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ABSTRACT

Machine-generated texts (MGTs) of large language models (LLMs) show signifi-
cant potential in many fields but also pose challenges like fake news propagation
and phishing, highlighting the need for MGT detection. Most paragraph-level
detection methods implicitly assume that MGTs are entirely machine-generated
and ignore the scenarios where only part of the MGT is machine-generated or
inconsistent with human-generated text. To this end, this paper first reveals the
prevalence of implicit human-machine mixed texts, which contain subtexts that
are common to human texts, and then theoretically analyzes their impact on detec-
tion. Based on our theoretical findings, we develop a stacked detection enhance-
ment framework decoupled from the detection model, which involves revisiting
the detection optimization objective and the balance between feasibility and effi-
ciency during optimization. Extensive experiments demonstrate its superior im-
provements over existing detectors. Notably, our boosting strategy can also work
in a training-free manner, offering flexibility and scalability. The source code is
available at https://anonymous.4open.science/r/MGTD.

1 INTRODUCTION

The rapid development of large language models (LLMs) (Achiam et al.,[2023}; Radford et al.|[2019)
has led to a surge in Machine-generated texts (MGTs). While these texts have shown significant
potential in many applications, they have also posed severe challenges to fake news propagation
(Zellers et al.,|2019), phishing (Hong} |2012), and academic fraud (Alshurafat et al.,|2024)). For ex-
ample, cybercriminals can create realistic phishing emails to commit fraud or generate fake product
reviews to manipulate consumer decisions. These risks highlight the need for effective MGT detec-
tion to ensure safe and transparent Al systems. This paper will focus on paragraph-based detection,
which can fully utilize contextual information to provide robust detection (Tulchinskii et al., 2024)).

Feature-engineering detection methods identify MGT by using distinctive properties of generated
text, e.g., output log probability (Mitchell et al., [2023]; [Solaiman et al., [2019), objectivity and senti-
ment of the language (Guo et al.| [2023)), cross entropy (Guo et al., [2024), and intrinsic dimensions
(Tulchinskii et al.| 2024). However, such methods require substantial expert knowledge and experi-
ence. Moreover, due to the complexity of textual data, manually extracted features based on limited
data often fail to fully capture intricate patterns and structures, thus, leading to poor generaliza-
tion across various generative models. By contrast, model-based detection methods use entire texts
as inputs, allowing detectors to implicitly learn distinguishing features during training. These ap-
proaches are more flexible than feature engineering methods and have gained more attention, such
as, energy-based models (Tulchinskii et al.l [2024), small language models (Mireshghallah et al.,
2023), LLM (Verma et al., [2024), and graph neural networks (Zhong et al. |2020). Besides, the
representation quality of data is crucial for learning detection models, such as using pre-trained text
features (Crothers et al.,|2022) and probability lists from open-source LLMs (Wang et al., 2023)).

However, these methods implicitly assume texts are entirely human- or machine-generated and ig-
nore the possibility of mixed texts, where only parts are MGTs or inconsistent with human text.
Under the circumstances, at least three key research questions have yet remain to be answered:

* RQ1: How common are human-machine mixed texts, and is it possible that mixed text exists even
if the text is entirely machine-generated?


https://anonymous.4open.science/r/MGTD

Under review as a conference paper at ICLR 2026

* RQ2: If the answer to RQ1 is yes, what are the challenges such mixed text brings to detection,
and what benefits may we achieve by solving these challenges?

* RQ3: For the challenges of RQ2, how can we refine the detection model to overcome them?

This paper aims to study machine-generated text detection by solving these three issues.

First, in addition to explicit human-
machine mixed text scenarios, this
paper reveals the prevalence of im-
plicit human-machine mixed texts
(RQ1, Section 22). Specifically,
even if the text is entirely machine-
generated, LLMs, with their powerful
generation capabilities, can generate
texts consistent with human writing
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in simple sentence structures, fixed
phrases, and so on. This is verified
by examining the Jaccard Similarity
based on sentence words between hu-
mans and LLMs, as shown in Fig. []
(See Section 2.2] for detailed discus-
sion). The inclusion of common text in machine text allows it to be considered as (implicit) mixed
text. This insight suggests that mixed texts are far more prevalent than we had anticipated.

Figure 1: Jaccard similarity of sentence words between
human-written texts and MGTs (ChatGPT and GPT-4). A
notable portion with 100% similarity indicates the existence
of implicit human-machine mixed text.

The common existence of mixed texts requires us to analyze their impact on detection (RQ2, Sec-
tion [2.3). Therefore, we theoretically reveal the sample complexity of the best possible detector to
achieve an AUROC of e. The results indicate that sample complexity is proportional to the propor-
tion of human-generated text within MGTs, and the complexity is lowest when this proportion is 0.
This implies that the existence of mixed texts hinders detection.

To tackle the issues exposed by RQ2 (RQ3, Section [3), we first propose a theoretical enhancement
framework and then gradually model it into a stacked enhancement framework, which includes
identifying the suitable optimization objective that can address the above challenges and proposed a
hard-EM-inspired approach that aids in balancing feasibility and efficiency of detection. Extensive
experiments demonstrate the proposed framework’s boosting effectiveness across various LLMs.

Our contribution mainly lies in (1) revealing the existence of implicit human-machine mixed texts
even if the text is entirely machine-generated, (2) theoretically proving its detrimental impact on de-
tection, and (3) proposing a theory-inspired enhancement framework to boost detection. A detailed
discussion of our contribution is given in Appendix

2 MGT DETECTION REQUIRES FEWER MIXED TEXTS

2.1 PRELIMINARY

Text Data Definition. Following |Chakraborty et al., 2024, if the set of sentences is denoted as
S, we can define the human-generated sentence distribution as h(s) for s € S, and similarly, the
machine-generated sentence distribution as m(s). This allows us to define texts containing multiple
sentences under IID and non-IID settings.

* Sentence IID Setting. If text S contains n sentences S := {s;}!" ;, and each sentence s; is i.i.d.
drawn from either the human distribution s; ~ h(s) or machine distribution s; ~ m(s). Then,
the human-generated text can be denoted as S ~ h®"(s), while the machine-generated text is
S ~ m®"(s), where h®" := h® h® ... ® h (n times) and m®" denote the respective product
distributions.

* Sentence Non-IID Setting. We follow a practical setting (Chakraborty et al.,[2024; Loureiro et al.,
2024) for various language tasks. Assume that p characterizes the dependency strength between
sentences s;, and ZZ s; s considered as the “average meaning” of these sentences. For instance,
“medical knowledge” + “medical care” may convey an average meaning similar to “doctors”. If
T; is defined as the random variable concerning the i-th sentence, then the dependence between
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them is given as

i—1
—1 5k
E[ﬂ | Ti—l = Si—1,""" ,Tl = 81] :p% + (]. *,O)E[TZ]
We can find that when the strength p = 0, this setting degenerates into the IID setting. As p
increases, the current sentence becomes more dependent on the previous sentences.

Problem Definition. The task of MGT detection can be formulated as a binary classification prob-
lem. The detector f maps the text S to a real value f(.S) € [0, 1], which indicates the confidence
of machine generation. If f(S) is greater than a predefined threshold r, text S is predicted to be
machine-generated; otherwise, it is human-generated. Assuming that text .S contains n sentences,
existing work (Chakraborty et all |2024) has proven that the likelihood-ratio-based detector can
achieve the upper bound of AUROC and is the best possible detector:

£(5) = Machine Text if m®"(S) > h®"(S),
" | Human Text  if m®"(S) < h®™(S).

2.2 EXISTENCE OF HUMAN-MACHINE MIXED TEXT

Most detection strategies implicitly assume that the text is entirely generated by either machines
or humans, taking the entire text as input for detection. However, it is common for only parts of
MGTs to be machine-generated. For example, people often use LLMs to modify text rather than
relying entirely on Al to generate the entire text. Moreover, scenarios such as content expansion,
dialogue continuation, and template filling all reflect the collaborative creation of text by humans
and machines. Some works (Zeng et al.,|2024; |Zhang et al., 2024b)) also focus on such mixed text.

In addition to studying explicit human-machine mixed text like existing work, this paper highlights
that "mixed” text also exists in purely MGTs. Accordingly, we reveal a category of implicit human-
machine mixed text: even if the text is entirely machine-generated, LLMs, with their advanced gen-
erative capabilities, can produce text common to human-written content, thus qualifying as human-
generated to some extent. Examples include simple sentence structures (e.g., "Hello World”), fixed-
format phrases (e.g., "Thank you for your letter”), and fixed patterns (e.g., specific places or names).
This finding suggests that mixed texts are far more common than we expect.

For further verification, we calculate the Jaccard similarity based on sentence words between LLMs
and humans. 100% similarity favors the existence of implicit human-machine mixed text. Fig.
presents some results, and full results are in Appendix [H.3] Although most MGTs are different
from human-written text, a notable portion of MGTs exhibit over 90% similarity (in fact, 100%)
with human-generated texts, suggesting some sentences are challenging to differentiate. [1_-] For the
convenience of representation, we will refer to the overlapping part as human-generated text and
implicit mixed text as mixed text.

2.3 DETECTION CHALLENGE OF MIXED TEXT

The existence of (implicit) mixed text requires us to revisit MGT detection. This section theoretically
analyzes the challenges that mixed text poses to detection under the IID setting. The theoretical
results of the non-IID setting are shown in Appendix [D.I] and we can obtain similar findings.

In the human-machine mixed text setting, we need to redefine text S in Section If the MGT
S contains n sentences S := {s;}I_;, with « representing the proportion of human-generated sen-

tences, then (1 — a))n sentences {s;}\-;“"™ are from m(s) and an sentences {8i}iz(1—ayni1 are

from h(s). Besides, the human-generated text S = {s;}?_; consists of sentences i.i.d. drawn from
human h(s). Consequently, the machine-generated text is S ~ m®(1—)np®an(s) denoted as
M (S) for convenience, while the human-generated text is S ~ h®"(s), denoted as H(S). Then,
the best possible detector under the mixed text setting is:
£4(8) = {Machine Text if M(S) > H(S),
" |Human Text if M(S) < H(S).

"Notably, 100% Jaccard similarity is only used to demonstrate the existence of mixed text. We neither aim
to calculate an exact proportion of this mixing nor use it as an evaluation criterion. The 100% Jaccard similarity
provides a lower bound on the existence, and a nonzero lower bound confirms that mixed text exists.
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Figure 2: The framework of the proposed stacked detection enhancement framework.

Furthermore, inspired by the existing theoretical results (Chakraborty et al., 2024)), we can derive
the sentence complexity bound of MGT detection as follows.

Theorem 1 (Sentence Complexity of Mixed Text Detection under IID Setting). Assume the total
variation distance between the human and machine distributions is TV (m,h) = 6 > 0. Let the text
contain n sentences, with « representing the proportion of human-generated sentences in the mixed
text. To achieve an AUROC of ¢, the required sentences n for the best possible detector is:

-0t

The proof is given in Appendix[E} This theorem reveals that achieving better detection performance
(i.e., large €) requires higher sentence complexity n, aligning with existing findings (Kirchenbauer
et al., 2024)). In addition, the detection difficulty (sample complexity n) is directly proportional to
the mixed degree . When o = 0 (MGTs are completely machine-generated), the detector has
the lowest complexity bound. Therefore, machine-generated text detection requires fewer human-
machine mixed texts, i.e., smaller . The empirical evidence for this theoretical result is given in

Appendix

3 PROPOSED METHOD

In this section, we will start with a theoretical enhancement method (Section[3.T)) and then gradually
explain how to model it as a stacked detection framework (Section [3.2)).

3.1 CONCEPTUAL IMPROVEMENTS

The theoretical results from the previous section inspire us to filter out the human-generated portions
from mixed texts (i.e., reduce «) to boost detection. However, its prerequisite is knowing which texts
are mixed, contradicting the detection goal. Under the setting of Section a compromise is to
filter human-generated sequences on a ratio of a; < « from all text (assuming that a reasonable o,
is obtained and the attribution of sentences is known, to be addressed later), the following results
demonstrate the detection improvement by this compromise.

Theorem 2 (Sentence Complexity of Filtering-based Method under IID Setting). Consider the
MGT detection under the assumption of Theorem|l| If we filter an a5 (< «) proportion of human-
generated sentences from all texts, then to achieve an AUROC of e, the required sentences n for the

best possible detector is
1—as 1
=0 ® 1 .
=0 (mr ()

Comparing Theorem 2| with Theorem |1} since 1 — g < 1, the filtering-based method has a lower
complexity for achieving an AUROC of ¢, indicating the detection enhancement. Besides, when
as = 0, i.e., no filtering is performed, Theorem Q] degenerates into Theorem E} The theoretical
result under the non-IID setting is shown in Appendix [D.2] where similar findings are obtained.
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3.2 STACKED DETECTION ENHANCEMENT FRAMEWORK

Section provides a theoretically guaranteed conceptual enhancement framework by filtering
human-generated parts of texts. In this section, we propose a feasible implementation within the
conceptual enhancement framework: the stacked detection enhancement framework, as shown in
Fig. |2| Briefly, the framework first employs a detector to identify and filter human-generated texts
(upper right), and then the same detector is used to make predictions on the refined text (lower
right). Despite its apparent simplicity, it involves carefully designing the optimization objective,
optimization strategy, and detector design. We will introduce them below.

Optimization Objective. Given a dataset D = {(S;, y;) };, where y; € {0, 1} indicates whether the
given text S; is machine-generated (y; = 1) or human-generated (y; = 0). Assuming the detection
model is parameterized by 6. Section[3.1|shows that a suitable optimization strategy is not to directly
maximize the log-likelihood function log p(y;, S;, 0) w.r.t. the complete text S, but log p(y;, S;, ),
where S; is the remaining part after text .S; is filtered out of some human parts.

To better characterize S’i, we introduce vector z; € {0,1}™ to represent sentences’ labels, where
n; denotes the number of sentences in text .S;, and z; ; indicates whether the j-th sentence in S; is
human-generated (z; ; = 0) or machine-generated (z; ; = 1). Therefore, S'Z = S; ® z;, where @ is
element-wise multiplication. Then the optimization goal of the detection model is to maximize the
marginal likelihood of the observed data:

) = 1 S, 23 0) . 1
0 argmeauxZ(Si’yi)ED ogZZip(yl,Sl,zz,H) )]

Optimization Strategy. Considering Eq. is often intractable due to the unobserved z;, a fea-
sible approach is to use the classical Expectation-maximization (EM) algorithm (Dempster et al.,
1977) to find the maximum likelihood estimate of the marginal likelihood by iteratively applying:
(1) Expectation Step (E-step). Compute expectation of the log-likelihood function of 6, with re-
spect to the current conditional distribution of z; given (S;,y;) and estimates of the parameters
0t Q(0;0") := Z(Si,yi) 3., p(2iSi, yiz 0°) log p(yi, Si, 2i5 0). (2) Maximization Step (M-step).
Maximize over 6 the expectation Q(0; 0%): 9+ := arg maxy Q(0;6%).

However, directly using the EM algorithm is challenging. Specifically, if we remove an o propor-
tion of human-generated sentences, the space size of z; is Z(,::%Z (’;) Consequently, the number of
forward passes during the E-step is O(2"), which is computationally infeasible. Additionally, since
the space of z; is large, the classic EM algorithm tends to allocate too much probability mass to the
tail, wasting probability mass on unimportant hidden variables (Samdani et al., [2012).

These considerations make it natural to turn to the hard-EM algorithm (Wen et al., 2023). At this
point, the optimization strategy follows the following coordinate ascent algorithm:

* Hard E-step: The E-step can be accomplished in a hard manner by choosing the best-fit z;:

6;6%) :=
Q( ’ ) Z(Si;yi)
» Hard M-step: Maximize Q(6, 6%) over 6:

o1 = arg max Q(6;6").

log p(yi, Si, 2i; 0), where z; = arg max p(2;|S;, yi; 0°).
P

Compared with the classical EM algorithm, the hard E-step only selects the best-fitting mode, reduc-
ing the computational complexity of Q(6;0%). Additionally, the hard M-step focuses more on the
important probability mass, which has been proven by many works (Samdani et al., 2012} [Parker &
Yu, 2021; |Wen et al.,2023) to perform better. Nevertheless, we also provide a classical EM version,
detailed and evaluated in Appendix [G|and [H.9]

Detector Design. We then show how this optimization strategy can be modeled as the stacked
detection framework of Fig. [2| In the hard E-step, we first need to compute the posterior distribution
p(2;|S;, yi; 01) of the latent variable z; for text S;, label y; under current parameters *. However, ;
is unknown. To this end, revisiting the posterior of the z;:

e oty Pyl Si 230" p(zi | Sis6)
P Soui ) = 5 (] S 00 1 S0
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We have z; = argmax,, p (y; | Si, z:;0%) p (2 | Si; 0'), which also requires O(2"™) computations.
This motivates us to the approximation of z;. We find that the effect of z; on p(z; | S;;6") is
often much larger than the change in p (y; | S;, z;; 0%), which allows us to reasonably approximate
z; & argmax., p (z; | S;; 0"), reducing the calculation to O(n) (See Appendix @for the detail dis-
cussion of this approximation). Since z; denotes sentence’s attribution, p(z;|S;; #") can be obtained
by the detection model f(S,6), and for the j-th sentence’s attribution z; ;, if I(-) is an indicator
function, we have

zig = 1(f(Si;,0") > 0.5), 2)

However, this may not be appropriate in - -
practical detection scenarios. Firstly, ex- Algorithm 1 Stacked Detection Framework

isting studies (Wang et al] 2023) high-  1: Input: Train data D = {(S;, v:)},, the detection
light the difficulty of sentence-level de- model f(S, 6°), training epochs 7', filtering ratio 7,
tection, e.g., identifying the attribution of E-step detection threshold 7., and learning rate 7.
"Please sit down!” is difficult. There- procedure TRAIN(D, f(.5,6°)) > Training
fore, we extend sentence-level detection fort=0to71 — 1do

to sequence-level (k sentences as a se- for each batch of samples Dp ~ D do
quence (k > 1), and £ = 1 represents Calculate Q(6, Gt) according to Eq. ,
sentence level). Here, we borrow the def- where each §; = Inference (S;, f(.5,0°)).

inition of sentences, that is, the number  6: Ot =0 +nVeQ(0,0Y).
of sequences is n;, and the j-th sequence  7: end for
of §; is S; ;. Besides, we need to ensure ~ 8: end for

the filtering ratio oy < « to avoid mis-  9: Return the trained model f(S, 67).

filtering. Therefore, compared with 0.5in  10: end procedure

Eq. (@), a stricter threshold 7 is needed 11: procedure INFERENCE(S;, f(S,0%)) > Inference
to reduce the risk of mistakenly filtering 12: Split S; into a set of sequences {S; ;}, where
MGT, i.e., r. < 0.5. each S; ; contains at most k sentences.

13: Calculate z; according to Eq. (3).

14: S'l =50 Zi-

15: Return f(5;, 0).

16: end procedure

Second, we set a maximum filtering ratio
T to mitigate the risk of incorrect classi-
fication due to unrestricted filtering. For
example, if 9 out of 10 human-generated
sentences are filtered out, classifying the
entire text as machine-generated based on the remaining single sentence is questionable.

Based on these two constraints, the calculation of z; is as follows:
zij =1 (f(Si;,0%) > reand j € Trn, ({f(Siyr,0")}5)), 3)
where 7, (-) denotes the index set of top 7n; largest values. Then, we can get the filtered text

S'?; = 5; ® z;. These two constraints reflects the caution: we would rather leave some potential
“noise” in the text than risk removing sequences that contain valuable signals.

Accordingly, the model prediction §j; = f(S;,6), and

Q6,0 = > wilog (i) + (1 — i) log (1 — §i) . “)
(Si,y4)
In the hard M-step, we need to maximize Q (6, #') to update the model parameters, which can be
achieved by gradient ascent with the learning rate 7: 6! = 6 + nV,Q(0, 6*).

Overall Framework. Alg. [[|shows the algorithm flow. For model inference (Lines 11-16), the de-
tector is first used to perform sequence-level detection to filter confident human-generated sequences
(Lines 12-14), and then detection on the same detector is made on the remaining texts (Line 15). For
model training (Lines 2-10), a hard-EM-inspired method is used (Lines 5-6).

