±1.57 82.09±1.48 83.29±1.39 79.50±0.99 80.05±1.83 82.79±1.96 81.89
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Figure 14: Performance concerning TPR@FPR-5% at different mixing levels. These detectors are
trained on ChatGPT texts.

turn, become more difficult to detect accurately. Therefore, for most detectors, k = 3 or 4 serves as
a good compromise. Furthermore, we observe that when detector performance is poor—such as on
SQuAD1—a smaller k is necessary for better exploration. In such cases, we recommend k = 1 or
2.

Sensitivity of Filter Ratio τ . Fig. 18 presents the comparison of detection performance across dif-
ferent filter ratios τ . The results show that as the filtering ratio increases, detection performance ini-
tially improves and then declines. This supports our motivation for introducing this hyperparameter.
Specifically, excessively removing human-generated text can result in short sequences dominating
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Table 5: Performance concerning FPR@TPR-0.5%. Detectors are trained on GPT-4 texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 89.92±5.69 89.75±7.23 43.52±19.38 99.04±0.70 55.54±10.95 8.24±5.98 64.33
ChatGPT-STK 90.88±1.39 93.61±1.77 48.80±3.50 99.04±1.03 56.65±3.69 8.40±1.29 66.23

OpenAI-D 82.08±30.45 86.56±12.64 71.04±27.40 97.75±2.94 70.64±26.78 18.48±12.66 71.09
OpenAI-STK 95.68±5.07 95.16±3.43 82.48±16.97 97.75±1.86 78.28±14.75 30.80±16.05 80.03

MPU 99.44±0.32 99.51±0.40 73.04±6.10 99.44±0.41 78.80±2.72 55.36±5.44 84.26
MPU-STK 99.52±0.39 99.43±0.56 74.08±6.42 99.52±0.30 79.66±4.67 67.36±12.94 86.59
RADAR 97.28±1.32 95.98±2.54 96.80±2.01 99.20±0.51 81.37±7.64 77.44±9.59 91.35

RADAR-STK 97.92±0.69 96.23±2.62 97.36±1.30 99.36±0.32 82.49±6.18 78.80±8.18 92.03

Reuters

Log-Likelihood 77.84±5.19 14.88±5.98 86.08±3.38 93.76±2.03 11.20±4.45 15.04±6.86 49.80
Rank 48.88±1.59 35.92±2.88 58.40±3.94 40.56±1.85 18.56±2.27 6.24±1.87 34.76

Log-Rank 82.40±5.24 25.92±7.08 90.96±4.12 96.80±0.88 14.00±4.82 17.60±8.29 54.61
DetectGPT 4.40±2.62 0.64±0.54 2.32±1.87 2.56±2.80 0.48±0.47 3.04±1.61 2.24

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 85.76±23.50 82.08±30.65 81.92±29.00 83.04±31.12 54.96±20.38 9.28±6.55 66.17
ChatGPT-STK 94.48±3.66 93.60±6.28 90.00±5.58 97.92±1.11 56.08±14.30 8.88±8.47 73.49

OpenAI-D 79.84±38.52 83.84±27.78 79.68±37.85 79.36±38.68 61.92±23.84 16.96±7.37 66.93
OpenAI-STK 86.48±25.04 94.00±9.82 87.04±24.12 96.08±5.45 72.24±13.89 26.16±6.47 77.00

MPU 100.00±0.00 99.12±0.64 99.92±0.16 99.84±0.20 88.40±6.73 67.44±16.46 92.45
MPU-STK 100.00±0.00 99.12±0.64 100.00±0.00 99.68±0.30 86.64±4.03 65.28±13.06 91.79
RADAR 99.92±0.16 100.00±0.00 99.04±1.12 99.92±0.16 92.16±2.66 90.96±3.28 97.00

RADAR-STK 99.92±0.16 100.00±0.00 99.04±1.12 99.92±0.16 92.16±2.66 90.88±3.33 96.99

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.58±0.52 1.31±1.02 0.12±0.23 0.58±0.63 0.58±0.64 0.46±0.43 0.60

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.27±0.92 4.40±1.17 0.94±0.70 0.69±0.23 1.63±0.85 5.09±1.34 2.34
ChatGPT-STK 1.04±0.67 4.05±1.38 1.17±0.52 1.04±0.57 1.86±1.19 7.75±4.24 2.82

OpenAI-D 9.60±6.35 88.93±13.08 10.88±8.84 7.63±4.41 20.58±7.94 52.83±23.86 31.74
OpenAI-STK 49.02±11.18 38.57±21.65 46.08±16.91 35.26±8.20 69.53±16.99 83.58±7.79 53.67

MPU 5.20±6.26 92.14±9.53 2.34±1.57 4.51±5.26 9.77±2.79 27.05±13.30 23.50
MPU-STK 54.22±18.76 46.31±31.59 54.85±15.39 43.70±14.10 69.30±22.98 58.73±25.58 54.52
RADAR 35.61±9.70 29.88±10.88 38.48±3.40 28.09±8.28 33.14±3.23 33.87±8.37 33.18

RADAR-STK 39.77±6.43 31.55±11.45 42.22±2.32 31.79±5.32 36.28±2.46 36.30±7.33 36.32
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Figure 15: The t-SNE visualization of the last hidden state of ChatGPT-D (first line) and ChatGPT-
STK (second line) when detecting different LLM texts (different columns). These detectors are
trained on ChatGPT texts.

the prediction of the entire text, which can lead to mispredictions. Consequently, 0.5 serves as a
suitable compromise.

Sensitivity of Confidence Threshold rs. Fig. 19 illustrates the comparison of detection perfor-
mance under different confidence thresholds rs. In practical classification tasks, a threshold of 0.5 is
commonly used. However, as discussed in Section 3.2, due to the difficulty of detecting short texts
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Table 6: Performance concerning AUROC. Detectors are trained on GPT-turbo texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 97.11±0.39 96.26±2.23 96.66±1.76 99.62±0.15 80.88±7.54 66.73±17.76 89.54
ChatGPT-STK 96.86±1.34 96.37±0.90 96.53±1.33 99.48±0.31 83.37±5.26 67.94±15.24 90.09

OpenAI-D 99.77±0.31 99.87±0.08 99.83±0.32 99.88±0.16 98.51±0.81 97.62±0.92 99.25
OpenAI-STK 99.73±0.15 99.75±0.14 99.91±0.15 99.89±0.11 97.93±0.66 97.82±0.85 99.17

MPU 99.86±0.05 99.79±0.10 99.97±0.02 99.93±0.04 94.38±0.53 98.55±0.19 98.75
MPU-STK 99.85±0.04 99.74±0.13 99.96±0.03 99.91±0.05 93.57±0.80 98.03±0.33 98.51
RADAR 99.88±0.05 99.82±0.05 99.97±0.02 99.98±0.00 97.03±0.64 98.13±0.26 99.14

RADAR-STK 99.87±0.07 99.81±0.06 99.97±0.02 99.98±0.00 97.15±0.95 98.13±0.65 99.15

Reuters

Log-Likelihood 97.59±0.37 74.85±0.50 98.54±0.38 99.54±0.22 60.09±2.13 85.66±1.04 86.05
Rank 84.00±0.88 74.12±1.24 91.82±0.60 70.97±1.65 54.88±2.45 67.78±1.14 73.93

Log-Rank 97.86±0.35 79.95±0.29 98.82±0.37 99.65±0.20 61.24±2.15 84.88±1.13 87.07
DetectGPT 74.86±34.84 69.99±29.66 48.45±0.95 74.21±33.87 68.96±27.57 58.45±14.49 65.82

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 99.12±0.82 98.01±0.98 99.52±0.48 99.02±0.50 81.10±6.36 70.01±19.60 91.13
ChatGPT-STK 99.19±0.78 98.11±0.72 99.65±0.42 99.11±0.47 82.17±6.04 75.57±17.69 92.30

OpenAI-D 99.78±0.37 99.49±0.45 99.79±0.36 99.72±0.30 96.88±0.80 86.58±3.28 97.04
OpenAI-STK 99.96±0.01 99.58±0.11 99.99±0.00 99.78±0.14 95.84±0.91 92.77±1.47 97.99

MPU 100.00±0.00 99.74±0.17 100.00±0.00 99.97±0.01 97.30±0.68 99.29±0.29 99.38
MPU-STK 100.00±0.00 99.71±0.22 100.00±0.00 99.95±0.03 97.11±0.57 99.68±0.21 99.41
RADAR 100.00±0.00 100.00±0.00 99.99±0.01 99.99±0.01 99.61±0.16 99.84±0.09 99.90

RADAR-STK 100.00±0.00 100.00±0.00 99.99±0.01 99.99±0.01 99.61±0.16 99.84±0.09 99.91

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 49.94±3.77 48.22±2.29 50.12±2.77 51.15±2.35 50.92±2.02 49.83±2.68 50.03

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 58.69±0.60 41.91±2.79 57.44±0.65 55.98±0.35 55.61±0.43 65.41±1.86 55.84
ChatGPT-STK 57.78±1.56 59.87±1.17 56.56±1.09 56.06±1.24 56.23±0.85 66.53±1.93 58.84

OpenAI-D 99.43±0.33 99.30±0.38 98.51±0.81 95.88±1.18 98.06±0.40 99.58±0.23 98.46
OpenAI-STK 99.43±0.42 99.32±0.32 98.45±0.86 95.98±1.13 98.04±0.41 99.60±0.24 98.47

MPU 98.59±0.82 98.80±0.68 98.43±0.94 94.27±1.94 96.61±0.68 98.60±0.87 97.55
MPU-STK 98.63±0.81 99.23±0.68 98.38±0.94 94.28±1.92 96.53±0.73 98.65±0.91 97.62
RADAR 82.20±2.31 80.49±1.02 81.25±1.39 78.44±0.74 77.80±1.91 81.56±2.58 80.29

RADAR-STK 82.95±2.70 80.98±1.16 82.09±1.42 79.03±0.53 78.67±2.06 81.97±2.97 80.95
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Figure 16: The performance (TPR@FPR-0.5% or AUROC) of detectors modeled and optimized
by the traditional (soft) EM algorithm and the hard EM algorithm. The suffix ”soft” indicates the
traditional EM algorithm; otherwise, the default hard EM algorithm. The detector is trained on
different LLM texts (x-axis) and reports the average performance tested on various LLM texts (six
LLM texts).

and the unknown proportion of human-generated text in the mixed text, a smaller threshold is nec-
essary. This can effectively mitigate the misclassification, prevent critical MGT from being filtered
out, and thereby avoid a decline in detection performance. Sensitivity analysis of this parameter
supports this observation, indicating that 0.5 is not an optimal choice and a smaller value is needed.
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Table 7: Performance concerning TPR@FPR-0.5%. Detectors are trained on GPT-turbo texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 60.72±14.49 71.48±4.55 65.36±17.74 85.78±7.09 23.18±4.53 1.68±0.89 51.37
ChatGPT-STK 63.68±15.32 66.39±7.37 65.92±13.67 88.92±6.98 20.86±10.25 1.68±1.02 51.24

OpenAI-D 79.12±37.59 98.11±1.12 79.76±39.29 98.55±1.21 70.90±32.85 59.28±31.57 80.96
OpenAI-STK 95.44±2.82 96.56±1.90 99.76±0.48 98.23±1.21 70.99±13.03 74.00±15.92 89.16

MPU 95.36±1.94 96.97±1.61 98.24±0.82 98.63±1.07 57.34±6.19 66.72±14.28 85.54
MPU-STK 95.92±1.98 95.98±2.60 98.24±0.90 98.63±0.94 58.54±5.27 65.36±13.32 85.45
RADAR 95.76±1.57 94.67±2.06 98.08±1.39 98.96±0.54 63.26±4.51 62.32±8.83 85.51

