
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TESA: A Trajectory and Semantic-aware
Dynamic Heterogeneous Graph Neural Network

Anonymous Author(s)
∗

Abstract

Dynamic graph neural networks (DGNNs) are designed to capture

the dynamic evolution of graph node interactions. However, ex-

isting DGNNs mainly consider homogeneous graphs, neglecting

the rich heterogeneity in node and edge types, which is preva-

lent for real-world graphs and essential for modeling complex dy-

namic interactions. In this work, we propose the TrajEctory and

Semantic-Aware dynamic heterogeneous graph neural network

(TeSa), which integrates trajectory-based evolution and semantic-
aware aggregation to capture both the evolving dynamics and het-

erogeneous semantics entailed in continuous-time dynamic het-

erogeneous graphs. In particular, trajectory-based evolution treats

the interactions received by each node (called node trajectory) as

a sequence and employs a temporal point process to learn the dy-

namic evolution in these interactions. Semantic-aware aggregation

separates edges of different types when aggregating messages for

each node from its neighbors. Edges of the same type are processed

at first (i.e., intra-semantic aggregation), and then edges of different

types are handled (i.e., inter-semantic fusion), to offer a comprehen-

sive view of the heterogeneous semantics. We compare TeSa with

7 state-of-the-art DGNN models, and the results show that TeSa

improves the best-performing baseline by an average of 5.11% and

5.74% in accuracy for transductive and inductive tasks.

Keywords

dynamic graph, heterogeneous graph, graph learning

ACM Reference Format:

Anonymous Author(s). 2018. TESA: A Trajectory and Semantic-aware

Dynamic Heterogeneous Graph Neural Network. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 11 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 Introduction

Dynamic heterogeneous graphs (DHGs) serve as a natural abstrac-

tion for modeling real-world complex systems, capturing the in-

tricate interactions among diverse entities. The evolution of these

networks often reveals underlying patterns. For instance, in Fig-

ure 1, user 𝑢1 forwards blog 𝑏2 posted by user 𝑢2 at time 𝑡8, and 𝑢1
has previously followed user 𝑢2, reflecting a triadic closure[22]. Re-

searchers have leveraged such patterns to model system dynamics

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Table 1: Anatomy of GNN models. We use dynamics, hetero-
geneity, long-term, andmemory efficiency to indicate whether

a model learns temporal dynamics, handles heterogeneous

types, captures long-term semantic evolution, and avoids

excessive memory consumption, respectively.

Model Dynamics Heterogeneity Long-term Memory Efficiency

GAT [23] ✗ ✗ ✗ ✓
HGT [8] ✗ ✓ ✗ ✓
TGAT [1] ✓ ✗ ✗ ✓
TGN [19] ✓ ✗ ✓ ✗

HTGNN [3] ✓ ✓ ✗ ✓
TeSa(ours) ✓ ✓ ✓ ✓

and enhance predictive capabilities across various domains, such as

recommendation systems in social networks [32], over-prescribing

prediction in healthcare [27], and route optimization in intelligent

transportation systems [11, 20].

The advent of dynamic graph neural networks (DGNNs) has sig-

nificantly enhanced our ability to model evolving systems. Nonethe-

less, a substantial proportion of current research remains concen-

trated on dynamic homogeneous graphs, in which both nodes and

edges belong to a single type. This simplification can lead to sub-

optimal performance as it neglects the underlying semantic infor-

mation of nodes and edges. Therefore, representation learning on

dynamic heterogeneous graphs is crucial for enhancing the model-

ing capabilities of complex systems. However, it is still in its nascent

stages and encounters the following two primary challenges.

Challenge 1: How can we effectively capture the entangled evolv-
ing dynamics and structural heterogeneity entailed in DHGs? Early
approaches [3, 25, 30] conceptualize dynamic heterogeneous graphs

as a sequence of graph snapshots, known as discrete-time dynamic

heterogeneous graphs (DTDHGs). These methods normally per-

form heterogeneous message passing on the snapshots and subse-

quently employ sequence models to capture the temporal evolution

within these slices. However, they treat temporal and heteroge-

neous information in isolation, making them unable to capture the

dynamic changes in intricate semantic structures among various

entities, and thus failing to represent the intertwined dynamics

of these dimensions [21]. Recent works [34] have attempted to in-

tegrate temporal and heterogeneous information simultaneously.

Nevertheless, the discrete-time framework is still susceptible to in-

formation loss and struggles to adequately model the continuous na-

ture of entity interactions. More recently, continuous-time dynamic

heterogeneous graphs (CTDHGs) have been explored [10], which

offer more precise temporal modeling by representing DHG as a

continuous event sequence. However, [10] relies on a self-exciting

process to model the evolution of the graph, which assumes that

past events always stimulate the occurrence of current events. Thus,

the model struggles to capture the complex interdependencies and

diverse influences among events within the graph.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: A toy example of dynamic heterogeneous social

network, where the node shapes indicate node types, the

symbols between arrows represent edge types, and each emoji

represents the sentiment expressed in a blog.

Challenge 2: How can we capture node’s robust intrinsic seman-
tics and behaviors over time while supporting large-scale graphs?
As illustrated in Figure 1, three blogs discuss different stances on

a particular event: blog 𝑏1 (supportive), blog 𝑏2 (opposed), and

blog 𝑏3 (neutral). User 𝑢4 has historically shown a neutral to some-

what opposed position, initially sharing blog 𝑏3 (neutral) and then

forwarding blog 𝑏2 (opposed). Although user 𝑢4 follows user 𝑢1
(supportive, posting blog 𝑏1) at time 𝑡7 due to other reasons, this

does not necessarily imply that user 𝑢4 will share blog 𝑏1, given its

past interactions primarily with neutral and opposed content. As

can be observed, such long-term, while robust, behaviors are often

overlooked by previous work [1, 26], as they tend to focus more on

the aggregation of neighboring information and neglect the change

of node semantics over time, leading to a loss of historical context.

Although some works [13, 19] have employed a global memory

module to store historical representations of nodes. However, these

works have not explicitly investigated behavior evolution over time

and the global module limits the scalability of these models in the

presence of large-scale graphs.

To address the aforementioned challenges, we propose the Tra-
jEctory and Semantic-Aware Dynamic Heterogeneous Graph Neural
Network (TeSa

1
), which models dynamic heterogeneous graphs

from a continuous-time perspective. The TeSa layer integrates two

key components: trajectory-based evolution and semantic-aware

aggregation, together effectively capturing the entangled dynam-

ics and heterogeneous semantics in DHGs. The trajectory-based
evolution module is crucial for addressing the challenge of captur-

ing a node’s intrinsic semantics and behaviors over time. Specifi-

cally, it extracts a trajectory for each node, which is a sequence of

temporally-ordered events associated with the node. However, the

trajectory can be rather sophisticated, as each point captures the

timing, type, and features of the present interaction. To tackle this

problem, we adopt the technique of temporal point processes to

elegantly encode these sophisticated trajectories, thus effectively

capturing the dynamic semantic changes. Building upon the out-

puts of the trajectory evolution module, the semantic aggregation
module consolidates the topological and semantic relationships

among nodes. It first performs intra-semantic aggregation to inte-

grate information from neighboring nodes based on various edge

types, followed by inter-semantic fusion, which fuses the above

1
https://anonymous.4open.science/r/TeSa-45FF

Table 2: Notations

Symbol Description

h𝑙
𝑖
(𝑡) Hidden embedding of node 𝑖 at layer 𝑙 and time 𝑡

h𝑙,𝑡𝑟
𝑖
(𝑡) Trajectory-evolved embedding of node 𝑖 at layer 𝑙

and time 𝑡

h𝑙
𝑖,𝑟
(𝑡) Intra-semantic aggregated embedding of node 𝑖 for

relation type 𝑟 at layer 𝑙 and time 𝑡

h𝑙
𝑖,𝑅
(𝑡) Semantic-fused embedding of node 𝑖 at layer 𝑙 and

time 𝑡 across all the edge types in set R

aggregated representations to create a cohesive view of the hetero-

geneous semantics. Ultimately, the final embedding for each layer

is generated by combining the trajectory-evolved node embedding

with the neighboring aggregated semantic representation. Besides,

TeSa does not introduce any global memory module, therefore

ensuring higher scalability compared to previous works [13, 19].