Framework Analysis. The effectiveness of our framework can be understood through the lens of
information bottleneck theory, which states that during forward propagation, a neural network filters
out information irrelevant to the prediction, gradually focusing on the most crucial parts of the input
(Guan et al| [2019). According to this theory, the proposed framework explicitly filters out much
noise information, enabling more efficient learning of key discriminative sequences. A more formal
validity description is given in Appendix [F-5] At the same time, Appendix [F.3]also understands the
effectiveness from the perspective of attention mechanism and text granularity. Besides, for more
discussion of the proposed framework (e.g., time complexity, limitations, etc), see Appendix[F
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Table 1: Performance concerning TPR @FPR-0.5%. Detectors are trained on ChatGPT text.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Aveg.
Log—Likelihood 24-08i22,67 37-70i30.63 23-12i24,38 5.86i7_02 12'45i12.04 2.48:&3‘06 17.62

Rank 5560i355 51.31;{:5‘91 65-84i6.93 53-49:{:6,09 35.11:{:431 25-12ii07 47.75

Log—Rank 28-72i25,90 46-48i36.20 25-04i25,83 28.19i27(g(} 17-34i15.65 2963{;72 24.79
DetectGPT 37.04110‘21 24.75110.[)3 5.5211(93 21.45114(25 15.45:&7.05 4.48:(:257 18.12
F-DetectGPT 4.2441 51 3.8542.05 31.28 4318 35.7441397 0.0040.00 0.1640.20 12.55

Essay ChatGPT-D 80.08+7.56 78.11+1049 39124994 94304404 34424575 1.6041.01 54.61
ChatGPT-STK | 86.561962 83.6111157 46.3219.41 96.47 1368 44.98110.42 4.2449 98 60.36
OpCl’lAI-D 78-32i39.18 87.70i20_72 70-24i35.62 96.55i5>32 66.70i32_73 22-56i17,88 70.34
OPCHAI-STK 96.96i1_83 96.89i1.73 88.48i2_79 98.63i0_94 81~55i7.87 28.24i7_54 81.79

MPU 99.92_ .16 99.26.1040 67.9211235 99.601¢ 51 76.1416.08 59.924 158 84 83.79

MPU-STK | 99.92.015 99.26:040 654411647 99.601051 79.06,¢¢5 786411065 | 86.99

RADAR 96.881005 96.561056 92.64,,,, 98.961000 65.751sss  5S.641sss | 84.90
RADAR-STK | 98.16,, 55 95821175 94641350 9912, .9 70391590  64.96,..4, | 87.18
LOg—LikClihOOd 77-84i5.19 14.88i5_98 86.08i3_38 93.76i2,03 11~20i4.45 15404i6.86 49.80

Rank 48.88i1_59 35-92i2.88 58.40i3_94 40-56i1.85 18.56i2_27 6424i1.87 34.76

Log—Rank 82.40i5_24 25-92i7.08 90.96i4_12 96-80i0.88 14.00i4_32 17-60i8.29 54.61
DetectGPT 4.4049 62 0.6440.54 2.3211 87 2.5649 .80 0.4840.47 3.0411 61 2.24
F-DetectGPT 48-00i9A48 6-80i1_88 92-96i1.65 88.96;{:4‘80 0.00;{:0‘00 0.483:()‘39 39.53

Reuters ChatGPT-D 98.004225 94.324397 96.084223 984841078 59.76+13.36 11.8446.11 76.41
ChatGPT-STK | 99.28:039 96.1641.15 98.0841.17 98.7240.47 64.56438 32 30.3248.23 81.19
OpenAI—D 96.88i4426 84.08i9.42 96.56i5_32 98.00i1.13 49~44i5.83 19~92i5,21 74.15
OpenAI-STK 99~52i0,30 95.36i2,19 99.76i0_20 98.48i0,53 62.72i5,44 39~44i7,20 82.55

MPU 100.00000 97923106 99.92.0 15 99.60, 005 72.64i702  75.68:12.02 | 90.96

MPU-STK | 100.00.000 98.08,,,, 100.001000 9944104, 72.801505 8440 1049 | 92.45

RADAR 100.0010.00 999241016 99.68+1030 99921016 89.68.2 08 95.68.11.53 97.48
RADAR-STK | 100.00.000 99.92:016 99.68:030 99921016 89.68,5,,  95.684155 | 97.48

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets and Baselines. The experiments are conducted on the MGT detection benchmark, MGT-
Bench (He et al.| 2023)), and we use three datasets: Essay (Verma et al.| 2024) and Reuters (Verma
et al.|[2024)) with implicit mixed text, and SQuAD1 (He et al.; 2023)) with explicit mixed texts. In Es-
say and Reuters, MGTs are generated by ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and
Claude, while in SQuADI1, MGTs are from ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly,
and StableLM. In addition, we use paraphrasing data from DetectRL (Wu et al.| [2024)) for robust-
ness evaluation. Baselines include closed-source detector: GPTZero (GPTZero, [2023)), feature-
based methods: Log-Likelihood (Solaiman et al.l [2019), Rank (Gehrmann et al.| [2019), Log-Rank
(Mitchell et al., 2023), DetectGPT (Mitchell et al., |2023)), Fast-DetectGPT (F-DetectGPT) (Bao
et al., [2024), as well as model-based detectors: OpenAl-D (Solaiman et al., 2019), ChatGPT-D
(Guo et al.} 2023), MPU (Tian et al., 2024), and RADAR (Hu et al., [2023). We apply the proposed
stacked framework to the OpenAl-D, ChatGPT-D, MPU, and RADAR, denoted as OpenAI-STK,
ChatGPT-STK, MPU-STK, and RADAR-STK, respectively. More detailed descriptions and param-
eter settings are given in Appendix

Evaluation Metrics. We first use the area under the receiver operating characteristic curve (AU-
ROC). Besides, considering that a low false positive rate (i.e., human-generated texts being misclas-
sified as machines) can mitigate repercussions for users (Fraser et al.,2024)), we report performance
as the true positive rate at a fixed false positive rate K (TPR@FPR-K). In the experiments, K is
set to 0.5%. To compare with GPTZero, which outputs hard labels, we also report the performance
concerning Accuracy in Appendix All experiments are repeated 5 times. The best results are
bolded, and the second-best results are underlined.

4.2 PERFORMANCE COMPARISON

Cross-LLM Performance. The detector usually has no prior knowledge of LLM. Therefore, de-
tectors are trained on texts generated by a specific LLM and tested on texts across various LLMs.
Table 1| presents the comparison of TPR@FPR-0.5% when detectors are trained on ChatGPT texts



Under review as a conference paper at ICLR 2026

ChatGPT
GPT-4
GPT-turbo
ChatGLM
Dolly
Claude

ChatGPT-D B ChatGPT-STK

0.50 0.55 0.60 0.65 0.70 0.8 1.0 04 06 08 0.8 1.0 000 002 004 050 055 0.60
TPR@FPR-0.5% AUROC TPR@FPR-0.5% AUROC TPR@FPR-0.5% AUROC
(a) Essay (b) Reuters (c) SQUAD1

Figure 3: Average detection performance (x-axis) of detectors (ChatGPT-D and our boosting strat-
egy ChatGPT-STK) tested across various LLMs, where these detectors are trained on texts generated
by specific LLM (y-axis).
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Figure 4: Performance (x-axis) of the un-fine-tuned detectors tested on various LLM texts (y-axis).

and tested on various LLM texts. See Table [2]and Table [3| of Appendix [H.4]for more performance
comparison results. Firstly, it can be observed that the proposed strategy significantly improves the
detection performance of the original detectors. For example, on the Essay dataset, ChatGPT-STK
increases the TPR@FPR-0.5% of ChatGPT-D from an average of 54.61% to 60.36%. In addition to
the improvement in average performance, for specific LLM text detection (each cell), the proposed
strategy shows enhancement potential in most settings. This property underscores the practicality
of our method, given that real-world scenarios often lack prior knowledge of the specific generative
models involved. Besides, the cross-LLM performance is not necessarily inferior to the intra-LLM
performance in MGT detection. This may depend on the quality of the generated text. For exam-
ple, ChatGLM (cross-LLM) outperforms ChatGPT (intra-LLM). Similar findings are observed in
related work 2023). Finally, aligning with existing findings 2024), feature-
based methods are less effective than model-based methods, echoing the conclusion that manually
designed features struggle to cover the extensive and complex patterns in texts, thus highlighting the
advantages of model-based approaches.

Beyond training on ChatGPT-generated texts, we assess detectors trained extensively on various
other LLM texts. Fig. [3] presents the average performance (x-axis) of detectors (ChatGPT-D and
ChatGPT-STK) tested across various LLMs, with training on different LLM texts (y-axis). Re-
sults for OpenAI-STK, MPU-STK, and RADAR-STK are shown in Fig. [TOjI2} and more detailed
performances appear in Tables [4{I3] in Appendix The proposed strategy markedly improves
cross-LLM detection capability for these detectors.

Enhancement in a Training-free Manner. Previously, we demonstrated the enhancement effect of
using the proposed stacked framework (architecture + optimization strategy) on existing detectors.
A more stringent setting involves evaluating the enhancement effect on already trained detectors
using only the stacked structure without additional training. Fig. [] shows the enhancement ef-
fect on ChatGPT-D when only using the proposed stacked structure without fine-tuning (denoted
as ChatGPT-D-No and ChatGPT-STK-No). Encouragingly, even without retraining, the proposed
stacked framework exhibits significant enhancement. This plug-and-play property provides high
flexibility and scalability, making it a practical solution.

Cross-domain Performance. In addition to cross-LLM performance, we also evaluated the cross-
domain performance, with the results shown in Fig. [5] In this evaluation, the Essay dataset served
as the source domain and the Reuters dataset as the target domain. The results indicate that models
employing the proposed enhancement strategy demonstrated superior detection performance in most
setups, strongly supporting the effectiveness of the proposed strategy in improving the detector’s
cross-domain generalization capability.
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Figure 5: Performance under cross-domain setting. The Essay dataset served as the source domain,
and the Reuters dataset as the target domain. The detector is trained on ChatGPT texts.
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Figure 6: Enhancements to GPT2-based
Detector, which is trained on ChatGPT
texts.

Figure 7: Enhance the robustness of ChatGPT-D. Here
we use three attacks: Dipper, Polish, and Translation.

Enhancement of Auto-regressive-based Detector. Admittedly, the proposed strategy may affect
the performance of auto-regressive-based detectors since filtering will destroy the context at the fil-
tering point. To this end, we use GPT-2 as the detection model (using the last token embedding with
a fully connected layer for binary classification) to explore the impact on auto-regressive models, as
shown in Fig. [6] We can find that the proposed framework still demonstrates enhanced effectiveness.
The possible reason is that the persistent influence of important tokens in the attention mechanism
can alleviate the destructive effect of text structure. For more theoretical discussion, see the second
point of Appendix [F3] This property highlights the broad applicability of the proposed framework.

Robust Performance against Paraphrasing Attack. Existing research (Sadasivan et all, [2023)
generally indicates that MGT detection is susceptible to paraphrase attacks, where attackers attempt
to bypass the detector by rewriting text without altering its semantics. To address this, we evaluated
the robustness enhancement brought by the proposed framework using three types of paraphrase
attack data provided by the DetectRL dataset, with results shown in Fig. [7] For more robustness
evaluation results, please refer to Appendix [H:3] It is evident that even in adversarial environments,
the proposed strategy surprisingly enhances the detector’s robustness against these paraphrase at-
tacks, underscoring the broad applicability of the strategy.

5 CONCLUSION

This paper emphasises the importance of human-machine mixed text in MGT detection. Firstly, sta-
tistical analysis of existing datasets has empirically revealed the widespread presence of mixed texts,
even for pure MGTs. Then, we have theoretically demonstrated their negative impact on detection.
Based on our theoretical findings, we have designed a stacked detection enhancement framework.
Through theoretical analysis and extensive experimental evaluation, we have demonstrated the de-
tection enhancement capabilities of the proposed framework. Moreover, the stacked structure can be
seamlessly integrated into existing trained detectors in a training-free manner, thus achieving flexible
enhancement. Notably, our primary technique contribution lies in the conceptual framework (i.e.,
filtering a portion of human-generated text from all texts), and the proposed EM-inspired approach
is merely one feasible implementation within the conceptual framework. This conceptual insight
presents a promising direction for future work to further enhance detection.
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ETHICS STATEMENT

This paper presents work whose goal is to advance MGT detection, and it may potentially have
positive impacts in fields such as news authenticity verification and academic integrity maintenance.
Therefore, it does not involve human subjects, practices to data set releases, potentially harmful in-
sights, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy
and security issues, legal compliance, and research integrity issues.

REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/MGTD. All datasets used
in this study (Essay, Reuters, and SQuAD1) are publicly available. Detailed implementation details
(e.g., learning rate, training epochs, optimizer, and hyperparameters k, 7, and r. of the proposed
framework) are provided in the Appendix. We report the average results over five random seeds,
including standard deviations.
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A THE USE OF LARGE LANGUAGE MODELS

We used LLMs solely to help correct grammatical and spelling errors and improve the clarity of the
paper. All technical descriptions, experimental designs, analyses, and conclusions were conceived,
performed, and verified entirely by the authors, without LLMs’ involvement. The authors have
thoroughly reviewed and validated all language model-assisted edits to ensure the accuracy and
integrity of the paper.

B DETAILED DISCUSSION OF OUR CONTRIBUTIONS

Our contribution lies in revealing the existence of implicit human-machine mixed texts and their
theoretical harm to detection, as well as how theoretical results could really help develop better
detection methods even in the presence of mixed texts.

* We reveal the existence of implicit human-machine mixed texts (Section2.2). Existing works
(Zhang et al.| 2024b; Wang et al., |2024) emphasize purely mixed text scenarios, where the text is
a mix of human-written and machine-generated content. However, we extend this to more general
mixed scenarios, even if the text is entirely machine-generated. LLMs, with their advanced gener-
ative capabilities, can produce text indistinguishable from human-written content, thus qualifying
as mixed text to some extent. Considering the difficulty of detecting mixed texts (Zhang et al.
2024b), this study highlights that the actual detection challenge may be far more severe than rec-
ognized, advocating for attention to (implicit) mixed text detection, even when the text is entirely
machine-generated.

* We theoretically demonstrate the impact of mixed texts on detection (Section2.3). Intuitively,
the human-generated text mixed into MGT acts as noise, and ignoring its treatment may affect
detection. Existing work (Zhang et al. [2024b} [Wang et al. [2024) has empirically shown that
detecting such mixed texts is challenging, lacking theoretical guarantees in machine learning.
Therefore, we take the first step to provide a theoretical guarantee of the impact of mixed texts
on detection. This theoretical foundation is not only more general but also systematically reveals
the mechanism by which mixed texts affect the performance of detection models, guiding the
development of more effective detection strategies (i.e., our stacked detection framework).

* We develop a theoretically inspired detection enhancement framework (Section [3), which
involves ensuring theoretical validity (Section [3.1)), revisiting the detection optimization objec-
tive, and the balance between the feasibility and efficiency of the optimization process (Section
[3.2). Notably, our primary technique contribution and novelty lies in the conceptual framework
rather than just specific implementation details (i.e., EM algorithm). Although our current imple-
mentation is based on the hard-EM algorithm, this is merely one feasible implementation within
the framework; alternatives include using EM algorithm variants Neal & Hinton| (1998)); Cheung
(2005) and variational inference [Jordan et al.| (1999). This conceptual insight and framework
design can inspire future research in this field.

* We demonstrate our effectiveness from both theoretical and experimental aspects (Section
M}, and [H). Theorem[2]and ] provide theoretical bounds for the proposed framework, and they
have a smaller complexity when compared with Theorem[T]and[3] Extensive experiments on cross-
LLM, cross-domain, and resistance to paraphrasing attacks demonstrate the enhancement of the
proposed framework. Remarkably, the proposed strategy can also enhance detection in a training-
free manner (i.e., simply configuring the proposed stacked structure without optimization). This
plug-and-play property makes it more flexible and scalable.

C RELATED WORKS

Existing detection efforts can be categorized into watermark-based, language feature-based, and
deep learning-based methods (Fraser et al., [2024)).
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The watermarks hidden in the text indicate that the text is Al-generated. Existing work (Kirchen-
bauer et al., [2023)) suggested mildly promoting the use of predefined ’green” tokens during text
generation and proposed a statistical test method to detect watermarks. Unigram-Watermark (Zhao
et al.} [2024) was proposed by extending existing approaches with a simplified fixed grouping strat-
egy. Obviously, watermark-based methods require high privileges over the model, which limits their
wide applicability. Furthermore, recent work (Zhang et al.,2024a; Jovanovic¢ et al.||2024) has shown
that strong watermarking is difficult to achieve and is vulnerable to watermark attacks.

Language feature-based methods exploit the unique properties of text to distinguish between natural
and generated text. DetectGPT (Mitchell et al., 2023)) based on the observation that minor perturba-
tions in generated text result in a lower log probability for the rewritten text than the original sample.
Similar work (Solaiman et al., [2019) achieved good performance by detecting based on the higher
log probabilities of generated text compared to natural text. Through analyzing the characteristics of
generated text, existing work (Guo et al.,2023)) found that responses from ChatGPT tend to be more
objective, formal, and less emotional. In addition, the intrinsic dimension of the text is a good metric
(Tulchinskii et al} [2024), where the average intrinsic dimension of the generated text is about 1.5
lower than that of natural text. These methods, based on specific data (generative models), extract
different features and struggle to comprehensively consider the features of generated text.

Deep learning-based methods do not involve explicit feature extraction but instead use the entire text
as input, allowing the detector to learn implicit features during training. The energy-based model
was utilized to differentiate between real and generated text (Tulchinskii et al., |2024). Recent work
found that smaller and partially trained language models are better general detectors of machine-
generated text (Mireshghallah et al.,[2023)), and the detector should maximize performance for more
advanced generation models (Pagnoni et al.| |2022). Considering the difficulty existing detection
models have in capturing the factual structure of documents, a graph-based model (Zhong et al.,
2020) was proposed to represent the factual structure of a given document. SeqXGPT (Wang et al.}
2023) used a probability list from open-source models as input for the detector model, rather than
the raw text itself. These methods focus on supervised training of specific data, and extensive re-
search has found that under these settings, the models’ generalization ability significantly decreases
(Liang et al., 2023 [Ippolito et al., [2020). For example, Detectors frequently misclassify texts writ-
ten by non-native English speakers (Liang et al.|[2023). Besides, certain categories, such as recipes,
are easier to detect than others, such as stories or news (Tulchinskii et al.l |2024). Different sam-
pling strategies also significantly affect detection performance, with texts generated using nucleus
sampling being the most challenging to detect (Ippolito et al., 2020).

D MORE THEORETICAL RESULTS

D.1 SENTENCE COMPLEXITY OF MIXED TEXT DETECTION UNDER NON-IID SETTING

Following the non-IID setting from Section assume that text S' contains L independent se-
quences {v;}L |, where each sequence v; consists of ¢; dependent sentences. This assumption is
reasonable due to factors such as topic independence and context switching. Then, we can derive
the following result.

Theorem 3 (Sentence Complexity of Mixed Text Detection under Non-IID Setting). Assume the
total variation distance between the human and machine distributions is TV (m,h) = § > 0. Let
the text contain n sentences, with o representing the proportion of human-generated sentences in
the mixed text. To achieve an AUROC of ¢, the required sentences n for the best possible detector is:

1 1 1 &
n=0 T 1“(1e> - (1761)5;(%—1),0].

1/2 &)

+ W é(%‘l)pﬂ' 'hl(lie)

We can get similar findings as Theorem T} Besides, when the dependence coefficient p; = 0 for all
J, then Theorem (3| under the non-IID setting degenerates into Theorem |1{ under the IID setting. In
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summary, Theorem|[I]and Theorem [3]inspire us that machine-generated text detection requires fewer
human-machine mixed texts.

D.2 SENTENCE COMPLEXITY OF FILTERING-BASED METHOD UNDER NON-IID SETTING

Theorem 4 (Sentence Complexity of Filtering-based Method under Non-IID Setting). Consider
the MGT detection under the assumption of Theorem[3} If we filter an o5 (< «) proportion of human-
generated sentences from all texts, then to achieve an AUROC of ¢, the required sentences n for the
best possible detector is

o e (), ! i(‘_l)‘
T Az 1 me) Ta—ap &N T
Jj=1

1/2

E PROOFS

E.1 PROOF OF THEOREMIII

Proof. Our proof follows the proof of Theorem 1 in existing work (Chakraborty et al.,2024). First,
according to our assumption, the Total Variance Distance TV (m, h) between machine-generated
sentence distribution and human-generated sentence distribution is § where 6 > 0. According to the
definition of TV distance, there exists some set A € S such that given the sentences s” ~ m/(s) and
s" ~ h(s), it holds

p(sm e A)—p(s" € A) =46

If wesetp (s" € A) = ¢, itimplies that p (s™ € A) = g+4. For convenience, we define 5 = 1—a,
which denotes the proportion of machine-generated sentences in the human-machine mixed text.

Then, in the human-machine mixed text of n sentences {s;}™ ;, Sn sentences {si}fgl are from
n

m(s) and an sentences {s;};_ 4, ,, are from h(s). Given p (s" € A) = gand p (s™ € A) = ¢+,
we can deduce that, on average, (¢ + $d)n number of sentences will be in A. Similarly, for purely
human-generated text of n sentences {s;}""_; from h(s), on average, gn number of sentences will
be in A. Therefore, applying the Chernoff bound, we have

525271

0
P < at least <q + ﬂQ) n sentences of human-machine mixed text are in A) <exp 2 (6)

and

B252n

)
P ( at most (q + i) n sentences of human-generated text are in A) <exp 2 @)

Let A’ denote the set of n-tuples containing more than (q + %) n sentences of A. If the mixed

text distribution is defined as m®8"h®2" and the human-generated text distribution is h®", we can
bound

=

252, 252,
> (1 - expﬁg) —exp~ ®)

B2(52n

=1—2exp 2

TV (mPheer, n) > p ({s7} 2 U (s € A') —p ({51}, € 4')
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Invoking existing theoretical result (Proposition 1 in|Chakraborty et al.,[2024), we have

1 TV (m®Bnp@an pon 2
AUROC < o + TV (m®7"heem, h¥") — ( 5 ) 9)
If we need the AUROC of the best possible detector to satisfy AUROC' > ¢, then we need
1 TV (m®FnpSen pen)®
— + TV (m®Prp®en p&n) — ( ) > € (10)

2 2

Since the left-hand side is the monotonically increasing function of TV (m®F"h®an p®™) com-
bined with Eq. (8), it holds from the minimum value that

_B2%s%n 2
1 sy (1-200 )
2+(1—2exp_ 2 )— 5 > ¢ (11)

After expanding the squares and rearranging the terms, we get

1 —

£ > exp e (12)

Taking the logarithm of both sides of the inequality and sorting them, we can get

1 2 1 2
> 1 = 1 13
n_5252n(16) (1a)252n(16> (13
The theorem is proved.

O

E.2 PROOF OF THEOREM 3|

Proof. This proof also follows the existing work (Chakraborty et al.||2024). First, we need to intro-
duce a lemma from existing work (Dhurandharj, [2013) to support our proof.

L

Lemma 5. Let n be the number of samples drawn sequentially from P (51, S2 -+ Sn) = [[;2, 7,

where T; are independent subsets consisting of c; dependent sequences (sl, S - scj) such that

L PR .
Zle ¢;j = n. Under dependence structure in (16), for any § > w, it holds that

i ) —9 (n5 — Zle (¢;j—1) pj>2
P(S — E[3] > §) < exp

n

_9 (n6 - Zle (¢; —1) pj)z

n

P(E[S] — S > 6) < exp
where S = %2221 s;and B [S; | Si—1 = si-1,---, 51 = s1] = 725 2_:11 sk + (1= p)E[S;].

This lemma provides a theoretical upper bound in the non-iid setting. When the dependence strength
p = 0, it degenerates to the Chernoff bound.

