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TESA: A Trajectory and Semantic-aware
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Abstract

Dynamic graph neural networks (DGNNs) are designed to capture

the dynamic evolution of graph node interactions. However, ex-

isting DGNNs mainly consider homogeneous graphs, neglecting

the rich heterogeneity in node and edge types, which is preva-

lent for real-world graphs and essential for modeling complex dy-

namic interactions. In this work, we propose the TrajEctory and

Semantic-Aware dynamic heterogeneous graph neural network

(TeSa), which integrates trajectory-based evolution and semantic-
aware aggregation to capture both the evolving dynamics and het-

erogeneous semantics entailed in continuous-time dynamic het-

erogeneous graphs. In particular, trajectory-based evolution treats

the interactions received by each node (called node trajectory) as

a sequence and employs a temporal point process to learn the dy-

namic evolution in these interactions. Semantic-aware aggregation

separates edges of different types when aggregating messages for

each node from its neighbors. Edges of the same type are processed

at first (i.e., intra-semantic aggregation), and then edges of different

types are handled (i.e., inter-semantic fusion), to offer a comprehen-

sive view of the heterogeneous semantics. We compare TeSa with

7 state-of-the-art DGNN models, and the results show that TeSa

improves the best-performing baseline by an average of 5.11% and

5.74% in accuracy for transductive and inductive tasks.
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1 Introduction

Dynamic heterogeneous graphs (DHGs) serve as a natural abstrac-

tion for modeling real-world complex systems, capturing the in-

tricate interactions among diverse entities. The evolution of these

networks often reveals underlying patterns. For instance, in Fig-

ure 1, user 𝑢1 forwards blog 𝑏2 posted by user 𝑢2 at time 𝑡8, and 𝑢1
has previously followed user 𝑢2, reflecting a triadic closure[22]. Re-

searchers have leveraged such patterns to model system dynamics
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Table 1: Anatomy of GNN models. We use dynamics, hetero-
geneity, long-term, andmemory efficiency to indicate whether

a model learns temporal dynamics, handles heterogeneous

types, captures long-term semantic evolution, and avoids

excessive memory consumption, respectively.

Model Dynamics Heterogeneity Long-term Memory Efficiency

GAT [23] ✗ ✗ ✗ ✓
HGT [8] ✗ ✓ ✗ ✓
TGAT [1] ✓ ✗ ✗ ✓
TGN [19] ✓ ✗ ✓ ✗

HTGNN [3] ✓ ✓ ✗ ✓
TeSa(ours) ✓ ✓ ✓ ✓

and enhance predictive capabilities across various domains, such as

recommendation systems in social networks [32], over-prescribing

prediction in healthcare [27], and route optimization in intelligent

transportation systems [11, 20].

The advent of dynamic graph neural networks (DGNNs) has sig-

nificantly enhanced our ability to model evolving systems. Nonethe-

less, a substantial proportion of current research remains concen-

trated on dynamic homogeneous graphs, in which both nodes and

edges belong to a single type. This simplification can lead to sub-

optimal performance as it neglects the underlying semantic infor-

mation of nodes and edges. Therefore, representation learning on

dynamic heterogeneous graphs is crucial for enhancing the model-

ing capabilities of complex systems. However, it is still in its nascent

stages and encounters the following two primary challenges.

Challenge 1: How can we effectively capture the entangled evolv-
ing dynamics and structural heterogeneity entailed in DHGs? Early
approaches [3, 25, 30] conceptualize dynamic heterogeneous graphs

as a sequence of graph snapshots, known as discrete-time dynamic

heterogeneous graphs (DTDHGs). These methods normally per-

form heterogeneous message passing on the snapshots and subse-

quently employ sequence models to capture the temporal evolution

within these slices. However, they treat temporal and heteroge-

neous information in isolation, making them unable to capture the

dynamic changes in intricate semantic structures among various

entities, and thus failing to represent the intertwined dynamics

of these dimensions [21]. Recent works [34] have attempted to in-

tegrate temporal and heterogeneous information simultaneously.

Nevertheless, the discrete-time framework is still susceptible to in-

formation loss and struggles to adequately model the continuous na-

ture of entity interactions. More recently, continuous-time dynamic

heterogeneous graphs (CTDHGs) have been explored [10], which

offer more precise temporal modeling by representing DHG as a

continuous event sequence. However, [10] relies on a self-exciting

process to model the evolution of the graph, which assumes that

past events always stimulate the occurrence of current events. Thus,

the model struggles to capture the complex interdependencies and

diverse influences among events within the graph.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: A toy example of dynamic heterogeneous social

network, where the node shapes indicate node types, the

symbols between arrows represent edge types, and each emoji

represents the sentiment expressed in a blog.

Challenge 2: How can we capture node’s robust intrinsic seman-
tics and behaviors over time while supporting large-scale graphs?
As illustrated in Figure 1, three blogs discuss different stances on

a particular event: blog 𝑏1 (supportive), blog 𝑏2 (opposed), and

blog 𝑏3 (neutral). User 𝑢4 has historically shown a neutral to some-

what opposed position, initially sharing blog 𝑏3 (neutral) and then

forwarding blog 𝑏2 (opposed). Although user 𝑢4 follows user 𝑢1
(supportive, posting blog 𝑏1) at time 𝑡7 due to other reasons, this

does not necessarily imply that user 𝑢4 will share blog 𝑏1, given its

past interactions primarily with neutral and opposed content. As

can be observed, such long-term, while robust, behaviors are often

overlooked by previous work [1, 26], as they tend to focus more on

the aggregation of neighboring information and neglect the change

of node semantics over time, leading to a loss of historical context.

Although some works [13, 19] have employed a global memory

module to store historical representations of nodes. However, these

works have not explicitly investigated behavior evolution over time

and the global module limits the scalability of these models in the

presence of large-scale graphs.