We evaluate TeSa and stat-of-the-art baselines over various

datasets. TeSa consistently outperforms the baselines; for example,

TeSa achieves AUC improvements of 4.2% and 6.2% in transductive

and inductive link prediction on the Yelp(C) dataset, respectively.

Furthermore, we conduct ablation experiments to validate the ef-

fectiveness of each component of our model.

In summary, our technical contributions are threefold:

• We propose TeSa, a framework for dynamic heterogeneous

graph representation learning, which takes a continuous-time

view and accurately captures the intertwined dynamics and het-

erogeneous semantics inherent in DHGs.

• TeSa can capture the dynamic changes of node behaviors by

employing temporal point process to encode trajectories. This

approach enables effective modeling of evolving semantics of

nodes, thereby alleviating challenges associated with dynamic

semantic changes in heterogeneous contexts.

• Our empirical evaluations demonstrate that TeSa significantly

outperforms the existing methods, highlighting its effectiveness

and robustness in various scenarios.

2 Preliminary

In this section, we introduce the notations and problem definition.

We first define a dynamic heterogeneous graph as a sequence of

events from a continuous-time perspective.

Definition 2.1 (Dynamic Heterogeneous Graph, DHG). A dynamic

graph G = (V, E,T ,A,R,X) is characterized by a set of nodesV ,

a set of edges E, a time domain T , a set of node types A, a set of

edge types R, and an input feature set X = {X𝑣,X𝑒 }, where X𝑣

and X𝑒 denote node and edge features, respectively. Besides, the

graph is associated with two type mapping functions: 𝜙 : V → A
and Φ : E → R. For each node 𝑣 ∈ V , x𝑣 ∈ R𝑑𝑣 denotes its feature
vector, where 𝑑𝑣 is related to the node type determined by 𝜙 (𝑣).
Each edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡) represents an event occurring at time 𝑡 ,

indicating an interaction between nodes 𝑣𝑖 and 𝑣 𝑗 . The edge feature

x𝑒 ∈ R𝑑𝑒 is defined analogously, with the dimension 𝑑𝑒 determined

by the edge type Φ(𝑒). When |A| + |R| > 2, G is classified as a

dynamic heterogeneous graph.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TESA: A Trajectory and Semantic-aware Dynamic Heterogeneous Graph Neural Network Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Notably, if |A| + |R| = 2, it is considered as a dynamic homoge-

neous graph. In this context, we define the problem as follows.

Definition 2.2 (Representation Learning on DHG). Given a dy-

namic heterogeneous graph G, representation learning on DHGs

aims to learn an embedding function h : V × T → R𝐷
that maps

each node 𝑣 ∈ V at any timestamp 𝑡 ∈ T to a 𝐷-dimensional

embedding vector h𝑣 (𝑡).

The learned time-aware node embeddings should effectively

encapsulate the evolving dynamics and heterogeneous semantics

inherent in G, thereby facilitating various downstream tasks such

as link prediction [12, 16], node classification [10, 16], and node

regression [3, 34]. Next, we define the node trajectory in DHGs that

we want to learn in this work.

Definition 2.3 (Node Trajectory). Given a dynamic heterogeneous

graphG, the trajectory of a node 𝑣 is a temporally-ordered sequence

of events in which the node 𝑣 participates, which is represented as:

T𝑣 = {(𝑒1, 𝑒2, . . . , 𝑒𝑛) | 𝑒𝑖 ∈ E𝑣}

where E𝑣 denotes the set of events associated with node 𝑣 , and 𝑛 =

|E𝑣 (𝑡) | is the total number of events in the trajectory. In dynamic

heterogeneous graph, each event 𝑒𝑖 is formalized as the tuple 𝑒𝑖 =

(𝑡𝑖 , 𝑘𝑖 , x𝑖), where 𝑡𝑖 denotes the timestamp, 𝑘𝑖 = Φ(𝑒𝑖) indicates the
event type, and x𝑖 represents the event feature.

This trajectory naturally reflects the evolving semantics and

behaviors of node 𝑣 over time. And we summarize the frequently

used symbols related to our model in Table 2.

3 Methodology

3.1 Overview

Our proposed model TeSa serves as a representation learning

framework for continuous-time dynamic heterogeneous graphs.

Due to the variety of dynamic heterogeneous graphs, it is essential

to convert raw node features into a unified feature space. Specifi-

cally, for a node 𝑣 with raw attributes x𝑣 , the transformed attribute

is defined as x′𝑣 = 𝑀𝜙 (𝑣) · x𝑣 , where𝑀𝜙 (𝑣) is a learned type-specific
transformation matrix. This process is similarly applied to raw edge

features. Each TeSa layer processes the node embeddings via two

fundamental phases, as depicted in Figure 2.

(1) Trajectory-based Evolution. This step constructs histor-

ical trajectory for each node, where each point in the trajectory

corresponds to an event involving the node. By utilizing the neural

temporal point process (NTPP), this component captures the com-

plex dependency and temporal evolution of events in the node’s

sequence. This approach effectively models how node behavior and

semantics change over time, leading to the trajectory-evolved em-

bedding h𝑙,𝑡𝑟𝑣 (𝑡). In Section 3.2, we will elaborate on how to model

trajectory-based evolution with NTPP.

(2) Semantic-aware Aggregation. This stage involves two key

processes: intra-semantic aggregation and inter-semantic fusion.

Intra-semantic aggregation focuses on gathering information from

neighboring nodes according to different edge types, allowing the

model to perceive specific semantic relationships. The output of

this process is then subjected to inter-semantic fusion, which fuses

the aggregated information to produce a comprehensive represen-

tation of the node’s contextual relationships, denoted as h𝑙
𝑣,𝑅
(𝑡). In

Section 3.3, we will introduce the details of semantic-aggregation.

Finally, the trajectory-evolved embedding h𝑙,𝑡𝑟𝑣 (𝑡) is combined

with the semantic-fused neighbor information h𝑙
𝑣,𝑅
(𝑡). This inte-

gration enhances the node’s representation by incorporating both

its historical dynamics and the semantic relationships derived from

its neighbors, resulting in the final node embeddings h𝑙𝑣 (𝑡) for
the current layer. By stacking multiple TeSa layers, our model

can effectively capture the intertwined evolving dynamics and

heterogeneous semantics within DHGs, yielding comprehensive

representations that facilitate accurate analysis and prediction.

3.2 Trajectory-based Evolution

The trajectory-based evolution module captures the trajectory of

each node, i.e., the historical interaction sequences, which is cru-

cial for accurately modeling the evolving behaviors and inherent

semantics of nodes over time.

Trajectory Construction. The trajectory of a node 𝑣 up to

time 𝑡 is constructed by recording the sequence of events, which is

represented as:

T𝑣 (𝑡) = {𝑒𝑖 | 𝑒𝑖 ∈ T𝑣, 𝑡𝑖 < 𝑡} (1)

where T𝑣 is the trajectory of node 𝑣 , as defined in Definition 2.3.

Each event 𝑒𝑖 is modeled as a tuple 𝑒𝑖 = (𝑡𝑖 , 𝑘𝑖 , c𝑖), where 𝑡𝑖 and
𝑘𝑖 represent the timestamp and event type as previously defined.