Based on this lemma, we can follow a similar proof in the iid setting. If we set p (sh S A) =q,
it implies that p (s"™ € A) = ¢ + . For convenience, we define 5 = 1 — «, which denotes the
proportion of machine-generated sentences in the human-machine mixed text. Then, in the human-
machine mixed text of n sentences {s;}" ;, Sn sentences {sz}f:”1 are from m(s) and an sentences
{si}i— gy are from h(s). Given p (s" € A) = gand p(s™ € A) = q + 6, we can deduce that,
on average, (¢ + £9)n number of sentences will be in A. Similarly, for purely human-generated
text of n sentences {s; }7*_; from h(s), on average, gn number of sentences will be in A. Therefore,
applying the above lemma, we have
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BS _ _ —2(ng vk (6-1)e;)°
P( atleast | g+ - n sentences of mixed text are in A | < exp n (14)
and
86 —2(Bng -k (e;-1)ry)"
P ( at most (q + 2) n sentences of human-written text are in A) < exp n
15)

Let A’ denote the set of n-tuples containing more than (q + %) n sentences of A. If the mixed text

distribution is defined as m®8m"h®2" and the human-generated text distribution is A®", we have

TV (RO w9 = p ({s7 )2 U{stem € A) —p ({st}L, € 4')
—2(png-vk (e;=1);)° —2(png -5k (c;-1)e;)°
> [1—exp g —exp B (16)

—2(pnd-Sk (e5-1)0;)"
=1—-2exp z

If we need the AUROC of the best possible detector to satisfy AU ROC > e, then we need

T ®RpBnRan N 2
%—FTV (m®ﬁnh®an,h®n) _ 14 (m ]21 h )

> € a7

Since the left-hand side is the monotonically increasing function of TV (m®ﬁ np®an h®") , com-
bined with Eq. (T6)), it holds from the minimum value that

(gt (e 0es)*
R 1—2exp n
1 ’2(5”%’2#:1(6.7*1)"47‘)
§+ 1—2exp n - 5 >e (18)
After expanding the squares and rearranging the terms, we get
1— —a(BnS -k (cj—1)p; 2
£ > exp Ll i ) (19)
2
Let’s denote o = Zle (¢;j —1) pj and y(e) = In (136). Further rearranging, we get
40,6 ? 4
Invy(e) < — <ﬂn — a) =nfB%6% — 4086 + —a? (20)
n 2 n
Further rearranging the terms, we can get
B26%*n? — n (4Bad + v(€)) +4a* >0 (21)
The solution of the quadratic equation is given by
() a
n > 55757 + 2% + 55757 V (4aBs + ~(€))2 — 16025242
~(e) « 1
= 2—+ —— 2+ 8afd
25 + 255 + g VO + 8809
~(€) e 1 27y(€)? + 16a857(¢)
= +2——+
23242 B 20262 2 (22)

(e) o 1 ([ V29(e) +4y/apBdr(e)
= 2572 V25 T o ( 2 )
2+ V2( ay(e)

- 43252 + 2% + 3353
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If using the order notation, we will obtain

L
1 1 1
=0 1 -1
" (1— )22 n<1_€> 1-« (5j:1 r
12 (23)
L 1
. 1
* (1—a553 P n(l—e)
j=1
Then the theorem is proved.
O
E.3 PROOF OF THEOREM[2]
Proof. Similar to the proof for Theorem l if we define p (sh € A) = ¢, it implies that
p(s™ € A) = q + 4. Then, in the human-machine mixed text of (1 — a,)n sentences {s; }(1 oe)n

(1—as)n)
i=Bn+1
Given p (sh € A) =gandp(s™ € A) = g+ 0, we can deduce that, on average, (1 — a,)gn + Son

number of sentences will be in A. Similarly, for human-generated text, we collect (1 — as)n sen-

tences {52}51;10‘)” from h(s) and on average (1 — as)gn number of sentences will be in A. There-
fore, applying the Chernoff bound, we have

where n sentences {51}1.:1 are from m(s) and (o — ag)n sentences {sz} are from h(s).

g _ 8252
P < at least ((1 —as)g+ 62) n sentences of mixed text are in A) < exp Hoas) (24)

and

252

0 . .
P (at most ((1 —as)q+ ﬁg) n sentences of human-written text are in A) < exp g
(25)
Let A’ denote the set of (1 — a5 )n-tuples containing more than ((1 —ag)q+ %) n sentences of A.

If the mixed text distribution is defined as m®Fmp®(@—as)n and the human-generated distribution
is h®1—as)n we can bound

™V <m®ﬂnh®(aiaé) h®(1 ab)n)) >p ({sm}ﬁnl U {Sh}(a o) ) ({Sh} (1—a.)n
52520 5252,
> (1 — exp_2(105>> —exp 20-aa)
8252n

=1—2exp -ao .

5252

If we define (3, = ﬁ then TV (m®fnp@la—adn p@l-ain)y > 1 2exp~ > Similar to
the proof of Theorem I] we have

1 2 1-a, 2
> =
"= prg2 ln(l—e) (1— )22 hl(l—e) (26)

The theorem is proved. O

E.4 PROOF OF THEOREM [4]

Proof. Similar to the proof for Theorem l if we define p(sh € A) = ¢, it implies that

p(s™ € A) = g + 6. Then, in the human-machine mixed text of (1 — v, )n sentences {s;}\"7*)",
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where On sentences {s;};_; are from m(s) and (o — a5)n sentences {sz}gigiﬁ? )

Givenp (s" € A) = gand p(s™ € A) = g+ 6, we can deduce that, on average, (1 — a;)gn + 36n
number of sentences will be in A. Similarly, for human-generated text, we collect (1 — «s)n sen-
tences {32}51:_1(“)” from h(s) and on average (1 — as)gn number of sentences will be in A. There-
fore, applying Lemma 5} we have

yom are from h(s).

B6 *2(/3"%*2?:1(0.1*1)0.7)2
P ( at least ((1 —as)q + 2) n sentences of mixed text are in A) < exp d=as)n
27)
and
B85 *Q(B"%*Zfﬂ(cj‘*l)f’j)z
P ( at most ((1 —as)g + 2) n sentences of human text are in A) < exp T-as)n

(28)

Let A’ denote the set of (1 — a5 )n-tuples containing more than ((1 —as)g+ %6) n sentences of A.

If the mixed text distribution is defined as m®Fp®(@—as)n and the human-generated distribution
is h®(=2:)7 we can bound

TV( ®Bnp,®(a—as)n h®(1 as )n)) >p ({Sm}ﬁfl U {sh}(a as)n ) ({Sh}(l O“s)n )

2 2
’2(‘3"%’2521(%*1)%) ’2(‘3"5*21':1(%*1)/7]')
Z 1— exp (I—ag)n — exp (I—ag)n

2
—2(8ng vk 1 (ej-1)r))

=1-—2exp (I-as)n
(29)
If we need the AUROC of the best possible detector to satisfy AUROC' > ¢, we need
RpBnpR(a—as)n |R(1—as)n) 2
1 + (m®,3nh®(a—as)n h®(1—as)”)) _ (m h ,f ) > € (30)
2 ’ 2 -

Since  the  left-hand side is the  monotonicall increasing  function  of
TV (m®5nh®(a*a5)"7h®(1*°‘5)")), combined with Egq. , it holds from the minimum

value that
(5n8 -2 (o5 =1)ry)
. a(6n 8-S (g V)0 )? (1 — 2exp O=—asin )
S+ (1 — 2exp T—asn > — 5 >e (3D
After expanding the squares and rearranging the terms, we get
1—e¢ —a(Bng-Sh (e -1)y)”
> exp (-asm (32)

2

Let’s denote o = Zle (¢;j—1)pjand y(e) = (1 —a;)In ( ) Further rearranging, we get

4 g ? 252 4
Invy(e) < = (Bnz —a)] =np** —4aBd+ —a (33)
n 2 n

) to replace In (136

Then similar to the proof of Theoremand using (1 — a;) In (136 ), we have

n =1 1o In ! i ;
B (1—a)26? 1—e¢ 1—045]:1

1/2
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The theorem is proved. O

F MORE DISCUSSION OF THE PROPOSED FRAMEWORK

F.1 THEORETICAL RESULTS

Relation between Theory and Detection Methods. The proposed theoretical bounds aimed at ex-
ploring the relationship between maximum detection potential and data (mixed texts), rather than
specific detection methods. This data-driven perspective allows us to propose a conceptually en-
hanced framework rather than designing specific detectors, making it more applicable. Therefore, in
the paper, we are pleased to see enhancements to various detection methods, rather than proposing
a specific detection method.

Relation between Theory and the Proposed Stacked Enhancement Framework. Theorem
and[3|reveal that the detection challenge (sample complexity n) is directly proportional to the mixed
degree «. This finding motivates us to filter human parts in mixed texts (i.e., reduce the mixed degree
«) to enhance detection, which is the core idea of the proposed framework. Meanwhile, Theorem
and[d] provide theoretical bounds for the proposed framework. They have a smaller complexity when
compared with Theorems [T]and [3| (Theorem [T} vs. [2] Theorem[3]vs. [)), thus theoretically proving its
enhanced effectiveness.

F.2 RATIONALITY OF THE APPROXIMATION OF z;

In the main text, we argue the effect of different z; on p(z;|S;; 6%) is usually much greater than
p(y:]Si, zi; 0"), which allows us to reasonably approximate z; &~ arg max.,, p(z;|S;;6"). We use
proof by contradiction to show that this approximation is mild.

Specifically, let z; = argmax,, p(z;|S;;0"), 20 = argmax., p(y;|S;, z:;0%)p(z:|S;; 0%). If
the approximation is unreasonable, then z; # 2o, let us assume that there are k positions be-
tween z; and zy that are different. For a well-trained detector, the detection results are usually
close to 0 or 1. For example, it is reasonable to assume that p(z; ;|S;;0) > 0.95 or < 0.05,
which is often more serious in reality. Then, we know p(z1]S;60) > 20Fp(22|S;;0%). If
29 = argmax,, p(v:|Si, zi;0)p(2i]Si; 0) # 21, then at least p(y;|S;, 215 0%) > 20%p(y;|S;, 22; 6%)
must be satisfied. Since p(y;|S;, 21; 0%) represents the detection probability of paragraph S; ® 21,
this means that modifying two subsequences of a paragraph can change the detection probability by
a factor of 400, which is generally difficult. Therefore, our approximation is mild.

F.3 DIFFERENCES FROM EXISTING MIXED TEXT DETECTION WORKS

Despite some recent attention (Zhang et al.| |2024b; Wang et al., 2024} to human-machine mixed text
detection, our work differs significantly from them in several key aspects:

* Scenario. Different from previous research focused solely on pure mixed texts combining human-
written and machine-generated content, we extend our investigation to implicit human-machine
mixed texts: even if the text is entirely machine-generated, LLMs, with their advanced generative
capabilities, can produce text indistinguishable from human-written content. Considering the dif-
ficulty of detecting mixed texts, our work highlights that the actual detection challenge may be far
more severe than recognized, even when the text is entirely machine-generated.

 Evaluation. Previous studies experimentally demonstrated the challenges of mixed text detection
in specific datasets, lacking theoretical guarantees in machine learning. Accordingly, our work
takes the first step to theoretically elucidate the detrimental impact of mixed texts on detection ef-
forts. Furthermore, our theoretical findings help identify factors influencing detection and inspire
innovative detection algorithms.

* Methodology. Unlike previous research, which did not design detectors specifically for mixed-
text scenarios, we propose a theory-inspired enhancement strategy. This strategy is applicable to
existing model-based detectors and has been extensively validated through comprehensive exper-
iments.
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F.4 DIFFERENCES FROM OTHER HARD-EM-BASED METHODS

Although hard-EM has also been used in areas such as weak supervision to estimate unknown
(noisy) labels, our application is tailored specific to MGT detection. Specifically, in MGT detection,
it is necessary to jointly model multiple subsequences. Directly applying hard-EM here requires
enumerating all possible label combinations for these sequences, yielding an exponential complex-
ity of O(2™), where n is the number of subsequences. To this end, we leverage the fact that the
effect of z; on p(z;|S;;6;) is often much larger than the change in p(y;|S;, 2;; 6¢), and introduce a
mild assumption z; &~ argmax,, p(z;|S;; 0%), thereby reducing the estimation problem back to a
linear, tractable O(n).

F.5 FORMAL DESCRIPTION OF THE PROPOSED FRAMEWORK’S VALIDITY

The effectiveness of the proposed framework can be understood from three aspects: information
bottleneck theory, attention mechanism, and the granularity of text processing:

* Bottleneck theory, which states that during forward propagation, a neural network filters out
information irrelevant to the prediction, gradually focusing on the most crucial parts of the input
(Guan et al} [2019). According to this theory, the effectiveness of existing detectors in mixed
texts arises from the layer-by-layer filtering of noise information (i.e., human-generated text in
machine-generated text). Our proposed stacked framework explicitly filters out a large portion of
noise information, enabling more efficient learning of key discriminative sequences. Let us denote
information in a random variable Z as I(Z), the machine part text in the mixed text S as S,,, the

original detector and our enhanced version as forigin, and fo,,, then we have I(S) > I(S) >
I(Sm) > I(four(Sm)) according to the architecture in the framework. Furthermore, according
to the prediction goal of the detector, we have I( four(Sm)) = I(forigin(S)). Therefore, I(S) >

I(S) 2 I(Sm) = I(four(Sm)) = I(forigin(S))-

» Attention mechanism. Existing theoretical results (Theorem 3.1 in (Liu et al.| [2023)) establish
the time consistency of attention weights: if the I[-th token’s attention weight o ; is large at step
t, it o411 likely remains large at step ¢ 4+ 1. Thus, once important tokens are identified, they
continue to impact detection, regardless of other unimportant tokens. Corresponding to the pro-
posed framework, since it retains the key machine text (i.e., the important tokens that determine
the prediction as machine) in the mixed text, these influential sub-sequences consistently affect
detection over time, even if the other human text (tokens that are not important for prediction as
machine) is removed.

* Granularity of text processing. Most models default to categorizing a text .S as either machine
or human (the format S, where S ~ h(.S) or m(5)), while we refine this to the sentence level (the
format S = [s1; s2; ...; $»] Where each s; ~ h(s) or m(s)). This allows us to focus on key local
inconsistencies between machine-generated and human-generated text during detection, leading
to better detection. Our work takes the first step from the paragraph level to the sentence level, but
undeniably, an even finer granularity is to further understand from sentence level to clause level
(the format s; = "ay, as, ..., and a,” where each a; ~ h(s) or a; ~ m(s)), which may provide
valuable insights for future detection enhancements.

The effectiveness of the proposed framework can also be understood from the granularity of text
processing. Specifically, most models default to categorizing a text S as either machine or human
(the format S, where S ~ h(S) or m(S)), while we refine this to the sentence level (the format S =
[s1; 25 ...; 8] where each s; ~ h(s) or m(s)). This allows us to focus on key local inconsistencies
between machine-generated and human-generated text during detection, leading to better detection.
Our work takes the first step from the paragraph level to the sentence level, but undeniably, an
even finer granularity is to further understand from sentence level to clause level (the format s; =
"ay, as,..., and a,” where each a; ~ h(s) or a; ~ m(s)), which may provide valuable insights
for future detection enhancements.

F.6 TIME COMPLEXITY

For Transformer-based detectors, assuming the text length is NV and the embedding dimension is d,
the time complexity of the original detector is O(dN?). In our stacked detection framework, the
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E-step divides the long text into several sequences of lengths { N, };, resulting in a time complexity
of O(Y"; dN?) = O(dN?), which is usually lower than that of the original detector in practice. For
the M-step, the complexity is also O(dN?). Since the length of the filter text does not exceed N, it
is also not higher than that of the original detector. Therefore, our complexity is O(dN?), and the
actual running time does not exceed twice that of the original detector. We will further discuss the
time complexity from the perspective of empirical experiments in Appendix [H.12]

F.7 LIMITATION
The proposed framework has the following potential limitations:

* To maintain the framework’s flexibility and efficiency, we adopt a simple fixed-length sequence
approach, which may split non-independent sequences. Encouragingly, extensive experimental
results (Table[T{T4) demonstrate that this straightforward approximation strategy already achieves
satisfactory enhancement effects. Even so, this indeed presents a promising direction for future
work to further enhance detection.

* The proposed framework is applied only to model-based detectors, but its core idea of filtering
human portions from mixed texts is universal, which may inspire future research.

» The effectiveness of the proposed stacked framework lies in accurately determining whether a
subsequence belongs to the MGT in the first step. If a detector is incapable of recognizing subse-
quences (i.e., very weak detectors), we cannot guarantee our effectiveness. However, the signif-
icance of enhancing such detectors is minimal, as poor detection capability makes them difficult
to apply in practice. We encourage more attention to enhancing detectors that perform well.

* The proposed method is generally limited to short texts. We believe that starting with paragraph-
level detection and exploring shorter texts in future research is promising and likely to be an
ongoing trend.

G SOFT STACKED DETECTION ENHANCEMENT FRAMEWORK

In addition to the default stacked detection framework optimized by the hard EM algorithm, we
provide a soft (traditional) EM version. For the soft E-step, we calculate the expected value of the
log-likelihood function of #, with respect to the current conditional distribution of z; given (.5;, ;)
and the current estimates of the parameters 6%

QO:0") == Y > p(2ilSi,yi; 0" log plys, Si, 25 0).

(Si,yi)ED 2

For the posterior distribution p(2;|.S;, y;; 0!), similar to the approximation of the hard-EM ver-
sion, we approximate p(z;|S;, yi; 0°) ~ p(z;]S;; 0). This can be predicted by the detection model
f(S,0),1ie.,

p(zi | 853 0°) = Hf (Si,jyet)m (1—f (Si,j’Qt))l_Zi

j=1
For each z;, we can model p(y;|S;, z; 0) as:

P(YilSi, 2i50) = f(Si © 2, 0)
Therefore, we have

Q.0 = 3 ST (5000 (1= 1 (513,0)

(Sew) = i1 (34)
(yilog (f(Si © 2:,0)) + (1 — i) log (1 — f(S; © 2, 0)))
In the M-step, we need to maximize Q(6, 6%) to update the model parameters:

o' = arg max Q(0,6"), (35)
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Algorithm 2 Soft Stacked Detection Enhancement Framework

1: Input: Train data D = {(S;,y;)}Y,, the detection model £ (S, 6°), training epochs 7', filtering
ratio 7, E-step detection threshold r., and learning rate 7.

2: procedure TRAIN(D) > Detector Training
3 fort =0to7 — 1do

4: for each batch of samples D ~ D do

5: Calculate Q(6, 6*) according to Eq. (34). > E-step
6: 0 =0+ nVeQ(0,0). > M-step
7 end for

8 end for

9: Return the trained model f(S, 67).

10: end procedure

11: procedure INFERENCE(S;, f (S, 6%)) > Detector Inference
12: Split S; into a set of sequences {.S; ; }, where each S; ; contains at most k sentences.

13: Calculate z; according to Eq. (3).

14: Si =50 Zi.

15: Return f(5;, 0).

16: end procedure

which can be updated by the gradient descent algorithm.

For the inference phase, we use the same processing as the hard version described in the main text
and calculate z; according to Eq. , and the model’s prediction is f(S; ® z;,6). The detailed
algorithm flow is shown in Alg. 2| Besides, an experimental evaluation of this version is given in

Appendix [H.9]

H ADDITIONAL EXPERIMENTS

H.1 DATASETS AND BASELINES

The detailed descriptions of the dataset are shown as follows:

Essay (Verma et al.| [2024). This dataset comprises 1,000 samples derived from essays found on
IvyPanda, spanning a range of subjects and educational levels, from high school to university.
For the dataset construction, the researchers employ ChatGPT-turbo to create a < prompt > that
aligns with each essay’s content. Subsequently, this crafted prompt serves as input for various
LLMs (ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude) to produce correspond-
ing essays. This process allows for the generation of diverse essay samples based on the original
content.

Reuters (Verma et al.,2024). This dataset is based on the Reuters 50-50 authorship identification
dataset, encompassing 1,000 news articles authored by 50 different journalists, with each con-
tributing 20 pieces. Similar to the generated process of the Essay dataset, the researchers initially
utilized ChatGPT-turbo to generate a < headline > for each article. These generated headlines
were then employed to formulate prompts, which were subsequently used to query various LLMs
(ChatGPT, GPT-4, ChatGPT-turbo, ChatGLM, Dolly, and Claude) to produce MGTs.

SQuADI1 (He et al., 2023). This dataset is derived from the SQuADI1 dataset (Rajpurkar, 2016)
and comprises 1000 entries of context-based inquiries. Each entry features a single human-
provided response alongside six answers generated by LLMs (ChatGPT, GPT-4, ChatGPT-turbo,
ChatGLM, StableLLM). To simulate the mixed text scenario, each sample in this dataset is concate-
nated into a question and an answer, e.g., Ql+human answer, Q1+machine answer. Therefore, the
common question part makes them considered as mixed text, and the question parts can be con-
sidered human texts.

DetectRL (Wu et al., [2024). The text of this dataset is collected from arXiv academic abstracts,
XSum news, Writing Prompts stories, and Yelp Reviews, and MGTs are generated using four
LLMs: GPT-3.5-turbo (ChatGPT), PaLM-2-bison (PaLM), Claude-instant (Claude), and Llama-
2-70b (Llama-2). The paraphrased text is generated by Dipper paraphraser (Krishna et al., 2023),
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Polish (polished using LLM), and Back Translation (Google Translate from English to Chinese
and then to English).

All datasets are randomly divided into the training, validation, and test sets with a ratio of 2: 1: 1.

The specific details of the baseline methods are shown as follows:

* GPTZero (GPTZerol| |2023). It is a commercially available Al detector that employs an end-to-
end deep learning approach, trained on text datasets from the web, education, and Al generated
from a range of LLMs.

* Likelihood (Solaiman et al., 2019). It is a simple “zero-shot” baseline using a threshold on the
total probability of an LLM. Here, the LLM is gpt2-medium.

* Rank (Gehrmann et al.,[2019). It uses a threshold on the average rank of words to identify whether
the text is sampled from the top of the distribution of the LLM. Here gpt2-medium is also adopted.

* Log-Rank (Mitchell et al.,[2023)). It uses a threshold on the average log-rank of each word in the
text, and the calculated LLM is also gpt2-medium.

* DetectGPT (Mitchell et al.,[2023)). It assumes that the text generated by LLM is usually located
near the local minimum point in the log-probability range of the model, and thus evaluates the text
by quantifying how small perturbations affect the log-probability under LLM.

¢ Fast-DetectGPT (Bao et al.| [2024)). The idea is similar to DetectGPT, but a more efficient sam-
pling step is used to replace the perturbation step of DetectGPT.

e ChatGPT-D (Guo et al.,[2023)). It uses pure answered text or QA pairs to train a detection model
(here using the RoOBERTa model) using the HC3 dataset.

* OpenAlI-D (Solaiman et al.l |2019). It fine-tunes a RoOBERTa model with GPT2-generated texts,
which is designed mainly for detecting GPT2 outputs.

* MPU (Tian et al.,[2024)). It proposes a Multiscale Positive-Unlabeled (MPU) training framework
and is trained with MPU from a pretrained RoBERTa-Base model.

* RADAR (Hu et al.l [2023). It learns a robust detection model by using adversarial training of a
paraphraser and a detector, where the paraphraser aims to generate realistic content to evade Al
text detection, while the detector tries to detect such content.