RADAR-STK 95.76±1.87 95.57±1.59 98.32±1.11 99.12±0.64 64.64±5.05 61.52±10.33 85.82

Reuters

Log-Likelihood 77.84±5.19 14.88±5.98 86.08±3.38 93.76±2.03 11.20±4.45 15.04±6.86 49.80
Rank 48.88±1.59 35.92±2.88 58.40±3.94 40.56±1.85 18.56±2.27 6.24±1.87 34.76

Log-Rank 82.40±5.24 25.92±7.08 90.96±4.12 96.80±0.88 14.00±4.82 17.60±8.29 54.61
DetectGPT 2.64±1.53 0.32±0.30 1.20±1.07 0.96±0.82 0.88±1.06 2.88±1.85 1.48

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 77.60±24.67 74.48±24.64 76.24±28.15 76.00±29.72 37.52±15.02 24.72±22.20 61.09
ChatGPT-STK 93.60±4.55 88.96±5.73 96.64±3.56 97.68±1.20 39.76±10.49 25.44±16.75 73.68

OpenAI-D 82.88±32.04 81.12±18.73 81.84±34.33 88.08±20.85 48.08±11.99 22.24±5.85 67.37
OpenAI-STK 98.32±0.59 83.84±3.66 99.52±0.30 98.16±0.48 38.08±6.02 37.36±2.91 75.88

MPU 100.00±0.00 98.40±0.76 100.00±0.00 99.20±0.36 72.72±4.80 91.44±2.13 93.63
MPU-STK 100.00±0.00 98.40±0.80 100.00±0.00 98.96±0.41 70.80±6.48 94.72±3.76 93.81
RADAR 100.00±0.00 100.00±0.00 99.68±0.30 99.92±0.16 91.36±2.30 95.84±1.73 97.80

RADAR-STK 100.00±0.00 100.00±0.00 99.68±0.30 99.92±0.16 91.44±2.31 95.84±1.73 97.81

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.46±0.67 0.48±0.45 0.47±0.44 0.58±0.73 0.81±0.59 0.69±0.43 0.58

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.27±0.43 1.07±0.87 1.17±0.83 0.81±0.59 1.16±0.74 5.32±3.88 1.80
ChatGPT-STK 1.73±1.75 3.81±1.53 1.87±0.44 1.50±1.58 1.51±1.31 6.59±4.18 2.84

OpenAI-D 51.21±23.65 51.07±22.43 32.28±19.01 39.88±18.98 62.67±26.90 76.18±12.19 52.22
OpenAI-STK 53.41±26.65 51.90±20.23 32.98±18.26 41.39±20.40 60.58±27.86 72.25±14.07 52.09

MPU 41.16±29.06 17.02±6.63 46.78±23.16 33.06±23.42 41.86±25.14 51.33±23.66 38.54
MPU-STK 46.71±29.55 66.43±24.57 48.07±22.73 37.23±24.65 41.40±25.34 55.84±22.94 49.28
RADAR 28.32±13.89 30.48±9.01 33.45±10.05 21.97±11.86 29.88±5.56 26.94±13.33 28.51

RADAR-STK 28.90±15.02 32.14±9.55 36.37±7.51 21.27±13.05 31.63±5.01 30.06±13.26 30.06
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Figure 17: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different sequence lengths (sentences per sequence). We train the detector on various texts
(different lines) and report the average performance tested on various LLM texts. An x-coordinate
of 0 indicates the original detector OpenAI-D.

Besides, the result shows that the proposed strategy is relatively insensitive to smaller thresholds,
making 0.005–0.05 a promising range in practice.

H.12 RUNNING TIME

Table 16 compares the running time (training time and inference time) between the original detectors
and the enhanced versions, fine-tuned for 5 epochs. The results are consistent with the complexity
analysis discussed in Section F.6, indicating that the actual running time of the proposed enhance-
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Table 8: Performance concerning AUROC. Detectors are trained on ChatGLM texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 97.86±0.63 95.40±2.44 90.65±1.69 99.90±0.16 79.10±6.61 33.03±7.16 82.66
ChatGPT-STK 98.45±0.40 97.08±0.99 88.03±3.10 99.92±0.11 85.81±4.37 46.70±6.20 86.00

OpenAI-D 99.11±0.53 99.77±0.23 94.01±1.32 99.89±0.13 96.03±1.37 62.51±1.96 91.89
OpenAI-STK 99.72±0.14 99.67±0.18 96.37±0.49 99.84±0.17 97.79±0.43 71.36±1.53 94.13

MPU 99.86±0.12 99.93±0.04 96.75±0.25 99.99±0.01 96.72±0.53 86.57±1.95 96.64
MPU-STK 99.87±0.12 99.93±0.04 96.64±0.24 99.99±0.01 96.99±0.29 91.69±1.39 97.52
RADAR 99.79±0.11 99.80±0.09 99.75±0.19 99.98±0.02 97.43±0.46 97.41±0.39 99.03

RADAR-STK 99.80±0.11 99.76±0.09 99.76±0.20 99.98±0.03 97.67±0.36 97.36±0.43 99.05

Reuters

Log-Likelihood 97.59±0.37 74.85±0.50 98.54±0.38 99.54±0.22 60.09±2.13 85.66±1.04 86.05
Rank 84.00±0.88 74.12±1.24 91.82±0.60 70.97±1.65 54.88±2.45 67.78±1.14 73.93

Log-Rank 97.86±0.35 79.95±0.29 98.82±0.37 99.65±0.20 61.24±2.15 84.88±1.13 87.07
DetectGPT 92.78±1.34 85.71±2.02 49.24±1.65 91.59±1.67 83.41±1.73 66.59±2.53 78.22

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 98.80±0.71 97.95±0.83 98.73±0.79 99.72±0.31 80.34±5.32 40.49±6.96 86.00
ChatGPT-STK 98.98±0.60 98.56±0.43 99.23±0.39 99.79±0.23 84.47±4.73 59.35±5.00 90.06

OpenAI-D 99.71±0.22 99.69±0.29 99.74±0.16 99.99±0.01 97.83±0.82 66.96±2.61 93.99
OpenAI-STK 99.77±0.17 99.61±0.11 99.78±0.09 99.98±0.01 96.91±0.53 78.19±2.14 95.71

MPU 100.00±0.00 99.79±0.11 99.97±0.04 99.99±0.01 96.62±0.53 94.78±1.36 98.52
MPU-STK 100.00±0.00 99.75±0.17 99.99±0.00 99.99±0.01 97.10±0.52 98.00±0.22 99.14
RADAR 100.00±0.00 100.00±0.00 99.97±0.03 100.00±0.00 99.44±0.19 99.79±0.09 99.87

RADAR-STK 100.00±0.00 100.00±0.00 99.98±0.03 100.00±0.00 99.46±0.20 99.79±0.09 99.87

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 52.60±2.74 47.47±1.42 52.05±1.87 50.88±2.47 50.24±2.20 51.12±2.44 50.73

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 58.03±1.19 42.38±4.85 56.33±1.02 55.71±0.92 55.98±1.41 67.19±2.64 55.94
ChatGPT-STK 57.96±1.30 59.49±0.74 56.25±0.99 55.62±1.04 55.92±0.93 65.95±1.72 58.53

OpenAI-D 98.77±0.34 98.99±0.57 98.33±0.66 95.32±0.93 97.71±0.39 99.25±0.31 98.06
OpenAI-STK 98.90±0.16 98.98±0.40 98.31±0.64 95.29±0.93 97.62±0.51 99.34±0.19 98.07

MPU 98.60±0.34 98.47±1.08 98.72±0.54 96.32±1.34 97.56±0.47 98.72±0.29 98.06
MPU-STK 98.50±0.50 98.96±0.88 98.62±0.64 96.16±1.36 97.41±0.40 98.65±0.41 98.05
RADAR 81.33±1.72 80.23±0.80 80.91±1.51 77.72±0.95 77.52±1.95 80.95±1.89 79.78

RADAR-STK 81.59±1.86 80.69±0.71 81.37±1.39 77.88±0.76 77.91±1.90 81.03±1.95 80.08
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Figure 18: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different filtering thresholds. We train the detector on various texts (different lines) and report
the average performance tested on various LLM texts. An x-coordinate of 0 indicates the original
detector OpenAI-D.

ment framework does not exceed twice that of the original detector. We believe that achieving
superior detection enhancement performance in an acceptable time frame is valuable.

H.13 CASE STUDY

We illustrate examples that can be correctly detected by the enhancement framework but not by
the original detector, as shown in Figs. 20-24. The proposed enhancement method does not entirely
input these difficult samples but identifies and filters the potential human parts (highlighted in green),

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 9: Performance concerning TPR@FPR-0.5%. Detectors are trained on ChatGLM texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 80.08±8.29 79.51±2.47 34.48±8.86 96.71±5.80 34.76±8.77 0.48±0.30 54.34
ChatGPT-STK 85.36±3.83 83.36±4.43 39.20±7.94 97.99±3.27 43.43±4.46 2.48±1.09 58.64

OpenAI-D 83.84±23.24 85.66±21.19 57.36±15.97 95.74±8.11 72.19±19.00 5.84±4.57 66.77
OpenAI-STK 93.12±1.55 94.51±2.60 61.68±7.31 98.63±1.07 61.89±10.59 9.68±5.32 69.92

MPU 96.80±1.29 98.69±0.66 51.52±7.75 99.60±0.44 70.39±6.73 18.16±11.12 72.53
MPU-STK 97.28±0.89 98.85±0.40 52.48±7.96 99.60±0.44 72.88±5.59 27.84±12.28 74.82
RADAR 89.92±8.96 94.34±2.28 86.72±14.46 99.12±1.20 58.28±16.43 47.68±19.59 79.34

RADAR-STK 90.24±8.37 94.10±2.97 87.04±14.19 99.04±1.36 58.63±16.56 49.68±19.93 79.79

Reuters

Log-Likelihood 77.84±5.19 14.88±5.98 86.08±3.38 93.76±2.03 11.20±4.45 15.04±6.86 49.80
Rank 48.88±1.59 35.92±2.88 58.40±3.94 40.56±1.85 18.56±2.27 6.24±1.87 34.76

Log-Rank 82.40±5.24 25.92±7.08 90.96±4.12 96.80±0.88 14.00±4.82 17.60±8.29 54.61
DetectGPT 4.40±2.62 0.64±0.54 2.32±1.87 2.56±2.80 0.48±0.47 3.04±1.61 2.24

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 91.28±6.11 85.20±7.05 89.12±6.82 97.92±1.46 41.28±16.63 2.80±2.83 67.93
ChatGPT-STK 94.64±2.52 90.16±2.97 93.92±2.57 98.88±0.93 50.40±11.41 8.88±0.89 72.81

OpenAI-D 96.80±2.65 86.96±13.16 96.24±2.02 99.60±0.44 60.64±12.43 10.32±3.91 75.09
OpenAI-STK 97.44±0.41 87.92±2.92 97.36±0.86 99.44±0.20 50.08±6.35 15.36±3.96 74.60

MPU 100.00±0.00 97.12±1.32 99.76±0.20 99.76±0.20 67.60±5.76 55.92±10.37 86.69
MPU-STK 99.92±0.16 96.96±1.40 99.76±0.32 99.60±0.44 63.44±7.23 69.36±8.86 88.17
RADAR 99.92±0.16 99.92±0.16 99.28±0.85 99.92±0.16 90.16±2.82 93.92±2.62 97.19

RADAR-STK 99.92±0.16 99.92±0.16 99.28±0.85 99.92±0.16 89.84±2.66 93.84±2.62 97.12

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.35±0.69 0.36±0.48 0.47±0.44 0.58±0.73 0.58±0.37 0.81±0.28 0.52

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.04±0.99 1.31±0.69 1.40±0.95 1.16±0.82 1.74±1.27 6.01±3.26 2.11
ChatGPT-STK 2.66±1.96 3.81±1.28 1.40±0.60 1.62±1.69 1.05±0.44 3.82±1.49 2.39

OpenAI-D 36.53±17.45 41.79±19.02 36.96±16.77 28.67±13.27 50.58±24.47 63.24±19.04 42.96
OpenAI-STK 39.77±15.28 47.26±22.70 31.70±14.38 29.94±10.70 51.86±26.87 65.66±16.99 44.37

MPU 41.85±26.11 23.69±33.19 45.03±14.50 33.64±20.00 54.19±29.09 53.29±18.57 41.95
MPU-STK 38.73±19.95 53.33±24.68 42.69±16.63 30.17±16.73 55.81±29.23 51.33±14.03 45.34
RADAR 28.09±13.16 31.19±11.73 35.32±6.78 22.66±11.61 30.93±5.47 27.40±10.59 29.27

RADAR-STK 30.52±11.76 31.07±11.41 37.43±4.62 23.82±10.28 31.40±5.95 26.82±9.64 30.17
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Figure 19: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different confidence thresholds. We train the detector on various texts (different lines) and report
the average performance tested on various LLM texts. An x-coordinate of 0 indicates the original
detector OpenAI-D.

focusing more on the difficult-to-distinguish sequences, thereby making it easier for the detector to
learn. It is worth noting that since there is a lack of ground truths of sentences, we employed a voting
mechanism of five detection models (ChatGPT-D, OpenAI-D, MPU, GPTZero, and ZeroGPT) to
get the pseudo labels, and the pseudo labels are consistently identified as human-generated. This
demonstrates its capability to recognize high-confidence human text sequences.