The difference lies in c𝑖 , which represents the contextual feature

vector of the event. We consider c𝑖 as the average embedding of

the nodes associated with event 𝑒𝑖 from the previous layer, which

allows the model to dynamically incorporate contextual informa-

tion from neighboring interactions. This approach reflects real-time

changes in node behavior, as it incorporates semantic information

from neighboring nodes, thereby better capturing the dynamics of

interactions compared to static event features.

Trajectory Sampling. To facilitate efficient batch processing,

we propose a type-aware temporal-biased sampling strategy to cap-

ture both semantic and temporal relevance. Specifically, given a

node’s trajectory T𝑣 (𝑡), we aim to sample a sub-trajectory
ˆT𝑣 (𝑡)

with a fixed length 𝑙 .

Step 1: Type-aware Division.We divide T𝑣 (𝑡) into subsets based

on event types:

T𝑣 (𝑡) =
⋃
𝑘

T𝑘
𝑣 (𝑡) (2)

where T𝑘
𝑣 (𝑡) represents the subset of events with type 𝑘 . For each

subset T𝑘
𝑣 (𝑡), we sample events proportionally to its length relative

to the total trajectory length |T𝑣 (𝑡) |, ensuring that the sampled tra-

jectory retains event-type diversity. The number of events sampled

from subset T𝑘
𝑣 (𝑡) is determined by:

𝑙𝑘 =

⌊
|T𝑘
𝑣 (𝑡) |
|T𝑣 (𝑡) |

× 𝑙
⌋

(3)

where |T𝑘
𝑣 (𝑡) | is the number of events of type 𝑘 , and 𝑙𝑘 represents

the number of events sampled from T𝑘
𝑣 (𝑡).

Step 2: Time-sensitive Sampling.Within each subset T𝑘
𝑣 (𝑡), the

sampling strategy considers the event timestamps, ensuring that

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Workflow of the 𝑙𝑡ℎ TeSa layer for user 𝑢4 at time 𝑡 . (a) For 𝑢4, its neighbors prior to time 𝑡 are sampled, resulting in

𝑢1, 𝑏2, and 𝑏3. (b) Trajectory-based evolution, which constructs trajectories for user 𝑢4 and its sampled neighbors. For instance,

in the rightmost dashed yellow line, Forward(b3) indicates that 𝑢4 forwards blog 𝑏3 at time 𝑡5. The trajectory is then processed

to obtain the trajectory-evolved embedding h(𝑙,𝑡𝑟)𝑢4
(𝑡), as shown in the orange block in the upper right corner. Each event passes

through an event feature extraction module, then the output is mapped to the node’s latent embedding space. (c) Semantic-

aware aggregation. Intra-semantic aggregation aggregates trajectory-evloved embeddings within each edge type (e.g., 𝑟1 and 𝑟2

representing forward and follow, respectively), followed by inter-semantic fusion that produces a holistic representation of

across different edge types. Finally, the above output is combined with the trajectory-evolved embedding of the target node to

generate the output embedding h𝑙𝑢4

(𝑡) of the 𝑙𝑡ℎ layer.

more recent events are prioritized[26]. The probability of sampling

an event 𝑒𝑖 is given by:

𝑃 (𝑒𝑖) =
exp(𝑡 − 𝑡𝑖)∑

𝑒 𝑗 ∈T𝑘𝑣 (𝑡) exp(𝑡 − 𝑡 𝑗)
(4)

However, this sampling strategy introduces additional efficiency

burdens due to its computational complexity. To mitigate this, we

simplify the process by selecting only the most recent event within

each type-specific subset, thereby retaining key temporal informa-

tion while significantly reducing computational complexity.

Trajectory Evolution. To effectively model the evolution of

node trajectories, it is essential for the encoder to satisfy two pri-

mary requirements: 1) capture the complex dependencies between

events within a trajectory, thereby reflecting the changes in the

node’s state; and 2) jointly model both event types and timestamps,

facilitating the encoding of dynamic node semantics.

Fortunately, the Neural Temporal Point Process (NTPP) serves as

an excellent framework for handling such marked event sequences.

Its core concept lies in leveraging neural networks to capture the

temporal and categorical dependencies within the event sequence.

Given an event sequence of length 𝑙 , denoted as {𝑒1, 𝑒2, . . . , 𝑒𝑙 },
the neural network takes this sequence as input and generates a

representation h𝑙 , which encapsulates the evolving information

from the events:

h𝑙 = 𝑓NN (𝑒1, 𝑒2, . . . , 𝑒𝑙) (5)

where 𝑓NN is a neural network model that captures the dependen-

cies and patterns inherent in the sequence. This output embedding

h𝑙 can then be used to predict future events.

In our research, the sequence of events is constructed from the

historical events of a node, thereby effectively reflecting the changes

in the node’s semantics. Motivated by this, we define 𝜆𝑣 (𝑡) as the
evolving trajectory embedding for node 𝑣 , which captures the dy-

namic changes in its semantics and behavior over time. To achieve

this, we propose a NTPP-based trajectory evolutionmodule, tra_evo,
which can be divided into the following two steps.

Step 1: Event Feature Extraction. Given a sampled trajectory

ˆT𝑣 (𝑡) consisting of 𝑙 events, we define the event feature vector

z𝑖 = [c𝑖 , 𝑡𝑖 , ˜𝑘𝑖], where c𝑖 represents the contextual feature, 𝑡𝑖 is the
encoded time embedding, and

˜𝑘𝑖 is a learned embedding of the

event type. The time embedding 𝑡𝑖 is encoded as follows:

𝑡𝑖,𝑑 =


sin

(
𝑡𝑖

10000
𝑑/𝐷

)
, if 𝑑 is even

cos

(
𝑡𝑖

10000
(𝑑−1)/𝐷

)
, if 𝑑 is odd

(6)

where 0 ≤ 𝑑 < 𝐷 is the time embedding dimension. This design

allows each learnable module to directly access the individual com-

ponents of the event, thereby enhancing the model’s flexibility in

capturing diverse event dynamics.

Step 2: Evolution Process. The implementation of NTPP offers a va-

riety of architectures to model the evolution of event sequences[31].

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TESA: A Trajectory and Semantic-aware Dynamic Heterogeneous Graph Neural Network Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

In this work, we adopt an attention-based architecture, and the ex-

ploration of additional architectures can be found in Section 4.3.

In this method, each event 𝑒𝑖 in the sequence is treated as a query,

key, and value. The query q𝑖 , key k𝑖 , and value v𝑖 for each event 𝑒𝑖
are calculated using learnable weight matrices:

q𝑖 = W𝑞z𝑖 , k𝑖 = W𝑘z𝑖 , v𝑖 = W𝑣z𝑖 (7)

where W𝑞 , W𝑘 , and W𝑣 are learnable weight matrices that project

the event feature vector z𝑖 into the query, key, and value spaces,

respectively. The trajectory embedding 𝜆𝑣 (𝑡𝑖) for event 𝑒𝑖 can be

obtained as follows:

𝜆𝑣 (𝑡𝑖) = z𝑖 + tanh ©­«
∑︁

𝑒 𝑗 ∈H(𝑒𝑖)

v𝑗𝛼 (𝑒 𝑗 , 𝑒𝑖)
1 +∑

𝑒 𝑗 ∈H(𝑒𝑖) 𝛼 (𝑒 𝑗 , 𝑒𝑖)
ª®¬ (8)

where H(𝑒𝑖) denotes the set of historical events preceding 𝑒𝑖 .

The unnormalized attention weight 𝛼 (𝑒 𝑗 , 𝑒𝑖) is calculated as:

𝛼 (𝑒 𝑗 , 𝑒𝑖) = exp

(
k⊤
𝑗
q𝑖
√
𝐷

)
(9)

Finally, the trajectory-evolved embedding h𝑙,tr𝑣 (𝑡) for node 𝑣 at
layer 𝑙 and time 𝑡 is given by the embedding at the last time point:

h𝑙,tr𝑣 (𝑡) = 𝜆𝑣 (𝑡𝑙) (10)

where 𝑙 is the length of our sampled trajectory. In this manner, the

trajectory-evolved embedding can effectively integrate information

from preceding events, thereby capturing the dynamic changes and

semantic features of the trajectory.