H.2 IMPLEMENTATION DETAILS

For fair comparison, both the model-based baselines (i.e., ChatGPT-D, OpenAl-D, MPU, RADAR)
and the enhanced version are fine-tuned on the training set and use the same hyperparameters.
Specifically, all detection models are fine-tuned for 5 epochs, and the Adam optimizer is used for
training, with a learning rate of Se-5. By default, for ChatGPT-STK, the E-step detection threshold
re is set to 0.01 in Essay, Reuters, and SQuAD1 datasets, the length k is set to 3, 3, 1, and the
maximum filter ratio 7 is set to 0.2, 0.2, and 0.8. For OpenAI-STK, the E-step detection threshold
re 1s set to 0.01, 0.005, 0.005 in Essay, Reuters, and SQuAD1 datasets, the length & is set to 4, 4, 1,
and the maximum filter ratio 7 is set to 0.5. For MPU-STK and RADAR-STK, the E-step detection
threshold 7. is set to 0.005 in Essay, Reuters, and SQuADI1 datasets, the length & is set to 7, 3, 1,
and the maximum filter ratio 7 is set to 0.5. For more parameter analysis, see Appendix [H.IT] No-
tably, the default settings are obtained through grid search, aiming to show the maximum potential
of detection enhancement. Our sensitivity analysis (Appendix shows that compared to the
original detection models (with the x-axis value of 0), the enhanced models generally outperform
them across various hyperparameter settings, reducing the need for performance tuning and have
wide practical applicability. For the sentence split, we use the sent_tokenize function from the nltk
tool library to divide texts into sentences. For feature-based methods, we use the default implemen-
tation of MGTBench ﬂ The experiments are conducted on a PC with an Inter(R) Xeon(R) Gold
6230 CPU @ 2.10GHz, 60GB memory, and a NVIDIA Tesla V100.

https://github.com/xinleihe/MGTBench
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Figure 8: Sencence word’s Jaccard similarity between human-written texts and MGTs in the Essay
dataset. A notable portion with over 90% overlap indicates the existence of implicit human-machine

mixed text.

14000
12000

3000
2500

6000
5000

2500
2000

. 10000 o o 4000 o
= £ 2000 < S 1500
3 8000 3 1500 3 3000 3

O 6000 o S 5000 O 1000

4000
2000

00 02 04 06 08 1.0
Jaccard Similarity

ChatGPT-turbo

1000
500

0
0.0 02 04 06 08 1.0

Jaccard Similarity
GPT-4

1000

0
0.0 02 04 06 08 1.0

Jaccard Similarity
ChatGLM

500

0
0.0 02 04 06 08 1.0

Jaccard Similarity
Dolly

Figure 9: Sencence word’s Jaccard similarity between human-written texts and MGTs in the Reuters
dataset. A notable portion with over 90% overlap indicates the existence of implicit human-machine
mixed text.

H.3 ADDITIONAL RESULTS FOR IMPLICITLY MIXED TEXT

It is worth noting that the Jaccard similarity is calculated as follows: for each MGT sentence in the
dataset, the human-generated sentences in the dataset are traversed, and the sentence with the great-
est Jaccard similarity to the MGT sentence is selected as the Jaccard similarity between the MGT
and the human text. Fig. [§]and Fig. 0]show the Jaccard similarity of words in LLMs and human-
generated sentences in two pure MGT datasets (the SQuADI1 dataset consists of explicit mixed text
and is therefore not evaluated). It can be seen that even with a small amount of human text used for
evaluation, using this strict similarity, the existence of implicit mixed text can be demonstrated.

H.4 MORE RESULTS FOR PERFORMANCE COMPARISON

In addition to the performance comparison of detectors trained on ChatGPT texts shown in Table T]
in the main text, we also extensively evaluated the effectiveness of the detectors trained on different
LLM texts to demonstrate the versatility of the proposed strategy. The results of these evaluations
are presented in Table PHI3] From these tables, it is evident that the proposed strategy effectively
enhances original detectors (i.e., ChatGPT-D, OpenAl-D, and MPU) in most settings. For exam-
ple, the proposed strategy demonstrates a significant improvement for ChatGPT-D in approximately
98% of the settings (194 out of 198), and it offers a competitive improvement for OpenAI-D in ap-
proximately 86% of the settings (169 out of 198). The widespread enhancement on unknown LLM
texts underscores the practical applicability of the proposed strategy, as it aligns more closely with
real-world scenarios.

In addition to the enhancements shown in Fig. [3] for ChatGPT-D, Fig. demonstrate the
improved performance for three other model-based detectors used in the experiments, OpenAl-D,
MPU, and RADAR. We observe similar findings as in Section [#.2] where the original models’ de-
tection performance is enhanced in most settings, with a more pronounced improvement for weaker
detectors.

H.5 MORE RESULTS FOR ROBUSTNESS COMPARISON

In addition to the robustness results shown in the main text, Fig. [I3]shows the robust performance on
OpenAlI-D. It can be seen that the proposed strategy can also improve the robustness of the detection
model in adversarial environments, which is very valuable.
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Figure 10: Average detection performance (x-axis) of detectors (OpenAl-D and our boosting strat-
egy OpenAl-STK) tested across various LLMs, where these detectors are trained on texts generated
by specific LLM (y-axis).
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Figure 11: Average detection performance (x-axis) of detectors (MPU and our boosting strategy
MPU-STK) tested across various LLMs, where these detectors are trained on texts generated by
specific LLM (y-axis).

H.6 PERFORMANCE COMPARISON W.R.T. ACCURACY

In addition to demonstrating the performance in terms of TPR@FPR-0.5% and AUROC, we also
present a performance comparison in terms of accuracy to compare with GPTZero, as shown in Table
[[4] Consistent with the previous results, the proposed enhancement strategy significantly improves
detection accuracy in most settings. For example, in the Essay dataset, the accuracy of OpenAl-D
increased from 91.86 to 92.64. Moreover, the zero-shot performance of GPTZero is inferior to the
fine-tuned model-based detectors. This is particularly evident in the SQuAD1 dataset, which has
more mixed texts, indicating its limitations in detecting mixed texts.

H.7 PERFORMANCE COMPARISON UNDER DIFFERENT MIXED DEGREES

We constructed explicit mixed test texts with different mixing levels based on the Essay dataset.
Specifically, for each test text in the Essay dataset, we replaced n random sentences (ranging from
1 to 5) with human-written ones for the same prompt. The detection performance is presented in
Table[T4} First, as the level of text mixing increases, all detectors’ performance gradually decreases,
which verifies our theoretical results that mixed text hurts detection. Second, the superiority of
the proposed enhancement framework becomes significant, underscoring the inherent challenge of
mixed text detection and highlighting the effectiveness of our method.

H.8 VISUALIZATION

To more intuitively demonstrate the effectiveness of the proposed enhancement framework, we use
t-SNE tool to visualize the last hidden state of ChatGPT-D (first row) and ChatGPT-STK (second
row) when detecting different LLM texts (different columns), as shown in Fig. @ Firstly, it can be
observed that compared with the original detectors (first row), the enhanced detectors (second row)
can better distinguish between human and machine texts. Secondly, MGTs lack diversity compared
to human texts, which is consistent with existing findings (Frohling & Zubiagal, 2021).
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Figure 12: Average detection performance (x-axis) of detectors (RADAR and our boosting strategy
RADAR-STK) tested across various LLMs, where these detectors are trained on texts generated by
specific LLM (y-axis).

Table 2: Performance concerning TPR @FPR-0.5%. Detectors are trained on ChatGPT text.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.
LOg—LikelihOOd 1*04i0.57 5-00i2.93 2411i0.29 1.85i1_12 5493i3.44 21.85i10_14 6.30

Rank 2431043  3.81i1.04 1.8740.68 1.974028  4.3011.01 7.9841.52 3.73

Log—Rank 1~97i1»19 4.88i3_25 2~34i(]‘83 1.973:1,35 4.883:2‘72 19-77j:11.36 5.97

DetectGPT 0.354+0.69 0.36+0.48 0.474+0.44 0.5840.73 0.5840.37 0.8140.28 0.52
F-DetectGPT 4.28.41 35 6.9041 53 2.6941.41 2.7741.12 5.3542.19 28.4443 93 8.41

SQuADI1 ChatGPT-D ‘ 1.3941.07 1.1940.84 1.6441 07 0.8140.46 1.2841.13 5.4341.85 1.96
ChatGPT-STK  1.164¢.73 4.5241 67 1174064 0.8140.46 1.5141 36 6.014361 2.53

OpenAL-D | 41.85, 54 45.0011820 37-5411676 29:48,11 36 58.0240487 7283, 1476 | 4745
OpenAI-STK  44.86 1751 50.48,05 19 41.6410156 29.83:13.42 664010051  73.41i1940 | 51.10
MPU | 30.6440770 29.40i0038 51.23,0907 23.01i1860 61.05,5; 03  58.381133 | 42.28
MPU-STK 37-80:&17.68 67.26122,09 59.88122(36 28.44112(41 59.65130,22 57.92111,15 51.83
RADAR | 27.0541462 30.71:10.01 342711012 195411300 31.74us3s 294811157 | 28.80
RADAR-STK 331811140 32261540 38251551 24161085 32.3311.03 33531131 | 3228

H.9 COMPARISON WITH SOFT STACKED DETECTION ENHANCEMENT FRAMEWORK

This section compares two EM-inspired detection enhancement frameworks to highlight the ratio-
nality of the hard EM-based approach. Due to the significant memory and computational costs of the
soft version, we only experimented on the SQuADI dataset with fewer sequence numbers, setting
the sequence number to 2. The results are shown in Fig. [I6] where variants with the “soft” suffix
represent the soft version. As can be seen, the overall performance of the soft version is inferior
to the hard version, which aligns with many existing findings (Samdani et al.| 2012 [Parker & Yu,
2021; Wen et al., [2023) that the soft EM algorithm tends to allocate too much probability mass
to the tail, wasting probability mass on unimportant hidden variables, thereby resulting in poorer
performance. Additionally, the soft version is competitive on the poorer-performing ChatGPT-D
but underperforms on the stronger detectors (OpenAl-D and MPU). This observation is consistent
with existing findings (Spitkovsky et al.l 2010) that for better parameter models, EM tends to drift
further than hard EM (thus losing accuracy). In summary, the experimental results demonstrate the
rationality of optimization based on the hard EM algorithm.

H.10 ENHANCEMENTS TO SENTENCE-BASED DETECTOR

In this section, we apply the proposed strategy to the sentence-based detector SeqXGPT (Wang
et al., 2023), and the results are shown in Table @ First, the proposed framework significantly
boosts SeqXGPT’s detection performance, demonstrating the flexibility and broad effectiveness of
our method. Second, while SeqXGPT outperforms feature-based approaches (Table [3), it is less
competitive among model-based methods. We suspect that its direct approach of aggregating sen-
tence labels may not be optimal for paragraph-level detection. For instance, it is likely to classify
mixed text as human text, which might be inappropriate.

H.11 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

Sensitivity of Sequence Length k. Fig. [[7]illustrates the detection performance comparison under
different sequence lengths (number of sentences per sequence). Notably, on the x-axis, 0 indicates
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Table 3: Performance concerning AUROC. Detectors are trained on ChatGPT text.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly  Claude/StableLM | Avg.
LOg-LikelihOOd 98‘48:&0443 96‘4611405 98‘85:&(),42 98.7810,15 90‘64:&0,35 92‘1610,32 95.90

Rank 92.84+0.99 90.934074 98.194037 81.514132 80.4541.41 86.69+1.06 88.44

Log—Rank 98.64i0_43 96.85i0_89 98.92i0_40 98-94i0.16 90-41i0.50 91447i0.45 95.87
DetectGPT 96.864+0.97 95.644045 44.401173 95.60+062 92.551058 46.3610.71 78.57
F-DetectGPT 83.864+1.52 84.4541 58 94124072 93.6210.73 55.8649.54 58.9641 52 78.48

Essay ChatGPT-D 98.7140.98 98.144163 91.31400924 99.731016 86.39+7.11 48.70411.69 87.16
ChatGPT-STK | 98.981126 98414191 92.784129 99.80+0.25 89.96+6.56 61.59+13.52 90.25
OPEHAI-D 99.55i()‘73 99.73i(y34 99-25i053 99.87i0,20 98'59i0.86 87.63;{:2,72 97.44
OpenAI-STK | 99.874014 99.8210:3 99.57+0.10 99.9540.03 98.75+0.44 90.6441.32 98.10

MPU 100.00 00, 9991i007  98.631021 99.99,000 97.7d1o4s  98.1digss | 99.07

MPU-STK | 100.005000 9991 007 98.501027r 99991001 98.071030  9941i000 | 99.31

RADAR 99.931002  99.78:1000 99.85,005 99971002 97.61igs0  98.22. .., | 99.22
RADAR-STK | 99.944003 99.7240.13 99.86:0.06 99.971001 97.88+0.62 98.2040.42 99.26
LOg—LikelihOOd 97-59i037 74-85i()‘50 98-541038 99-54i0.22 60-09i213 85~66j:1.04 86.05

Rank 84‘0010.88 74‘1211,24 91‘821(),60 70~97:t1.65 54‘88:&2,45 67‘7811,14 73.93

Log—Rank 97.86i0435 79~95i0,29 98.82i0437 99'65i0,20 61.24i2,15 84.88i1,13 87.07
DetectGPT 92.78i1_34 85.71i2_02 49~24i1.65 91~59i1.67 83.41i1_73 66‘59i2_53 78.22
F-DetectGPT 96.23i0_19 66.02i1_53 98.85i0_30 98.58i0_35 40.38i1_31 66.16i2_58 77.70

Reuters ChatGPT-D 99.79+0.23 99.144065 99.64+037 994641049 89.214530 68.66+12.94 92.65
ChatGPT-STK | 99.8940.17 99.2940.48 99.86+020 99.5440.17 91.134336 84.6116.87 95.72
OpenAI—D 99.80i0_20 99.46i0_31 99.82i0_20 99.68i0_23 96.95i0_51 87.26i1_08 97.16
OpenAI-STK | 99.994001 99.8340.07 100.00.0.00 99.83+0.12 98.00+0.37 91.69+1.10 98.22

MPU 100.000.00 99.81+0.08 99.9940.02 99.994+0.01 97.5540.63 98.69+0.35 99.34

MPU-STK | 100.005000 99.80:014 100.001000 99.98:001 98.02,055  99.36.05 | 99.53

RADAR | 100.001000 100.001000 99.99 0 9999, 99601000  99.82:011 | 99.90
RADAR-STK | 100.00+0.00 100.001000 99.99.001 99991001 99.60.(2 99.82.40.11 99.90
LOg—LikelihOOd 69.62i()‘28 69.61i1(}6 67.18i()‘67 65.67i0.56 67-24i1A10 85.82;{:1“()5 70.86

Rank 63.451091 64.7T1i099 62301077 61.561080 64.1610.86 73.5241.14 64.95

Log-Rank 68.78+0.3¢  69.52409.79 66.33+4050 64.994+065 66.83+1.04 85.50+1.97 70.33
DetectGPT 52.60i2_74 47~47i1.42 52~05i1.87 50.88i2_47 50~24i2.20 51~12i2.44 50.73
F-DetectGPT 67.91i0_23 63.84i1_73 64.67i0_20 63.36i0_42 66.32i1_36 79462i0.63 67.62
SQuADI ChatGPT-D 56.27+1.38 43.034298 54.694129 53.764157 54414132 63.7542.58 54.32
ChatGPT-STK | 56.994085 58.5541.43 55.144148 55.0341.41 55.2840.59 64.3341.40 57.55
OanAI-D 99'19i0.28 99-34i0.27 98.63i0_75 94-95i1.21 97'74i0.28 99'53i0.22 98.23
OpenAI-STK | 99.30.025 993105 9873075 9490, ,0s 97841030  99.62.0.5 | 9828

MPU 98.614+054 98.7940.71  98.714083 93.53+136 96.4540.04 98.85+0.48 97.49

MPU-STK 98.7010(35 99.21:(:()‘59 98.74:&0'73 93.71:{:1,47 9651;(:0‘77 98.8410(45 97.62

RADAR 82.07+1.92 80.63+1.26 81.1941.82 78144121 77.7642.07 81.5342.07 80.22
RADAR-STK | 83.454185 81.4641.00 83.17+073 79.0540.96 79.00+1.69 82.3742.33 81.42
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Figure 13: Enhance the robustness of OpenAl-D. Here we use three attacks: Dipper, Polish, and
Translation.

the original detector without the proposed strategy configured. From the figure, we observe that
within a certain range of sequence lengths, detection performance improves as the sequence length
increases. This is because short sequences are difficult to detect, and longer sequences allow for
better identification of human-generated text within mixed texts, thus enhancing detection accuracy.
However, when the sequence length becomes excessively long, performance starts to decline. We
suspect that when the sequence length increases too much, human text is more likely to be mixed
with machine-generated text, which causes the proportion of pure human text to decrease and, in
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Table 4: Performance concerning AUROC. Detectors are trained on GPT-4 texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly  Claude/StableLM | Avg.
LOg—LikelihOOd 98.48i0‘43 96.4611.05 98.8510‘42 98.7810,15 90.6410,35 92.1610,32 95.90
Rank 92484i0_99 90-93i0.74 98.19iu_37 81-51i1.32 80-45i1_41 86.69i1_05 88.44
Log—Rank 98.641()‘43 96.85:&0.89 98.9210.40 98.94:&0.16 90.41:&0'50 91.47:&0'45 95.87
DetectGPT 96486i0_97 95.64i0_45 44-40i1.73 95-60i0.62 92-55i0.58 46.36i0_71 78.57
F-DetectGPT 83.8641 52 84.4511 58 94.1240.72 93.6210.73 55.864954 58.9611 52 78.48
Essay ChatGPT-D 99.3840.45 99431065 91.964377  99.9640.03 94.814235 68.44+12.85 92.33
ChatGPT-STK | 99.6610.12 99.6610.06 93.041165 99.921007 94.63+1.05 72.6442.02 93.26
OPCHAI-D 99-72i0,34 99.66i0_2(5 98.51i0.73 99.89i0414 98~39i0.83 81.29i4.23 96.24
OpenAI-STK 99-84i()‘22 99-81i0.16 99-15i0»58 99.953:0‘04 98-44j:1,14 86.543:5‘25 97.29
MPU 99.99 50 99951005 98771031 99991001 98.02:037  97.091060 | 98.97
MPU-STK 99.99.0.00 99911000 98.831021 99991001 98.1540.29 97.9240.57 99.13
RADAR 99.925002  99.891005 99.89,010 99.98,00; 98.66,00,  98.98,005 | 99.55
RADAR-STK | 99931001 99.91.00, 9990005 99.98.00 98991055  99.09:005 | 99.63
LOg—LikelihOOd 97459i0.37 74.85i0_50 98-54i0.38 99~54i0.22 60.09i2,13 85.66i1_04 86.05
Rank 8400:&0,88 74‘1211.24 91.8210.60 7097:&1,65 54.8812,45 67.7811,14 73.93
Log—Rank 97486i0_35 79-95i0.29 98.82i0,37 99.65i0_20 61.24i2,15 84.88i1_13 87.07
DetectGPT 92.78i1434 85.71i2.02 49~24:t1.65 91~59i1,67 83.41i1.73 66.59i2.53 78.22
F-DetectGPT 96423i0_19 66.02i1_53 98.85ig‘30 98.58i()‘35 40.38i1,31 66.16i2,58 77.70
Reuters ChatGPT-D 99.594053 99.294078  99.374057  99.071076 90.454316 67.0217.87 92.47
ChatGPT-STK | 99.7310.17 99.561036 99.394051 99.6541024 92.08+0.68 74.1647.11 94.10
OpenAI—D 99.65i()‘44 99.633:0,44 99.63i0‘42 99.58i()‘4g 98-51j:0,78 80-91j:1,35 96.32
OpenAI-STK 99‘76:t0,25 99.82i0_20 99.78i0_25 99~75i0.24 99'09i0.43 83.85i2>12 97.01
MPU 10000000 99.94,,05 100004000 99.99.0 9948 045  97.621007 | 99.51
MPU-STK | 100.00.000 99.90:000 100.00.1000 99.99.,0, 99391027  98.13,0., | 99.57
RADAR 100-00i0.00 100-00i0.00 99'96i0,02 100~00i0.01 99-53i0.16 99-66i0_14 99.86
RADAR-STK | 100.00+9.00 100.004000 99.961002 100.0041001 99.5310.16 99.66-0.14 99.86
LOg—LikelihOOd 69‘62i0428 69‘61:&1.05 67.1810.67 65.67:&0,56 67.2411,10 85.8211,96 70.86
Rank 63445i()_91 64.71i0_99 62.30i0,77 615610.80 64-16i0.86 73-52i1.14 64.95
Log—Rank 68‘7810,34 69‘5210,79 66.3310,59 64‘9910,55 66.8311,04 85.5011,97 70.33
DetectGPT 49418i3.68 52.08i2_03 48.92i2,5(‘, 50~32i2.60 48.93i1,94 49-87i2.69 49.88
F-DetectGPT 67‘91:“)423 63‘84:&1.73 64.6710.20 63.36;&0442 66.3211.36 7962:&065 67.62
SQuUADI ChatGPT-D 57.524082 61.684326 55.344048 954.9040.69 55.59541.19 66.07+2.47 58.51
ChatGPT-STK | 57.384050 59.111081 55.744067 55.0940.41 55.5040.82 66.0141 32 58.14
OpenAI—D 91‘19i1.69 99-72i0.16 89.44i1>7] 86.38:(:‘]_76 88.06i1>10 96.31i1_27 91.85
OpenAI-STK 99.4510‘23 99-05:(:0.46 98.85i0_73 95.83:&0,83 98.09:{:0‘25 99.71:{:0‘17 98.50
MPU 73140555 99.11.0.0 69434665 68.981560 71.341503  87.731004 | 7829
MPU-STK | 99.11,,,0 98961074 9891056 9488, 50 97.53.04  99.10,0,5 | 98.08
RADAR 82.324914 80.704082 81.8641.18 78.5410.60 78424200 82.04.42.07 80.65
RADAR-STK | 83.624157 82.094148 83.294139 79.5040.99 80.054+1.83 82.7941.96 81.89
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Figure 14: Performance concerning TPR @FPR-5%
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at different mixing levels. These detectors are

turn, become more difficult to detect accurately. Therefore, for most detectors, k = 3 or 4 serves as
a good compromise. Furthermore, we observe that when detector performance is poor—such as on
SQuAD1—a smaller k is necessary for better exploration. In such cases, we recommend k& = 1 or

2.