Besides, Through our case analysis, we have observed several distinctions between human-like and
machine-generated text:
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Table 10: Performance concerning AUROC. Detectors are trained on Dolly texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 99.08±0.84 98.90±1.45 89.54±2.35 99.86±0.22 93.15±6.08 62.74±13.69 90.54
ChatGPT-STK 99.08±0.45 98.89±1.07 90.05±2.28 99.89±0.11 93.32±4.06 65.73±12.96 91.16

OpenAI-D 99.81±0.21 99.86±0.15 99.21±0.40 99.98±0.03 99.48±0.46 93.16±2.83 98.58
OpenAI-STK 99.90±0.14 99.95±0.04 99.22±0.20 99.99±0.01 99.68±0.25 92.71±0.80 98.58

MPU 100.00±0.00 99.98±0.03 97.88±0.43 100.00±0.00 99.86±0.04 98.74±0.46 99.41
MPU-STK 100.00±0.00 99.98±0.03 98.16±0.39 100.00±0.00 99.86±0.04 98.80±0.32 99.47
RADAR 99.69±0.10 99.89±0.07 99.39±0.23 99.96±0.02 99.36±0.13 99.69±0.05 99.66

RADAR-STK 99.70±0.11 99.89±0.07 99.39±0.31 99.97±0.02 99.35±0.16 99.68±0.08 99.66

Reuters

Log-Likelihood 21.47±38.08 35.27±20.02 20.75±38.74 20.35±39.69 44.75±8.87 28.28±28.30 28.48
Rank 16.00±0.88 25.88±1.24 8.18±0.60 29.03±1.65 45.12±2.45 32.22±1.14 26.07

Log-Rank 2.14±0.35 20.05±0.29 1.18±0.37 0.35±0.20 38.76±2.15 15.12±1.13 12.93
DetectGPT 92.78±1.34 85.71±2.02 49.24±1.65 91.59±1.67 83.41±1.73 66.59±2.53 78.22

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 99.67±0.16 99.26±0.68 99.28±0.50 99.13±0.97 94.75±2.38 78.91±2.78 95.16
ChatGPT-STK 99.53±0.50 98.96±0.89 99.36±0.65 98.84±1.48 94.58±1.73 80.78±8.15 95.34

OpenAI-D 99.09±1.02 99.17±0.96 99.08±1.00 99.04±1.03 98.61±0.81 88.19±1.27 97.20
OpenAI-STK 99.45±0.60 99.55±0.52 99.44±0.58 99.43±0.61 99.23±0.49 89.64±1.88 97.79

MPU 100.00±0.00 99.99±0.01 100.00±0.00 100.00±0.00 99.95±0.04 99.55±0.11 99.91
MPU-STK 100.00±0.00 99.98±0.02 99.99±0.01 100.00±0.00 99.93±0.07 99.62±0.26 99.92
RADAR 100.00±0.00 100.00±0.00 99.96±0.03 99.99±0.01 99.86±0.04 99.82±0.09 99.94

RADAR-STK 100.00±0.00 100.00±0.00 99.96±0.03 99.99±0.01 99.85±0.04 99.82±0.09 99.94

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 52.60±2.74 47.47±1.42 52.05±1.87 50.88±2.47 50.24±2.20 51.12±2.44 50.73

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 57.10±1.04 42.02±4.36 55.48±1.28 54.90±1.09 54.82±0.91 65.11±2.34 54.90
ChatGPT-STK 57.87±1.35 59.11±1.82 55.87±1.31 55.28±1.11 55.70±1.53 66.15±3.96 58.33

OpenAI-D 99.34±0.45 99.39±0.34 98.57±0.81 95.94±1.16 97.81±0.51 99.58±0.27 98.44
OpenAI-STK 99.39±0.41 99.48±0.30 98.61±0.83 96.13±1.05 97.88±0.51 99.63±0.22 98.52

MPU 98.73±0.43 99.00±0.92 98.46±0.77 95.68±0.92 97.43±0.39 98.97±0.48 98.04
MPU-STK 98.80±0.55 99.01±0.98 98.41±0.77 95.51±0.96 97.16±0.39 99.00±0.53 97.98
RADAR 80.32±2.05 79.27±1.43 79.72±1.69 77.01±0.57 77.44±0.79 80.57±2.72 79.05

RADAR-STK 81.23±2.56 80.21±2.10 80.53±2.46 77.56±1.28 78.69±1.27 81.17±3.01 79.90

• Sentence structure. Human-like sequences tend to exhibit relatively short and succinct sentences
(e.g., “A randomized control trial found no difference. . . ”). In contrast, machine-generated text
often features more complex sentence structures, including frequent subordinate clauses and de-
tailed arguments. For instance: ”The use of time is fundamental... However, ... For example, in
The Winter’s Tale... These visual transitions... In contrast, the Novel conveys... While the reader
experiences... This gradual progression... Overall, time in the Novel... The use of time also im-
pacts... For instance, in The Winter’s Tale... Similarly, Hermione is reanimated... In the Novel,
character development... For example, Emma Woodhouse...”.

• Sentence length. Human-like sequences generally favor short to medium-length sentences
(around 12–15 words). On the contrary, machine-generated text averages around 20–25 words
per sentence, and their shorter sentences typically serve as transitions or summaries (e.g., ”Over-
all, time in the Novel is more mimetic than in Drama.”).

• Linguistic style. Human-like sequences typically employ concise analytical language, whereas
machine-generated text tends to adopt a more formal style and frequently incorporates technical
terms such as “mimetic”, ”interiority”, ”staging”, and ”pacing”.
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Table 11: Performance concerning TPR@FPR-0.5%. Detectors are trained on Dolly texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 82.08±5.30 83.28±14.28 32.00±6.21 97.75±2.99 46.87±10.12 1.92±1.32 57.32
ChatGPT-STK 69.44±15.68 83.52±8.05 26.00±9.13 95.58±5.06 39.74±14.81 3.52±4.97 52.97

OpenAI-D 92.88±13.04 98.61±1.46 79.36±16.76 99.44±0.60 85.41±16.99 34.40±18.17 81.68
OpenAI-STK 98.88±0.82 98.52±1.20 79.76±8.15 99.60±0.51 92.02±4.04 29.76±11.57 83.09

MPU 99.84±0.20 99.67±0.31 42.88±12.55 100.00±0.00 95.02±1.40 51.36±8.25 81.46
MPU-STK 99.84±0.20 99.67±0.31 46.48±15.65 100.00±0.00 95.28±2.38 56.88±7.73 83.03
RADAR 87.20±5.92 96.31±3.07 79.20±9.10 98.15±1.36 78.71±6.05 84.48±7.31 87.34

RADAR-STK 87.92±5.68 95.57±3.04 80.88±9.28 98.15±1.41 78.54±6.01 84.72±7.49 87.63

Reuters

Log-Likelihood 15.76±31.52 4.16±6.53 16.96±33.92 18.88±37.76 8.24±1.94 2.80±5.60 11.13
Rank 0.08±0.16 0.64±0.90 0.00±0.00 0.56±1.12 2.40±4.40 0.00±0.00 0.61

Log-Rank 0.00±0.00 0.80±0.36 0.00±0.00 0.00±0.00 7.04±2.31 0.00±0.00 1.31
DetectGPT 4.40±2.62 0.64±0.54 2.32±1.87 2.56±2.80 0.48±0.47 3.04±1.61 2.24

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 94.72±3.88 92.00±10.07 91.52±3.28 92.08±13.06 73.12±3.95 17.52±9.95 76.83
ChatGPT-STK 91.04±10.00 88.72±13.24 90.72±8.98 88.00±18.04 70.88±16.85 22.32±13.71 75.28

OpenAI-D 59.84±48.53 61.60±43.63 59.44±47.89 59.44±48.04 51.36±32.85 18.64±10.58 51.72
OpenAI-STK 60.00±48.50 65.52±41.11 59.92±47.62 59.60±48.17 58.56±33.66 24.72±14.98 54.72

MPU 100.00±0.00 99.68±0.16 99.84±0.20 99.84±0.20 98.32±1.25 90.72±1.72 98.07
MPU-STK 100.00±0.00 99.28±0.64 99.76±0.20 99.84±0.20 97.76±1.38 93.04±2.43 98.28
RADAR 99.92±0.16 100.00±0.00 99.36±0.48 99.92±0.16 96.32±0.93 96.80±1.75 98.72

RADAR-STK 100.00±0.00 100.00±0.00 99.60±0.44 99.92±0.16 96.24±0.86 97.04±1.65 98.80

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.35±0.69 0.36±0.48 0.47±0.44 0.58±0.73 0.58±0.37 0.81±0.28 0.52

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.73±0.97 1.55±0.97 1.29±0.68 0.46±0.23 1.05±0.57 4.16±3.17 1.71
ChatGPT-STK 1.16±0.97 2.98±1.36 1.17±0.83 0.58±0.37 1.05±0.85 4.16±2.60 1.85

OpenAI-D 53.87±26.50 60.36±10.30 43.27±23.38 40.58±20.72 54.19±25.62 76.42±14.26 54.78
OpenAI-STK 53.64±26.69 70.95±5.64 46.08±24.36 40.69±21.89 51.74±22.89 76.07±16.06 56.53

MPU 43.12±23.37 54.17±31.77 37.89±22.45 32.14±19.43 47.33±28.64 68.09±12.98 47.12
MPU-STK 44.16±30.43 59.05±27.99 40.23±23.59 32.49±24.94 42.21±27.72 67.98±14.68 47.69
RADAR 34.45±7.07 31.07±7.41 33.10±3.96 27.17±6.57 27.91±4.92 35.72±8.20 31.57

RADAR-STK 36.18±6.63 32.74±7.63 35.32±3.89 28.90±6.89 29.53±4.00 35.14±8.28 32.97
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Table 12: Performance concerning AUROC. Detectors are trained on Claude/StableLM texts.
Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 98.48±0.43 96.46±1.05 98.85±0.42 98.78±0.15 90.64±0.35 92.16±0.32 95.90
Rank 92.84±0.99 90.93±0.74 98.19±0.37 81.51±1.32 80.45±1.41 86.69±1.06 88.44

Log-Rank 98.64±0.43 96.85±0.89 98.92±0.40 98.94±0.16 90.41±0.50 91.47±0.45 95.87
DetectGPT 96.86±0.97 95.64±0.45 44.40±1.73 95.60±0.62 92.55±0.58 46.36±0.71 78.57