To address the aforementioned challenges, we propose the Tra-
jEctory and Semantic-Aware Dynamic Heterogeneous Graph Neural
Network (TeSa

1
), which models dynamic heterogeneous graphs

from a continuous-time perspective. The TeSa layer integrates two

key components: trajectory-based evolution and semantic-aware

aggregation, together effectively capturing the entangled dynam-

ics and heterogeneous semantics in DHGs. The trajectory-based
evolution module is crucial for addressing the challenge of captur-

ing a node’s intrinsic semantics and behaviors over time. Specifi-

cally, it extracts a trajectory for each node, which is a sequence of

temporally-ordered events associated with the node. However, the

trajectory can be rather sophisticated, as each point captures the

timing, type, and features of the present interaction. To tackle this

problem, we adopt the technique of temporal point processes to

elegantly encode these sophisticated trajectories, thus effectively

capturing the dynamic semantic changes. Building upon the out-

puts of the trajectory evolution module, the semantic aggregation
module consolidates the topological and semantic relationships

among nodes. It first performs intra-semantic aggregation to inte-

grate information from neighboring nodes based on various edge

types, followed by inter-semantic fusion, which fuses the above

1
https://anonymous.4open.science/r/TeSa-45FF

Table 2: Notations

Symbol Description

h𝑙
𝑖
(𝑡) Hidden embedding of node 𝑖 at layer 𝑙 and time 𝑡

h𝑙,𝑡𝑟
𝑖
(𝑡) Trajectory-evolved embedding of node 𝑖 at layer 𝑙

and time 𝑡

h𝑙
𝑖,𝑟
(𝑡) Intra-semantic aggregated embedding of node 𝑖 for

relation type 𝑟 at layer 𝑙 and time 𝑡

h𝑙
𝑖,𝑅
(𝑡) Semantic-fused embedding of node 𝑖 at layer 𝑙 and

time 𝑡 across all the edge types in set R

aggregated representations to create a cohesive view of the hetero-

geneous semantics. Ultimately, the final embedding for each layer

is generated by combining the trajectory-evolved node embedding

with the neighboring aggregated semantic representation. Besides,

TeSa does not introduce any global memory module, therefore

ensuring higher scalability compared to previous works [13, 19].

We evaluate TeSa and stat-of-the-art baselines over various

datasets. TeSa consistently outperforms the baselines; for example,

TeSa achieves AUC improvements of 4.2% and 6.2% in transductive

and inductive link prediction on the Yelp(C) dataset, respectively.

Furthermore, we conduct ablation experiments to validate the ef-

fectiveness of each component of our model.

In summary, our technical contributions are threefold:

• We propose TeSa, a framework for dynamic heterogeneous

graph representation learning, which takes a continuous-time

view and accurately captures the intertwined dynamics and het-

erogeneous semantics inherent in DHGs.

• TeSa can capture the dynamic changes of node behaviors by

employing temporal point process to encode trajectories. This

approach enables effective modeling of evolving semantics of

nodes, thereby alleviating challenges associated with dynamic

semantic changes in heterogeneous contexts.

• Our empirical evaluations demonstrate that TeSa significantly

outperforms the existing methods, highlighting its effectiveness

and robustness in various scenarios.

2 Preliminary

In this section, we introduce the notations and problem definition.

We first define a dynamic heterogeneous graph as a sequence of

events from a continuous-time perspective.

Definition 2.1 (Dynamic Heterogeneous Graph, DHG). A dynamic

graph G = (V, E,T ,A,R,X) is characterized by a set of nodesV ,

a set of edges E, a time domain T , a set of node types A, a set of

edge types R, and an input feature set X = {X𝑣,X𝑒 }, where X𝑣

and X𝑒 denote node and edge features, respectively. Besides, the

graph is associated with two type mapping functions: 𝜙 : V → A
and Φ : E → R. For each node 𝑣 ∈ V , x𝑣 ∈ R𝑑𝑣 denotes its feature
vector, where 𝑑𝑣 is related to the node type determined by 𝜙 (𝑣).
Each edge 𝑒 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡) represents an event occurring at time 𝑡 ,

indicating an interaction between nodes 𝑣𝑖 and 𝑣 𝑗 . The edge feature

x𝑒 ∈ R𝑑𝑒 is defined analogously, with the dimension 𝑑𝑒 determined

by the edge type Φ(𝑒). When |A| + |R| > 2, G is classified as a

dynamic heterogeneous graph.

2
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Notably, if |A| + |R| = 2, it is considered as a dynamic homoge-

neous graph. In this context, we define the problem as follows.

Definition 2.2 (Representation Learning on DHG). Given a dy-

namic heterogeneous graph G, representation learning on DHGs

aims to learn an embedding function h : V × T → R𝐷
that maps

each node 𝑣 ∈ V at any timestamp 𝑡 ∈ T to a 𝐷-dimensional

embedding vector h𝑣 (𝑡).

The learned time-aware node embeddings should effectively

encapsulate the evolving dynamics and heterogeneous semantics

inherent in G, thereby facilitating various downstream tasks such

as link prediction [12, 16], node classification [10, 16], and node

regression [3, 34]. Next, we define the node trajectory in DHGs that

we want to learn in this work.

Definition 2.3 (Node Trajectory). Given a dynamic heterogeneous

graphG, the trajectory of a node 𝑣 is a temporally-ordered sequence

of events in which the node 𝑣 participates, which is represented as:

T𝑣 = {(𝑒1, 𝑒2, . . . , 𝑒𝑛) | 𝑒𝑖 ∈ E𝑣}

where E𝑣 denotes the set of events associated with node 𝑣 , and 𝑛 =

|E𝑣 (𝑡) | is the total number of events in the trajectory. In dynamic

heterogeneous graph, each event 𝑒𝑖 is formalized as the tuple 𝑒𝑖 =

(𝑡𝑖 , 𝑘𝑖 , x𝑖 ), where 𝑡𝑖 denotes the timestamp, 𝑘𝑖 = Φ(𝑒𝑖 ) indicates the
event type, and x𝑖 represents the event feature.

This trajectory naturally reflects the evolving semantics and

behaviors of node 𝑣 over time. And we summarize the frequently

used symbols related to our model in Table 2.

3 Methodology

3.1 Overview

Our proposed model TeSa serves as a representation learning

framework for continuous-time dynamic heterogeneous graphs.

Due to the variety of dynamic heterogeneous graphs, it is essential

to convert raw node features into a unified feature space. Specifi-

cally, for a node 𝑣 with raw attributes x𝑣 , the transformed attribute

is defined as x′𝑣 = 𝑀𝜙 (𝑣) · x𝑣 , where𝑀𝜙 (𝑣) is a learned type-specific
transformation matrix. This process is similarly applied to raw edge

features. Each TeSa layer processes the node embeddings via two

fundamental phases, as depicted in Figure 2.