Sensitivity of Filter Ratio 7. Fig. [I§]presents the comparison of detection performance across dif-
ferent filter ratios 7. The results show that as the filtering ratio increases, detection performance ini-
tially improves and then declines. This supports our motivation for introducing this hyperparameter.
Specifically, excessively removing human-generated text can result in short sequences dominating

31



Under review as a conference paper at ICLR 2026

Table 5: Performance concerning FPR@TPR-0.5%.

Detectors are trained on GPT-4 texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.
Log—Likelihood 24408i22.67 37-70i30.63 23-12i24.38 5.86i7_02 12-45i12.04 244813.06 17.62

Rank 55.60+3.65 51.314591 65.8446.93 53.494+6.00 35.114481 25.1245.07 47.75

Log—Rank 28~72i26.90 46.48i36.20 25-04i26.83 28.19i27.90 17-34i15.65 2.96i3‘73 24.79
DetectGPT 37.0411021 24.75110.03 5.5241.93 214541405 15.454705 448415 57 18.12
F-DetectGPT 4'24i1.51 3.85i2_05 31.28i3_15 35'74i3.97 0~00i0.00 0‘16i0>20 12.55

Essay ChatGPT-D 89.921560 89.7547.923 43.5241938 99.0410.70 55.54410.95 8.2415.98 64.33
ChatGPT-STK | 90.88+139 93.614177 48804350 99.044103 56.65+369 8.40+1.29 66.23
OpenAI—D 82.08i30_45 86.56i]2,64 71'04i27.40 97~75i2.94 70'64i26.78 18'48i12.66 71.09
OpenAI-STK | 95.681507 95.164343 824811697 97.75418 78.28414.75 30.80+16.05 80.03

MPU 99'44i0.32 99.513:0‘4() 73~04j:6.10 99'44i0.4l 78~80i2.72 55.36i5,44 84.26

MPU-STK | 99.52:030 9943, 74.08:640 99521030 79.661467  67.3611004 | 86.59

RADAR 97.284132 95.984951 96.80.50; 99.20i051 8137 .,  T744,450 | 9135
RADAR-STK | 97.9210969 96234262 97.36+130 99.36+0.32 82.4916.18 78.80+5.18 92.03
Log-Likelihood 77.84:&5419 14.8815.98 86.0813.38 93.7612403 11.2014.45 15‘0416.86 49.80

Rank 48.88:{:1‘59 35.92i2,gg 58.40i3,94 40.563:135 18~56i2.27 6.2411,87 34.76

Log—Rank 82.40i5_24 25~92i7.08 90496i4_12 96-8Oi0.88 14400i4.82 1746018.29 54.61
DetectGPT 4.4049 62 0.64+0.54 2.3241.87 2.5649.80 0.484.0.47 3.0441.61 2.24
F-DetectGPT 48.0049 48 6.8041 88 92.961165 88.9614.80 0.0040.00 0.48.10.39 39.53

Reuters ChatGPT-D 85.76+23.50 82.08+30.65 81.92429.00 83.04+31.12 54.96+20.38 9.2846.55 66.17
ChatGPT-STK | 94484366 93.6046.28 90.004558 97.9241.11 56.08+14.30 8.8848.47 73.49
OanAI—D 79~84i38.52 83.84i27‘78 79.68;{:37,85 79-36i38.68 61.92;{:23,84 16.96i7‘37 66.93
OpenAI-STK 86.48i25_04 94-00i9.82 87.043:24‘12 96.083:5_45 72.243:1339 26.16i6_47 77.00

MPU 100.005000 9912,06, 99.92,0,5 99.84.050 88.40,¢75  67.4d1164s | 92.45

MPU-STK 100.0010.00 99.12. )64 100.004000 99.68+1030 86.6414.03 65.28413.06 91.79

RADAR 99.92. 416 100.001000 99.04+1.12 99924016 92.164266 90.96.+ 3 28 97.00
RADAR-STK | 99.92, .5 100.001000 99.04:115 99921016 92161565  90.88,5., | 96.99
LOg—Like]ihOOd 1-04i0.57 5-00i2.93 2~11i0.29 1.85i1_12 5~93i3.44 21.85i10_14 6.30

Rank 2~43i0.43 3.81i1_04 1~87i0.68 1~97i0.28 4~30:t1.01 7.98i1,52 3.73

Log—Rank 1.97:&1419 4.88;&3.25 2-3410.83 1.97:&1435 4.8812,72 19-77111,36 5.97
DetectGPT 0.5840.52 1.3141 .02 0.1240.23 0.5840.63 0.5840.64 0.4640.43 0.60
F-DetectGPT 4.28i1_35 6.90i1_53 2.69i1_41 2-77i1.12 5-35i2.19 28444i3_93 8.41
SQuADI ChatGPT-D 1.2710.92 4.4041 .17 0.9440.70 0.6940.23 1.63+0.85 5.0941.34 2.34
ChatGPT-STK | 1.04.¢.67 4.0541 38 1.1740.52 1.0440.57 1.86+1.19 T.7544.24 2.82
OpenAI—D 9'6Oi6.35 88'93:t13.08 10.88ig_84 7.63i4_41 20.58i7_94 52'83i23.86 31.74
OpenAI-STK 49‘02i11,18 38.57:{:21.65 46‘08i16A91 35‘26i820 69.53:&16'99 83.58:&7.79 53.67

MPU 5201606 92141953 2341157  A5lisos  9.771o79 27.05113.30 | 23.50

MPU-STK | 54.221157 46.3113150 54.8511550 437011410 69.30,0, 05  58.73 9555 | 54.52

RADAR 35.6119.70 29.88+10.88 38481340 28.09ig08 33.1413.93 33.8748.37 33.18
RADAR-STK | 39.774643 31.55411.45 42221530 31.794532 36.2812.46 36.3047.33 36.32
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Figure 15: The t-SNE visualization of the last hidden state of ChatGPT-D (first line) and ChatGPT-
STK (second line) when detecting different LLM texts (different columns). These detectors are
trained on ChatGPT texts.

the prediction of the entire text, which can lead to mispredictions. Consequently, 0.5 serves as a
suitable compromise.

Sensitivity of Confidence Threshold r,. Fig. [I9]illustrates the comparison of detection perfor-
mance under different confidence thresholds r. In practical classification tasks, a threshold of 0.5 is
commonly used. However, as discussed in Section[3.2] due to the difficulty of detecting short texts
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Table 6: Performance concerning AUROC. Detectors are trained on GPT-turbo texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly  Claude/StableLM | Avg.

LOg—LikClihOOd 98.48i0_43 96.46i1_05 98.85ig_42 98.78i0_15 90.64i0_35 92.16i0_32 95.90

Rank 92.8410.99 90.9340.74 98194037 81.514130 80.4541.41 86.69-+1.06 88.44

Log—Rank 98.64i0_43 96.85i0_89 98.92i0_40 98‘94i0.16 90'41i0.50 91'47i0.45 95.87

DetectGPT 96.86+0.97 95.6440.45 44404173  95.601062 92.5510.58 46.3610.71 78.57

F-DetectGPT 83.86i1,52 84.45i1,53 94~12i0.72 93.62i0_73 55.86i2,54 58.96i1452 78.48

Essay ChatGPT-D 97.1140.39 96.264223 96.6641.76 99.6240.15 80.88+7.54 66.73+17.76 89.54

ChatGPT-STK | 96.861134 96.371090 96.5311.33 99.4841031 83.3715.26 67.94415.24 90.09

OpenAI—D 99.77:&0,31 99.8710.08 99.83:&0‘32 99‘8810.15 98.5110,81 97.62:&0,92 99.25

OpenAI-STK 99~73i0.15 99~75i0.14 99~91i0.15 99‘89i0_11 97‘9310.66 97~82i0.85 99.17

MPU 99.8640.05 99.7940.10 99971002 99931004 94.381053 98.5510.19 98.75

MPU-STK | 99.85:004 99.741013 99.96,005 9991 05 93571080  98.03:033 | 98.51

RADAR 99.88.005 99.82,005 99971002 9998000 97.03z06s  98.13.,.5 | 99.14

RADAR-STK | 99870, 9981005 99971002 99981000 971510095  98.13:065 | 9915

LOg—LikelihOOd 97'59i0.37 74.85i0_50 98~54i0.38 99‘54i0.22 60.09i2_13 85.66i1_04 86.05

Rank 84.00i()‘gg 74-12i1,24 91.82:&0‘60 7097;{:1.65 54-881245 67.78i1A14 73.93

Log—Rank 97.86i0,35 79~95i0.29 98.82i0.37 99.65i0_20 61.24i2,15 84.88i1413 87.07

DetectGPT 74.8643481 69.9940966 4845410095 742113387 68.96427 57 58.45414.49 65.82

F-DetectGPT 96.2310.19 66.0241 53 98.8510.30 98.58410.35 40.3811.31 66.1615 58 77.70

Reuters ChatGPT-D 99.12409.82  98.0140.08 99.524048 99.021050 81.10+6.36 70.01+19.60 91.13

ChatGPT-STK | 99.194078 98114072 99.6541042 99.114047 82.1746.04 75.57+17.69 92.30

OanAI-D 99.78i()‘37 99-49i0‘45 99-79i0‘36 99.72;{:0,30 96.88i()‘g() 86.58i328 97.04

OpenAI-STK | 99.96,,, 99.58:011 9999 000 99.78:014 95841001 92772147 | 97.99

MPU 100.005000 99.74.,,; 100.00:000 99971001 97.30,06s  99.291000 | 99.38

MPU-STK 100.0010.00 99.714022 100.001000 99.9540.03 97.114057 99.68. ¢ 91 99.41

RADAR 100.0010.00 100.001000 99.99,001 99991001 99.61.0.16 99.84.10.09 99.90

RADAR-STK | 100.001000 10000000 99.99., 0 99.99.00; 99611016 99841000 | 99.91

Log-Likelihood 69.6210428 69.6111.06 67.1810.67 65‘67:&0.56 67.2411,10 85.8211496 70.86

Rank 63-45i0.91 64.71i0_99 62.30i0_77 61456i0_80 64-16i0.86 73~52i1_14 64.95

Log-Rank 68.7810.34 69521079 66.331059 64.991065 66.8311.04 85.5041.97 70.33

DetectGPT 49'94i3.77 48.22i2,29 50'12i2.77 51'15i2.35 50'92i2.02 49.83i2,6g 50.03

F-DetectGPT 679140023 63.844173 64.671020 63.361042 66.3211.36 79.6210.63 67.62

SQuADI ChatGPT-D 58.69+060 41914979 57441065 55981035 55.6140.43 65.4141 86 55.84

ChatGPT-STK | 57.7841156 59.8741.17 56.5641.09 56.06471.24 56.2340.85 66.53+1.93 58.84

OpenAI—D 99'43i0.33 99'30i0.38 98-51i0.81 95‘88i1.18 98.06i0_40 99'58i0,23 98.46

OpenAI-STK | 99.43,,,, 99321032 9845, .4 9598.113 98.04,,,  99.60:00s | 98.47

MPU 98.59+0.82 98.80+0.68 98.43140.94 94.274194 96.6140.68 98.60.+0.87 97.55

MPU-STK 98.63+0.81  99.2340.68 98.3840.094 94.284192 96.5340.73 98.65+0.91 97.62

RADAR 82-20i231 80-49i1‘02 81.25:{:1‘39 78.443:(),74 77-8011,91 81.561258 80.29

RADAR-STK | 82954270 80.9841.16 82.094142 79.031053 78.67+2.06 81.97+2.97 80.95
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Figure 16: The performance (TPR@FPR-0.5% or AUROC) of detectors modeled and optimized
by the traditional (soft) EM algorithm and the hard EM algorithm. The suffix “’soft” indicates the
traditional EM algorithm; otherwise, the default hard EM algorithm. The detector is trained on
different LLM texts (x-axis) and reports the average performance tested on various LLM texts (six
LLM texts).

and the unknown proportion of human-generated text in the mixed text, a smaller threshold is nec-
essary. This can effectively mitigate the misclassification, prevent critical MGT from being filtered
out, and thereby avoid a decline in detection performance. Sensitivity analysis of this parameter
supports this observation, indicating that 0.5 is not an optimal choice and a smaller value is needed.
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Table 7: Performance concerning TPR @FPR-0.5%. Detectors are trained on GPT-turbo texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.
LOg—LikClihOOd 24.08;&22.67 37~70:E30.63 23-12124438 5.86*7.02 12.45:&12404 2.4813.06 17.62

Rank 55-60:E3.65 51-31i5.91 65.84i6,93 53-49i6.09 35-11i4.81 25-12i5.07 47.75

Log—Rank 28v72i26,90 46~48j:36.20 2504:{:2&83 28-19i27.90 1734:{:1565 2963:373 24.79

DetectGPT 37.0411001 24.75410.03 5.5211.03 214541405 15451705 44845 57 18.12
F-DetectGPT 4-24i1.51 3.85i2_05 31.28i3_13 35-74i3.97 0.0oig,og 0.16i0,20 12.55

Essay ChatGPT-D 60.72414.49 71484455 653641774 85.78+709 23.18+453 1.68.+0.89 51.37

ChatGPT-STK | 63.6841532 66.394737 6592411367 88.924698 20.86+10.25 1.68+1.02 51.24
OpenAl-D 79-12i37.59 98.11i1412 79‘76i39,29 98.55i1'21 70‘90132,85 59.28131457 80.96
OPEHAI-STK 95‘4412.82 96.56:&1'90 99.7610.48 98.23i1.21 70-99:t13,03 74-00:t15,92 89.16
MPU 95361100 9697461 98241082 98.6311.07 57341610  66.72 405 | 85.54
MPU-STK 95.923:1‘98 95-9812,60 98.243:0‘90 98.63i()‘94 58-543:5,27 65.36i1332 85.45
RADAR 95.76,, 57 94.671206 98.08:130 98.96,05, 6326145  62.32:g53 | 85.51
RADAR-STK | 95.76.1 g7 95.574150 98.32.,,; 99021065 64.64i505  61.5211033 | 85.82

Log-Likelihood 77‘84i5_19 14.88i5.98 8608i558 93.76i2'03 11~20i4.45 15~O4i6.86 49.80

Rank 48‘8811,59 35.9242 88 58.4013,94 40.5611,35 18.5649.27 6.2411,37 34.76
Log—Rank 82.4015.24 25-9217.08 90.96i4.12 96-8O:t0.88 14-0014.82 17.6018.29 54.61
DetectGPT 2.641153 0.3210.30 1.2041.07 0.9610.82 0.88+1.06 2.8811.85 1.48
F-DetectGPT 48.0019.48 6.8041 88 92.96+1 65 88.96+4.80 0.00+0.00 0.4840.39 39.53
Reuters ChatGPT-D T7.60404.67 744840464 76.2440815 76.00429720 37.52415.02 24.72499 20 61.09
ChatGPT-STK | 93.60+455 88.961573 96.641356 97.68+120 39.76110.49 25.44116.75 73.68
OpenAI—D 82.88i32_04 81412i18.73 81.84i34_33 88.08i20_g5 48.08i11_99 22'24i5.85 67.37
OpenAI-STK 98‘3210.59 83~84i3.66 99'52i0.30 98.16i0_43 38.08i6_02 37.36i2_91 75.88
MPU 100.005000 9840075 100004000 99.20,046 72721480 91441913 | 93.63
MPU-STK 100.00:&0,00 98.4010,80 100.0010,00 98.96:{;0,41 70-80;{:6,48 94'72i3‘76 9381
RADAR 100.003:0,00 100.00;{:0‘00 99.68i0_30 99‘92i0.16 91'36i2.30 95-84i1.73 97.80
RADAR-STK | 100.00.0.09 100.004000 99.68.039 99924016 9144153, 9584 73 97.81
LOg-LikelihOOd 1~04i0.57 5.00i2_g3 2'11i0.29 1.85i1 12 5.93i3,44 21~85i10.14 6.30
Rank 24314043  3.8lx1.04  1.871068  1.97r028  4.30x1.01 7.9841.52 3.73
Log-Rank 1974110 4884325 2341083  1.971135  4.884070 19.77411.36 5.97
DetectGPT 0.4610.67 0.48.40.45 0.4710.44 0.5840.73 0.8140.59 0.6940.43 0.58
F-DetectGPT 4.2841 35 6.9041 53 2.69+1.41 2.77+1.12 5.3542.19 28.44 13 93 8.41
SQUAD] ChatGPT-D 1'27i0.43 1-07i0,87 117i083 0.813:0‘59 1-163:0,74 532i388 1.80
ChatGPT-STK | 1.7311.75 3.8141.53 1.874+0.44 1.504+1.58 1.5141.31 6.5944.18 2.84
OpenAI—D 51'21i23,65 51*07i22.43 32.28i19_01 39'88118.98 62.67i26,90 76.18i12,19 52.22
OpenAI-STK 53-41i26.65 51.90120'23 32~98i18.26 41-39i20.40 60'58127,86 72‘25:&14407 52.09
MPU 411642906 17.021663 46.78 .05 15 33.006493.42 41.8612514 51332366 | 38.54
MPU-STK | 46.7110955 664310157 48.07 12075 37.2340105 414040531  55.8410091 | 49.28
RADAR 28.32413.89 30484901 33.45+10.05 21.97+1186 29.88+556 26.94413.33 28.51
RADAR-STK | 289011500 32141055 3637275 212711305 31.630501  30.0611306 | 30.06
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Figure 17: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different sequence lengths (sentences per sequence). We train the detector on various texts
(different lines) and report the average performance tested on various LLM texts. An x-coordinate
of 0 indicates the original detector OpenAl-D.

Besides, the result shows that the proposed strategy is relatively insensitive to smaller thresholds,
making 0.005-0.05 a promising range in practice.

H.12 RUNNING TIME

Table[I6]compares the running time (training time and inference time) between the original detectors
and the enhanced versions, fine-tuned for 5 epochs. The results are consistent with the complexity
analysis discussed in Section [F.] indicating that the actual running time of the proposed enhance-
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Table 8: Performance concerning AUROC. Detectors are trained on ChatGLM texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly  Claude/StableLM | Avg.
LOg-LikelihOOd 98‘48:&0,43 96‘4611405 98.8510,42 98.7810,15 90‘64:&0,35 92‘1610,32 95.90

Rank 92.84+0.99 90.934074 98194037 81.514132 80.4541.41 86.69+1.06 88.44

Log—Rank 98.64i0_43 96.85i0_89 98.92i0_40 98-94i0.16 90-41i0.50 91447i0.45 95.87
DetectGPT 96.864+0.97 95.644045 44404173 95.604062 92.551058 46.36+0.71 78.57
F-DetectGPT 83.864+1.52 84.454158 94121072 93.621073 55.8642.54 58.9641 52 78.48

Essay ChatGPT-D 97.8610.65 95404244 90.651169 99.9010.16 79.1046.61 33.03+7.16 82.66
ChatGPT-STK | 98.451040 97.0840.99 88.03+310 99.9210.11 85.814437 46.70+6.20 86.00
OpenAI—D 99.11i()‘53 99-77i023 94.013:1,32 99.89;{:0‘13 96.03i137 62-51i1.96 91.89
OpenAI-STK | 99.724014 99.6740.18 96.374049 99.8440.17 97.79+0.43 71.36+1.53 94.13

MPU 99.86.0,, 99931004 96.75:025 99.99:001 96.72:053 86571195 | 96.64

MPU-STK 99871012 99931004 96.641024 99991001 96.9940.29 91.69+1.39 97.52

RADAR 99.79:011 9980 000 99.75,010 99.98,00; 97431046  974ligsz | 99.03
RADAR-STK | 99.805011 99.765000 99761020 99.98:0.05 97.674045  97.364045 | 99.05
LOg—LikClihOOd 97‘5910,37 74‘851(),5[] 98.5410,38 99.541[),22 60‘0912,13 85‘6611,()4 86.05

Rank 84.00+0.88 74124124 91.824060 70971165 54.88+245 67.7841.14 73.93

Log—Rank 97.86i0_35 79~95i0.29 98.82i0_37 99.65i0>20 61.24i2_15 84.88i1_13 87.07
DetectGPT 92.78i1_34 85.71i2_02 49-24i1.65 91~59i1.67 83.41i1_73 66459i2_53 78.22
F-DetectGPT 96.2340.19 66.0211.53 98.8510.30 98.5840.35 40.3841.31 66.1612. 58 77.70

Reuters ChatGPT-D 98.804+0.71  97.9540.83 98.73+079 99.721031 80.3445.32 40.4946.96 86.00
ChatGPT-STK | 98.981060 98.564043 99.231039 99.791023 84471473 59.3545.00 90.06
OanAl—D 99-713:()‘22 99.693;0(29 99-74i0.16 99.99;{:0‘01 97.833;0(82 66.963:261 93.99
OpenAI-STK | 99.77., .7 99.614011 99.7840.00 99.9840.01 96.911053 78.1942.14 95.71

MPU 10000000 99.79.0,, 99.97:1001 99.99.,0 96621053  94.78:135 | 98.52

MPU-STK | 100.001000 99.75:017 99992000 9999001 97.101052  98.00 0,0 | 99.14

RADAR [ 10000000 10000000 99.971003 100001000 99.44,0,0  99.79:000 | 99.87
RADAR-STK | 100.00+0.00 100.004000 99.98.403 100.00.000 99.46. .20 99.7940.09 99.87
LOg—LikClihOOd 69-62i028 Gg.ﬁlilﬂg 67.18i0_67 65.67i0,56 67-241110 85-82i1A96 70.86

Rank 63.4510.091 64.T11999 62.3010977 61.5640.80 64.1610.86 73.5241.14 64.95

Log-Rank 68‘7810,34 69‘5210,79 66.3310,59 64.9910,65 66‘8311,04 85‘50:&1,97 70.33
DetectGPT 52.60i2474 47~47i1,42 52'05i1,87 50.88i2.47 50-24i2,20 51-12i2.44 50.73
F-DetectGPT | 67.9140023 63.8441.73 64.67+020 63.361042 66.3241.36 79.6240.63 67.62
SQuUADI ChatGPT-D 58.03+1.10 42.38+4.85 56.3311.02 55.71i092 55.9841.41 67.1942.64 55.94
ChatGPT-STK | 57964130 59.4940.74 56.2540.99 55.624104 55.9240.93 65.9541.72 58.53
OpenAI—D 98'77i0,34 98.99i0_57 98-33i0.66 95-32i0.93 97'71i0.39 99'25i0.31 98.06
OpenAI-STK 98-90i0.16 98.98i0440 98-31i0.64 95-29i0.93 97'62i0,51 99-34i0.19 98.07

MPU 98.604.0.34 98.4741108 98721054 96321134 97.5610.47 98.7240.29 98.06

MPU-STK | 98.504050 98.96:088 98.62,0¢s 96.164, 45 97-4li040  98.65:041 | 98.05

RADAR 81.3341.72 80.231080 80914151 77.724095 77.52471.95 80.954+1.89 79.78
RADAR-STK | 81.59 15 80.694071 81374130 77.884076 77.911100  81.031105 | 80.08
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Figure 18: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different filtering thresholds. We train the detector on various texts (different lines) and report
the average performance tested on various LLM texts. An x-coordinate of 0 indicates the original
detector OpenAl-D.

ment framework does not exceed twice that of the original detector. We believe that achieving
superior detection enhancement performance in an acceptable time frame is valuable.