F-DetectGPT 83.86±1.52 84.45±1.58 94.12±0.72 93.62±0.73 55.86±2.54 58.96±1.52 78.48

ChatGPT-D 95.91±2.81 96.62±2.16 93.96±4.28 98.72±1.11 86.14±7.72 81.87±14.51 92.20
ChatGPT-STK 96.89±2.07 97.78±1.79 95.41±4.00 99.49±0.42 89.16±3.99 88.89±9.25 94.60

OpenAI-D 97.02±3.00 97.11±3.91 99.89±0.13 98.99±1.10 91.43±9.06 99.77±0.19 97.37
OpenAI-STK 98.77±0.50 99.18±0.35 99.93±0.08 99.17±0.38 97.74±0.69 99.93±0.07 99.12

MPU 99.92±0.09 99.84±0.11 97.68±0.54 99.88±0.10 96.72±0.48 100.00±0.00 99.01
MPU-STK 99.99±0.01 99.86±0.13 97.87±0.26 99.98±0.02 96.46±0.35 100.00±0.00 99.03
RADAR 99.61±0.23 99.76±0.10 99.66±0.26 99.96±0.03 98.72±0.40 99.95±0.04 99.61

RADAR-STK 99.48±0.30 99.62±0.17 99.43±0.42 99.93±0.05 98.52±0.27 99.89±0.06 99.48

Reuters

Log-Likelihood 97.59±0.37 74.85±0.50 98.54±0.38 99.54±0.22 60.09±2.13 85.66±1.04 86.05
Rank 84.00±0.88 74.12±1.24 91.82±0.60 70.97±1.65 54.88±2.45 67.78±1.14 73.93

Log-Rank 97.86±0.35 79.95±0.29 98.82±0.37 99.65±0.20 61.24±2.15 84.88±1.13 87.07
DetectGPT 92.78±1.34 85.71±2.02 49.24±1.65 91.59±1.67 83.41±1.73 66.59±2.53 78.22

F-DetectGPT 96.23±0.19 66.02±1.53 98.85±0.30 98.58±0.35 40.38±1.31 66.16±2.58 77.70

ChatGPT-D 96.84±2.58 95.96±2.06 96.66±2.88 95.94±4.73 85.23±4.30 94.56±5.33 94.20
ChatGPT-STK 99.45±0.43 97.98±1.02 99.53±0.48 98.62±0.76 84.74±3.26 97.98±1.67 96.38

OpenAI-D 99.87±0.08 98.42±0.73 99.98±0.02 99.72±0.17 93.79±1.90 99.83±0.12 98.60
OpenAI-STK 99.99±0.01 99.38±0.38 99.99±0.01 99.68±0.14 95.02±1.77 99.86±0.07 98.99

MPU 100.00±0.00 99.71±0.12 99.96±0.07 99.99±0.01 97.25±0.76 100.00±0.00 99.48
MPU-STK 100.00±0.00 99.74±0.08 100.00±0.01 99.99±0.01 97.53±0.90 100.00±0.00 99.54
RADAR 99.98±0.01 99.99±0.01 99.96±0.02 100.00±0.00 99.09±0.28 100.00±0.00 99.84

RADAR-STK 99.98±0.01 99.99±0.01 99.96±0.03 100.00±0.00 99.09±0.27 100.00±0.00 99.84

SQuAD1

Log-Likelihood 69.62±0.28 69.61±1.06 67.18±0.67 65.67±0.56 67.24±1.10 85.82±1.96 70.86
Rank 63.45±0.91 64.71±0.99 62.30±0.77 61.56±0.80 64.16±0.86 73.52±1.14 64.95

Log-Rank 68.78±0.34 69.52±0.79 66.33±0.59 64.99±0.65 66.83±1.04 85.50±1.97 70.33
DetectGPT 50.42±3.75 50.02±2.90 49.98±2.78 48.63±2.23 51.14±1.90 49.48±2.64 49.95

F-DetectGPT 67.91±0.23 63.84±1.73 64.67±0.20 63.36±0.42 66.32±1.36 79.62±0.63 67.62

ChatGPT-D 62.28±4.56 47.85±7.29 59.93±3.25 58.84±3.58 60.37±4.80 74.56±7.18 60.64
ChatGPT-STK 58.67±0.90 60.80±1.05 56.43±0.95 55.73±0.80 56.82±0.84 68.54±1.98 59.50

OpenAI-D 94.38±1.82 96.55±1.12 94.34±1.96 89.07±2.04 92.74±1.26 97.66±0.92 94.13
OpenAI-STK 95.09±1.97 96.69±1.30 94.61±2.54 89.69±2.42 93.14±2.05 97.96±0.93 94.53

MPU 99.13±0.24 99.16±1.07 98.70±0.71 93.53±1.48 96.60±0.46 99.37±0.24 97.75
MPU-STK 99.17±0.35 99.57±0.33 98.66±0.75 94.20±1.12 96.66±0.34 99.51±0.19 97.96
RADAR 81.75±2.16 79.98±0.95 80.59±2.09 77.20±0.49 76.98±1.58 81.90±2.36 79.73

RADAR-STK 84.33±1.45 82.81±1.30 83.57±1.95 79.78±0.54 80.51±1.96 84.23±2.09 82.54
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Table 13: Performance concerning TPR@FPR-0.5%. Detectors are trained on Claude/StableLM
texts.

Dataset Method ChatGPT GPT-4 GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 24.08±22.67 37.70±30.63 23.12±24.38 5.86±7.02 12.45±12.04 2.48±3.06 17.62
Rank 55.60±3.65 51.31±5.91 65.84±6.93 53.49±6.09 35.11±4.81 25.12±5.07 47.75

Log-Rank 28.72±26.90 46.48±36.20 25.04±26.83 28.19±27.90 17.34±15.65 2.96±3.73 24.79
DetectGPT 37.04±10.21 24.75±10.03 5.52±1.93 21.45±14.25 15.45±7.05 4.48±2.57 18.12

F-DetectGPT 4.24±1.51 3.85±2.05 31.28±3.18 35.74±3.97 0.00±0.00 0.16±0.20 12.55

ChatGPT-D 65.44±18.70 68.44±17.30 59.28±23.21 85.70±12.69 32.02±13.80 26.40±20.62 56.21
ChatGPT-STK 74.48±8.81 82.54±7.64 63.68±21.91 92.69±3.25 38.80±11.53 31.12±25.30 63.89

OpenAI-D 69.60±6.44 81.72±6.15 97.68±2.46 91.24±2.66 43.18±9.42 92.88±8.45 79.38
OpenAI-STK 75.84±9.73 89.59±3.65 97.92±2.30 78.63±12.05 64.46±11.10 97.60±2.65 84.01

MPU 99.60±0.62 96.64±1.45 31.68±12.80 97.43±3.19 71.76±2.48 100.00±0.00 82.85
MPU-STK 99.92±0.16 98.20±0.61 52.72±15.55 99.28±0.53 72.53±5.33 100.00±0.00 87.11
RADAR 84.16±10.35 92.05±3.28 84.64±12.36 97.35±2.36 66.87±11.34 96.56±3.29 86.94

RADAR-STK 79.60±11.00 87.70±6.06 78.64±12.45 96.63±2.10 60.94±11.00 94.16±3.81 82.95

Reuters

Log-Likelihood 77.84±5.19 14.88±5.98 86.08±3.38 93.76±2.03 11.20±4.45 15.04±6.86 49.80
Rank 48.88±1.59 35.92±2.88 58.40±3.94 40.56±1.85 18.56±2.27 6.24±1.87 34.76

Log-Rank 82.40±5.24 25.92±7.08 90.96±4.12 96.80±0.88 14.00±4.82 17.60±8.29 54.61
DetectGPT 4.40±2.62 0.64±0.54 2.32±1.87 2.56±2.80 0.48±0.47 3.04±1.61 2.24

F-DetectGPT 48.00±9.48 6.80±1.88 92.96±1.65 88.96±4.80 0.00±0.00 0.48±0.39 39.53

ChatGPT-D 54.08±42.25 53.84±35.75 53.60±42.42 55.44±44.73 30.56±10.00 36.80±27.02 47.39
ChatGPT-STK 68.00±36.41 67.52±28.17 69.52±37.70 62.80±41.59 39.44±9.68 63.76±17.12 61.84

OpenAI-D 97.60±1.68 75.92±6.09 99.36±0.41 98.00±0.67 45.68±5.87 99.44±0.78 86.00
OpenAI-STK 99.36±0.60 87.52±10.37 99.84±0.20 98.00±0.51 47.92±9.88 96.40±2.90 88.17

MPU 99.84±0.32 92.32±8.06 98.48±3.04 99.52±0.16 68.72±13.13 100.00±0.00 93.15
MPU-STK 100.00±0.00 94.40±5.72 99.68±0.64 99.60±0.00 72.48±11.30 100.00±0.00 94.36
RADAR 99.44±0.48 99.76±0.32 98.72±0.89 100.00±0.00 87.44±3.16 100.00±0.00 97.56

RADAR-STK 99.44±0.48 99.76±0.32 98.80±0.98 100.00±0.00 87.68±3.07 100.00±0.00 97.61

SQuAD1

Log-Likelihood 1.04±0.57 5.00±2.93 2.11±0.29 1.85±1.12 5.93±3.44 21.85±10.14 6.30
Rank 2.43±0.43 3.81±1.04 1.87±0.68 1.97±0.28 4.30±1.01 7.98±1.52 3.73

Log-Rank 1.97±1.19 4.88±3.25 2.34±0.83 1.97±1.35 4.88±2.72 19.77±11.36 5.97
DetectGPT 0.46±0.67 0.48±0.58 0.58±0.52 0.35±0.46 0.81±0.59 0.58±0.00 0.54

F-DetectGPT 4.28±1.35 6.90±1.53 2.69±1.41 2.77±1.12 5.35±2.19 28.44±3.93 8.41

ChatGPT-D 1.62±0.57 2.50±0.79 1.40±0.79 0.92±0.46 1.63±0.77 15.72±10.57 3.97
ChatGPT-STK 1.39±1.35 4.76±2.10 1.40±0.29 0.69±0.57 1.16±0.97 4.97±3.07 2.40

OpenAI-D 30.17±13.82 41.90±13.95 25.85±20.68 22.31±10.85 29.53±6.08 65.55±6.79 35.89
OpenAI-STK 30.40±11.66 43.45±14.41 23.98±16.43 21.16±8.81 31.98±7.23 69.02±7.46 36.66

MPU 51.33±28.22 68.10±20.61 46.32±25.93 36.07±24.10 64.07±22.40 78.38±9.28 57.38
MPU-STK 56.88±29.08 69.52±20.85 42.34±24.31 40.58±27.05 65.00±29.61 78.96±7.64 58.88
RADAR 32.25±6.87 26.19±9.21 29.12±4.17 23.58±6.11 25.70±5.11 35.26±5.79 28.68

RADAR-STK 37.34±6.02 30.95±8.19 34.04±2.26 27.98±5.58 29.53±6.44 38.96±5.02 33.13
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Table 14: Performance concerning Accuracy. Detectors are trained on ChatGPT texts.
Dataset Method ChatGPT GPT4All GPT-turbo ChatGLM Dolly Claude/StableLM Avg.