(1) Trajectory-based Evolution. This step constructs histor-

ical trajectory for each node, where each point in the trajectory

corresponds to an event involving the node. By utilizing the neural

temporal point process (NTPP), this component captures the com-

plex dependency and temporal evolution of events in the node’s

sequence. This approach effectively models how node behavior and

semantics change over time, leading to the trajectory-evolved em-

bedding h𝑙,𝑡𝑟𝑣 (𝑡). In Section 3.2, we will elaborate on how to model

trajectory-based evolution with NTPP.

(2) Semantic-aware Aggregation. This stage involves two key

processes: intra-semantic aggregation and inter-semantic fusion.

Intra-semantic aggregation focuses on gathering information from

neighboring nodes according to different edge types, allowing the

model to perceive specific semantic relationships. The output of

this process is then subjected to inter-semantic fusion, which fuses

the aggregated information to produce a comprehensive represen-

tation of the node’s contextual relationships, denoted as h𝑙
𝑣,𝑅
(𝑡). In

Section 3.3, we will introduce the details of semantic-aggregation.

Finally, the trajectory-evolved embedding h𝑙,𝑡𝑟𝑣 (𝑡) is combined

with the semantic-fused neighbor information h𝑙
𝑣,𝑅
(𝑡). This inte-

gration enhances the node’s representation by incorporating both

its historical dynamics and the semantic relationships derived from

its neighbors, resulting in the final node embeddings h𝑙𝑣 (𝑡) for
the current layer. By stacking multiple TeSa layers, our model

can effectively capture the intertwined evolving dynamics and

heterogeneous semantics within DHGs, yielding comprehensive

representations that facilitate accurate analysis and prediction.

3.2 Trajectory-based Evolution

The trajectory-based evolution module captures the trajectory of

each node, i.e., the historical interaction sequences, which is cru-

cial for accurately modeling the evolving behaviors and inherent

semantics of nodes over time.

Trajectory Construction. The trajectory of a node 𝑣 up to

time 𝑡 is constructed by recording the sequence of events, which is

represented as:

T𝑣 (𝑡) = {𝑒𝑖 | 𝑒𝑖 ∈ T𝑣, 𝑡𝑖 < 𝑡} (1)

where T𝑣 is the trajectory of node 𝑣 , as defined in Definition 2.3.

Each event 𝑒𝑖 is modeled as a tuple 𝑒𝑖 = (𝑡𝑖 , 𝑘𝑖 , c𝑖 ), where 𝑡𝑖 and
𝑘𝑖 represent the timestamp and event type as previously defined.

The difference lies in c𝑖 , which represents the contextual feature

vector of the event. We consider c𝑖 as the average embedding of

the nodes associated with event 𝑒𝑖 from the previous layer, which

allows the model to dynamically incorporate contextual informa-

tion from neighboring interactions. This approach reflects real-time

changes in node behavior, as it incorporates semantic information

from neighboring nodes, thereby better capturing the dynamics of

interactions compared to static event features.

Trajectory Sampling. To facilitate efficient batch processing,

we propose a type-aware temporal-biased sampling strategy to cap-

ture both semantic and temporal relevance. Specifically, given a

node’s trajectory T𝑣 (𝑡), we aim to sample a sub-trajectory
ˆT𝑣 (𝑡)

with a fixed length 𝑙 .

Step 1: Type-aware Division.We divide T𝑣 (𝑡) into subsets based

on event types:

T𝑣 (𝑡) =
⋃
𝑘

T𝑘
𝑣 (𝑡) (2)

where T𝑘
𝑣 (𝑡) represents the subset of events with type 𝑘 . For each

subset T𝑘
𝑣 (𝑡), we sample events proportionally to its length relative

to the total trajectory length |T𝑣 (𝑡) |, ensuring that the sampled tra-

jectory retains event-type diversity. The number of events sampled

from subset T𝑘
𝑣 (𝑡) is determined by:

𝑙𝑘 =

⌊
|T𝑘
𝑣 (𝑡) |
|T𝑣 (𝑡) |

× 𝑙
⌋

(3)

where |T𝑘
𝑣 (𝑡) | is the number of events of type 𝑘 , and 𝑙𝑘 represents

the number of events sampled from T𝑘
𝑣 (𝑡).

Step 2: Time-sensitive Sampling.Within each subset T𝑘
𝑣 (𝑡), the

sampling strategy considers the event timestamps, ensuring that

3
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Figure 2: Workflow of the 𝑙𝑡ℎ TeSa layer for user 𝑢4 at time 𝑡 . (a) For 𝑢4, its neighbors prior to time 𝑡 are sampled, resulting in

𝑢1, 𝑏2, and 𝑏3. (b) Trajectory-based evolution, which constructs trajectories for user 𝑢4 and its sampled neighbors. For instance,

in the rightmost dashed yellow line, Forward(b3) indicates that 𝑢4 forwards blog 𝑏3 at time 𝑡5. The trajectory is then processed

to obtain the trajectory-evolved embedding h(𝑙,𝑡𝑟 )𝑢4
(𝑡), as shown in the orange block in the upper right corner. Each event passes

through an event feature extraction module, then the output is mapped to the node’s latent embedding space. (c) Semantic-

aware aggregation. Intra-semantic aggregation aggregates trajectory-evloved embeddings within each edge type (e.g., 𝑟1 and 𝑟2

representing forward and follow, respectively), followed by inter-semantic fusion that produces a holistic representation of

across different edge types. Finally, the above output is combined with the trajectory-evolved embedding of the target node to

generate the output embedding h𝑙𝑢4

(𝑡) of the 𝑙𝑡ℎ layer.

more recent events are prioritized[26]. The probability of sampling

an event 𝑒𝑖 is given by:

𝑃 (𝑒𝑖 ) =
exp(𝑡 − 𝑡𝑖 )∑

𝑒 𝑗 ∈T𝑘𝑣 (𝑡 ) exp(𝑡 − 𝑡 𝑗 )
(4)

However, this sampling strategy introduces additional efficiency

burdens due to its computational complexity. To mitigate this, we

simplify the process by selecting only the most recent event within

each type-specific subset, thereby retaining key temporal informa-

tion while significantly reducing computational complexity.

Trajectory Evolution. To effectively model the evolution of

node trajectories, it is essential for the encoder to satisfy two pri-

mary requirements: 1) capture the complex dependencies between

events within a trajectory, thereby reflecting the changes in the

node’s state; and 2) jointly model both event types and timestamps,

facilitating the encoding of dynamic node semantics.