Comparisonwith ExistingMethods.Unlike temporal random

walk [5, 17] and metapath-based [4, 24] approaches, which rely

on complex traversal or costly metapath discovery, our method

directly models the node’s historical event sequence. This allows us

to capture semantic changes without complex neighbor sampling.

Furthermore, unlike memory-based methods [7, 19], which rely

on global memory modules that limit scalability, our approach

dynamically constructs the trajectory of each node, achieving both

efficiency and scalability.

3.3 Semantic-aware Aggregation

The semantic-aware aggregation module is intentionally designed

to effectively capture the intricate semantic structure inherent in

dynamic heterogeneous graphs. By integrating information from

neighboring nodes while considering the diverse types of relation-

ships that connect them, this module substantially enhances the

representational capabilities of individual nodes. The aggregation

process is organized into two principal stages: Intra-Semantic Ag-

gregation and Inter-Semantic Fusion.

Intra-Semantic Aggregation. This stage concentrates on ag-

gregating information from neighbors of the same type, allowing the
model to capture specific semantic relationships inherent to each

type of interaction. Specifically, for each node 𝑣 at layer 𝑙 and time

𝑡 , the neighboring information is aggregated from its neighbors

connected by a particular relation type 𝑟 . The process is defined as

follows:

h𝑙𝑣,𝑟 (𝑡) = AGG𝑟

({
h𝑙−1𝑗 (𝑡) | 𝑗 ∈ N

𝑟
𝑣 (𝑡)

})
(11)

where h𝑙𝑣,𝑟 (𝑡) represents the intra-semantic aggregated embedding

of node 𝑣 for relation type 𝑟 at layer 𝑙 and time 𝑡 ,N𝑟
𝑣 (𝑡) denotes the

set of neighbors of node 𝑣 that are connected through relation type

𝑟 before time 𝑡 , and AGG𝑟 is the aggregation function specific to

relation type 𝑟 . This step enables the model to focus on the specific

semantics related to each type of relationship, allowing for a more

precise representation of neighbor information under a singular

semantic context.

The aggregation function AGG𝑟 can be implemented using sim-

ple methods such as summation or mean pooling, which aggregate

the embeddings of neighboring nodes without accounting for their

varying significance. While these approaches are computationally

efficient, they often overlook the differing influences of neighbors

in dynamic contexts. To address this limitation, we employ a more

sophisticated strategy involving an attention mechanism. This al-

lows the model to selectively focus on the most relevant neighbors,

not necessarily those most recent in time, but those whose interac-

tions are most significant given the node’s current context. Such an

attention mechanism ensures that the aggregation process captures

both node states and dynamic patterns, leading to a richer and more

nuanced node representation.

Inter-semantic Fusion. The second stage integrates the results

from the intra-semantic aggregation stage and forms a comprehen-

sive neighboring information representation. Specifically, for each

node 𝑣 , the final embedding is computed as:

h𝑙𝑣,𝑅 (𝑡) = fusion
({
h𝑙𝑣,𝑟 (𝑡) | 𝑟 ∈ R

})
(12)

where h𝑙
𝑣,𝑅
(𝑡) represents the semantic-fused embedding of node

𝑣 at layer 𝑙 and time 𝑡 , with 𝑅 indicating that the fusion encom-

passes embeddings across all edge types in R. The fusion function

integrates all intra-semantic embeddings from the previous stage,

combining them to produce a comprehensive node representation.

We also employ an attention mechanism for the fusion process.

This approach computes attention weights for each relation type,

enabling the model to assess the relevance of each embedding con-

textually. By prioritizing significant embeddings, this method en-

hances the final node representation, ensuring that the integration

of diverse semantic aspects from the intra-semantic aggregation

stage reflects their importance in the current context.

Final Representation Generation. Finally, we combine the

trajectory-aware embedding with the semantic-fused embedding,

allowing us to leverage both temporal dynamics and semantic in-

formation. The combined node embedding is defined as:

h𝑙𝑣 (𝑡) = combine
(
h𝑙,tr𝑣 (𝑡), h𝑙,𝑅𝑣 (𝑡)

)
(13)

where h𝑙𝑣 (𝑡) represents the combined embedding of node 𝑣 at layer

𝑙 and time 𝑡 . The function combine integrates these two types of

embeddings to produce the final node representation, which can

be implemented through concatenation followed by a linear trans-

formation or other methods tailored to the needs of the task.

Comparison with Existing Methods. In contrast to existing

methods for discrete-time dynamic heterogeneous graphs, which

perform semantic aggregation across various snapshots without

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

accounting for the temporal significance of individual events, our

approach effectively incorporates time differences during the ag-

gregation process. This temporal attention mechanism enables the

model to selectively emphasize relevant events based on their his-

torical context, capturing fine-grained temporal dynamics that are

often overlooked in previous methods [3, 30, 34].

3.4 Model Training

Event Conditional Intensity. After obtaining the embeddings of

two nodes𝑢 and 𝑣 at layer 𝐿 and time 𝑡 , denoted as h𝐿𝑢 (𝑡) and h𝐿𝑣 (𝑡),
we model the conditional intensity 𝜆𝑢,𝑣 (𝑡) for an event between

these nodes as:

𝜆𝑢,𝑣 (𝑡) = 𝜎

(
FCL𝑟 ((h𝐿𝑢 (𝑡) − h𝐿𝑣 (𝑡))2)

)
(14)

where FCL𝑟 represents the fully connected layer specific to the

edge type 𝑟 . The input to FCL𝑟 is the element-wise square of the

difference between h𝐿𝑢 (𝑡) and h𝐿𝑣 (𝑡). This differential representation
serves as a strong predictor for the occurrence of events between

the two nodes. A sigmoid activation function is applied to ensure a

positive intensity value.

Loss Function. For any event (𝑢, 𝑣, 𝑡) that occurs in the graph,

we expect a higher conditional intensity 𝜆𝑢,𝑣 (𝑡), while for non-

occurring events, we expect lower values of 𝜆𝑢,𝑣 (𝑡). Thus, the loss
function based on negative log-likelihood is formulated as:

𝐿𝑒 (𝑢, 𝑣, 𝑡) = − log(𝜆𝑢,𝑣 (𝑡)) − log(1 − 𝜆𝑢,𝑘 (𝑡)), (15)

where 𝑘 is a negative sample drawn such that the edge (𝑢, 𝑘, 𝑡)
shares the same type as the positive edge (𝑢, 𝑣, 𝑡). By maintaining

the same edge type for both positive and negative samples, the

model is compelled to rely more on the node embeddings them-

selves, thereby enhancing its capability to learn meaningful repre-

sentations.

Optimization. The overall loss function is defined by consid-

ering the set of training events I𝑡𝑟 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 ≤ 𝑡𝑡𝑟 },
encompassing all events up to time 𝑡𝑡𝑟 , as follows:

argmin

Θ

∑︁
(𝑢,𝑣,𝑡) ∈I𝑡𝑟

𝐿𝑒 (𝑢, 𝑣, 𝑡) + 𝜂∥ ˜𝑘 ∥2 (16)

where 𝜂 > 0 is a hyperparameter controlling the regularization

on the learned embedding
˜𝑘 of the event type. The regularization

term assists in preventing overfitting by constraining the event-

type embeddings. For a complete overview of the model training

process, please refer to Section D.

4 Experimental Evaluation

4.1 Experiment Settings

Datasets and Baselines. The datasets used in our experiments are

summarized in Table 3. We compare our model against seven base-

line methods. They can be divided into three categories: (1) Static

graph neural networks: GAT [23], HGT [8]; (2) Dynamic homoge-

neous graph neural networks: TGN [19], TGAT [1], TREND [28]; (3)

Dynamic heterogeneous graph neural networks: DyHATR [30], HT-

GNN [3]. For more details about the datasets and baselines, please

refer to the Appendix A and B.