Essay

Log-Likelihood 95.16±0.41 91.80±0.91 97.24±0.29 97.39±0.18 79.40±1.06 77.80±1.52 89.80
Rank 85.84±1.12 84.30±1.09 91.36±1.27 80.00±1.02 75.71±1.18 78.04±1.43 82.54

Log-Rank 95.68±0.27 93.28±0.81 97.28±0.10 97.63±0.45 79.91±0.84 77.12±1.49 90.15
DetectGPT 92.08±1.58 89.06±0.46 50.76±1.30 90.04±1.42 82.96±1.77 51.92±0.43 76.14

F-DetectGPT 0.84±0.29 1.11±0.31 0.72±0.27 1.24±0.53 2.10±0.32 1.64±0.51 1.28

ChatGPT-D 90.00±3.63 89.39±4.07 83.56±2.98 90.76±3.48 79.27±5.40 51.04±4.02 80.67
ChatGPT-STK 91.12±3.20 90.90±3.94 85.52±2.20 91.89±3.29 82.70±5.81 57.12±5.54 83.21

OpenAI-D 94.88±1.07 94.88±0.45 94.40±0.90 95.38±0.87 93.09±1.27 78.56±3.28 91.86
OpenAI-STK 95.24±0.83 95.41±1.21 94.76±0.43 96.02±0.91 93.13±1.75 81.28±2.75 92.64

MPU 96.44±2.30 96.56±2.79 93.88±1.49 97.39±2.44 92.02±1.11 92.56±1.34 94.81
MPU-STK 96.48±0.82 96.68±1.36 94.24±0.61 97.75±0.89 92.75±0.32 95.60±1.18 95.58
RADAR 91.80±2.52 92.83±2.73 91.80±2.52 92.77±2.87 89.96±1.46 90.60±1.95 91.63

RADAR-STK 93.76±1.46 94.43±1.44 93.76±1.46 94.54±1.71 91.12±1.46 92.12±0.89 93.29

Reuters

Log-Likelihood 91.72±0.98 66.60±1.60 94.20±0.69 95.20±1.41 59.88±1.68 71.36±1.41 79.83
Rank 73.80±0.84 68.96±1.11 80.44±0.82 67.92±0.55 58.08±1.37 62.36±1.73 68.59

Log-Rank 93.24±0.74 72.24±1.39 95.08±0.65 96.36±1.13 60.84±0.93 69.64±1.45 81.23
DetectGPT 88.36±1.68 70.68±1.71 48.88±1.26 86.56±0.98 66.40±2.64 63.84±2.24 70.79

F-DetectGPT 1.68±0.57 4.00±0.74 1.72±0.56 1.96±0.64 9.96±1.35 2.60±0.72 3.65

ChatGPT-D 96.20±4.11 95.28±3.89 95.56±4.00 96.00±4.03 82.68±5.53 56.88±9.25 87.10
ChatGPT-STK 95.08±2.01 94.52±2.03 95.12±2.03 94.68±2.01 86.92±3.59 73.12±5.73 89.91

OpenAI-D 95.48±0.88 95.12±0.93 95.48±0.88 95.08±0.90 90.48±1.09 75.12±0.95 91.13
OpenAI-STK 97.56±0.51 97.04±0.50 97.56±0.51 97.00±0.64 91.28±0.57 80.48±0.68 93.49

MPU 98.12±0.60 97.68±0.45 98.08±0.68 98.00±0.54 90.80±0.81 93.96±0.98 96.11
MPU-STK 98.44±0.81 98.00±0.77 98.44±0.81 98.32±0.86 91.48±1.29 96.44±1.02 96.85
RADAR 97.84±1.39 97.84±1.39 97.80±1.34 97.80±1.41 96.00±0.62 97.40±1.23 97.45

RADAR-STK 97.84±1.39 97.84±1.39 97.80±1.34 97.80±1.41 95.96±0.65 97.40±1.23 97.44

SQuAD1

Log-Likelihood 63.12±1.38 63.39±2.15 60.94±1.06 60.29±1.23 61.16±1.42 73.93±1.89 63.81
Rank 58.67±0.68 60.36±1.93 57.89±1.21 57.51±0.88 59.30±1.12 65.32±1.17 59.84

Log-Rank 63.29±0.98 63.69±1.61 60.18±0.88 60.29±0.98 60.29±0.98 73.87±1.73 63.60
DetectGPT 52.43±2.58 48.81±1.37 50.76±2.16 50.23±2.90 49.77±1.29 50.40±1.83 50.40

F-DetectGPT 4.91±1.44 5.71±0.74 6.20±1.04 6.42±2.06 5.58±1.08 3.41±0.81 5.37

ChatGPT-D 53.01±1.41 46.37±2.25 51.99±1.79 52.49±1.45 52.21±1.73 56.71±2.31 52.13
ChatGPT-STK 54.51±0.47 55.00±1.91 53.04±1.53 53.12±1.07 53.31±1.23 57.69±0.81 54.45

OpenAI-D 96.99±0.60 97.02±0.60 96.90±1.26 89.65±1.41 92.67±2.12 97.28±1.01 95.09
OpenAI-STK 97.28±0.43 97.50±0.67 97.31±1.07 88.90±0.83 92.44±2.01 97.98±0.73 95.24

MPU 97.69±0.58 98.39±0.85 97.60±0.62 91.21±1.87 95.29±0.72 97.63±0.53 96.30
MPU-STK 97.69±0.75 98.39±1.02 97.66±0.83 91.21±1.63 95.29±1.08 97.57±0.62 96.30
RADAR 70.35±1.47 69.40±1.07 69.88±1.42 67.86±0.87 67.50±1.53 70.12±1.46 69.19

RADAR-STK 71.56±1.74 70.06±0.91 71.17±0.71 68.55±0.64 68.14±1.45 70.92±2.18 70.07

Table 15: Enhancements to the AUROC metric for sentence-based detector. Detector are trained on
ChatGPT text.

Dataset Method ChatGPT GPT4All ChatGPT-turbo ChatGLM Dolly Claude Avg.

Essay SeqXGPT 100 99.99 52.18 99.95 99.91 54.67 84.45
SeqXGPT-STK 100 100 53.17 100 99.99 58.75 85.32

Reuters SeqXGPT 99.34 99.48 61 99.54 99.51 60.78 86.61
SeqXGPT-STK 99.44 99.25 65.69 99.75 99.3 76.85 90.05

SQuAD1 SeqXGPT 50.96 46.89 45.62 47.17 51.18 49.99 48.64
SeqXGPT-STK 53.89 49.24 52.17 50.2 54.06 53.19 52.12
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Table 16: Running time comparison.

Method Training Time (s) Inference Time (s)

Essay Reuters SQuAD1 Essay Reuters SQuAD1

Log-Likelihood 42.17 56.29 20.43 19.82 22.34 11.39
Rank 68.93 89.60 28.31 32.92 44.61 15.27
GLTR 72.04 81.32 31.69 35.13 39.32 17.98

DetectGPT 3829.10 4356.37 442.74 1960.20 2269.46 858.28
Fast-DetectGPT 51.39 66.77 20.10 113.69 126.78 39.60

ChatGPT-D 151.72 167.33 118.65 5.79 5.91 2.41
OpenAI-D 156.23 169.09 129.37 5.81 5.99 2.57

MPU 172.83 189.46 141.20 5.83 5.87 2.62
RADAR 326.79 331.63 254.16 26.54 27.03 22.49

ChatGPT-STK 269.85 252.18 139.54 10.75 10.89 5.67
OpenAI-STK 286.79 255.36 148.24 11.17 10.92 6.08

MPU-STK 301.51 289.77 151.92 11.26 11.69 6.37
RADAR-STK 587.16 590.11 530.20 45.38 46.81 40.56
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PROMPT: Write an essay in 300 words to the prompt "healthcare organization and the personal characteristics and abilities they possess. The sources of a

manager's power base can be categorized into personal and organizational aspects. Personal sources include leadership skills, knowledge, experience, and the ability

to influence through charisma and charm. Organizational sources, on the other hand, involve the authority granted by the position held, the ability to make decisions

and influence through rewards and punishments, and the manager's connections within the organization. Consider the various sources of power for healthcare

managers and discuss how they can effectively utilize them to achieve organizational goals.."

LLM RESPONSE: There are several approaches used to address the issue of truancy within schools. These include parental prosecution, placing an Education

Social Worker within schools, home visits, mentoring programs, and rewarding good attendance. The effectiveness of these interventions has been evaluated through

various research methodologies, including randomized control trials, qualitative studies, and longitudinal analyses. Parental prosecution involves taking legal action

against parents for their child's truancy, including fining or even jailing parents. This approach is controversial, however, and there is little evidence to suggest it

effectively reduces truancy. A randomized control trial found no difference in attendance for students whose parents were prosecuted versus those who

were not (Maguire, 2010). Qualitative research also found parental prosecution damaged the school-family relationship and parents’ trust in the school

(Gazeley, 2012). Placing an Education Social Worker within a school had more promising results. A longitudinal study found attendance improved by 12%

over 2 years in schools with a social worker, compared to only 3% improvement in schools without this intervention (Williams et al., 2015). Social workers were

able to address the root causes of truancy by providing counseling and connecting families to community resources. Students reported feeling more supported and

motivated to attend. Three other studies analyzed various interventions. A mentoring program that matched truant students with teacher mentors found attendance

increased during the mentoring but dropped again once the program ended (Thompson & Kelly, 2011). The temporary support was inadequate. In contrast, a

program providing small rewards for improved attendance, such as movie passes or snack coupons, was effective in a qualitative study. Students said the rewards

motivated them to keep attending to continue earning prizes (Parker et al., 2013). Finally, a randomized control trial found that home visits from a truancy officer

increased attendance by an average of 5% among participants compared to control students (Donaldson, 2019)...

[The essay would continue on for 1250 words to fully analyze the effectiveness and methodology of the research studies on the various anti-truancy approaches and

provide a summary of three additional studies from the literature review].

PROMPT: Write an essay in 200 words to the prompt "Compare and contrast the pandemics caused by the Typhoid and COVID-19 viruses, focusing on the cases

of Typhoid Mary and Novak Djokovic. How did these two individuals become exposed to the illnesses, and what impact did their infections have on their families

and associates? Additionally, discuss the advancements in medical counter-measures and healthcare system preparedness over the past 100 years that have helped in

handling pandemics.."

LLM RESPONSE: Typhoid fever, caused by the Salmonella typhi bacteria, became a concern in the early 20th century. Typhoid Mary, an infamous case, was a

carrier of the disease without exhibiting any symptoms herself. She worked as a cook and unknowingly infected numerous individuals with the bacteria. It was

through her lack of proper hygiene practices and contamination of food that Typhoid Mary exposed others to the illness. Her case underscored the importance of

public health measures and raised awareness about asymptomatic carriers. On the other hand, in the current era, the COVID-19 pandemic has captured

the world's attention. Novak Djokovic, a renowned tennis player, became exposed to the virus during the ill-fated Adria Tour, an exhibition tournament he

organized. Despite the rising number of COVID-19 cases and precautions advised by health authorities, the tournament proceeded without sufficient safety

measures. Djokovic, along with several other players, contracted the virus, further spreading it within their circles. This incident highlighted the importance of

adherence to preventive measures and the role of individuals in avoiding the transmission of the virus. In both cases, Typhoid Mary and Novak Djokovic

unintentionally became exposed to the illnesses. Typhoid Mary's lack of awareness about her carrier status resulted in the transmission of typhoid fever, while

Djokovic's disregard for public health guidelines led to his infection with COVID-19. The impact of these infections on the families and associates of Typhoid Mary

and Novak Djokovic varied significantly. In the case of Typhoid Mary, several people succumbed to the illness, tarnishing her reputation and causing immense

suffering to their families. Djokovic's infection, in contrast, led to widespread criticism and backlash, highlighting the potential consequences of one’s actions during

a pandemic. The family and associates of both individuals were affected by the indirect consequences of their infections. Over the past 100 years, remarkable

advancements have been made in medical counter-measures and healthcare system preparedness. The development of vaccines, antibiotics, and antiviral drugs has

revolutionized the way pandemics are managed. Additionally, public health systems have become more robust in terms of contact tracing, testing capabilities, and

public awareness campaigns. These improvements have contributed to effectively controlling and treating pandemics. In conclusion, comparing and contrasting the

pandemics caused by the Typhoid and COVID-19 viruses reveals the different modes of transmission and impacts on individuals and their circles. Typhoid Mary

and Novak Djokovic’s cases underscore the importance of personal responsibility and adherence to public health guidelines. Furthermore, advancements in medical

counter-measures and healthcare system preparedness over the past century have played a pivotal role in mitigating the effects of pandemics and improving global

health outcomes. It is crucial to remember the lessons learned from these pandemics and continue to invest in preventive measures and healthcare infrastructure to

safeguard humanity from future outbreaks.