H.13 CASE STUDY
We illustrate examples that can be correctly detected by the enhancement framework but not by

the original detector, as shown in Figs. 2024] The proposed enhancement method does not entirely
input these difficult samples but identifies and filters the potential human parts (highlighted in green),
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Table 9: Performance concerning TPR @FPR-0.5%. Detectors are trained on ChatGLM texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.
Log-Likelihood 24.0812257 3770:&5065 23~12124.38 5.8617.02 12.45:&12.04 2‘48:t3,06 17.62
Rank 556013‘65 51.313:5_91 65.843:6‘93 53.493:5,09 35-11i4A81 25.123:5‘07 47.75
Log—Rank 28'72i26.90 46.48i36_20 25'04i26.83 28.19i27_90 17~34i15.65 2.96i3_73 24.79
DetectGPT 37.0441021 24.75110.03 5.52141.03 214511405 15451705 4.48 15 57 18.12
F-DetectGPT 4-24i1.51 3.85i2_05 31428{3.18 35-74i3.97 O-OOiO.OO 0416i0_20 12.55
Essay ChatGPT-D ‘ S0.0Biggg 79.513:2,47 34.483:&35 96.713:5,80 34-76i&77 0.483:()‘30 54.34
ChatGPT-STK 85.364383 83.36+443 39204794 97.994397 43.431446 2.48+1.09 58.64
OpenAI—D ‘ 83.84123,24 85.66421.19 57.36:&15.97 95-7418.11 72'19i19.00 5.8414,57 66.77
OpenAI-STK 93~12i1.55 94~51i2.60 61‘68i7_31 98.63i1_07 61.89i10_59 9‘68i5_32 69.92
MPU | 96.804 109 98.69.065 51.524775 99.601044 70391675 181611110 | 7253
MPU-STK  97.28:50 98.85:040 52481705 99.60. 0, 72.88i550  27.8411005 | 74.82
RADAR | 89.92:505 94341005 86.72,1445 99124120 582811645  47.68, 195 | 79.34
RADAR-STK  90.241g37 94.104297 87.04411419 99.044136 58.63+16.56 49.68.19 93 79.79
Log—Likelihood 77~84i5A19 14.883:5_98 86.083:3‘38 93.763:2,03 11.203:4‘45 15.043:686 49.80
Rank 48.88+1.59 35.924988 958.404394 40.5641.85 18.5642.27 6.2441 .87 34.76
Log—Rank 82~40i5.24 2592:{:7.08 90.963:4‘12 96.80;{:0,88 14-00i4A82 17.60i&29 54.61
DetectGPT 4.4049 62 0.64+0.54 2.3241 87 2.5649.80 0.4840.47 3.0441.61 2.24
F-DetectGPT 48.0049 48 6.80+1.88 92961165 88.9614.50 0.00-0.00 0.48.10.39 39.53
Reuters ChatGPT-D | 91.2846.11 85.2047.05 89124682 97924146 41.28416.63 2.80+2.83 67.93
ChatGPT-STK 94.641250 90.164297 93.924257 98.8840.93 50.40417.41 8.8840.89 72.81
OpenAI—D ‘ 96480i2_65 86496i13_16 96424i2_02 99.60i0_44 60.64i12_43 10-32i3.91 75.09
OpenAI-STK 97444041 87924090 97361086 99441020 50.0816.35 15.36+3.96 74.60
MPU [100.001000 97.12., 3 99761000 99.76 050 67.601576  55.92410.37 | 86.69
MPU-STK 99.92, 016 96.9611.40 9976103, 99.6040.41a 63.4447.23 69.36+5 86 88.17
RADAR | 99.921016 99:92:0.16 99.28+0.85 99921016 90.1612 s 93.92.15 62 97.19
RADAR-STK = 99.921016 99925016 99281085 99921016 89.84,505  93.84,54 | 97.12
LOg-LikelihOOd ]-~04i0.57 5'00i2.93 2‘11i0.29 1.85i1_12 5~93i3_44 21.85i10_14 6.30
Rank 2.43:&0,43 3.81:&1.04 187:&0.68 1-9710.28 4.30*1,01 7.9811,52 3.73
Log-Rank 1974110  4.884325 2341083  1.97+135  4.881272 19.77111.36 5.97
DetectGPT 0.3510.69 0.3610.48 0.4710.44 0.5810.73 0.58+10.37 0.8110.28 0.52
F-DetectGPT 42841 35 6.90+1.53 2.6941.41 2.7741.12 5.3549.19 28.44 13 93 8.41
SQHAD] ChatGPT-D ‘ 1.04:&0.99 1-3110.69 1.40:&0.95 1.1610.82 1.74*1427 6.01*3.26 2.11
ChatGPT-STK 2466i1A9(; 3.813:1_28 14403:()‘60 1-62j:1.69 1-05j:0_44 3-823:1_49 2.39
OPCHAI-D ‘ 36.53i17,45 41'79i19.02 36.96:&16.77 28‘67i13427 50~58i24.47 63‘24119.04 42.96
OpenAI-STK 39'77i15.28 47'26i22.70 31-70j:14.38 29.94i1()‘70 51.863:26,87 65.663:1&99 44.37
MPU | 418510611 236913310 450311450 336410000 54190009 532911857 | 41.95
MPU-STK  38.7311005 533310068 42.69. .65 3017, 675 55811003  51.3341403 | 45.34
RADAR [ 28.09+13.16 31.19411.73 35.3246.78 22.66111.61  30.9345.47 27.40410.59 29.27
RADAR-STK  30.52411.76 31.07411.41 37431462 23.82410.28 31.4045.05 26.8249.64 30.17
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Figure 19: The average detection performance (TPR@FPR-0.5% or AUROC) of OpenAI-STK un-
der different confidence thresholds. We train the detector on various texts (different lines) and report
the average performance tested on various LLM texts. An x-coordinate of 0 indicates the original
detector OpenAl-D.

focusing more on the difficult-to-distinguish sequences, thereby making it easier for the detector to
learn. It is worth noting that since there is a lack of ground truths of sentences, we employed a voting
mechanism of five detection models (ChatGPT-D, OpenAl-D, MPU, GPTZero, and ZeroGPT) to
get the pseudo labels, and the pseudo labels are consistently identified as human-generated. This
demonstrates its capability to recognize high-confidence human text sequences.

Besides, Through our case analysis, we have observed several distinctions between human-like and
machine-generated text:
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Table 10: Performance concerning AUROC. Detectors are trained on Dolly texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly  Claude/StableLM | Avg.
LOg—LikelihOOd 98.48i0_43 96.46i1_05 98.85i0_42 98.78i0_15 90.64i0_35 92.16i0_32 95.90

Rank 92.84:{:0‘99 90-93i0.74 98.19i()‘37 81.51i132 80.45;{:1‘41 86-69j:1,06 88.44

Log-Rank 98‘64i0.43 96.85:“).89 98.92i0440 98-94i0,16 90~41i0.50 91~47i0.45 95.87
DetectGPT 96.86i0,97 95.64i0_45 44-40i1.73 95~60i0.62 92-55i0.58 46.36i0,71 78.57
F-DetectGPT 83.8641 52 84451158 94121072 93.621073 55.864954 58.9641 52 78.48

Essay ‘ ChatGPT-D 99.0840.84 98904145 89.541535 99.86+022 93.1546.08 62.74113.69 90.54
ChatGPT-STK | 99.084:0.45 98.89+107 90.054228 99.89:011 93.3244.06 65.73412.96 91.16

‘ OpenAI—D 99.81i0>21 99.86i0_15 99-21i0.40 99.98i0_03 99-48i0,46 93-16i2,83 98.58
OpenAI-STK | 99.90 ., 99.95,00, 99.22:000 999900 9968 05  92.7ligg0 | 98.58

| MPU 100.0040.00 99.98.:0.03 97.8840.43 100.001000 99.86.0.04 98.74.+0.46 99.41
MPU-STK 100.001000 99.98.003 98.161039 100.00L00 99.86-004 98.8040.32 99.47

| RADAR 99.69+0.10  99.89+0.07 99.39. 993 99.96+0.02 99.36+0.13 99.69-0.05 99.66
RADAR-STK | 99.7040.11  99.89+0.07 99394031 99.9740.02 99.3540.16 99.68_ 08 99.66
LOg—LikelihOOd 21~47i38.08 35~27i20.02 20-75i38.74 20-35i39.69 44-75i8.87 28.28i28_3g 28.48

Rank 16.00£0.88 25.88+124 8181060 29.031165 45.124045 32.2241.14 26.07

Log—Rank 2~14i0.35 20'05i0.29 1.18i0_37 0'35i0.20 38.76i2>15 15~12i1,13 12.93
DetectGPT 92784134 85714902 49241165 91.594167 83414173 66.5919.53 78.22
F-DetectGPT 96.2310.19 66.021153 98.8510.30 98.58410.35 40.384131 66.1642 53 77.70

Reuters ‘ ChatGPT—D 99.67:&0‘15 99.2610,58 99.2810(50 99.1310(97 94-75;(:2,38 78-9112,78 9516
ChatGPT-STK | 99.53. )50 98964089 99.36+065 98.8441148 94.584173 80.78+8.15 95.34

| OpenAI-D 99.0941.02 99174006 99.081100 99.041103 98.6110.81 88.1941.27 97.20
OpenAI-STK 9945;{:0,60 99.55i()‘52 99.44i()‘5g 99»43i0461 99-23i0‘49 89-64i1,88 97.79

| MPU 100005000 99.99,00, 100.001000 100.001000 99.95:00s  99.55.01; | 99.91
MPU-STK | 100.00.000 99981002 99.99 10, 100005000 99930,  99.62. 06 | 99.92

| RADAR 100.0040.00 100.0010.00 99.9640.03 99.99.001 99.86+0.04 99.8210.09 99.94
RADAR-STK | 100.00+0.090 100.0010.00 99.96+0.03 99.99.001 99.85+0.04 99.82.0.09 99.94
LOg—LikelihOOd 69.62i0,28 G9.61i1_06 67.18i0_67 65.67i0_56 67.24i1,10 85.82i1,96 70.86

Rank 63.45:&0‘91 64.7110,99 62.3010,77 61.56:(:()‘80 64.16:&0‘86 73.52:&1‘14 64.95

Log-Rank 68.78+0.3¢  69.5240.79 66.331059 64.99+0.65 66.83+1.04 85.50+1.97 70.33
DetectGPT 52.6012.74 47474140 52.054187 50.881047 50.244599 51.1249 44 50.73
F-DetectGPT 67.9140.23 63.841173 64.671020 63.361042 66.3217 36 79.6240.63 67.62
SQUAD] ‘ ChatGPT-D 57.10:{:1‘04 42-02i4.36 55.48i123 54.90i109 54.82;{:0‘91 65-11j:2,34 54.90
ChatGPT-STK | 57.874+135 59.114182 55874131 55284111 55.704153 66.15+3.96 58.33

| OpenALD | 99.34,0,5 99.39,044 98.57.0g 95.94,,,6 97.81 .5  99.58,0,, | 98.44
OpenAI-STK 99-39i0.41 99.48;{:0,30 98.61;{:0‘83 96.133:1‘05 97.88i0_51 99-63i0.22 98.52

| MPU 98.734+0.43 99.0040.92 98.4640.77 95.68+0.92 97.4310.39 98.97+0.48 98.04
MPU-STK 98.80+0.55 99.0140.08 98.411977 95.5140.96 97.1640.39 99.00+0.53 97.98

‘ RADAR 80.3212.05 79274143 79.724169 77.014057 77.4410.79 80.5749.72 79.05
RADAR-STK | 81.234556 80.214210 80.534246 77.564128 78.6941.27 81.1743.01 79.90

* Sentence structure. Human-like sequences tend to exhibit relatively short and succinct sentences
(e.g., “A randomized control trial found no difference...”). In contrast, machine-generated text
often features more complex sentence structures, including frequent subordinate clauses and de-
tailed arguments. For instance: “The use of time is fundamental... However, ... For example, in
The Winter’s Tale... These visual transitions... In contrast, the Novel conveys... While the reader
experiences... This gradual progression... Overall, time in the Novel... The use of time also im-
pacts... For instance, in The Winter’s Tale... Similarly, Hermione is reanimated... In the Novel,
character development... For example, Emma Woodhouse...”.

* Sentence length. Human-like sequences generally favor short to medium-length sentences
(around 12-15 words). On the contrary, machine-generated text averages around 20-25 words
per sentence, and their shorter sentences typically serve as transitions or summaries (e.g., "Over-
all, time in the Novel is more mimetic than in Drama.”).

* Linguistic style. Human-like sequences typically employ concise analytical language, whereas
machine-generated text tends to adopt a more formal style and frequently incorporates technical

99 99 [T T]

terms such as “mimetic”, “interiority”, ”staging”, and ’pacing”.
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Table 11: Performance concerning TPR@FPR-0.5%. Detectors are trained on Dolly texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.
LOg—LikelihOOd 24~08i22.67 37<70i230.63 2312:&24.38 5.86i7,02 12'45:E12-04 2-48i3.06 17.62

Rank 55.604365 51.314591 65.844693 53494600 35.11i481 25.1245.07 47.75

Log—Rank 28~72i26.90 46448i36_20 25404i26.83 28.19i27_90 17~34i15.65 2.96i3_73 24.79
DetectGPT 37~04i10.21 24~75:t10.03 5~52i1.93 21~45:t14.25 15'45i7.05 4.48i2_57 18.12
F-DetectGPT 4.2441 51 3.8549.05 31.2843.18 35.7443.97 0.004+0.00 0.1640.20 12.55

Essay ChatGPT-D | 82.084530 83.284142s 32.001621 97.754200 46.87110.12 1.9241 59 57.32
ChatGPT-STK 69»44;{:15,68 83.5218,05 26.00:(:9,13 95.5815,05 39~74j:14481 3-52;{:4.97 5297
OpenAI—D 92.88:{:13‘04 98'61j:1./16 7936;{:16.76 99-44i0,60 85.41i1(3‘99 34.40i1&17 81.68
OpenAI-STK | 98.88, .45 98521100 79.76,¢,5 99.60,05 92021401  29.7641157 | 83.09

MPU 9984000 99.671031 42.8841255 100.004000 95.02., 4 51.3648.25 81.46

MPU-STK 9984020 99.67:031 4648411565 100.001000 95.28.238 56.8817.73 83.03

RADAR 87.20i502 96.311s07 79201010 98.15i136 78.7ligos 8448, | 87.34
RADAR-STK 87.92:&5.58 95.5713'04 80.88:&9‘28 98.15:{:1,41 78~54j:6.01 84-72:{;7.49 87.63
LOg—LikClihOOd 15'76i31,52 4-16i6,53 16.96i33(92 18.88i37(76 8.243:1‘94 2.803:5‘(30 11.13

Rank 0.0840.16 0.641+0.90 0.00+0.00 0.5641.12 2.40+4.40 0.0040.00 0.61

Log—Rank 0.00iQ_OQ 0.803:0_36 0.0oio‘oo 0.0oig‘og 7.043:2‘31 0.0oig‘og 1.31
DetectGPT 4-40:t2.62 O.64i0_54 2-32i1.87 2-56i2.80 0.48ig_47 3-O4i1.61 2.24
F-DetectGPT 48-00i9.48 6.80i1_85 92-96i1.65 88.96i4,80 0.0oig_og 0.48i0_3g 39.53

Reuters ChatGPT-D 94.724388 92.00410.07 91.524308 92.08413.06 73.1243.95 17.5249.95 76.83
ChatGPT-STK | 91.04410.00 88.72+13.24 90.724598 88.00+18.04 70.88+16.85 22.32413.71 75.28
OpenAl-D 59.84148.53 61.60143.63 59.44447.89 59.44148.04 51.36432.85 18.64110.58 51.72
OpenAI-STK | 60.00£4850 65.52441.11 59.9214762 59.60148.17 58.56-+33.66 24.72414.08 54.72

MPU 10000000 99.68,0 .6 99841020 99.84. 00, 98321105  90.72417, | 98.07

MPU-STK | 100.005000 99.28:0.64 99.76,000 99.84,0050 9776, ;45  93.0di543 | 98.28

RADAR 99.92.016 100.001000 99.36:1045 99.92:016 96.32:003  96.80,, 75 | 98.72
RADAR-STK | 100.000.00 100.00.000 99.601044 99921016 96.241056 97.0411 65 98.80
LOg—LikelihOOd 1‘04:&0_57 5.()0:&2.93 2.11:&0.29 1.85:&1.12 5~93:t3.44 21‘85110414 6.30

Rank 2431043  3.8li1.04 1871068 1971028  4.30x1.01 7.98+1.52 3.73

Log—Rank 1.97:&1.19 4.8813'25 2-3410.83 1.97:&1,35 4.8812,72 19-77111,36 5.97
DetectGPT 0.35+0.69 0.3640.48 0.474+0.44 0.5840.73 0.5840.37 0.8140.28 0.52
F-DetectGPT 4.2841 35 6.9041 53 2.6941.41 2.77+1.12 5.3542.19 28.44. 3 93 8.41
sQuaD] |  ChatGPT-D 1732097 1551007  1.29306s 0461003  1.0540.57 4164317 1.71
ChatGPT-STK | 1.161¢.97 2.98+1.36 1.1740.83 0.5840.37 1.0540.85 4.1642.60 1.85
OpenAI-D | 53.8715650 60.36, 1050 43.27, 0555 40.58 0075 5419:i0560 764211406 | 54.78
OpenAL-STK | 53.64 060 70951501 46.0810535 40.69i01 50 51740059  76.07, 1605 | 56:53

MPU 43.12493.37 541743177 37.89420.45 32.1411943 47.3342864  68.09412.08 47.12
MPU-STK | 44.16430.43 59.05127.09 40.2312350 32.4940404 42.21107.72 67.98114.68 47.69

RADAR 34-45i7.07 31-07i7.41 33-10i3‘96 27-17i6,57 27-913:4,92 35.72i8,20 31.57
RADAR-STK | 36.181663 32.7417635 35321380 28.901680 29.534400  35.1disos | 32.97
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Table 12: Performance concerning AUROC. Detectors are trained on Claude/StableLM texts.

Dataset | Method | ChatGPT GPT-4 GPT-turbo ~ ChatGLM Dolly  Claude/StableLM | Avg.
LOg—LikelihOOd 98.4810,43 96.46:‘:1.05 98.85:&0‘42 98.7810‘15 90.641(),35 92.1610,32 95.90

Rank 92‘84:&0,99 90.9310,74 98.1910,37 81.5111,32 80‘45:&1,41 86‘6911,06 88.44

Log—Rank 98.64i0443 96.85i0_39 98.92i0.40 98~94i0.16 90~41i0.50 91~47i0.45 95.87
DetectGPT 96.86i0_97 95.64i0_45 44-40i1.73 95-60i0.62 92-55i0.58 46.36i0_71 78.57
F-DetectGPT 83.86i1_52 84-45i1.58 94~12i0.72 93.62i0,73 55.86i2_54 58.96i1_52 78.48

Essay ChatGPT-D 95914081 96.624216 93.9644028 98.7241.11 86.1447.72 81.87+14.51 92.20
ChatGPT-STK | 96.894207 97.784+179 95414400 99494042 89.1643.99 88.8949.25 94.60
OpenAI—D 97-02i3.00 97-11i3.91 99'89i0.13 98.99i1,10 91-43i9.06 99-77i0.19 97.37
OpenAI-STK 98.77i()‘50 99.18i0,35 99'93i0A08 99.17;{:0‘33 97-74i0A69 99.933:()‘07 99.12

MPU 99.92 000 9984 01 97681051 99881010 96.72+04s  100.00100p | 99.01

MPU-STK | 99.99.00; 998610135 97.871026 99981002 96464035  100.004000 | 99.03

RADAR 99.614023 99.761010 99.661026 9996, 98721040  99.95. 0, | 99.61
RADAR-STK | 99481030 99.6210.17 99434042 99.9340.05 98.524(97 99.8940.06 99.48
LOg—LikClihOOd 97-59i037 74.85i0_50 98~54i0,38 99~54i0‘22 60-091213 85.66i1A04 86.05

Rank 84.00:(:()‘33 74.1211.24 91.8210‘60 70-97:(:1,65 54.8812(45 67.7811,14 73.93

Log-Rank 97‘8610,35 79.9510,29 98.8210,37 99.6510,20 61‘24:&2,15 84‘8811,13 87.07
DetectGPT 92.78i1434 85.71i2_02 49~24i1.65 91~59i1.67 83.41i1473 66.59i2,53 78.22
F-DetectGPT 96.23i0_19 66.02i1_53 98.85i0_30 98.58i0_35 40.38i1_31 66.16i2_58 77.70

Reuters ChatGPT-D 96.84+258 95964206 96.664288 95941473 85.2344.30 94.5645.33 94.20
ChatGPT-STK | 99.451043 97.984+1.02 99.534048 98.621076 84.7443.96 97.9841.67 96.38
OpenAI—D 99-87i0.08 98.42i0_73 99.98i0_02 99-72i0.17 93-79i1.90 99483i0_12 98.60
OpenAI-STK | 99.99. ., 9938038 999900 99.68:014 95.024177  99.86.,,, | 98.99

MPU 100.0010.00 99-T110.12 99.9610.07 9999001 97251076 100.00-¢ 0o 99.48

MPU-STK | 100.00:000 99.74,00s 100005001 99.99,0 0, 97.53:000  100.00:000 | 99.54

RADAR 99.9840.01 99991001 99.9640.02 100.004000 99.09. 95 100.00-0.00 99.84
RADAR-STK | 99.98.001 9999:001 99965005 100.001000 99.09.0;  100.00.000 | 99.84
LOg—LikC]ihOOd 69.62i0_28 69.61i1_06 67.18i0_67 65.67i0_56 67.24i1_10 85482i1_96 70.86

Rank 63.45i0“91 64.71i0_99 62.30i0,77 61.56i0,80 64.16i036 73-52i1A1/1 64.95

Log—Rank 68.78i()‘34 69.523:0,79 66.33;{:0‘59 64.99;{:0‘65 66.83i1n4 85.50i1,g7 70.33
DetectGPT 50424375 50.021290 49.981278 48.6312923 51.141199 49.48.15.64 49.95
F-DetectGPT 67.91i0423 63.84i1_73 64.67i0.20 63.36i0.42 66.32i1436 79-62i0.63 67.62

SQUAD] ChatGPT-D 62.2814(56 47.85:{:7,29 59.9313‘25 58.8413‘58 60-37;{:480 74.56;{:7.18 60.64
ChatGPT-STK | 58.6740.90 60.80+1.05 56.4340.95 55.7310.80 56.8210.84 68.5441.98 59.50
OpenAI—D 94~38i1,82 96.55i1_12 94~34i1.96 89~07i2.04 92~74i1,26 97.66i0,92 94.13
OpenAI-STK 95~09i1.97 96.69i1_30 94.61i2_54 89.69i2_42 93~14i2.05 97.96i0_93 94.53

MPU 99.13 .50y 9916, o7 98701071 9353, 45 96.60,0,5  99.37.004 | 97.75

MPU-STK 99171035 99.574033 98.661 475 942041112 96.66.( 34 99.5140.19 97.96

RADAR 81.7542.16 79984095 80.59+209 77204049 76.9841.58 81.90+2.36 79.73
RADAR-STK 84.33:(:1‘45 82.81:{:1.30 83‘5711,95 79‘7810,54 80.5111‘96 84~23j:2.09 82.54
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Table 13: Performance concerning TPR@FPR-0.5%. Detectors are trained on Claude/StableLM
texts.
Dataset | Method | ChatGPT GPT-4 GPT-turbo  ChatGLM Dolly Claude/StableLM | Avg.