Tasks. We adopt temporal link prediction as our main task,

aiming to predict future links based on historical data. Given a

Table 3: Statistics of the experiment datasets, D indicates that

a dataset is discrete time while C means continuous time.

Datasets Nodes Relations

Aminer (D)

#Author (A): 23,035

#Paper (P): 18,460

#Venue (V): 22

#Publish (P-V): 18,460

#Write (A-P): 52,535

#Cooperate (A-A): 71,680

Yelp (D)

#User (U): 55,702

#Item (I): 12,524

#Review (U-I): 87,846

#Tip (U-I): 35,508

Yelp (C)

#User (U): 1,987,897

#Business (B): 150,346

#Review (U-B): 6,990,247

#Tip (U-B): 908,915

dynamic heterogeneous graph, we chronologically split the events

into training, validation, and testing sets with a ratio of 75%-15%-

15%. Specifically, the training set is defined as I𝑡𝑟 = {(𝑢, 𝑣, 𝑡) ∈ I :

𝑡 ≤ 𝑡 tr}, which consists of all events up to time 𝑡 tr; the validation

set is denoted as I𝑣𝑎𝑙 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 tr < 𝑡 ≤ 𝑡val}, including
events that occur between 𝑡 tr and 𝑡val; and the testing set is defined

as I𝑡𝑒𝑠𝑡 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 > 𝑡val}, comprising the remaining

events occurring after 𝑡val. In the inductive setting, we mask 10%

of the nodes as unseen during training, removing their associated

edges from the training set. Following [9], we define two inductive

scenarios: the new-old setting predicts edges between a seen node

and an unseen node, while the new-new setting focuses on edges

between two unseen nodes. This allows us to comprehensively

assess the model’s performance across different link prediction

scenarios. We evaluate the model’s performance using the Area

Under the Curve (AUC) and Average Precision (AP) metrics.

Hyper-parameters. The dimension of hidden embeddings is

set to 172 for the Aminer(D) dataset and 32 for both the Yelp(D) and

Yelp(C) dataset. The regularization weight 𝜂 in the loss function is

selected as 0.0001. For optimization, we employ the Adam optimizer

with a learning rate of 0.0001.

4.2 Main Results

In Table 4, we compare the performance of TeSawith the baselines

on the temporal link prediction task. In general, our approach

demonstrates superior performance, particularly in the inductive

new-new setting. Specifically, our model achieves AUC values of

0.8155 on Aminer(D), 0.7612 on Yelp(D), and 0.7908 on Yelp(C) in

this setting, surpassing the best baseline model by 9.44%, 5.67%,
and 8.96%, respectively. These enhancements can be attributed to

our trajectory evolution module, which enables newly introduced

nodes to more effectively capture long-term semantic information

from their surroundings.

From the perspective of dynamics, we observe several key find-

ings. First, dynamic models consistently outperform static models

(GAT andHGT). This suggests that leveraging temporal information

allows dynamic models to capture the evolving behaviors of nodes,

while static models cannot. Second, continuous-time dynamic mod-

els surpass discrete-time approaches. We apply a 15-day slicing

granularity to both DyHART and HTGNN on the Yelp(C) dataset,

and their performance remains poor across various settings. Even

on the discrete datasets Aminer(D) and Yelp(D) , their performance

is suboptimal in the transductive setting, indicating that discrete

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TESA: A Trajectory and Semantic-aware Dynamic Heterogeneous Graph Neural Network Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Link prediction accuracy for transductive and inductive settings. We use bold font and underline to mark the best and

runner-up methods, respectively. Symbol ‘—’ means that a model cannot run due to the out-of-memory (OOM) error. Imp. is

the accuracy improvement of TeSa over the best baseline.

Setting Model

Aminer(D) Yelp(D) Yelp(C)

AUC AP AUC AP AUC AP

T
r
a
n
s
d
u
c
t
i
v
e

GAT 0.5541 ± 0.0001 0.5254 ± 0.0001 0.6880 ± 0.0001 0.6941 ± 0.0001 0.6470 ± 0.0017 0.6254 ± 0.0029

HGT 0.6600 ± 0.0057 0.6917 ± 0.0021 0.6847 ± 0.0004 0.6031 ± 0.0007 0.7069 ± 0.0011 0.6985 ± 0.0007

TGAT 0.8453 ± 0.0011 0.8216 ± 0.0027 0.7987 ± 0.0022 0.7955 ± 0.0018 0.7721 ± 0.0036 0.7761 ± 0.0058

TREND 0.8420 ± 0.0035 0.8174 ± 0.0037 0.7978 ± 0.0023 0.7942 ± 0.0022 0.7617 ± 0.0103 0.7654 ± 0.0142

TGN 0.8197 ± 0.0047 0.7922 ± 0.0052 0.7908 ± 0.0046 0.7709 ± 0.0052 — —

DyHART 0.7103 ± 0.0031 0.6532 ± 0.0023 0.7603 ± 0.0023 0.7528 ± 0.0026 0.5744 ± 0.0308 0.5782 ± 0.0420

HTGNN 0.7259 ± 0.0043 0.6635 ± 0.0024 0.7749 ± 0.0020 0.7649 ± 0.0017 0.5901 ± 0.0798 0.6002 ± 0.0825

TeSa 0.9278 ± 0.0097 0.9144 ± 0.0113 0.8276 ± 0.0023 0.8203 ± 0.0018 0.8141 ± 0.0052 0.8016 ± 0.0064

Imp. 8.25% 9.28% 2.89% 2.48% 4.20% 2.55%

I
n
d
u
c
t
i
v
e

N
e
w
-
O
l
d

GAT 0.5641 ± 0.0001 0.5488 ± 0.0001 0.6239 ± 0.0001 0.6128 ± 0.0001 0.6853 ± 0.0027 0.6544 ± 0.0041

HGT 0.6007 ± 0.0020 0.5685 ± 0.0018 0.6575 ± 0.0015 0.6415 ± 0.0021 0.6986 ± 0.0032 0.6776 ± 0.0022

TGAT 0.6533 ± 0.0112 0.6746 ± 0.0105 0.6872 ± 0.0014 0.6989 ± 0.0010 0.7443 ± 0.0083 0.7502 ± 0.0072

TREDN 0.6287 ± 0.0166 0.6544 ± 0.0191 0.6875 ± 0.0032 0.6990 ± 0.0026 0.7402 ± 0.0103 0.7409 ± 0.0114

TGN 0.6309 ± 0.0022 0.6732 ± 0.0034 0.6782 ± 0.0023 0.6741 ± 0.0037 — —

DyHATR 0.7213 ± 0.0043 0.6728 ± 0.0018 0.6172 ± 0.0037 0.6031 ± 0.0029 0.6233 ± 0.0125 0.6314 ± 0.0326

HTGNN 0.7479 ± 0.0052 0.6899 ± 0.0047 0.6377 ± 0.0020 0.6257 ± 0.0017 0.6580 ± 0.1470 0.6570 ± 0.1424

TeSa 0.7985 ± 0.0234 0.7861 ± 0.0173 0.7065 ± 0.0013 0.7123 ± 0.0019 0.7781 ± 0.0025 0.7807 ± 0.0031