Fortunately, the Neural Temporal Point Process (NTPP) serves as

an excellent framework for handling such marked event sequences.

Its core concept lies in leveraging neural networks to capture the

temporal and categorical dependencies within the event sequence.

Given an event sequence of length 𝑙 , denoted as {𝑒1, 𝑒2, . . . , 𝑒𝑙 },
the neural network takes this sequence as input and generates a

representation h𝑙 , which encapsulates the evolving information

from the events:

h𝑙 = 𝑓NN (𝑒1, 𝑒2, . . . , 𝑒𝑙 ) (5)

where 𝑓NN is a neural network model that captures the dependen-

cies and patterns inherent in the sequence. This output embedding

h𝑙 can then be used to predict future events.

In our research, the sequence of events is constructed from the

historical events of a node, thereby effectively reflecting the changes

in the node’s semantics. Motivated by this, we define 𝜆𝑣 (𝑡) as the
evolving trajectory embedding for node 𝑣 , which captures the dy-

namic changes in its semantics and behavior over time. To achieve

this, we propose a NTPP-based trajectory evolutionmodule, tra_evo,
which can be divided into the following two steps.

Step 1: Event Feature Extraction. Given a sampled trajectory

ˆT𝑣 (𝑡) consisting of 𝑙 events, we define the event feature vector

z𝑖 = [c𝑖 , 𝑡𝑖 , ˜𝑘𝑖 ], where c𝑖 represents the contextual feature, 𝑡𝑖 is the
encoded time embedding, and

˜𝑘𝑖 is a learned embedding of the

event type. The time embedding 𝑡𝑖 is encoded as follows:

𝑡𝑖,𝑑 =


sin

(
𝑡𝑖

10000
𝑑/𝐷

)
, if 𝑑 is even

cos

(
𝑡𝑖

10000
(𝑑−1)/𝐷

)
, if 𝑑 is odd

(6)

where 0 ≤ 𝑑 < 𝐷 is the time embedding dimension. This design

allows each learnable module to directly access the individual com-

ponents of the event, thereby enhancing the model’s flexibility in

capturing diverse event dynamics.

Step 2: Evolution Process. The implementation of NTPP offers a va-

riety of architectures to model the evolution of event sequences[31].
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In this work, we adopt an attention-based architecture, and the ex-

ploration of additional architectures can be found in Section 4.3.

In this method, each event 𝑒𝑖 in the sequence is treated as a query,

key, and value. The query q𝑖 , key k𝑖 , and value v𝑖 for each event 𝑒𝑖
are calculated using learnable weight matrices:

q𝑖 = W𝑞z𝑖 , k𝑖 = W𝑘z𝑖 , v𝑖 = W𝑣z𝑖 (7)

where W𝑞 , W𝑘 , and W𝑣 are learnable weight matrices that project

the event feature vector z𝑖 into the query, key, and value spaces,

respectively. The trajectory embedding 𝜆𝑣 (𝑡𝑖 ) for event 𝑒𝑖 can be

obtained as follows:

𝜆𝑣 (𝑡𝑖 ) = z𝑖 + tanh ©­«
∑︁

𝑒 𝑗 ∈H(𝑒𝑖 )

v𝑗𝛼 (𝑒 𝑗 , 𝑒𝑖 )
1 +∑

𝑒 𝑗 ∈H(𝑒𝑖 ) 𝛼 (𝑒 𝑗 , 𝑒𝑖 )
ª®¬ (8)

where H(𝑒𝑖 ) denotes the set of historical events preceding 𝑒𝑖 .

The unnormalized attention weight 𝛼 (𝑒 𝑗 , 𝑒𝑖 ) is calculated as:

𝛼 (𝑒 𝑗 , 𝑒𝑖 ) = exp

(
k⊤
𝑗
q𝑖
√
𝐷

)
(9)

Finally, the trajectory-evolved embedding h𝑙,tr𝑣 (𝑡) for node 𝑣 at
layer 𝑙 and time 𝑡 is given by the embedding at the last time point:

h𝑙,tr𝑣 (𝑡) = 𝜆𝑣 (𝑡𝑙 ) (10)

where 𝑙 is the length of our sampled trajectory. In this manner, the

trajectory-evolved embedding can effectively integrate information

from preceding events, thereby capturing the dynamic changes and

semantic features of the trajectory.

Comparisonwith ExistingMethods.Unlike temporal random

walk [5, 17] and metapath-based [4, 24] approaches, which rely

on complex traversal or costly metapath discovery, our method

directly models the node’s historical event sequence. This allows us

to capture semantic changes without complex neighbor sampling.

Furthermore, unlike memory-based methods [7, 19], which rely

on global memory modules that limit scalability, our approach

dynamically constructs the trajectory of each node, achieving both

efficiency and scalability.

3.3 Semantic-aware Aggregation

The semantic-aware aggregation module is intentionally designed

to effectively capture the intricate semantic structure inherent in

dynamic heterogeneous graphs. By integrating information from

neighboring nodes while considering the diverse types of relation-

ships that connect them, this module substantially enhances the

representational capabilities of individual nodes. The aggregation

process is organized into two principal stages: Intra-Semantic Ag-

gregation and Inter-Semantic Fusion.

Intra-Semantic Aggregation. This stage concentrates on ag-

gregating information from neighbors of the same type, allowing the
model to capture specific semantic relationships inherent to each

type of interaction. Specifically, for each node 𝑣 at layer 𝑙 and time

𝑡 , the neighboring information is aggregated from its neighbors

connected by a particular relation type 𝑟 . The process is defined as

follows:

h𝑙𝑣,𝑟 (𝑡) = AGG𝑟

({
h𝑙−1𝑗 (𝑡) | 𝑗 ∈ N

𝑟
𝑣 (𝑡)

})
(11)

where h𝑙𝑣,𝑟 (𝑡) represents the intra-semantic aggregated embedding

of node 𝑣 for relation type 𝑟 at layer 𝑙 and time 𝑡 ,N𝑟
𝑣 (𝑡) denotes the

set of neighbors of node 𝑣 that are connected through relation type

𝑟 before time 𝑡 , and AGG𝑟 is the aggregation function specific to

relation type 𝑟 . This step enables the model to focus on the specific

semantics related to each type of relationship, allowing for a more

precise representation of neighbor information under a singular

semantic context.