PROMPT: Write an essay in 300 words to the prompt "Explore the use of contrast and semantic imagery in John Milton's Paradise Lost and William Shakespeare's

Othello. How do the authors utilize dark and light imagery to convey meanings and reinforce boundaries between good and evil? Discuss how these works challenge

traditional interpretations and showcase the complexity of these semantic symbols..“

LLM RESPONSE: Both Charles Dickens' Great Expectations and Alan Warner's Morvern Callar construct social identities through the politics of space and place

in imaginative ways. By depicting protagonists navigating fraught social spaces and places in search of self-identity, these novels meditate upon the contemporary

dilemma of self-identity in literature and society. In Great Expectations, Pip's imagination is powerfully shaped by his experience of place and space. The novel

opens in a churchyard, where Pip encounters the terrifying convict Magwitch. This gothic space fills Pip with dread and establishes a prevailing sense of danger and

uncertainty. As Pip is "brought up by hand" by his sister in their home, the claustrophobic and humorless domestic space compounds Pip's discomfort. His

imaginative escape is found in his notion of becoming a "gentleman" in London. Pip's expectations of London as a space of opportunity and status are soon dashed.

In London, strict rules of etiquette and class boundaries rigidly define social identities in spatial terms. Pip struggles to navigate these spaces,

uncomfortably lodging with the eccentric character Herbert Pocket. However, through encounters with the upper-class Estella and Miss Havisham, Pip

begins constructing a fantasy of belonging to a higher social class. Morvern Callar similarly portrays its eponymous protagonist navigating the politics of

space and place. In her small port town in Scotland, Morvern finds little opportunity to explore her identity. However, after her boyfriend commits suicide, Morvern

conceals his death to claim the proceeds from his unpublished novel. She uses this money to escape on holiday to Spain with her friend Lanna. In Spain, Morvern

experiments with new identities that would be impossible in her hometown. She pursues romance on her own terms, presenting herself as worldly and enigmatic.

She observes, "Nobody knew me. I could be whatever I wanted to be." However, Morvern struggles to integrate these ephemeral holiday identities into a coherent

sense of self. Upon returning home, Morvern struggles to reconcile her transformational experiences in Spain with the mundane familiarity of place in Scotland.

However, she starts to re-imagine the possibilities afforded by her own locality. The novel ends with Morvern dispersing her boyfriend's ashes in the sea, signalling

her reconciliation with place and growing self-assurance. In conclusion, Great Expectations and Morvern Callar are novels profoundly concerned with self-identity,

which they explore through the imaginative politics of space and place. By following their protagonists' journeys through fraught spaces and places, both novels

suggest how localities can be both confining and liberating. They show how one's sense of identity emerges through the dialectical and transformative relationship

between the familiar and unfamiliar in space and place. Overall, these novels present a compelling vision of how self-identity develops through navigating the

spaces and places that shape our lives.

Figure 20: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 600 words to the prompt "Explain the benefits and features of using a front load washing machine. Describe the parts of a front load

washer and how they contribute to its efficiency. Provide instructions and guidelines for using a front load washer effectively.."

LLM RESPONSE: The use of time is fundamental in structuring Drama and the Novel, specifically in Shakespeare's The Winter's Tale and Austen's Emma.

However, time serves distinct purposes across these two forms of fiction, enhancing the reader or audience's experience in different ways. In Drama, the use of time

is portrayed visually through staging, lighting, costumes, and the physical aging of the actors. These visual elements give the audience an acute sense of the passage

of time over the course of the play. For example, in The Winter's Tale, Hermione's 16-year separation from her daughter Perdita is conveyed through her transition

from youth to middle age on stage, demonstrated through aging makeup and costuming. The gap in time between Acts 3 and 4, signified by the Chorus, is reinforced

by a complete set change. These visual transitions in time, though abrupt, give the play a sweeping, epic quality as whole lifetimes pass over the course of a few

hours. In contrast, the Novel conveys the passage of time through descriptive language and pacing. While the reader experiences multiple gaps in time over the

course of Emma, time passes more gradually. The four main sections of the novel span two years altogether, but the reader gains a sense of the passing seasons,

holidays, and daily rhythms in the village of Highbury. Important events like Frank Churchill and Jane Fairfax's clandestine engagement unfold over months. This

gradual progression of time, depicted through subtle cues in narration and description, gives the novel a leisurely pace that reflects the steady and unremarkable

rhythm of life in Regency-era England. Overall, time in the Novel is more mimetic than in Drama. The use of time also impacts character development differently

across the forms. In Drama, characters visibly age and mature on stage, enabling abrupt transformations. For instance, in The Winter's Tale, the teenage Perdita

blossoms into a young woman before the audience's eyes after the gap in time between Acts 3 and 4. Similarly, Hermione is reanimated after 16 years as a living

statue, transformed from middle age back to youth. These physical transformations, especially Hermione's de-aging, create a sense of characters emerging from the

layers of time to reconcile their past and present selves. In the Novel, character development unfolds more gradually through interiority. For example, Emma

Woodhouse matures over two years through a series of humbling insights into her own flaws and misunderstandings. The reader gains access to Emma's

developing self-awareness through free indirect discourse. While Emma's essential spirit remains unchanged, by the end of the novel she has gained a sense

of compassion and moral duty that she lacked at its start. Rather than visibly transforming, Emma ripens into her best self through steady growth over

time. In conclusion, time serves distinct narrative purposes across Drama and the Novel. In The Winter's Tale and Emma, time is conveyed visually through

staging and descriptive language, respectively, impacting the reader's experience and sense of pacing in each form. Time also enables different trajectories of

character development, with abrupt transformations occurring in Drama and gradual evolutions unfolding in the Novel. Ultimately, time shapes storytelling in

diverse ways across these two genres of fiction.

PROMPT: Write an essay in 500 words to the prompt "What are the effects of Dyslexia on children and how can specialized interventions help improve their

performance in school?."

LLM RESPONSE: The early states that emerged in mainland Greece during the Bronze Age, from around 2000 BCE to 1200 BCE, displayed several defining

features. They were primarily based around fortified palatial centers that were the seats of power for emerging elite classes. The power of these elites was based on

control of resources, especially agricultural surplus and trade networks. At the same time, the character and power bases of these states impacted their organization

and form. They lacked aspects of centralization that would emerge in later states. Power was concentrated at the local level in the hands of palace elites, and there

were limited bureaucratic institutions. The Mycenaean states that ruled mainland Greece were organized around fortified palace centers, with the most prominent at

Mycenae, Tiryns and Pylos. These palatial centers served as the seats of power for an emerging elite class. The power and control of resources by these elites

allowed the accumulation of wealth and the mobilization of resources required to construct the massive "cyclopean" walls and public works projects for which the

Mycenaeans are known. Power and status were based on control of resources, especially agricultural surplus and trade. Linear B tablets provide evidence that the

palaces exercised economic control over agricultural land and oversaw the collection and distribution of staple goods. Maritime trade also supported the rise of the

Mycenaean elites. However, the Mycenaean states lacked major institutions of centralization that would emerge in later states. Power was concentrated at the local

level, in the hands of the palace elites. There is little evidence for Mycenaeanstate-controlled centralized institutions, bureaucracy, or military forces. The palaces

appear organized to meet their own local needs without strong connections to a broader state apparatus. Most interactions appear to have occurred at a regional and

local level. The Minoan civilization on Crete emerged around 2000 BCE, centering around the palaces at Knossos, Phaistos, and Mallia. As in Mycenaean Greece,

power was concentrated in the control of agricultural surplus and trade networks by palace elites. The Minoans relied heavily on maritime trade, exchanging luxury

goods with Egypt and the Near East. Frescoes at Knossos depict the storage of jars, presumably filled with agricultural surplus like grain or olive oil—

allowing palace control of these critical resources. Although more centralized than Mycenaean palaces, there is little evidence for strong state institutions in

Minoan Crete. Power remained concentrated among the palatial elites, with a reliance on personal contact and loyalty. The growth and fall of the Minoan

palaces, and broader shifts in Minoan culture seem regional or tied to particular palatial centers, rather than reflecting a coherent state policy or

institutions. The lack of Minoan bureaucracy and records in Linear A script point to limits in political centralization and state institutions in Minoan society.

In conclusion, the early Bronze Age states that emerged in Mycenaean Greece and Minoan Crete were characterized by fortified palatial centers as the

base of power for an emerging elite class. Control of agricultural surplus and trade networks allowed these elites to amass wealth and political power.

However, power remained concentrated locally in the hands of palace elites. There is little evidence for the bureaucratic institutions or military organizations

that would typify later states. Political centralization and state formation were limited, with regional and local dynamics remaining predominant. Socio-political

structures were built around personal loyalty, kinship and clientage rather than strong state institutions.

PROMPT: Write an essay in 300 words to the prompt "Discuss the potential risks and strategies for mitigating them in the establishment of Centers for Diabetes,

focusing on community health needs and the targets set by the Affordable Care Act (ACA).."

LLM RESPONSE: Wallaroo Wines should adopt a premium, high-end product differentiation market entry strategy for Hong Kong and mainland China. Given the

brand's focus on high-quality premium wines, it should capitalize on Chinese consumers' growing taste for luxury imported wines. A high-end strategy is compelling

given Hong Kong's large population of high-income consumers, and the growing upper classes in major mainland cities. For its product strategy, Wallaroo Wines

should maintain its focus on high-end red wines like its premium Cabernet Sauvignon and Shiraz varieties. These wines should be priced at a premium,

leveraging their status as imported luxury goods. The labeling and packaging should also convey an upscale premium image to appeal to status-conscious

Chinese consumers. In terms of place, Wallaroo Wines should focus distribution in Hong Kong first before expanding to mainland China. Hong Kong

provides an ideal test market given its sizable population of wine consumers, lower taxes/tariffs, stronger intellectual property protection, and simpler

logistics. Once established in Hong Kong, Wallaroo can pursue partnerships with prestige importers and distributors in mainland cities like Beijing, Shanghai and

Shenzhen. For promotion, Wallaroo should invest heavily in social media, sponsoring events, influencer marketing and traditional media advertising to raise brand

awareness and appeal to target consumers. Premium positioning should be reinforced through marketing that conveys heritage, quality and indulgence. Sponsoring

prestigious events like art galleries, film festivals or golf tournaments would effectively reach high-end consumers. Working with influencers like luxury lifestyle

bloggers or celebrity wine aficionados can also boost brand buzz. Key opportunities in this market entry strategy include tapping into China's fast-growing demand

for imported wine, particularly at the luxury end; leveraging Hong Kong as a launch pad; and strengthening brand positioning as a premium lifestyle brand. However,

there are also challenges such as intense competition from other imported and domestic wine brands; complex regulatory environments; counterfeiting; and price

sensitivity, even among higher-income consumers. Overall, a premium differentiation strategy targeting high-end consumers in Hong Kong and China's major cities

can be advantageous for Wallaroo Wines. By focusing on a niche, underserved segment and emphasizing quality and status, Wallaroo can build strong brand

positioning that sets it apart in a crowded market. With the right partnerships and marketing, Wallaroo Wines can make substantial inroads into this attractive export

market.

Figure 21: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 300 words to the prompt "Discuss the influence of Charles Bolden on the history of jazz, including his musical innovations, impact on

future musicians, and the events and people that shaped his life and career.."