LOg»LikelihOOd 24'08i22.67 37'70i30.63 23.12i24_3g 5.86i7_02 12‘45i12.04 2~48i3.06 17.62
Rank 55.6013,65 51‘3115.91 65‘84:&5,93 5349:&6.09 35~11:E4,81 25.1215.07 47.75
Log—Rank 28.72;{:26“()0 46.483:36_20 25-04i26.83 28~19i27.90 17-34i15.65 2.96i3,73 24.79
DetectGPT 37~04i10.21 24'75i10.03 5452i1.93 21-45i14.25 15~45i7.05 4.48i2_57 18.12
F-DetectGPT 4.24:&1.51 3‘85:&2.05 31‘2813.13 3574:&597 O~OO:EO,UO 0.1610.20 12.55

ChatGPT-D 65.4441870 68.4441730 59.2842321 85.70412.69 32.02413.80 26.40420.62 56.21
ChatGPT-STK | 74.48:g81 82.544764 63.684121091 92.694325 38.80+11.53 31.12495.30 63.89
OpenAI—D 69.6016'44 81.72:&6.15 97'68i2,46 91-24i2.66 43.18:&9‘42 92.8818.45 79.38
OpenAI-STK 75.84i9_73 89459i3.65 97~92i2.30 78.63i12_05 64446i11_10 97'60i2.65 84.01
MPU 99.60,065 96.64,, 45 31.68+1280 97.43,5,0 TL76,5,5  100.001000 | 82.85
MPU-STK 99921016 98201061 52.7241555 99.284053 72534533 100.00¢ .00 87.11
RADAR 84.16+10.35 92.054328 84.6411236 97.35+236 066.87+11.34 96.56+3.29 86.94
RADAR-STK | 79.60+11.00 87.70+6.06 78.64+12.45 96.631210 60.94411.00 94.16.+3.81 82.95

Essay

LOg-LikC]ihOOd 77.84i5_19 14488i5_98 86408i3_38 93.76i2_03 11-20i4.45 15~04i6.86 49.80

Rank 48.88+1.59 35.924988 58.404394 40.564185 18.5642.27 6.2441 .87 34.76
Log—Rank 82.40i5.24 25~92i7.08 90.96i4,12 96.80i0,88 14-00i4482 17.60ig,29 54.61
DetectGPT 4~40i2.62 0464i0,54 2432i1.87 2-56i2.80 0-48i0.47 3~04i1.61 2.24
F-DetectGPT 4800i948 6'80i1.88 92-96i1.65 88.96i4_go 0.00iO_UU 0.48i0_39 39.53

Reuters ChatGPT-D 54.08442.05 53.8443575 53.6044242 55.4414473 30.56410.00 36.80+27.02 47.39
" | ChatGPT-STK | 68.00436.41 67.52198.17 69.52437.70 62.80441.50 39.44496s 63.76+17.12 61.84
OpenAI—D 976011.68 75‘9216.09 99‘3610,41 98‘0010,57 45.68:&5487 99‘44j:0.78 86.00
OpenAI-STK 99.363:0‘60 87.523:1()‘37 99.843:0_20 98.00i()‘51 47-92i9A88 96.403:2,90 88.17
MPU 99.84 149 92.324806 98481304 99.52:1016 68.72+1313 100004000 | 93.15
MPU-STK | 10000000 94.40 575 99.68.060 99:60,000 724841130 100004000 | 9436
RADAR 99.441045 99761037 98.72:080 100001000 8744,  100.00:00 | 97.56
RADAR-STK | 99.441048 99.7641032 98.8040.98 100.004000 87.68:307 100.00-0.00 97.61

LOg—Like]ihOOd 1~04i0.57 5*00i2.93 2411i0.29 1.85i1_12 5-93i3.44 21.85i10_14 6.30

Rank 2434043  3.8lx1.04 1871068  1.97+028 4301101 7.9841.52 3.73
Log—Rank 1.97:&1.19 4.8813,25 234:&0.83 1.9711.35 4.88;&2‘72 19-77111.36 5.97
DetectGPT 0.46i0_(‘,7 044810.58 0458i0,52 0-35i0.46 0.81i0_59 0.58i0_00 0.54

F-DetectGPT 4.28i1_35 6‘90i1>53 2‘69i1>41 2~77i1.12 5~35i2.19 28.44i3_93 8.41

sQuapi |  ChatGPT-D 1.624057  2.504079 1401079  0.921046  1.6340.77 15.72110.57 3.97
ChatGPT-STK | 1.3944.35 4.7642.10 1.4049.29 0.69+0.57 1.16+0.97 4.9743.07 2.40
OpenAI-D 3017:&13,82 41.90113495 25~85:EQO,68 22~31:tl().85 2953:&6,08 65.55:&6.79 35.89
OpenAI-STK 30-40:{:1166 43.45;&14‘41 23.98:&16‘43 21.16:{:&81 31-98;{:7423 6902:{:7.46 36.66

MPU 51.33, 0800 681040061 463245503 36.07104 10 64.07.0040  78.38.905 | 57.38
MPU-STK 56.88.129.08 609.5212085 42.34.,,3 40.5813705 65.0012961 78.96.7 64 58.88
RADAR 32~25i6.87 26419i9‘21 29-12i4,17 23.583:(;11 25-70;{:5_11 35.263:5_79 28.68
RADAR-STK | 37.344602 30954819 34.044296 27.984558 29.5346.44 38.9645.02 33.13

40



Under review as a conference paper at ICLR 2026

Table 14: Performance concerning Accuracy. Detectors are trained on ChatGPT texts.

Dataset \ Method \ ChatGPT  GPT4All GPT-turbo ChatGLM Dolly Claude/StableLM\ Avg.
LOg-LikClihOOd 95.16i0441 91.80i0.91 97.241()_29 97~39i0.18 79'40i1.06 77.80i1.52 89.80

Rank 85.84+1.12 84.3041.09 91.364127 80.00+1.02 75.7141.18 78.04+1.43 82.54

Log—Rank 95.68i0427 93~28i0.81 97.28i0'10 97.63:&0.45 79.91i0_g4 77~12i1.49 90.15
DetectGPT 92-08i1,58 89.06i0>46 50.76i1_30 90-04i1.42 82.96i1_77 51-92i0.43 76.14
F-DetectGPT 0~84i0.29 1'11i0.31 0472:&0_27 1-24i0.53 2-10i0.32 1-64i0.51 1.28

Essay ChatGPT-D 90.00+3.63 89.3944.07 83.56+298 90.764348 79.2745.40 51.04+4.02 80.67
ChatGPT-STK | 91.12439) 90.904394 85.524920 91.894329 82.70+581 57.1245 54 83.21
OpenAI-D 94‘88:{:1()7 94.88:(:()‘45 94.40:{:0,90 95.38:&0‘87 93‘09i1.27 78.56:&3,28 91.86
OpenAI-STK 95-24:!:0483 95.41:(:1‘21 94.76:(:0,43 96.02;{;(}(91 93-13:{:1475 81.28;{:2,75 92.64

MPU 9644, 50 96.56 579 93.88:140 97391044 92.02411; 92564, | 94.81

MPU-STK 96.48 1082 96.68.1 35 94.241061 97.751080 92.7540.32 95.60 1 18 95.58

RADAR 91.80+252 92.831273 91.804+252 92.774287 89.9641. 46 90.60+1.95 91.63
RADAR-STK | 93.7641.46 94.4347144 93.7641146 94.5411.71 91.1245 46 92.121.89 93.29
LOg-LikClihOOd 91-72i0,98 66.60i1.60 94~20i0.69 95~20i1.41 59'88il.68 71.36i1.41 79.83

Rank 73.80+0.84 68.964111 80444082 67.924055 58.084137 62.36+1.73 68.59

Log—Rank 93-24i0.74 72~24i1,39 95-08i0.65 96.36i1_13 60.84i0_93 69.64i1_45 81.23

DetectGPT 88.36i1_68 70.68i1,71 48.88i1_25 86.56i0_93 66.40i2_64 63-84i2_24 70.79
F-DetectGPT | 1.6810.57 4.001072 1.721056 1.964064 9.9611.35 2.6010.72 3.65

Reuters ChatGPT—D 96.20:{;4(11 95.28:&3‘89 95.56:{:4.()(] 96.00:(:4‘[)3 82.68:&5,53 56~88j:9.25 8710
ChatGPT-STK 95.083:2‘01 94'52i2»03 95'12i2.03 94.683:2‘01 86.923:3,59 73.123:5,73 89.91
OanAI—D 95-48i0,88 95~12i0.93 95~48i0.88 95.08i0.90 90.48i1.09 75'12i0.95 91.13
OpenAI-STK 97.56i0,51 97~04i0.50 97.56i0.51 97‘00i0.64 91.28i0.57 80~48i0.68 93.49

MPU 98.12, 5 97-681045 98.08,0¢x 98.00 s, 90.80i081  93.96:00s | 96.11

MPU-STK | 98.44.051 98.00. 07 98.44:0s1 98321056 91484129 9644, 0y | 96.85

RADAR | 97.841130 97.84, 49 97.801134 97.801141 96.00i0g0  97.40.1 05 | 97.45
RADAR-STK | 97.841130 97.84,, 49 97.80:13s 97.8011.41 95.96.0¢5 97405103 | 97.44
LOg-LikClihOOd 63~12i1,38 63.39i2.15 60~94i1.06 60.29i1.23 61.16i1.42 73'93i1.89 63.81

Rank 58.67+0.68 60.3641.93 57.89+121 57.514088 59.3041.12 65.3241.17 59.84

Log-Rank 63.29+09.98 63.694161 60.184088 60.29+0.98 60.2940 98 73.87+1.73 63.60
DetectGPT 52-43i2.58 48.81i1,37 50.76i2_15 50~23i2.90 49-77i1.29 5O4Oi18$ 50.40
F-DetectGPT 4.9141 44 5.7110.74 6.2041.04 6.4215 06 5.5841.08 3.4140.81 5.37
SQuAD] |  ChatGPTD | 53.00u1s1 46.374255 51993179 52494145 5220u175  56.70ios 52.13
ChatGPT-STK | 54.51: 047 55.0011.01 53.0d4155 53.124107 53.311103  57.69108 | 54.45
OanAI—D 96~99i0,60 97~02i0.60 96~90i1.26 89.65i1.41 92.67i2.12 97.28i1.01 95.09
OpenAI-STK 97.28i0,43 97~50i0.67 97-31i1.07 88‘90i0,83 92~44i2.01 97.98i0473 95.24

MPU 97.69.1055 98.39:085 97.60, 6 9121, 4 9529.070  97.63,,:5 | 96.30

MPU-STK | 97.69 -5 98.39., 4, 97.66:053 9121 163 9529., 0 97571062 | 96.30

RADAR 70.3541.47 69.4041.07 69.884+142 67.86+087 67.5041.53 70.1241 46 69.19
RADAR-STK | 71.5641.74 70.0640.91 71.171071 68.55410.64 68.1441 45 70.9249 18 70.07

Table 15: Enhancements to the AUROC metric for sentence-based detector. Detector are trained on
ChatGPT text.

Dataset Method ChatGPT GPT4All ChatGPT-turbo ChatGLM Dolly Claude | Avg.
Essa SeqXGPT 100 99.99 52.18 99.95 9991 54.67 |84.45
Y SegXGPT-STK 100 100 53.17 100 99.99 58.75 |85.32
Reuters SeqXGPT 99.34 99.48 61 99.54  99.51 60.78 |86.61
SegXGPT-STK  99.44 99.25 65.69 99.75 993 76.85 |90.05

SQUADI SeqXGPT 50.96 46.89 45.62 47.17  51.18 49.99 |48.64
SeqXGPT-STK  53.89 49.24 52.17 50.2  54.06 53.19 |52.12
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Table 16: Running time comparison.

Method ‘ Training Time (s) ‘ Inference Time (s)
| Essay Reuters SQuAD1 | Essay Reuters SQuADI1
Log-Likelihood 42.17 56.29 20.43 19.82 22.34 11.39
Rank 68.93 89.60 28.31 32.92 44.61 15.27
GLTR 72.04 81.32 31.69 35.13 39.32 17.98
DetectGPT 3829.10 4356.37 44274 1960.20 2269.46 858.28
Fast-DetectGPT 51.39 66.77 20.10 113.69 126.78 39.60
ChatGPT-D 151.72 167.33 118.65 5.79 591 2.41
OpenAl-D 156.23 169.09 129.37 5.81 5.99 2.57
MPU 172.83 189.46 141.20 5.83 5.87 2.62
RADAR 326.79 331.63 254.16 26.54 27.03 22.49
ChatGPT-STK 269.85 252.18 139.54 10.75 10.89 5.67
OpenAI-STK 286.79 255.36 148.24 11.17 10.92 6.08
MPU-STK 301.51 289.77 151.92 11.26 11.69 6.37
RADAR-STK 587.16 590.11 530.20 45.38 46.81 40.56
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PROMPT: Write an essay in 300 words to the prompt “healthcare organization and the personal characteristics and abilities they possess. The sources of a
manager's power base can be categorized into personal and organizational aspects. Personal sources include leadership skills, knowledge, experience, and the ability
to influence through charisma and charm. Organizational sources, on the other hand, involve the authority granted by the position held, the ability to make decisions
and influence through rewards and punishments, and the manager's connections within the organization. Consider the various sources of power for healthcare
managers and discuss how they can effectively utilize them to achieve organizational goals.."

LLM RESPONSE: There are several approaches used to address the issue of truancy within schools. These include parental prosecution, placing an Education
Social Worker within schools, home visits, mentoring programs, and rewarding good attendance. The effectiveness of these interventions has been evaluated through
various research methodologies, including randomized control trials, qualitative studies, and longitudinal analyses. Parental prosecution involves taking legal action
against parents for their child's truancy, including fining or even jailing parents.

A longitudinal study found attendance improved by 12%
over 2 years in schools with a social worker, compared to only 3% improvement in schools without this intervention (Williams et al., 2015). Social workers were
able to address the root causes of truancy by providing counseling and connecting families to community resources. Students reported feeling more supported and
motivated to attend. Three other studies analyzed various interventions. A mentoring program that matched truant students with teacher mentors found attendance
increased during the mentoring but dropped again once the program ended (Thompson & Kelly, 2011). The temporary support was inadequate. In contrast, a
program providing small rewards for improved attendance, such as movie passes or snack coupons, was effective in a qualitative study. Students said the rewards
motivated them to keep attending to continue earning prizes (Parker et al., 2013). Finally, a randomized control trial found that home visits from a truancy officer
increased attendance by an average of 5% among participants compared to control students (Donaldson, 2019)...

[The essay would continue on for 1250 words to fully analyze the effectiveness and methodology of the research studies on the various anti-truancy approaches and
provide a summary of three additional studies from the literature review].

PROMPT: Write an essay in 200 words to the prompt “Compare and contrast the pandemics caused by the Typhoid and COVID-19 viruses, focusing on the cases
of Typhoid Mary and Novak Djokovic. How did these two individuals become exposed to the illnesses, and what impact did their infections have on their families
and associates? Additionally, discuss the advancements in medical counter-measures and healthcare system preparedness over the past 100 years that have helped in
handling pandemics..”

LLM RESPONSE: Typhoid fever, caused by the Salmonella typhi bacteria, became a concern in the early 20th century. Typhoid Mary, an infamous case, was a
carrier of the disease without exhibiting any symptoms herself. She worked as a cook and unknowingly infected numerous individuals with the bacteria. It was
through her lack of proper hygiene practices and contamination of food that Typhoid Mary exposed others to the illness.

Djokovic, along with several other players, contracted the virus, further spreading it within their circles. This incident highlighted the importance of
adherence to preventive measures and the role of individuals in avoiding the transmission of the virus. In both cases, Typhoid Mary and Novak Djokovic
unintentionally became exposed to the illnesses. Typhoid Mary's lack of awareness about her carrier status resulted in the transmission of typhoid fever, while
Djokovic's disregard for public health guidelines led to his infection with COVID-19. The impact of these infections on the families and associates of Typhoid Mary
and Novak Djokovic varied significantly. In the case of Typhoid Mary, several people succumbed to the illness, tarnishing her reputation and causing immense
suffering to their families. Djokovic's infection, in contrast, led to widespread criticism and backlash, highlighting the potential consequences of one’s actions during
a pandemic. The family and associates of both individuals were affected by the indirect consequences of their infections. Over the past 100 years, remarkable
advancements have been made in medical counter-measures and healthcare system preparedness. The development of vaccines, antibiotics, and antiviral drugs has
revolutionized the way pandemics are managed. Additionally, public health systems have become more robust in terms of contact tracing, testing capabilities, and
public awareness campaigns. These improvements have contributed to effectively controlling and treating pandemics. In conclusion, comparing and contrasting the
pandemics caused by the Typhoid and COVID-19 viruses reveals the different modes of transmission and impacts on individuals and their circles. Typhoid Mary
and Novak Djokovic’s cases underscore the importance of personal responsibility and adherence to public health guidelines. Furthermore, advancements in medical
counter-measures and healthcare system preparedness over the past century have played a pivotal role in mitigating the effects of pandemics and improving global
health outcomes. It is crucial to remember the lessons learned from these pandemics and continue to invest in preventive measures and healthcare infrastructure to
safeguard humanity from future outbreaks.

PROMPT: Write an essay in 300 words to the prompt “Explore the use of contrast and semantic imagery in John Milton's Paradise Lost and William Shakespeare's
Othello. How do the authors utilize dark and light imagery to convey meanings and reinforce boundaries between good and evil? Discuss how these works challenge
traditional interpretations and showcase the complexity of these semantic symbols..«

LLM RESPONSE: Both Charles Dickens' Great Expectations and Alan Warner's Morvern Callar construct social identities through the politics of space and place
in imaginative ways. By depicting protagonists navigating fraught social spaces and places in search of self-identity, these novels meditate upon the contemporary
dilemma of self-identity in literature and society. In Great Expectations, Pip's imagination is powerfully shaped by his experience of place and space. The novel
opens in a churchyard, where Pip encounters the terrifying convict Magwitch. This gothic space fills Pip with dread and establishes a prevailing sense of danger and
uncertainty. As Pip is "brought up by hand" by his sister in their home, the claustrophobic and humorless domestic space compounds Pip's discomfort. His
imaginative escape is found in his notion of becoming a “gentleman™ in London. Pip's expectations of London as a space of opportunity and status are soon dashed.

In her small port town in Scotland, Morvern finds little opportunity to explore her identity. However, after her boyfriend commits suicide, Morvern
conceals his death to claim the proceeds from his unpublished novel. She uses this money to escape on holiday to Spain with her friend Lanna. In Spain, Morvern
experiments with new identities that would be impossible in her hometown. She pursues romance on her own terms, presenting herself as worldly and enigmatic.
She observes, “Nobody knew me. | could be whatever | wanted to be.” However, Morvern struggles to integrate these ephemeral holiday identities into a coherent
sense of self. Upon returning home, Morvern struggles to reconcile her transformational experiences in Spain with the mundane familiarity of place in Scotland.
However, she starts to re-imagine the possibilities afforded by her own locality. The novel ends with Morvern dispersing her boyfriend's ashes in the sea, signalling
her reconciliation with place and growing self-assurance. In conclusion, Great Expectations and Morvern Callar are novels profoundly concerned with self-identity,
which they explore through the imaginative politics of space and place. By following their protagonists’ journeys through fraught spaces and places, both novels
suggest how localities can be both confining and liberating. They show how one's sense of identity emerges through the dialectical and transformative relationship
between the familiar and unfamiliar in space and place. Overall, these novels present a compelling vision of how self-identity develops through navigating the
spaces and places that shape our lives.

Figure 20: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 600 words to the prompt “Explain the benefits and features of using a front load washing machine. Describe the parts of a front load
washer and how they contribute to its efficiency. Provide instructions and guidelines for using a front load washer effectively.."

LLM RESPONSE: The use of time is fundamental in structuring Drama and the Novel, specifically in Shakespeare's The Winter's Tale and Austen's Emma.
However, time serves distinct purposes across these two forms of fiction, enhancing the reader or audience's experience in different ways. In Drama, the use of time
is portrayed visually through staging, lighting, costumes, and the physical aging of the actors. These visual elements give the audience an acute sense of the passage
of time over the course of the play. For example, in The Winter's Tale, Hermione's 16-year separation from her daughter Perdita is conveyed through her transition
from youth to middle age on stage, demonstrated through aging makeup and costuming. The gap in time between Acts 3 and 4, signified by the Chorus, is reinforced
by a complete set change. These visual transitions in time, though abrupt, give the play a sweeping, epic quality as whole lifetimes pass over the course of a few
hours. In contrast, the Novel conveys the passage of time through descriptive language and pacing. While the reader experiences multiple gaps in time over the
course of Emma, time passes more gradually. The four main sections of the novel span two years altogether, but the reader gains a sense of the passing seasons,
holidays, and daily rhythms in the village of Highbury. Important events like Frank Churchill and Jane Fairfax's clandestine engagement unfold over months. This
gradual progression of time, depicted through subtle cues in narration and description, gives the novel a leisurely pace that reflects the steady and unremarkable
rhythm of life in Regency-era England. Overall, time in the Novel is more mimetic than in Drama. The use of time also impacts character development differently
across the forms. In Drama, characters visibly age and mature on stage, enabling abrupt transformations. For instance, in The Winter's Tale, the teenage Perdita
blossoms into a young woman before the audience's eyes after the gap in time between Acts 3 and 4. Similarly, Hermione is reanimated after 16 years as a living
statue, transformed from middle age back to youth. These physical transformations, especially Hermione's de-aging, create a sense of characters emerging from the
layers of time to reconcile their past and present selves. In the Novel, character development unfolds more gradually through interiority. For example, Emma
Woodhouse matures over two years through a series of humbling insights into her own flaws and misunderstandings.