The aggregation function AGG𝑟 can be implemented using sim-

ple methods such as summation or mean pooling, which aggregate

the embeddings of neighboring nodes without accounting for their

varying significance. While these approaches are computationally

efficient, they often overlook the differing influences of neighbors

in dynamic contexts. To address this limitation, we employ a more

sophisticated strategy involving an attention mechanism. This al-

lows the model to selectively focus on the most relevant neighbors,

not necessarily those most recent in time, but those whose interac-

tions are most significant given the node’s current context. Such an

attention mechanism ensures that the aggregation process captures

both node states and dynamic patterns, leading to a richer and more

nuanced node representation.

Inter-semantic Fusion. The second stage integrates the results

from the intra-semantic aggregation stage and forms a comprehen-

sive neighboring information representation. Specifically, for each

node 𝑣 , the final embedding is computed as:

h𝑙𝑣,𝑅 (𝑡) = fusion
({
h𝑙𝑣,𝑟 (𝑡) | 𝑟 ∈ R

})
(12)

where h𝑙
𝑣,𝑅
(𝑡) represents the semantic-fused embedding of node

𝑣 at layer 𝑙 and time 𝑡 , with 𝑅 indicating that the fusion encom-

passes embeddings across all edge types in R. The fusion function

integrates all intra-semantic embeddings from the previous stage,

combining them to produce a comprehensive node representation.

We also employ an attention mechanism for the fusion process.

This approach computes attention weights for each relation type,

enabling the model to assess the relevance of each embedding con-

textually. By prioritizing significant embeddings, this method en-

hances the final node representation, ensuring that the integration

of diverse semantic aspects from the intra-semantic aggregation

stage reflects their importance in the current context.

Final Representation Generation. Finally, we combine the

trajectory-aware embedding with the semantic-fused embedding,

allowing us to leverage both temporal dynamics and semantic in-

formation. The combined node embedding is defined as:

h𝑙𝑣 (𝑡) = combine
(
h𝑙,tr𝑣 (𝑡), h𝑙,𝑅𝑣 (𝑡)

)
(13)

where h𝑙𝑣 (𝑡) represents the combined embedding of node 𝑣 at layer

𝑙 and time 𝑡 . The function combine integrates these two types of

embeddings to produce the final node representation, which can

be implemented through concatenation followed by a linear trans-

formation or other methods tailored to the needs of the task.

Comparison with Existing Methods. In contrast to existing

methods for discrete-time dynamic heterogeneous graphs, which

perform semantic aggregation across various snapshots without
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accounting for the temporal significance of individual events, our

approach effectively incorporates time differences during the ag-

gregation process. This temporal attention mechanism enables the

model to selectively emphasize relevant events based on their his-

torical context, capturing fine-grained temporal dynamics that are

often overlooked in previous methods [3, 30, 34].

3.4 Model Training

Event Conditional Intensity. After obtaining the embeddings of

two nodes𝑢 and 𝑣 at layer 𝐿 and time 𝑡 , denoted as h𝐿𝑢 (𝑡) and h𝐿𝑣 (𝑡),
we model the conditional intensity 𝜆𝑢,𝑣 (𝑡) for an event between

these nodes as:

𝜆𝑢,𝑣 (𝑡) = 𝜎

(
FCL𝑟 ((h𝐿𝑢 (𝑡) − h𝐿𝑣 (𝑡))2)

)
(14)

where FCL𝑟 represents the fully connected layer specific to the

edge type 𝑟 . The input to FCL𝑟 is the element-wise square of the

difference between h𝐿𝑢 (𝑡) and h𝐿𝑣 (𝑡). This differential representation
serves as a strong predictor for the occurrence of events between

the two nodes. A sigmoid activation function is applied to ensure a

positive intensity value.

Loss Function. For any event (𝑢, 𝑣, 𝑡) that occurs in the graph,

we expect a higher conditional intensity 𝜆𝑢,𝑣 (𝑡), while for non-

occurring events, we expect lower values of 𝜆𝑢,𝑣 (𝑡). Thus, the loss
function based on negative log-likelihood is formulated as:

𝐿𝑒 (𝑢, 𝑣, 𝑡) = − log(𝜆𝑢,𝑣 (𝑡)) − log(1 − 𝜆𝑢,𝑘 (𝑡)), (15)

where 𝑘 is a negative sample drawn such that the edge (𝑢, 𝑘, 𝑡)
shares the same type as the positive edge (𝑢, 𝑣, 𝑡). By maintaining

the same edge type for both positive and negative samples, the

model is compelled to rely more on the node embeddings them-

selves, thereby enhancing its capability to learn meaningful repre-

sentations.

Optimization. The overall loss function is defined by consid-

ering the set of training events I𝑡𝑟 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 ≤ 𝑡𝑡𝑟 },
encompassing all events up to time 𝑡𝑡𝑟 , as follows:

argmin

Θ

∑︁
(𝑢,𝑣,𝑡 ) ∈I𝑡𝑟

𝐿𝑒 (𝑢, 𝑣, 𝑡) + 𝜂∥ ˜𝑘 ∥2 (16)

where 𝜂 > 0 is a hyperparameter controlling the regularization

on the learned embedding
˜𝑘 of the event type. The regularization

term assists in preventing overfitting by constraining the event-

type embeddings. For a complete overview of the model training

process, please refer to Section D.

4 Experimental Evaluation

4.1 Experiment Settings

Datasets and Baselines. The datasets used in our experiments are

summarized in Table 3. We compare our model against seven base-

line methods. They can be divided into three categories: (1) Static

graph neural networks: GAT [23], HGT [8]; (2) Dynamic homoge-

neous graph neural networks: TGN [19], TGAT [1], TREND [28]; (3)

Dynamic heterogeneous graph neural networks: DyHATR [30], HT-

GNN [3]. For more details about the datasets and baselines, please

refer to the Appendix A and B.

Tasks. We adopt temporal link prediction as our main task,

aiming to predict future links based on historical data. Given a

Table 3: Statistics of the experiment datasets, D indicates that

a dataset is discrete time while C means continuous time.