LLM RESPONSE: The city of Oxford is home to four major bookstores—Blackwell's, Borders, Waterstone's, and WH Smith—that attract a wide range of

customers due to their varying locations, layouts, inventory, and atmospheres. In this report, I will analyze the key attributes and retail strategies of each bookshop to

determine how they appeal to different target markets. Blackwell's, located on Broad Street in the heart of Oxford city centre, is the oldest and largest bookshop,

occupying multiple floors of an imposing historic building. Its vast selection of over 200,000 new, used, and rare books—especially academic texts and secondary

literature—attracts serious readers and students. The multi-level labyrinthine layout of small rooms creates an intimate, almost private browsing experience

conducive to serendipitous discoveries. The scholastic ambiance, overlooking the courtyard of Balliol College, appeals to intellectually curious customers

seeking a quintessential Oxford book-buying experience. In contrast, Waterstone's on St. Giles Street has a more modern open-plan design spread over two

floors. Its front tables feature prominent displays of popular fiction and non-fiction, especially the latest bestsellers, aimed at casual readers and tourists.

While also carrying a wide range of books, Waterstone's focuses on highly commercial mainstream titles in an attempt to draw in a larger customer base seeking

trendy and accessible reads. Its central location, glass storefront, and sleeker décor give it a hip and contemporary feel that contrasts with the traditional atmosphere

of Blackwell's, appealing to younger and more popular audiences. Borders, located in the Clarendon Centre shopping mall, closed down in 2019 due to the pressures

of online retail competitors and changing reader trends. When it was open, it carried a range of commercial fiction and non-fiction, especially in popular genres like

crime, thrillers, and romance. Its generic big-box layout and chain brand identity attracted deal-seeking customers in search of discounted bestsellers and

impulse buys. The mall location suggested an attempt to capture weekend shoppers and families in addition to dedicated readers. However, its formulaic

design and inventory failed to establish a distinctive brand identity and loyal customer base in the competitive Oxford book market. Finally, WH Smith on

Cornmarket Street focuses on convenience items like stationery, magazines, and entry-level fiction and non-fiction. While also selling a modest selection of

books, especially Oxford-themed gift titles aimed at tourists, the dominant range of general merchandise indicates its primary customer base comprises

passersby looking for quick impulse purchases and everyday essentials rather than serious book readers. The small ground-floor layout and limited book

range lend it the feel of a neighborhood shop meant for practical community use rather than an inviting space for extended browsing or in-depth discovery.

In summary, the major bookshops of Oxford have carved out distinct niches by catering to different readers and purposes. Blackwell's and Waterstone's

dominate the dedicated book market by offering a choice between traditional or contemporary ambiances and stocking either academic or popular titles.

The now-defunct Borders occupied a middle ground as a casual mainstream outlet. And WH Smith serves local needs as a convenient spot for essentials and small

gifts rather than substantive book browsing. Through their locations, layouts, inventory selections, and general atmospheres, each store has adopted a retail strategy

aimed at matching a particular set of customers and their book-buying motivations.

PROMPT: Write an essay in 900 words to the prompt "The Prompt:Discuss the benefits and challenges of the Internet of Things (IoT) in our daily lives, including

its impact on efficiency, automation, and privacy concerns..“

LLM RESPONSE: Sitcoms often utilize pragmatic frameworks, including Grice’s conversational maxims, Brown and Levinson’s Politeness theory, and Leech’s

Politeness Maxims, to achieve the expected humorous effect in their scripts. The popular American sitcom “Friends” is an excellent example of how these pragmatic

tools are employed creatively and strategically to elicit audience laughter. Grice’s conversational maxims relate to the cooperative principle, whereby conversational

contributions should be purposeful, truthful, relevant, and clear. Flouting these maxims in sitcoms can create comedic irony and absurdity. In a scene from “Friends”,

Monica, Rachel and Phoebe are lambasting their friend Ross about saving a mouse from a glue trap but then accidentally killing it. Ross defends that he “was just

trying to be a good friend” to the mouse. Phoebe quips: “Aw, you're like a cute, fuzzy little unintentional kitten killer.” This flouts the maxim of relevance,

juxtaposing the irrelevant concept of “kitten killer” for comedic effect. The non sequitur also adds to the absurdity and irony, making the audience laugh at Phoebe’s

exaggerated comparison. Politeness theory focuses on the conflict between two speakers’ needs to be efficient and indirect. Character harassment and

teasing are common mechanisms by which this conflict elicits humor in sitcoms. In another “Friends” episode, Joey and Chandler harass Ross by singing

“I'm Bein' Kind”, a song mocking Ross’s failed relationships. Although intended as a joke, the singing also flouts the tact maxim by embarrassing Ross and

highlighting his romantic inadequacies. The rudeness is softened by the casual, friendly dynamic between the characters, conveying that the insults are said

in jest and with the goal of amusing rather than offending Ross – and the audience. Leech’s Politeness Maxims relate to tact, generosity, approbation,

modesty, agreement, and sympathy. Flouting these maxims in clever or ironic ways is a common source of humor in sitcoms. In one episode, Rachel makes

her famous English trifle for Thanksgiving, but the recipe pages get stuck together, creating a disastrous combination of beef and custard.</s> <s>When

asked how it tastes, Joey replies: “It tastes like feet!”, exploiting the comedy in flouting the tact and approbation maxims. However, because Rachel

acknowledges the trifle tastes awful, Joey’s comment also reinforces the friendship and honesty between the characters, softening the rudeness and making

the audience laugh with Joey rather than at Rachel. In conclusion, the sitcom “Friends” utilizes pragmatic frameworks like Grice’s maxims, Politeness

theory, and Leech’s maxims in innovative ways to craft comedic scenarios and witty dialogue. Flouting these pragmatic principles and manipulating the

conflict between efficiency and politeness create situations and interactions that elicit laughs from the audience. A close analysis of “Friends” demonstrates

how these tools can be strategically combined for comedic effect.

PROMPT: Write an essay in 300 words to the prompt "Essay Discuss the potential benefits of implementing a decentralized parking system using blockchain

technology, and outline the business goals and strategies for introducing this innovative solution..“

LLM RESPONSE: To properly assess the status of 65-year-old Deirdre after undergoing electro-convulsive therapy for severe depression and risk of relapse,

several evaluation steps should be taken by her health professionals. First, a thorough medical and psychiatric history review should be conducted, including

discussion of her mental and physical health before and after her husband's death, the severity and symptoms of her depression that warranted ECT treatment, how

she responded to the ECT, any side effects, and her current state of mood, cognition, and daily functioning. Standardized depression screening tools, like the Patient

Health Questionnaire-9, that Deirdre fills out and clinician-administered scales such as the Hamilton Depression Rating Scale provide quantitative measures of her

current depression severity and risk of relapse. Deirdre reported that ECT helped lift her depression but left her with memory gaps and concentration difficulties,

common side effects, so cognitive testing is recommended. Simple screening tests include the Mini-Mental State Exam, clock drawing test, and verbal fluency to

check for significant cognitive impairment. More in-depth neuropsychological testing may also be needed to identify specific memory, attention, and executive

function deficits. These cognitive baselines will help determine if further ECT treatments are suitable and monitor her progress. Discussion about Deirdre's activities

of daily living, social interactions, sleep, and eating habits provides insight into her overall wellbeing and recovery. Talking to her close ones, with her consent, can

give another perspective on her day-to-day functioning. It is important that Deirdre maintains a routine, sticks to a healthy diet and exercise, and continues social

engagement to avoid isolation and support her rehabilitation and remission. Ongoing follow-ups and management are required to monitor for depression recurrence.

Deirdre should schedule regular visits with her psychiatrist and therapist, and be aware of potential trigger events that may exacerbate her depression. Medication

may be introduced to sustain her mood stability and adjunct therapies like psychotherapy sought if needed. Community support groups can also aid her

long-term coping. In summary, a comprehensive assessment and management plan considering Deirdre's medical history, current symptoms, cognitive and

functional status, and relapse prevention strategies is key to evaluating her progress, maintaining stability, and optimizing her wellbeing after loss and

depression. With the right care and her personal motivation, Deirdre has a good chance of sustained remission despite facing a difficult life event. But

vigilance for recurrence and proactive support systems remain vital to minimize future episodes and safeguard her health.

Figure 22: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 300 words to the prompt "Examine the social factors impacting grocery shopping habits and food accessibility in Forest Park, Illinois,

and discuss potential interventions to address these issues."

LLM RESPONSE: There has been significant progress in recent decades in understanding the molecular mechanisms that determine cell fate specification in the

pregastrulation embryo. Studies in model organisms such as Drosophila, Xenopus, zebrafish, and the soil nematode Caenorhabditis elegans have revealed that cell

fate determination relies on the precise regulation of gene expression. The expression of specific transcription factors, signaling pathways, and other key molecules

are tightly regulated in space and time, leading to the differentiation of undifferentiated embryonic cells into cells of the mesoderm, endoderm, and ectoderm germ

layers. C. elegans provides an excellent model to study the molecular basis of cell fate specification in the early embryo. The C. elegans embryo contains only a few

precursor cells that generate all postembryonic cells. The cell lineage is largely invariant between individuals, providing a simple blueprint to study cell fate

determination. Powerful molecular tools including RNA interference allow for the systematic perturbation of gene function in the embryo. Embryogenesis in C.

elegans is also very rapid, with cell fate decisions made within a few hours of fertilization, facilitating detailed analysis. Studies in C. elegans have identified key

transcription factors, regulatory elements, and signaling pathways involved in cell fate determination. For example, the end-1 and end-3 transcription factors are

required for endoderm development. The tbx-2 transcription factor determines the fate of mesodermal blastomeres. The Wnt/β-catenin asymmetry pathway

generates differences between the anterior and posterior of the embryo that are required to specify ectoderm and endomesoderm. Mutations in these genes result in

embryos lacking entire germ layers and tissues. C. elegans also provides temporal resolution to study the order of molecular events in cell fate determination. For

instance, Wnt/β-catenin signaling occurs before and is required for the asymmetric expression of end-1/end-3. end-1/end-3 expression then induces downstream

targets that execute the endoderm fate. Using time-lapse fluorescence microscopy, it is possible to visualize the dynamics of these molecular determinants in

living embryos with single-cell resolution. Mathematical modeling and computational analysis of these dynamics have provided insights into the robustness

and logic underlying cell fate decisions. In summary, significant progress has been made in understanding how transcription factors, signaling pathways,

and other molecules specify cell fates in the early embryo before gastrulation. The free-living nematode C. elegans provides a powerful model to study these

molecular mechanisms systematically owing to its simple and well-characterized embryogenesis, genetic tractability, and live imaging capabilities.

Continued research in C. elegans and other model organisms promises to yield a comprehensive picture of how the precise regulation of gene expression in space

and time determines cell identity in embryonic development.

PROMPT: Write an essay in 400 words to the prompt "In Bob Dylan's song Scarlet Town, the interplay between embedded songs helps invoke the overall theme.

Explore how Dylan presents a world full of both good and bad and argues that combining the two forms can lead to eventual good. Analyze the distinct features of

the town, the narrator's acknowledgement of his imperfections, and the significance of the events and themes presented in the song..“

LLM RESPONSE: In his Critique of Judgment, Immanuel Kant argues that reason allows the human mind to grasp concepts that surpass the limits of imagination,

particularly in experiencing the mathematical and dynamic sublimes. For Kant, the imagination has a maximum, finite magnitude it can comprehend, based on the

maximum size of images it can form. Reason, however, is capable of conceiving of infinitely large magnitudes through a process of successive addition and

expansion. This allows reason to exceed imagination. Kant first addresses how we can obtain concepts of extremely large magnitudes that seem to surpass

imagination. He argues that we cannot have an image or intuition of infinitely large magnitudes, as imagination has a maximum. We can, however, think infinity

through the intellectual idea of successive addition: by representing an object and recognizing we can always add more to its size. This process can continue

indefinitely, giving us a concept of infinity that surpasses what we can imagine. However, this is merely a concept - we cannot have a corresponding sensible

intuition. For Kant, this method of measuring magnitude through concepts rather than intuition is the aesthetic way of judging size. It has limitations, as

without intuition, we cannot assign a precise magnitude or gain a full sense of the object’s size. The aesthetic estimation also cannot be communicated

precisely to others. However, it allows reason to conceive the immeasurable, enabling the experience of the mathematical sublime. Kant holds that we can never

have knowledge of an actual infinite as an object. The infinite is not a quantity that we can perceive or grasp totally. However, reason can conceive of the infinite

negatively, as that which surpasses any assignable quantity. For Kant, we form the idea of infinity by realizing any finite quantity we posit can be exceeded.