Imp. 5.06% 9.62% 1.90% 1.33% 3.38% 3.05%

N
e
w
-
N
e
w

GAT 0.5234 ± 0.0002 0.5486 ± 0.0001 0.5762 ± 0.0001 0.5892 ± 0.0001 0.4756 ± 0.0001 0.4996 ± 0.0001

HGT 0.7211 ± 0.0113 0.7661 ± 0.0035 0.5373 ± 0.0115 0.4565 ± 0.0027 0.6859 ± 0.0000 0.7058 ± 0.0001

TGAT 0.6154 ± 0.0066 0.6235 ± 0.0061 0.7009 ± 0.0056 0.7118 ± 0.0050 0.7012 ± 0.0083 0.7141 ± 0.0104

TREND 0.5931 ± 0.0112 0.6021 ± 0.0108 0.7045 ± 0.0055 0.7143 ± 0.0038 0.6937 ± 0.0027 0.7133 ± 0.0042

TGN 0.5702 ± 0.0165 0.5563 ± 0.0209 0.7036 ± 0.0022 0.6978 ± 0.0016 — —

DyHATR 0.6831 ± 0.0025 0.6642 ± 0.0037 0.6013 ± 0.0020 0.5542 ± 0.0023 0.4873 ± 0.0153 0.5133 ± 0.0382

HTGNN 0.7038 ± 0.0027 0.6856 ± 0.0031 0.6119 ± 0.0027 0.5493 ± 0.0013 0.4468 ± 0.0862 0.4649 ± 0.0404

TeSa 0.8155 ± 0.0153 0.8025 ± 0.0114 0.7612 ± 0.0025 0.7660 ± 0.0031 0.7908 ± 0.0031 0.8015 ± 0.0037

Imp. 9.44% 3.64% 5.67% 5.17% 8.96% 8.74%

models struggle to capture fine-grained temporal patterns, which

are crucial for accurately modeling node evolution. Third, among

the three dynamic graph models (TGAT, TGN, and TREND), TGN

shows the worst performance. This is due to the need to batch all

edges within a snapshot to prevent repeated memory updates at

the same timestamp, which limits its ability to capture long-term

semantic changes. As a result, TGN is less effective at modeling

intricate temporal dynamics compared to other continuous-time

models.

From the perspective of heterogeneity, it is observed that the

introduce of diverse semantic information helps to enhance the

model’s ability to capture the evolution patterns of graphs. Regard-

ing static graph models, HGT tends to outperform GAT, showcas-

ing the strengths of heterogeneous models in capturing complex

relationships. In addition, in the realm of discrete-time models,

both DyHART and HTGNN exhibit relatively well performance on

the Aminer(D) dataset in the inductive setting and surpass other

baseline models. This demonstrates the effectiveness of these ap-

proaches in leveraging heterogeneous semantics, allowing for a

richer representation of the underlying graph structure.

4.3 Micro Experiments

Ablation Study. Taking the Aminer(D) and Yelp(C) datasets as

examples, Table 5 shows the results of our ablation study w.r.t. AUC.

Specifically, Ablation 1 removes the trajectory evolution module,

Ablation 2 excludes the semantic-aware aggregation module by

ignoring edge types and performing simple neighbor message pass-

ing, and Ablation 3 replaces the trajectory evolution module with

an RNN-based time point process.

The results indicate that removing the trajectory evolution module
(Ablation 1) leads to a performance drop, especially in the new-new

prediction task. This highlights the importance of capturing the

dynamic semantic changes in node behavior through trajectory

modeling, as it helps in understanding the evolution of node interac-

tions over time. Similarly, excluding the semantic-aware aggregation
module (Ablation 2) results in further degradation, underscoring the

necessity of considering different relation types in heterogeneous

graphs to capture distinct semantic relationships. Finally, replacing
the attention-based trajectory evolution with an RNN (Ablation 3)
lowers the model performance, indicating that the attention mech-

anism more effectively captures the temporal dependencies and

long-range semantic patterns compared to RNN.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: Ablation study on Aminer(D) and Yelp(C) datasets.

No. Conf. Aminer (D) Yelp (C)

Trans New-New Trans New-New

1 w/o tra_evo 0.9165 0.7490 0.7763 0.7544

2 w/o sem_agg 0.8743 0.7159 0.7729 0.7453

3 TeSa(RNN) 0.9133 0.7923 0.7803 0.7794

TeSa(ATTN) 0.9278 0.8155 0.8141 0.7908

TGAT TREND TGN TESA0

2

4

6

Ti
m

e
(H

ou
rs

)

(a) Training time.

TGAT TREND TGN TESA0

5

10

15

20

Ti
m

e
(m

s)

(b) Inference time.

1 3 5 7 9 11 13 15
Number of Neighbors

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

AUC - layer1
AUC - layer2
AP - layer1
AP - layer2

(c) Number of neighbors and layers.

Figure 3: (a) The training time of each epoch for the

continuous-time models on Yelp(C); (b) The inference time

for testing 1,000 edges. (c) Accuracy of TeSa when using dif-

ferent number of layers and neighbors;

Effect of Neighbor Number. In Figure 3c, we show the effect

of the number of sampled neighbors on the AP and AUC metrics on

Aminer(D) . We observe that the model’s performance converges

at a neighbor size of five for one-layer models (dashed line) and at

seven for two-layer models (dash-dotted line). Notably, increasing

the number of layers leads to a substantial enhancement in overall

performance.

Model Efficiency. In Figure 3a and 3b, we present the training

and inference time of TeSa alongside those of continuous-time

baselines (TGAT, TREND and TGN) on Yelp(C). The results show

that the training time of TeSa is close to TGAT and TREND, but

significantly lower than TGN’s. Unlike TGN, our model does not

rely on a global memory module to store and track node semantic

changes, and therefore is more efficient. Regarding inference time,

TeSa requires 20.25 ms per 1,000 edges, which is approximately

twice the time of TGAT’s 9.29 ms. This additional time can be at-

tributed to the necessity of trajectory construction and evolution,

which is a trade-off for enhanced semantic representation. And fur-

ther optimizing the efficiency of these evolution methods presents

a valuable opportunity for future research.

5 Related Work

Dynamic Heterogeneous Graph Neural Networks. Dynamic

Graph Neural Networks (DGNNs) have shown remarkable success

in capturing the dynamic nature of temporal graphs. To extend

these success to dynamic heterogeneous graphs(DHGs), a range of

approaches have been proposed to capture the evolving dynamics

and heterogeneous semantics within these graphs. Early works

abstract DHGs as a sequence of heterogeneous snapshots. One

category[8] encodes temporal features into edges and conducts

heterogeneous message passing across the entire graph, which can

lead to information leakage. Another category[3, 25, 30] focuses on

heterogeneous message passing at each snapshot while utilizing

sequence models to capture temporal variations. However, this

discrete modeling has limitations in capturing continuous temporal

dynamics and fine-grained temporal dependencies.

Recently, HPGE[10] has proposed a continuous modeling ap-

proach that represents DHGs as sequences of events. HPGE[10]

effectively incorporates the Hawkes process into graph embedding

to capture the excitation of various historical events on the cur-

rent type-wise events. However, the Hawkes process is limited to

modeling excitation effects, which constrain the ability to repre-

sent the complex and diverse interactions that might occur in such

networks. In comparison, our method provides a continuous model-

ing framework that captures the entangled evolving dynamics and

heterogeneous semantics in DHGs. By exploiting neural temporal

point processes, our model can capture a wide range of complex

interactions, without being confined to simply excitation effects.

Temporal Point Processes. Temporal point processes (TPPs)

offer an effective mathematical framework for modeling event se-

quences in continuous time domains, which enables the representa-

tion of dynamic patterns inherent in sequences of events. Conven-

tional TPPs, such as Poisson process[18] and Hawkes process[6],

are constrained by their fixed mathematical forms, which signifi-

cantly limit their expressive power. To overcome these limitations,

researchers have merged the powerful representational capabili-

ties of neural networks with TPPs, leading to the development of

neural TPPs. Diverse RNN-based TPPs [2, 14, 29] leverage continu-

ous state spaces and flexible transition functions, achieving better

performance on many real-world datasets. Lately, a number of

attention-based models have been suggested to capture sequences’

long-range relationships, further improving the prediction perfor-

mance. These attention-based neural TPPs [15, 33, 35] leverage the

self-attention mechanism to effectively model dependencies across

extended time spans, addressing the weaknesses of RNN-based

approaches in handling such dependencies.