Datasets Nodes Relations

Aminer (D)

#Author (A): 23,035

#Paper (P): 18,460

#Venue (V): 22

#Publish (P-V): 18,460

#Write (A-P): 52,535

#Cooperate (A-A): 71,680

Yelp (D)

#User (U): 55,702

#Item (I): 12,524

#Review (U-I): 87,846

#Tip (U-I): 35,508

Yelp (C)

#User (U): 1,987,897

#Business (B): 150,346

#Review (U-B): 6,990,247

#Tip (U-B): 908,915

dynamic heterogeneous graph, we chronologically split the events

into training, validation, and testing sets with a ratio of 75%-15%-

15%. Specifically, the training set is defined as I𝑡𝑟 = {(𝑢, 𝑣, 𝑡) ∈ I :

𝑡 ≤ 𝑡 tr}, which consists of all events up to time 𝑡 tr; the validation

set is denoted as I𝑣𝑎𝑙 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 tr < 𝑡 ≤ 𝑡val}, including
events that occur between 𝑡 tr and 𝑡val; and the testing set is defined

as I𝑡𝑒𝑠𝑡 = {(𝑢, 𝑣, 𝑡) ∈ I : 𝑡 > 𝑡val}, comprising the remaining

events occurring after 𝑡val. In the inductive setting, we mask 10%

of the nodes as unseen during training, removing their associated

edges from the training set. Following [9], we define two inductive

scenarios: the new-old setting predicts edges between a seen node

and an unseen node, while the new-new setting focuses on edges

between two unseen nodes. This allows us to comprehensively

assess the model’s performance across different link prediction

scenarios. We evaluate the model’s performance using the Area

Under the Curve (AUC) and Average Precision (AP) metrics.

Hyper-parameters. The dimension of hidden embeddings is

set to 172 for the Aminer(D) dataset and 32 for both the Yelp(D) and

Yelp(C) dataset. The regularization weight 𝜂 in the loss function is

selected as 0.0001. For optimization, we employ the Adam optimizer

with a learning rate of 0.0001.

4.2 Main Results

In Table 4, we compare the performance of TeSawith the baselines

on the temporal link prediction task. In general, our approach

demonstrates superior performance, particularly in the inductive

new-new setting. Specifically, our model achieves AUC values of

0.8155 on Aminer(D), 0.7612 on Yelp(D), and 0.7908 on Yelp(C) in

this setting, surpassing the best baseline model by 9.44%, 5.67%,
and 8.96%, respectively. These enhancements can be attributed to

our trajectory evolution module, which enables newly introduced

nodes to more effectively capture long-term semantic information

from their surroundings.

From the perspective of dynamics, we observe several key find-

ings. First, dynamic models consistently outperform static models

(GAT andHGT). This suggests that leveraging temporal information

allows dynamic models to capture the evolving behaviors of nodes,

while static models cannot. Second, continuous-time dynamic mod-

els surpass discrete-time approaches. We apply a 15-day slicing

granularity to both DyHART and HTGNN on the Yelp(C) dataset,

and their performance remains poor across various settings. Even

on the discrete datasets Aminer(D) and Yelp(D) , their performance

is suboptimal in the transductive setting, indicating that discrete
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Table 4: Link prediction accuracy for transductive and inductive settings. We use bold font and underline to mark the best and

runner-up methods, respectively. Symbol ‘—’ means that a model cannot run due to the out-of-memory (OOM) error. Imp. is

the accuracy improvement of TeSa over the best baseline.

Setting Model

Aminer(D) Yelp(D) Yelp(C)

AUC AP AUC AP AUC AP

T
r
a
n
s
d
u
c
t
i
v
e

GAT 0.5541 ± 0.0001 0.5254 ± 0.0001 0.6880 ± 0.0001 0.6941 ± 0.0001 0.6470 ± 0.0017 0.6254 ± 0.0029

HGT 0.6600 ± 0.0057 0.6917 ± 0.0021 0.6847 ± 0.0004 0.6031 ± 0.0007 0.7069 ± 0.0011 0.6985 ± 0.0007

TGAT 0.8453 ± 0.0011 0.8216 ± 0.0027 0.7987 ± 0.0022 0.7955 ± 0.0018 0.7721 ± 0.0036 0.7761 ± 0.0058

TREND 0.8420 ± 0.0035 0.8174 ± 0.0037 0.7978 ± 0.0023 0.7942 ± 0.0022 0.7617 ± 0.0103 0.7654 ± 0.0142

TGN 0.8197 ± 0.0047 0.7922 ± 0.0052 0.7908 ± 0.0046 0.7709 ± 0.0052 — —

DyHART 0.7103 ± 0.0031 0.6532 ± 0.0023 0.7603 ± 0.0023 0.7528 ± 0.0026 0.5744 ± 0.0308 0.5782 ± 0.0420

HTGNN 0.7259 ± 0.0043 0.6635 ± 0.0024 0.7749 ± 0.0020 0.7649 ± 0.0017 0.5901 ± 0.0798 0.6002 ± 0.0825

TeSa 0.9278 ± 0.0097 0.9144 ± 0.0113 0.8276 ± 0.0023 0.8203 ± 0.0018 0.8141 ± 0.0052 0.8016 ± 0.0064

Imp. 8.25% 9.28% 2.89% 2.48% 4.20% 2.55%

I
n
d
u
c
t
i
v
e

N
e
w
-
O
l
d

GAT 0.5641 ± 0.0001 0.5488 ± 0.0001 0.6239 ± 0.0001 0.6128 ± 0.0001 0.6853 ± 0.0027 0.6544 ± 0.0041

HGT 0.6007 ± 0.0020 0.5685 ± 0.0018 0.6575 ± 0.0015 0.6415 ± 0.0021 0.6986 ± 0.0032 0.6776 ± 0.0022

TGAT 0.6533 ± 0.0112 0.6746 ± 0.0105 0.6872 ± 0.0014 0.6989 ± 0.0010 0.7443 ± 0.0083 0.7502 ± 0.0072

TREDN 0.6287 ± 0.0166 0.6544 ± 0.0191 0.6875 ± 0.0032 0.6990 ± 0.0026 0.7402 ± 0.0103 0.7409 ± 0.0114

TGN 0.6309 ± 0.0022 0.6732 ± 0.0034 0.6782 ± 0.0023 0.6741 ± 0.0037 — —

DyHATR 0.7213 ± 0.0043 0.6728 ± 0.0018 0.6172 ± 0.0037 0.6031 ± 0.0029 0.6233 ± 0.0125 0.6314 ± 0.0326

HTGNN 0.7479 ± 0.0052 0.6899 ± 0.0047 0.6377 ± 0.0020 0.6257 ± 0.0017 0.6580 ± 0.1470 0.6570 ± 0.1424

TeSa 0.7985 ± 0.0234 0.7861 ± 0.0173 0.7065 ± 0.0013 0.7123 ± 0.0019 0.7781 ± 0.0025 0.7807 ± 0.0031