The infinite is a concept of reason alone, though it arises in the attempt to grasp sensible objects aesthetically that seem to surpass imagination. True

sublimity for Kant thus refers to the ability of reason to conceive ideas that exceed the imagination, giving us intimations of infinity. The sublime arises

when imagination is overcome in grasping an object aesthetically, and reason takes over, forming an idea of absolute greatness not limited to what

imagination alone can comprehend. In this way, the sublime displays the ultimate ability of human reason to transcend sensibility, forming concepts not tethered to

the constraints of imagination or experience. The sublime reveals our capacity for formulating rational ideas, even those surpassing intuition. In conclusion, Kant

argues reason allows us to conceive concepts beyond imagination, especially in experiencing the mathematical and dynamic sublime. While imagination has a

maximum, finite magnitude, reason can represent infinity through successive addition. Estimating magnitudes aesthetically has limits but gives intimations of

the immeasurable. For Kant, true sublimity refers to reason conceiving ideas surpassing imagination, giving a sense of infinity that highlights reason’s

transcendence of sensibility. Overall, the sublime reveals our highest cognitive faculty: the ability to form rational ideas independent of experience.

PROMPT: Write an essay in 600 words to the prompt "What are the thematic elements and stylistic characteristics of blues poetry? Provide examples from the

essay to support your answer..“

LLM RESPONSE: Judicial review is the process by which the courts review the lawfulness of decisions or actions made by public bodies such as central

government departments, local authorities, tribunals, and other decision-making bodies. A claim for judicial review is a legal challenge to the way in which such a

decision was made, rather than the merits or content of the actual decision. To bring a claim for judicial review in England and Wales, there are a number of

procedural requirements that X would need to fulfil. Firstly, X would need to have sufficient interest in the matter, known as'standing'. Standing is established if X

can show that the decision being challenged directly affects them or would affect them differently from the public at large. Given that X was excluded from school

by the decision, X would likely be directly affected by the decision and have standing to bring a judicial review claim. Secondly, X would need to act promptly in

bringing the claim. Under the Civil Procedure Rules (CPR), claims for judicial review must be filed within 3 months of the grounds for the claim arising. The court

has discretion to extend this time limit, but promptness is expected given the public nature of decisions under review. X would thus need to file his claim within 3

months of being notified of the exclusion decision. Thirdly, X would need to apply for permission to proceed with the claim. This requires filing court forms setting

out the grounds for review along with evidence to support those grounds. Permission will be granted if the court considers that X has an arguable case

warranting a review. At the permission stage, the court will assess the grounds put forward by X for their potential to succeed. Common grounds for review

include procedural unfairness, irrationality/ unreasonableness, illegality, and lack of proportionality. X could potentially argue that the decision to exclude

him was disproportionate on the basis that the exclusion was too severe a punishment and not rationally connected to the aims of discipline and good order

in the school. The principle of proportionality requires that decisions impacting individual rights are proportionate to the legitimate aims pursued. The court would

consider whether the exclusion was rationally connected to its aims, whether less restrictive measures were available, and whether the impact on X's right to

education was excessive. Given the severity of exclusion, X may have grounds to argue disproportionality. In considering Y's involvement in the decision to exclude

X, the rule against bias may apply if Y had a close relationship with X or a vested interest in seeing X excluded. The rule against bias requires that decisions are

made impartially, by individuals with no pecuniary or personal interest in the outcome. If Y was biased or appeared to act unfairly in recommending X's exclusion,

the decision and process may be flawed and unlawful on the grounds of apparent bias. In conclusion, there are clear procedural and substantive grounds on which X

could challenge the school's decision to exclude him through judicial review. By acting promptly to file a claim, securing permission to proceed, and arguing that the

decision was disproportionate or apparently biased, X could have reasonable prospects of success in his application for judicial review of the school's decision.

Figure 23: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

PROMPT: Write an essay in 300 words to the prompt "To what extent do the works of Dr. Jekyll and Mr. Hyde and Frankenstein convey the message that science

can be a tool for violence and lack of integrity? Examine the actions and motivations of the scientists in each novel and explore how their experiments lead to

destructive consequences.“

LLM RESPONSE: Determining whether a theory is scientific or pseudoscientific has been a long-standing challenge in philosophy of science. Several

philosophers have proposed demarcation criteria to differentiate science from non-science. Karl Popper proposed the falsification criterion, that for a theory to be

scientific it must be falsifiable. Thomas Kuhn proposed the puzzle-solving criterion, that science progresses through paradigm shifts to solve conceptual puzzles.

Imre Lakatos proposed hard core theories protected by an auxiliary belt of auxiliary hypotheses. And Paul Thagard examined why astrology fails to meet

scientific criteria. Popper's falsification criterion states that for a theory to be scientific, it must be falsifiable - able to be proven false through observations

or experiments. According to Popper, pseudosciences like astrology are not falsifiable because they can always be adjusted to fit new evidence. While

falsification is an important part of science, it is too simplistic as a demarcation criterion. Many scientific theories are hard to falsify in practice and scientists do not

always abandon theories when faced with falsifying evidence. Kuhn's puzzle-solving criterion sees science as progressing through revolutions that shift scientific

paradigms. Normal science operates within a paradigm, solving puzzles that fit existing theories. When too many anomalies accumulate, scientific revolutions occur

that lead to new paradigms. This view captures some elements of how science works in practice. However, it is difficult to determine what counts as a puzzle or

paradigm shift. Pseudosciences can also experience shifts to new theories without becoming genuinely scientific. Lakatos proposed evaluating research programs

rather than individual theories. A scientific research program has a hard core of basic principles surrounded by a protective belt of auxiliary hypotheses. The hard

core is preserved, while the protective belt is modified and expanded. For Lakatos, astrology lacks a progressive problem-shift and has too much ad hoc

modification of its protective belt. However, determining what counts as ad hoc modification or a progressive problem-shift can still be subjective. Thagard

examined why astrology should not be considered scientifically valid. He noted that astrology lacks key criteria like explanatory coherence, which requires that a

theory mesh well with other currently accepted theories. Astrology also lacks predictive success, practical applications, and conceptual coherence since there is no

mechanism explaining how the positions of stars and planets could influence human lives. However, proponents of astrology could argue that it still meets some

conditions of science and more criteria are needed to definitely prove it is pseudoscience. In conclusion, while falsification, puzzle-solving, hard cores, and

explanatory coherence all capture important aspects of science, there is no definitive and universal set of criteria to differentiate science from non-science.

Demarcation will always remain fuzzy. However, for a theory to be considered scientifically valid, some key conditions must be met: It must be consistent with

existing scientific theories and knowledge. It must offer explanations and mechanisms, not just descriptions and predictions. It must lead to new discoveries and

applications. And it must aim to be empirically testable and falsifiable, even if practical limitations exist. When these conditions are lacking, the likelihood of a

theory being genuinely scientific diminishes. The debate on demarcation continues, but these types of criteria point the way to determining what science should aim

for to meet accepted standards of validity.

PROMPT: Write an essay in 600 words to the prompt "Discuss the warning signs of domestic violence and abuse and the appropriate actions that healthcare

providers should take when they suspect these forms of abuse in their patients.."

LLM RESPONSE: Edward Bond's notorious play Outraged poses a radical challenge to traditional Freudian interpretations of the Oedipus complex. Rather than

portraying the complex as a psychological struggle, Bond uses it as a metaphor to critique deeper societal problems. The play employs dark humor and violence to

make the audience uncomfortable and confront humanity's capacity for depravity. At the center of the play is the character Len, a practical and severely flawed

everyman. While Len initially appears relatable, even likable, his ordinary nature makes his disturbing actions all the more unsettling. The play suggests that within

each ordinary person lies the potential for violence and moral failure. Len's desire to kill his stepfather, Frank, does not stem from an unconscious sexual rivalry, as

in a traditional Oedipal narrative. Rather, Len's animosity arises from Frank's abusive and predatory behavior. Frank is a figure who revels in violence and uses his

position of power to exploit others. The play implies that figures like Frank who embody society's darkest aspects arise not from individual pathology but from

systemic failings. The real "complex" here is not Oedipal but rather humanity's tendency to turn a blind eye to injustice and moral corruption. The play's disturbing

and violent events implicate the audience through their gradual escalation. At first, Frank's abusive behavior and the suffering of his wife and stepchildren seem

sadly familiar, even mundane. But as the violence crescendos, the audience realizes with discomfort that their initial nonchalance makes them complicit. The play

suggests ordinary people can become desensitized to extraordinary cruelty, and inaction in the face of injustice enables its perpetuation. Len's eventual parricide is

not a victory but another disturbing moral failure. While Frank is a cruel man who deserves punishment, violence should not be met with more violence. Len's

actions jeopardize his own humanity, even as he rids the world of a moral monster. The play proposes no easy answers and refuses neat resolutions, leaving the

audience unsettled with more questions than solutions. In sum, Outraged utilizes a subversive reinterpretation of the Oedipus story to challenge society's moral

failings. With its unsettling events and unlikeable yet ordinary characters, the play implicates the audience's own darkness and capacity to ignore injustice.

By the play's end, the true "complex" in question is humanity's tendency to remain outraged at metaphorical monsters like Oedipus, all while enabling real

monsters like Frank. Bond suggests the Oedipus complex may reveal less about psychological drives than our unsettling societal tendencies - tendencies the

play brutally and humorously exposes.

PROMPT: Write an essay in 1300 words to the prompt "Explain how the supply and demand theory can be used as a tool for navigating the market, providing

examples of companies that have successfully utilized this theory to their advantage..“

LLM RESPONSE: Employers owe a duty of care to their employees to ensure a safe working environment, both physically and mentally. However, the extent of

this duty is debated, especially regarding obligations to support employee mental health and wellbeing. The case of Somerset County Council v Barber highlighted

the complexities in determining how far an employer's duty extends regarding foreseeable psychiatric harm. In Barber, the House of Lords found that Somerset

County Council was liable for the nervous breakdown of an employee, Barber, due to the unreasonable workload and pressures placed on him. Their judgment

affirmed that employers have a duty to take reasonable care for the mental health and safety of employees in the workplace. However, the court also noted that

employers could not be expected to predict and prevent all psychiatric harm, especially that arising from an employee’s own peculiar vulnerability or susceptibility.

The ruling in Barber has been criticized as posing too high a burden on employers and for judging the case with the benefit of hindsight. However, others argue it

achieved an appropriate balance between employer and employee interests. Workplaces have changed dramatically in the 30 years since Barber was decided, with

longer working hours, greater job insecurity, and more isolated working. This amplification of workplace stressors suggests employers should shoulder more

responsibility for employee wellbeing. That said, there are arguments against saddling employers with open-ended liability for employee mental health issues.

Employees have a degree of personal responsibility for their own wellbeing and for raising issues with their employer. Employment contracts also outline

expected working conditions, workloads and hours, limiting employers’ duty to account for all possible sources of employee stress. Moreover, psychiatric

harm can be challenging to predict and prevent due to the individual nature of mental health. In conclusion, while employers should promote workplace

wellbeing and take reasonable steps to identify foreseeable sources of stress and mental harm, they cannot be insurer against all possible psychiatric injury.

Balance is needed between employee interests in a safe working environment, and employers’ constraints in fully determining and controlling the roots of

mental ill health for a diverse range of employees. Overall, the House of Lords in Barber achieved a reasonable compromise, but further clarity is still needed on

the extent of responsibility employers can fairly bear for the psychological wellbeing of their workforce.

Figure 24: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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