6 Conclusion

In this work, we address the problem of modeling continuous-time

dynamic heterogeneous graphs, which capture evolving dynamics

and heterogeneous semantics over time. We propose TeSa, a novel

approach that leverages neural temporal point processes for cap-

turing semantic changes entailed in node trajectory. This method

excels in capturing intricate temporal dependencies and diverse

node interactions, offering greater flexibility and expressiveness.

Experimental results validate the effectiveness of our approach,

highlighting its potential for various applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

TESA: A Trajectory and Semantic-aware Dynamic Heterogeneous Graph Neural Network Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Xu Da, Ruan Chuanwei, Korpeoglu Evren, Kumar Sushant, and Achan Kannan.

2020. Inductive representation learning on temporal graphs. In International
Conference on Learning Representations (ICLR).

[2] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-

Rodriguez, and Le Song. 2016. Recurrent marked temporal point processes:

Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining. 1555–1564.

[3] Yujie Fan, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. 2022. Heterogeneous

temporal graph neural network. In Proceedings of the 2022 SIAM International
Conference on Data Mining (SDM). SIAM, 657–665.

[4] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metap-

ath aggregated graph neural network for heterogeneous graph embedding. In

Proceedings of the web conference 2020. 2331–2341.
[5] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[6] Alan G Hawkes. 1971. Spectra of some self-exciting and mutually exciting point

processes. Biometrika 58, 1 (1971), 83–90.
[7] Ying He, Gongqing Wu, Desheng Cai, and Xuegang Hu. 2023. Meta-path based

graph contrastive learning for micro-video recommendation. Expert Systems
with Applications 222 (2023), 119713.

[8] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

graph transformer. In Proceedings of the web conference 2020. 2704–2710.
[9] Qiang Huang, Xin Wang, Susie Xi Rao, Zhichao Han, Zitao Zhang, Yongjun He,

Quanqing Xu, Yang Zhao, Zhigao Zheng, and Jiawei Jiang. 2024. Benchtemp: A

general benchmark for evaluating temporal graph neural networks. In 2024 IEEE
40th International Conference on Data Engineering (ICDE). IEEE, 4044–4057.

[10] Yugang Ji, Tianrui Jia, Yuan Fang, and Chuan Shi. 2021. Dynamic heterogeneous

graph embedding via heterogeneous hawkes process. In Machine Learning and
Knowledge Discovery in Databases. Research Track: European Conference, ECML
PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part I 21. Springer,
388–403.

[11] Renhe Jiang, ZhaonanWang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa

Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. 2023.

Spatio-temporal meta-graph learning for traffic forecasting. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 37. 8078–8086.

[12] Wenjuan Luo, Han Zhang, Xiaodi Yang, Lin Bo, Xiaoqing Yang, Zang Li, Xiaohu

Qie, and Jieping Ye. 2020. Dynamic heterogeneous graph neural network for

real-time event prediction. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining. 3213–3223.

[13] Yuhong Luo and Pan Li. 2022. Neighborhood-aware scalable temporal network

representation learning. In Learning on Graphs Conference. PMLR, 1–1.

[14] Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. 2020. Neural Dat-

alog through time: Informed temporal modeling via logical specification. In

International Conference on Machine Learning. PMLR, 6808–6819.

[15] HongyuanMei, Chenghao Yang, and Jason Eisner. 2021. Transformer embeddings

of irregularly spaced events and their participants. In International conference on
learning representations.

[16] Hoang Nguyen, Radin Hamidi Rad, Fattane Zarrinkalam, and Ebrahim Bagheri.

2023. DyHNet: Learning dynamic heterogeneous network representations. In-
formation Sciences 646 (2023), 119371.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[18] Siméon-Denis Poisson. 1837. Recherches sur la probabilité des jugements en
matière criminelle et en matière civile: précédées des règles générales du calcul des
probabilités. Bachelier.

[19] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, and Michael Bronstein. 2020. Temporal Graph Networks for Deep Learn-

ing on Dynamic Graphs. In ICML 2020 Workshop on Graph Representation Learn-
ing.

[20] Guojiang Shen, Wenfeng Zhou, Wenyi Zhang, Nali Liu, Zhi Liu, and Xiangjie

Kong. 2023. Bidirectional spatial–temporal traffic data imputation via graph

attention recurrent neural network. Neurocomputing 531 (2023), 151–162.

[21] Chuan Shi, Xiao Wang, and S Yu Philip. 2022. Heterogeneous graph representation
learning and applications. Springer.

[22] Georg Simmel. 1950. The Sociology of Georg Simmel. Free Press.
[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International
Conference on Learning Representations (ICLR).

[24] XiaoWang, Houye Ji, Chuan Shi, BaiWang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[25] Xiao Wang, Yuanfu Lu, Chuan Shi, Ruijia Wang, Peng Cui, and Shuai Mou. 2020.

Dynamic heterogeneous information network embedding with meta-path based

proximity. IEEE Transactions on Knowledge and Data Engineering 34, 3 (2020),

1117–1132.

[26] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.

Inductive Representation Learning in Temporal Networks via Causal Anonymous

Walks. In International Conference on Learning Representations (ICLR).
[27] Qianlong Wen, Zhongyu Ouyang, Jianfei Zhang, Yiyue Qian, Yanfang Ye, and

Chuxu Zhang. 2022. Disentangled dynamic heterogeneous graph learning for

opioid overdose prediction. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 2009–2019.

[28] Zhihao Wen and Yuan Fang. 2022. Trend: Temporal event and node dynamics

for graph representation learning. In Proceedings of the ACM Web Conference
2022. 1159–1169.

[29] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. 2017.

Modeling the intensity function of point process via recurrent neural networks.

In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.
[30] Hansheng Xue, Luwei Yang,Wen Jiang, YiWei, Yi Hu, and Yu Lin. 2021. Modeling

dynamic heterogeneous network for link prediction using hierarchical attention

with temporal rnn. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020,
Proceedings, Part I. Springer, 282–298.

[31] Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou,

Caigao Jiang, Chen Pan, James Y. Zhang, Qingsong Wen, Jun Zhou, and

Hongyuan Mei. 2024. EasyTPP: Towards Open Benchmarking Temporal Point

Processes. In International Conference on Learning Representations (ICLR).
[32] Chunyuan Yuan, Jiacheng Li, Wei Zhou, Yijun Lu, Xiaodan Zhang, and Songlin

Hu. 2021. DyHGCN: A dynamic heterogeneous graph convolutional network to

learn users’ dynamic preferences for information diffusion prediction. InMachine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III. Springer,
347–363.

[33] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. 2020. Self-attentive

Hawkes process. In International conference on machine learning. PMLR, 11183–

11193.

[34] Zeyang Zhang, Ziwei Zhang, Xin Wang, Yijian Qin, Zhou Qin, and Wenwu Zhu.

2023. Dynamic Heterogeneous Graph Attention Neural Architecture Search.

37th AAAI Conference on Artificial Intelligence (2023).
[35] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. 2020.

Transformer hawkes process. In International Conference on Learning Represen-
tations (ICLR).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Datasets

Aminer(D) [10] is an academic citation dataset for papers published

from 1990 to 2006. It contains three types of nodes (paper, author,

and venue) and three types of relations: paper-publish-venue, author-
write-paper, and author-cooperate-author. We separate time slices

using the publication year, and this dataset is discrete in nature.

Yelp(D) is a business review dataset that includes user reviews

and tips for businesses. Following [10], we focus on interactions

within three categories of businesses: "American (New) Food," "Fast

Food," and "Sushi," covering the period from January 2012 to De-

cember 2012. We separate time slices by month, and the graph

includes the following types of relations: user-review-business and
user-tip-business.