Imp. 5.06% 9.62% 1.90% 1.33% 3.38% 3.05%

N
e
w
-
N
e
w

GAT 0.5234 ± 0.0002 0.5486 ± 0.0001 0.5762 ± 0.0001 0.5892 ± 0.0001 0.4756 ± 0.0001 0.4996 ± 0.0001

HGT 0.7211 ± 0.0113 0.7661 ± 0.0035 0.5373 ± 0.0115 0.4565 ± 0.0027 0.6859 ± 0.0000 0.7058 ± 0.0001

TGAT 0.6154 ± 0.0066 0.6235 ± 0.0061 0.7009 ± 0.0056 0.7118 ± 0.0050 0.7012 ± 0.0083 0.7141 ± 0.0104

TREND 0.5931 ± 0.0112 0.6021 ± 0.0108 0.7045 ± 0.0055 0.7143 ± 0.0038 0.6937 ± 0.0027 0.7133 ± 0.0042

TGN 0.5702 ± 0.0165 0.5563 ± 0.0209 0.7036 ± 0.0022 0.6978 ± 0.0016 — —

DyHATR 0.6831 ± 0.0025 0.6642 ± 0.0037 0.6013 ± 0.0020 0.5542 ± 0.0023 0.4873 ± 0.0153 0.5133 ± 0.0382

HTGNN 0.7038 ± 0.0027 0.6856 ± 0.0031 0.6119 ± 0.0027 0.5493 ± 0.0013 0.4468 ± 0.0862 0.4649 ± 0.0404

TeSa 0.8155 ± 0.0153 0.8025 ± 0.0114 0.7612 ± 0.0025 0.7660 ± 0.0031 0.7908 ± 0.0031 0.8015 ± 0.0037

Imp. 9.44% 3.64% 5.67% 5.17% 8.96% 8.74%

models struggle to capture fine-grained temporal patterns, which

are crucial for accurately modeling node evolution. Third, among

the three dynamic graph models (TGAT, TGN, and TREND), TGN

shows the worst performance. This is due to the need to batch all

edges within a snapshot to prevent repeated memory updates at

the same timestamp, which limits its ability to capture long-term

semantic changes. As a result, TGN is less effective at modeling

intricate temporal dynamics compared to other continuous-time

models.

From the perspective of heterogeneity, it is observed that the

introduce of diverse semantic information helps to enhance the

model’s ability to capture the evolution patterns of graphs. Regard-

ing static graph models, HGT tends to outperform GAT, showcas-

ing the strengths of heterogeneous models in capturing complex

relationships. In addition, in the realm of discrete-time models,

both DyHART and HTGNN exhibit relatively well performance on

the Aminer(D) dataset in the inductive setting and surpass other

baseline models. This demonstrates the effectiveness of these ap-

proaches in leveraging heterogeneous semantics, allowing for a

richer representation of the underlying graph structure.

4.3 Micro Experiments

Ablation Study. Taking the Aminer(D) and Yelp(C) datasets as

examples, Table 5 shows the results of our ablation study w.r.t. AUC.

Specifically, Ablation 1 removes the trajectory evolution module,

Ablation 2 excludes the semantic-aware aggregation module by

ignoring edge types and performing simple neighbor message pass-

ing, and Ablation 3 replaces the trajectory evolution module with

an RNN-based time point process.

The results indicate that removing the trajectory evolution module
(Ablation 1) leads to a performance drop, especially in the new-new

prediction task. This highlights the importance of capturing the

dynamic semantic changes in node behavior through trajectory

modeling, as it helps in understanding the evolution of node interac-

tions over time. Similarly, excluding the semantic-aware aggregation
module (Ablation 2) results in further degradation, underscoring the

necessity of considering different relation types in heterogeneous

graphs to capture distinct semantic relationships. Finally, replacing
the attention-based trajectory evolution with an RNN (Ablation 3)
lowers the model performance, indicating that the attention mech-

anism more effectively captures the temporal dependencies and

long-range semantic patterns compared to RNN.
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Table 5: Ablation study on Aminer(D) and Yelp(C) datasets.

No. Conf. Aminer (D) Yelp (C)

Trans New-New Trans New-New

1 w/o tra_evo 0.9165 0.7490 0.7763 0.7544

2 w/o sem_agg 0.8743 0.7159 0.7729 0.7453

3 TeSa(RNN) 0.9133 0.7923 0.7803 0.7794

TeSa(ATTN) 0.9278 0.8155 0.8141 0.7908

TGAT TREND TGN TESA0

2

4

6

Ti
m

e 
(H

ou
rs

)

(a) Training time.

TGAT TREND TGN TESA0

5

10

15

20

Ti
m

e 
(m

s)

(b) Inference time.

1 3 5 7 9 11 13 15
Number of Neighbors

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

AUC - layer1
AUC - layer2
AP - layer1
AP - layer2

(c) Number of neighbors and layers.

Figure 3: (a) The training time of each epoch for the

continuous-time models on Yelp(C); (b) The inference time

for testing 1,000 edges. (c) Accuracy of TeSa when using dif-

ferent number of layers and neighbors;

Effect of Neighbor Number. In Figure 3c, we show the effect

of the number of sampled neighbors on the AP and AUC metrics on

Aminer(D) . We observe that the model’s performance converges

at a neighbor size of five for one-layer models (dashed line) and at

seven for two-layer models (dash-dotted line). Notably, increasing

the number of layers leads to a substantial enhancement in overall

performance.

Model Efficiency. In Figure 3a and 3b, we present the training

and inference time of TeSa alongside those of continuous-time

baselines (TGAT, TREND and TGN) on Yelp(C). The results show

that the training time of TeSa is close to TGAT and TREND, but

significantly lower than TGN’s. Unlike TGN, our model does not

rely on a global memory module to store and track node semantic

changes, and therefore is more efficient. Regarding inference time,

TeSa requires 20.25 ms per 1,000 edges, which is approximately

twice the time of TGAT’s 9.29 ms. This additional time can be at-

tributed to the necessity of trajectory construction and evolution,

which is a trade-off for enhanced semantic representation. And fur-

ther optimizing the efficiency of these evolution methods presents

a valuable opportunity for future research.