In The Winter's Tale and Emma, time is conveyed visually through
staging and descriptive language, respectively, impacting the reader's experience and sense of pacing in each form. Time also enables different trajectories of
character development, with abrupt transformations occurring in Drama and gradual evolutions unfolding in the Novel. Ultimately, time shapes storytelling in
diverse ways across these two genres of fiction.

PROMPT: Write an essay in 500 words to the prompt "What are the effects of Dyslexia on children and how can specialized interventions help improve their
performance in school?.”

LLM RESPONSE: The early states that emerged in mainland Greece during the Bronze Age, from around 2000 BCE to 1200 BCE, displayed several defining
features. They were primarily based around fortified palatial centers that were the seats of power for emerging elite classes. The power of these elites was based on
control of resources, especially agricultural surplus and trade networks. At the same time, the character and power bases of these states impacted their organization
and form. They lacked aspects of centralization that would emerge in later states. Power was concentrated at the local level in the hands of palace elites, and there
were limited bureaucratic institutions. The Mycenaean states that ruled mainland Greece were organized around fortified palace centers, with the most prominent at
Mycenae, Tiryns and Pylos. These palatial centers served as the seats of power for an emerging elite class. The power and control of resources by these elites
allowed the accumulation of wealth and the mobilization of resources required to construct the massive “cyclopean” walls and public works projects for which the
Mycenaeans are known. Power and status were based on control of resources, especially agricultural surplus and trade. Linear B tablets provide evidence that the
palaces exercised economic control over agricultural land and oversaw the collection and distribution of staple goods. Maritime trade also supported the rise of the
Mycenaean elites. However, the Mycenaean states lacked major institutions of centralization that would emerge in later states. Power was concentrated at the local
level, in the hands of the palace elites. There is little evidence for Mycenaeanstate-controlled centralized institutions, bureaucracy, or military forces. The palaces
appear organized to meet their own local needs without strong connections to a broader state apparatus. Most interactions appear to have occurred at a regional and
local level. The Minoan civilization on Crete emerged around 2000 BCE, centering around the palaces at Knossos, Phaistos, and Mallia. As in Mycenaean Greece,
power was concentrated in the control of agricultural surplus and trade networks by palace elites. The Minoans relied heavily on maritime trade, exchanging luxury
goods with Egypt and the Near East.

There is little evidence for the bureaucratic institutions or military organizations
that would typify later states. Political centralization and state formation were limited, with regional and local dynamics remaining predominant. Socio-political
structures were built around personal loyalty, kinship and clientage rather than strong state institutions.

PROMPT: Write an essay in 300 words to the prompt "Discuss the potential risks and strategies for mitigating them in the establishment of Centers for Diabetes,
focusing on community health needs and the targets set by the Affordable Care Act (ACA).."

LLM RESPONSE: Wallaroo Wines should adopt a premium, high-end product differentiation market entry strategy for Hong Kong and mainland China. Given the
brand's focus on high-quality premium wines, it should capitalize on Chinese consumers' growing taste for luxury imported wines. A high-end strategy is compelling
given Hong Kong's large population of high-income consumers, and the growing upper classes in major mainland cities. For its product strategy, Wallaroo Wines
should maintain its focus on high-end red wines like its premium Cabernet Sauvignon and Shiraz varieties.

Once established in Hong Kong, Wallaroo can pursue partnerships with prestige importers and distributors in mainland cities like Beijing, Shanghai and
Shenzhen. For promotion, Wallaroo should invest heavily in social media, sponsoring events, influencer marketing and traditional media advertising to raise brand
awareness and appeal to target consumers. Premium positioning should be reinforced through marketing that conveys heritage, quality and indulgence. Sponsoring
prestigious events like art galleries, film festivals or golf tournaments would effectively reach high-end consumers. Working with influencers like luxury lifestyle
bloggers or celebrity wine aficionados can also boost brand buzz. Key opportunities in this market entry strategy include tapping into China's fast-growing demand
for imported wine, particularly at the luxury end; leveraging Hong Kong as a launch pad; and strengthening brand positioning as a premium lifestyle brand. However,
there are also challenges such as intense competition from other imported and domestic wine brands; complex regulatory environments; counterfeiting; and price
sensitivity, even among higher-income consumers. Overall, a premium differentiation strategy targeting high-end consumers in Hong Kong and China's major cities
can be advantageous for Wallaroo Wines. By focusing on a niche, underserved segment and emphasizing quality and status, Wallaroo can build strong brand
positioning that sets it apart in a crowded market. With the right partnerships and marketing, Wallaroo Wines can make substantial inroads into this attractive export
market.

Figure 21: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 300 words to the prompt “Discuss the influence of Charles Bolden on the history of jazz, including his musical innovations, impact on
future musicians, and the events and people that shaped his life and career.."

LLM RESPONSE: The city of Oxford is home to four major bookstores—Blackwell's, Borders, Waterstone's, and WH Smith—that attract a wide range of
customers due to their varying locations, layouts, inventory, and atmospheres. In this report, | will analyze the key attributes and retail strategies of each bookshop to
determine how they appeal to different target markets. Blackwell's, located on Broad Street in the heart of Oxford city centre, is the oldest and largest bookshop,
occupying multiple floors of an imposing historic building. Its vast selection of over 200,000 new, used, and rare books—especially academic texts and secondary
literature—attracts serious readers and students.

While also carrying a wide range of books, Waterstone's focuses on highly commercial mainstream titles in an attempt to draw in a larger customer base seeking
trendy and accessible reads. Its central location, glass storefront, and sleeker désor give it a hip and contemporary feel that contrasts with the traditional atmosphere
of Blackwell's, appealing to younger and more popular audiences. Borders, located in the Clarendon Centre shopping mall, closed down in 2019 due to the pressures
of online retail competitors and changing reader trends. When it was open, it carried a range of commercial fiction and non-fiction, especially in popular genres like
crime, thrillers, and romance.

The now-defunct Borders occupied a middle ground as a casual mainstream outlet. And WH Smith serves local needs as a convenient spot for essentials and small
gifts rather than substantive book browsing. Through their locations, layouts, inventory selections, and general atmospheres, each store has adopted a retail strategy
aimed at matching a particular set of customers and their book-buying motivations.

PROMPT: Write an essay in 900 words to the prompt “The Prompt:Discuss the benefits and challenges of the Internet of Things (10T) in our daily lives, including
its impact on efficiency, automation, and privacy concerns..

LLM RESPONSE: Sitcoms often utilize pragmatic frameworks, including Grice’s conversational maxims, Brown and Levinson’s Politeness theory, and Leech’s
Politeness Maxims, to achieve the expected humorous effect in their scripts. The popular American sitcom “Friends” is an excellent example of how these pragmatic
tools are employed creatively and strategically to elicit audience laughter. Grice’s conversational maxims relate to the cooperative principle, whereby conversational
contributions should be purposeful, truthful, relevant, and clear. Flouting these maxims in sitcoms can create comedic irony and absurdity. In a scene from “Friends”,
Monica, Rachel and Phoebe are lambasting their friend Ross about saving a mouse from a glue trap but then accidentally killing it. Ross defends that he “was just
trying to be a good friend” to the mouse. Phoebe quips: “Aw, you're like a cute, fuzzy little unintentional kitten killer.” This flouts the maxim of relevance,
juxtaposing the irrelevant concept of “kitten killer” for comedic effect. The non sequitur also adds to the absurdity and irony, making the audience laugh at Phoebe’s
exaggerated comparison.

A close analysis of “Friends” demonstrates
how these tools can be strategically combined for comedic effect.

PROMPT: Write an essay in 300 words to the prompt "Essay Discuss the potential benefits of implementing a decentralized parking system using blockchain
technology, and outline the business goals and strategies for introducing this innovative solution..*

LLM RESPONSE: To properly assess the status of 65-year-old Deirdre after undergoing electro-convulsive therapy for severe depression and risk of relapse,
several evaluation steps should be taken by her health professionals. First, a thorough medical and psychiatric history review should be conducted, including
discussion of her mental and physical health before and after her husband's death, the severity and symptoms of her depression that warranted ECT treatment, how
she responded to the ECT, any side effects, and her current state of mood, cognition, and daily functioning. Standardized depression screening tools, like the Patient
Health Questionnaire-9, that Deirdre fills out and clinician-administered scales such as the Hamilton Depression Rating Scale provide quantitative measures of her
current depression severity and risk of relapse. Deirdre reported that ECT helped lift her depression but left her with memory gaps and concentration difficulties,
common side effects, so cognitive testing is recommended. Simple screening tests include the Mini-Mental State Exam, clock drawing test, and verbal fluency to
check for significant cognitive impairment. More in-depth neuropsychological testing may also be needed to identify specific memory, attention, and executive
function deficits. These cognitive baselines will help determine if further ECT treatments are suitable and monitor her progress. Discussion about Deirdre's activities
of daily living, social interactions, sleep, and eating habits provides insight into her overall wellbeing and recovery. Talking to her close ones, with her consent, can
give another perspective on her day-to-day functioning. It is important that Deirdre maintains a routine, sticks to a healthy diet and exercise, and continues social
engagement to avoid isolation and support her rehabilitation and remission. Ongoing follow-ups and management are required to monitor for depression recurrence.
Deirdre should schedule regular visits with her psychiatrist and therapist, and be aware of potential trigger events that may exacerbate her depression.

vigilance for recurrence and proactive support systems remain vital to minimize future episodes and safeguard her health.

Figure 22: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 300 words to the prompt “"Examine the social factors impacting grocery shopping habits and food accessibility in Forest Park, Illinois,
and discuss potential interventions to address these issues."

LLM RESPONSE: There has been significant progress in recent decades in understanding the molecular mechanisms that determine cell fate specification in the
pregastrulation embryo. Studies in model organisms such as Drosophila, Xenopus, zebrafish, and the soil nematode Caenorhabditis elegans have revealed that cell
fate determination relies on the precise regulation of gene expression. The expression of specific transcription factors, signaling pathways, and other key molecules
are tightly regulated in space and time, leading to the differentiation of undifferentiated embryonic cells into cells of the mesoderm, endoderm, and ectoderm germ
layers. C. elegans provides an excellent model to study the molecular basis of cell fate specification in the early embryo. The C. elegans embryo contains only a few
precursor cells that generate all postembryonic cells. The cell lineage is largely invariant between individuals, providing a simple blueprint to study cell fate
determination. Powerful molecular tools including RNA interference allow for the systematic perturbation of gene function in the embryo. Embryogenesis in C.
elegans is also very rapid, with cell fate decisions made within a few hours of fertilization, facilitating detailed analysis. Studies in C. elegans have identified key
transcription factors, regulatory elements, and signaling pathways involved in cell fate determination. For example, the end-1 and end-3 transcription factors are
required for endoderm development. The thx-2 transcription factor determines the fate of mesodermal blastomeres. The Wnt/B-catenin asymmetry pathway
generates differences between the anterior and posterior of the embryo that are required to specify ectoderm and endomesoderm. Mutations in these genes result in
embryos lacking entire germ layers and tissues. C. elegans also provides temporal resolution to study the order of molecular events in cell fate determination. For
instance, Wnt/B-catenin signaling occurs before and is required for the asymmetric expression of end-1/end-3. end-1/end-3 expression then induces downstream
targets that execute the endoderm fate.

Continued research in C. elegans and other model organisms promises to yield a comprehensive picture of how the precise regulation of gene expression in space
and time determines cell identity in embryonic development.

PROMPT: Write an essay in 400 words to the prompt "In Bob Dylan's song Scarlet Town, the interplay between embedded songs helps invoke the overall theme.
Explore how Dylan presents a world full of both good and bad and argues that combining the two forms can lead to eventual good. Analyze the distinct features of
the town, the narrator's acknowledgement of his imperfections, and the significance of the events and themes presented in the song..

LLM RESPONSE: In his Critique of Judgment, Immanuel Kant argues that reason allows the human mind to grasp concepts that surpass the limits of imagination,
particularly in experiencing the mathematical and dynamic sublimes. For Kant, the imagination has a maximum, finite magnitude it can comprehend, based on the
maximum size of images it can form. Reason, however, is capable of conceiving of infinitely large magnitudes through a process of successive addition and
expansion. This allows reason to exceed imagination. Kant first addresses how we can obtain concepts of extremely large magnitudes that seem to surpass
imagination. He argues that we cannot have an image or intuition of infinitely large magnitudes, as imagination has a maximum. We can, however, think infinity
through the intellectual idea of successive addition: by representing an object and recognizing we can always add more to its size. This process can continue
indefinitely, giving us a concept of infinity that surpasses what we can imagine.

However, it allows reason to conceive the immeasurable, enabling the experience of the mathematical sublime. Kant holds that we can never
have knowledge of an actual infinite as an object. The infinite is not a quantity that we can perceive or grasp totally. However, reason can conceive of the infinite
negatively, as that which surpasses any assignable quantity.

In this way, the sublime displays the ultimate ability of human reason to transcend sensibility, forming concepts not tethered to
the constraints of imagination or experience. The sublime reveals our capacity for formulating rational ideas, even those surpassing intuition. In conclusion, Kant
argues reason allows us to conceive concepts beyond imagination, especially in experiencing the mathematical and dynamic sublime. While imagination has a
maximum, finite magnitude, reason can represent infinity through successive addition.

PROMPT: Write an essay in 600 words to the prompt “What are the thematic elements and stylistic characteristics of blues poetry? Provide examples from the
essay to support your answer..

LLM RESPONSE: Judicial review is the process by which the courts review the lawfulness of decisions or actions made by public bodies such as central
government departments, local authorities, tribunals, and other decision-making bodies. A claim for judicial review is a legal challenge to the way in which such a
decision was made, rather than the merits or content of the actual decision. To bring a claim for judicial review in England and Wales, there are a number of
procedural requirements that X would need to fulfil. Firstly, X would need to have sufficient interest in the matter, known as'standing’. Standing is established if X
can show that the decision being challenged directly affects them or would affect them differently from the public at large. Given that X was excluded from school
by the decision, X would likely be directly affected by the decision and have standing to bring a judicial review claim. Secondly, X would need to act promptly in
bringing the claim. Under the Civil Procedure Rules (CPR), claims for judicial review must be filed within 3 months of the grounds for the claim arising. The court
has discretion to extend this time limit, but promptness is expected given the public nature of decisions under review. X would thus need to file his claim within 3
months of being notified of the exclusion decision. Thirdly, X would need to apply for permission to proceed with the claim. This requires filing court forms setting
out the grounds for review along with evidence to support those grounds.

The principle of proportionality requires that decisions impacting individual rights are proportionate to the legitimate aims pursued. The court would
consider whether the exclusion was rationally connected to its aims, whether less restrictive measures were available, and whether the impact on X's right to
education was excessive. Given the severity of exclusion, X may have grounds to argue disproportionality. In considering Y's involvement in the decision to exclude
X, the rule against bias may apply if Y had a close relationship with X or a vested interest in seeing X excluded. The rule against bias requires that decisions are
made impartially, by individuals with no pecuniary or personal interest in the outcome. If Y was biased or appeared to act unfairly in recommending X's exclusion,
the decision and process may be flawed and unlawful on the grounds of apparent bias. In conclusion, there are clear procedural and substantive grounds on which X
could challenge the school's decision to exclude him through judicial review. By acting promptly to file a claim, securing permission to proceed, and arguing that the
decision was disproportionate or apparently biased, X could have reasonable prospects of success in his application for judicial review of the school's decision.

Figure 23: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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PROMPT: Write an essay in 300 words to the prompt "“To what extent do the works of Dr. Jekyll and Mr. Hyde and Frankenstein convey the message that science
can be a tool for violence and lack of integrity? Examine the actions and motivations of the scientists in each novel and explore how their experiments lead to
destructive consequences.*

LLM RESPONSE: Determining whether a theory is scientific or pseudoscientific has been a long-standing challenge in philosophy of science. Several
philosophers have proposed demarcation criteria to differentiate science from non-science. Karl Popper proposed the falsification criterion, that for a theory to be
scientific it must be falsifiable. Thomas Kuhn proposed the puzzle-solving criterion, that science progresses through paradigm shifts to solve conceptual puzzles.

While
falsification is an important part of science, it is too simplistic as a demarcation criterion. Many scientific theories are hard to falsify in practice and scientists do not
always abandon theories when faced with falsifying evidence. Kuhn's puzzle-solving criterion sees science as progressing through revolutions that shift scientific
paradigms. Normal science operates within a paradigm, solving puzzles that fit existing theories. When too many anomalies accumulate, scientific revolutions occur
that lead to new paradigms. This view captures some elements of how science works in practice. However, it is difficult to determine what counts as a puzzle or
paradigm shift. Pseudosciences can also experience shifts to new theories without becoming genuinely scientific. Lakatos proposed evaluating research programs
rather than individual theories. A scientific research program has a hard core of basic principles surrounded by a protective belt of auxiliary hypotheses. The hard
core is preserved, while the protective belt is modified and expanded. For Lakatos, astrology lacks a progressive problem-shift and has too much ad hoc
modification of its protective belt. However, determining what counts as ad hoc modification or a progressive problem-shift can still be subjective. Thagard
examined why astrology should not be considered scientifically valid. He noted that astrology lacks key criteria like explanatory coherence, which requires that a
theory mesh well with other currently accepted theories. Astrology also lacks predictive success, practical applications, and conceptual coherence since there is no
mechanism explaining how the positions of stars and planets could influence human lives. However, proponents of astrology could argue that it still meets some
conditions of science and more criteria are needed to definitely prove it is pseudoscience. In conclusion, while falsification, puzzle-solving, hard cores, and
explanatory coherence all capture important aspects of science, there is no definitive and universal set of criteria to differentiate science from non-science.
Demarcation will always remain fuzzy. However, for a theory to be considered scientifically valid, some key conditions must be met: It must be consistent with
existing scientific theories and knowledge. It must offer explanations and mechanisms, not just descriptions and predictions. It must lead to new discoveries and
applications. And it must aim to be empirically testable and falsifiable, even if practical limitations exist. When these conditions are lacking, the likelihood of a
theory being genuinely scientific diminishes. The debate on demarcation continues, but these types of criteria point the way to determining what science should aim
for to meet accepted standards of validity.

PROMPT: Write an essay in 600 words to the prompt "Discuss the warning signs of domestic violence and abuse and the appropriate actions that healthcare
providers should take when they suspect these forms of abuse in their patients..”

LLM RESPONSE: Edward Bond's notorious play Outraged poses a radical challenge to traditional Freudian interpretations of the Oedipus complex. Rather than
portraying the complex as a psychological struggle, Bond uses it as a metaphor to critique deeper societal problems. The play employs dark humor and violence to
make the audience uncomfortable and confront humanity's capacity for depravity. At the center of the play is the character Len, a practical and severely flawed
everyman. While Len initially appears relatable, even likable, his ordinary nature makes his disturbing actions all the more unsettling. The play suggests that within
each ordinary person lies the potential for violence and moral failure. Len's desire to kill his stepfather, Frank, does not stem from an unconscious sexual rivalry, as
in a traditional Oedipal narrative. Rather, Len's animosity arises from Frank's abusive and predatory behavior. Frank is a figure who revels in violence and uses his
position of power to exploit others. The play implies that figures like Frank who embody society's darkest aspects arise not from individual pathology but from
systemic failings. The real "complex" here is not Oedipal but rather humanity's tendency to turn a blind eye to injustice and moral corruption. The play's disturbing
and violent events implicate the audience through their gradual escalation. At first, Frank's abusive behavior and the suffering of his wife and stepchildren seem
sadly familiar, even mundane. But as the violence crescendos, the audience realizes with discomfort that their initial nonchalance makes them complicit. The play
suggests ordinary people can become desensitized to extraordinary cruelty, and inaction in the face of injustice enables its perpetuation. Len's eventual parricide is
not a victory but another disturbing moral failure. While Frank is a cruel man who deserves punishment, violence should not be met with more violence. Len's
actions jeopardize his own humanity, even as he rids the world of a moral monster. The play proposes no easy answers and refuses neat resolutions, leaving the
audience unsettled with more questions than solutions. In sum, Outraged utilizes a subversive reinterpretation of the Oedipus story to challenge society's moral
failings.

PROMPT: Write an essay in 1300 words to the prompt "Explain how the supply and demand theory can be used as a tool for navigating the market, providing
examples of companies that have successfully utilized this theory to their advantage..«

LLM RESPONSE: Employers owe a duty of care to their employees to ensure a safe working environment, both physically and mentally. However, the extent of
this duty is debated, especially regarding obligations to support employee mental health and wellbeing. The case of Somerset County Council v Barber highlighted
the complexities in determining how far an employer's duty extends regarding foreseeable psychiatric harm. In Barber, the House of Lords found that Somerset
County Council was liable for the nervous breakdown of an employee, Barber, due to the unreasonable workload and pressures placed on him. Their judgment
affirmed that employers have a duty to take reasonable care for the mental health and safety of employees in the workplace. However, the court also noted that
employers could not be expected to predict and prevent all psychiatric harm, especially that arising from an employee’s own peculiar vulnerability or susceptibility.
The ruling in Barber has been criticized as posing too high a burden on employers and for judging the case with the benefit of hindsight. However, others argue it
achieved an appropriate balance between employer and employee interests. Workplaces have changed dramatically in the 30 years since Barber was decided, with
longer working hours, greater job insecurity, and more isolated working. This amplification of workplace stressors suggests employers should shoulder more
responsibility for employee wellbeing. That said, there are arguments against saddling employers with open-ended liability for employee mental health issues.
Employees have a degree of personal responsibility for their own wellbeing and for raising issues with their employer.

Overall, the House of Lords in Barber achieved a reasonable compromise, but further clarity is still needed on
the extent of responsibility employers can fairly bear for the psychological wellbeing of their workforce.

Figure 24: MGTs that can be correctly detected by the proposed framework but not by the original
detector. The identified human-generated parts are highlighted in green.
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