Yelp(C)
2
records activities on the platform from February 16,

2005, to January 19, 2022. We also construct two types of relations

in the graph: user-review-business and user-tip-business. The tem-

poral granularity is set at the minute level, capturing fine-grained

temporal dynamics. This dataset is continuous in nature.

B Baselines

We evaluate our proposed model against seven baselines, which

can be categorized based on the type of graphs they target: static

homogeneous, static heterogeneous, dynamic homogeneous, and

dynamic heterogeneous graphs. Below are brief descriptions of

each baseline.

GAT [23] is a static homogeneous GNN that aggregates informa-

tion from neighbors using an attention mechanism. It is designed

for static graphs without considering node or edge types, and it

serves as a representative baseline for static homogeneous methods.

HGT [8] is a static heterogeneous GNN that adopts mutual

attention and parametrizes the attention mechanism differently for

each node and relation type. It captures the structural heterogeneity

of the graph but does not model temporal dynamics.

TGN [19] establishes a memory module to store node repre-

sentations and uses an RNN to update the memory over time. It

is designed for dynamic homogeneous graphs and operates in a

continuous-time setting, focusing on temporal interactions without

considering heterogeneous structures.

TGAT [1] utilizes self-attention to aggregate temporal-topological

structures and learns the temporal evolution of node embeddings

through continuous-time encoding. It targets dynamic homoge-

neous graphs and focuses on capturing the temporal evolution of

nodes.

TREND [28] is based on a Hawkes process, which models the

exciting effects between events. This dynamic homogeneous GNN

captures temporal dependencies between events using the Hawkes

process, but it does not handle heterogeneous graph structures.

DyHATR [30] is a dynamic heterogeneous GNN that employs

hierarchical attention and temporal self-attention to capture both

heterogeneous and temporal information in discrete-time dynamic

graphs.

HTGNN [3] is a dynamic heterogeneous GNN that iteratively

uses hierarchical attention and temporal self-attention to model

2
https://www.yelp.com/dataset

Figure 4: Performance variation with trajectory length on a

dataset sampled from the first 1 million edges of Yelp(C).

Table 6: Model performance with and without the regular-

ization term on the Aminer(D) and Yelp(D) datasets.

Dataset Setting w. Reg. w.o. Reg.

Aminer(D)

Transductive 0.9278 0.9130

New-Old 0.7985 0.7242

New-New 0.8155 0.7662

Yelp(D)

Transductive 0.8276 0.8124

New-Old 0.7065 0.7028

New-New 0.7612 0.7186

complex dynamic interactions. It captures both dynamic and het-

erogeneous information in a discrete-time setting, making it well-

suited for handling graphs with various node and relation types

evolving over time.

C Additional experimental results

Length of Trajectory. As shown in Figure 4, the model’s per-

formance exhibits an initial increase followed by a decline as the

trajectory length extends. This trend can be explained by the fact

that longer trajectories allow the model to access more historical

information, which helps capture the dynamic changes of nodes

more effectively, thereby improving predictive accuracy. However,

when the trajectory length becomes excessively long, it may encom-

pass older events that are less relevant to the current prediction,

potentially introducing noise and diminishing the model’s decision-

making capability. This observation suggests a trade-off in selecting

the trajectory length, where an optimal length balances the cover-

age of useful historical information with the avoidance of irrelevant

or noisy data.

Effect of Regularization Term. To assess the impact of the

regularization term on the learned embedding of event type, we

present the model performance w.r.t. AUC on the Aminer(D) and

Yelp(D) datasets in Table 6. The results illustrate that incorporating

the regularization improves the model’s performance to a certain

extent. For example, in the new-new setting of the Yelp(D) dataset,

the AUC increases significantly from 0.7186 to 0.7612. The im-

provement in performance suggests that the regularization aids in

10

https://www.yelp.com/dataset

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

TESA: A Trajectory and Semantic-aware Dynamic Heterogeneous Graph Neural Network Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

generating more meaningful embeddings, which in turn enhances

the model’s ability to generalize across different scenarios.

D Pseudocode

The overall training process of our model TeSais illustrated in the

algorithm shown below.

Algorithm 1: Overall Training Process of TeSa

Input: Dynamic heterogeneous graph

G = (V, E,T ,A,R,X), training event set I𝑡𝑟 ,
batch size 𝐵

Output: Learned parameters Θ, including node embeddings

and type-specific transformations

Initialization: Initialize node embeddings {h𝑣}𝑣∈V and

type-specific transformation matrices {𝑀𝜙 (𝑣) }
while not converged do

for each batch of events B ⊂ I𝑡𝑟 of size 𝐵 do

for each event (𝑢, 𝑣, 𝑡) ∈ B do

x′𝑢 ← 𝑀𝜙 (𝑢) · x𝑢 , x′𝑣 ← 𝑀𝜙 (𝑣) · x𝑣
x′(𝑢,𝑣) ← 𝑀𝜙 ((𝑢,𝑣)) · x(𝑢,𝑣)
T𝑢 (𝑡) ←
construct_trajectory(𝑢, 𝑡, event_history[𝑢])
T𝑣 (𝑡) ←
construct_trajectory(𝑣, 𝑡, event_history[𝑣])
h𝑙,𝑡𝑟𝑢 (𝑡) ← trajectory_evolution(T𝑢 (𝑡))
h𝑙,𝑡𝑟𝑣 (𝑡) ← trajectory_evolution(T𝑣 (𝑡))
for each neighbor𝑤 ∈ N (𝑢) ∪ N (𝑣) do
T𝑤 (𝑡) ←
construct_trajectory(𝑤, 𝑡, event_history[𝑤])
h𝑙,𝑡𝑟𝑤 (𝑡) ← trajectory_evolution(T𝑤 (𝑡))

h𝑙
𝑢,𝑅
(𝑡) ←

semantic_aggregation(𝑢, {h𝑙,𝑡𝑟𝑤 (𝑡) | 𝑤 ∈
N (𝑢)}, 𝑡)
h𝑙
𝑣,𝑅
(𝑡) ←

semantic_aggregation(𝑣, {h𝑙,𝑡𝑟𝑤 (𝑡) | 𝑤 ∈
N (𝑣)}, 𝑡)
h𝑙𝑢 (𝑡) ← combine(h𝑙,𝑡𝑟𝑢 (𝑡), h𝑙𝑢,𝑅 (𝑡))
h𝑙𝑣 (𝑡) ← combine(h𝑙,𝑡𝑟𝑣 (𝑡), h𝑙𝑣,𝑅 (𝑡))
node_features[𝑢] ← h𝑙𝑢 (𝑡)
node_features[𝑣] ← h𝑙𝑣 (𝑡)
event_history[𝑢] ←
event_history[𝑢] ∪ {(𝑡,Φ((𝑢, 𝑣)), h𝑙𝑢 (𝑡))}
event_history[𝑣] ←
event_history[𝑣] ∪ {(𝑡,Φ((𝑢, 𝑣)), h𝑙𝑣 (𝑡))}

𝜆𝑢,𝑣 (𝑡) ← FCL𝑟 ((h𝐿𝑢 (𝑡) − h𝐿𝑣 (𝑡))2)
𝐿𝑒 ← − log(𝜆𝑢,𝑣 (𝑡)) − log(1 − 𝜆𝑢,𝑘 (𝑡)), where 𝑘
is a negative sample

Θ← Θ − 𝜂∇Θ
(∑
(𝑢,𝑣,𝑡) ∈B 𝐿𝑒 + 𝜂1∥ ˜𝑘 ∥2

)
return Θ

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

11

	Abstract
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 Overview
	3.2 Trajectory-based Evolution
	3.3 Semantic-aware Aggregation
	3.4 Model Training

	4 Experimental Evaluation
	4.1 Experiment Settings
	4.2 Main Results
	4.3 Micro Experiments

	5 Related Work
	6 Conclusion
	References
	A Datasets
	B Baselines
	C Additional experimental results
	D Pseudocode