5 Related Work

Dynamic Heterogeneous Graph Neural Networks. Dynamic

Graph Neural Networks (DGNNs) have shown remarkable success

in capturing the dynamic nature of temporal graphs. To extend

these success to dynamic heterogeneous graphs(DHGs), a range of

approaches have been proposed to capture the evolving dynamics

and heterogeneous semantics within these graphs. Early works

abstract DHGs as a sequence of heterogeneous snapshots. One

category[8] encodes temporal features into edges and conducts

heterogeneous message passing across the entire graph, which can

lead to information leakage. Another category[3, 25, 30] focuses on

heterogeneous message passing at each snapshot while utilizing

sequence models to capture temporal variations. However, this

discrete modeling has limitations in capturing continuous temporal

dynamics and fine-grained temporal dependencies.

Recently, HPGE[10] has proposed a continuous modeling ap-

proach that represents DHGs as sequences of events. HPGE[10]

effectively incorporates the Hawkes process into graph embedding

to capture the excitation of various historical events on the cur-

rent type-wise events. However, the Hawkes process is limited to

modeling excitation effects, which constrain the ability to repre-

sent the complex and diverse interactions that might occur in such

networks. In comparison, our method provides a continuous model-

ing framework that captures the entangled evolving dynamics and

heterogeneous semantics in DHGs. By exploiting neural temporal

point processes, our model can capture a wide range of complex

interactions, without being confined to simply excitation effects.

Temporal Point Processes. Temporal point processes (TPPs)

offer an effective mathematical framework for modeling event se-

quences in continuous time domains, which enables the representa-

tion of dynamic patterns inherent in sequences of events. Conven-

tional TPPs, such as Poisson process[18] and Hawkes process[6],

are constrained by their fixed mathematical forms, which signifi-

cantly limit their expressive power. To overcome these limitations,

researchers have merged the powerful representational capabili-

ties of neural networks with TPPs, leading to the development of

neural TPPs. Diverse RNN-based TPPs [2, 14, 29] leverage continu-

ous state spaces and flexible transition functions, achieving better

performance on many real-world datasets. Lately, a number of

attention-based models have been suggested to capture sequences’

long-range relationships, further improving the prediction perfor-

mance. These attention-based neural TPPs [15, 33, 35] leverage the

self-attention mechanism to effectively model dependencies across

extended time spans, addressing the weaknesses of RNN-based

approaches in handling such dependencies.

6 Conclusion

In this work, we address the problem of modeling continuous-time

dynamic heterogeneous graphs, which capture evolving dynamics

and heterogeneous semantics over time. We propose TeSa, a novel

approach that leverages neural temporal point processes for cap-

turing semantic changes entailed in node trajectory. This method

excels in capturing intricate temporal dependencies and diverse

node interactions, offering greater flexibility and expressiveness.

Experimental results validate the effectiveness of our approach,

highlighting its potential for various applications.
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A Datasets

Aminer(D) [10] is an academic citation dataset for papers published

from 1990 to 2006. It contains three types of nodes (paper, author,

and venue) and three types of relations: paper-publish-venue, author-
write-paper, and author-cooperate-author. We separate time slices

using the publication year, and this dataset is discrete in nature.

Yelp(D) is a business review dataset that includes user reviews

and tips for businesses. Following [10], we focus on interactions

within three categories of businesses: "American (New) Food," "Fast

Food," and "Sushi," covering the period from January 2012 to De-

cember 2012. We separate time slices by month, and the graph

includes the following types of relations: user-review-business and
user-tip-business.

Yelp(C)
2
records activities on the platform from February 16,

2005, to January 19, 2022. We also construct two types of relations

in the graph: user-review-business and user-tip-business. The tem-

poral granularity is set at the minute level, capturing fine-grained

temporal dynamics. This dataset is continuous in nature.

B Baselines

We evaluate our proposed model against seven baselines, which

can be categorized based on the type of graphs they target: static

homogeneous, static heterogeneous, dynamic homogeneous, and

dynamic heterogeneous graphs. Below are brief descriptions of

each baseline.

GAT [23] is a static homogeneous GNN that aggregates informa-

tion from neighbors using an attention mechanism. It is designed

for static graphs without considering node or edge types, and it

serves as a representative baseline for static homogeneous methods.

HGT [8] is a static heterogeneous GNN that adopts mutual

attention and parametrizes the attention mechanism differently for

each node and relation type. It captures the structural heterogeneity

of the graph but does not model temporal dynamics.

TGN [19] establishes a memory module to store node repre-

sentations and uses an RNN to update the memory over time. It

is designed for dynamic homogeneous graphs and operates in a

continuous-time setting, focusing on temporal interactions without

considering heterogeneous structures.

TGAT [1] utilizes self-attention to aggregate temporal-topological

structures and learns the temporal evolution of node embeddings

through continuous-time encoding. It targets dynamic homoge-

neous graphs and focuses on capturing the temporal evolution of

nodes.

TREND [28] is based on a Hawkes process, which models the

exciting effects between events. This dynamic homogeneous GNN

captures temporal dependencies between events using the Hawkes

process, but it does not handle heterogeneous graph structures.

DyHATR [30] is a dynamic heterogeneous GNN that employs

hierarchical attention and temporal self-attention to capture both

heterogeneous and temporal information in discrete-time dynamic

graphs.

HTGNN [3] is a dynamic heterogeneous GNN that iteratively

uses hierarchical attention and temporal self-attention to model

2
https://www.yelp.com/dataset

Figure 4: Performance variation with trajectory length on a

dataset sampled from the first 1 million edges of Yelp(C).

Table 6: Model performance with and without the regular-

ization term on the Aminer(D) and Yelp(D) datasets.

Dataset Setting w. Reg. w.o. Reg.

Aminer(D)

Transductive 0.9278 0.9130

New-Old 0.7985 0.7242

New-New 0.8155 0.7662

Yelp(D)

Transductive 0.8276 0.8124

New-Old 0.7065 0.7028

New-New 0.7612 0.7186

complex dynamic interactions. It captures both dynamic and het-

erogeneous information in a discrete-time setting, making it well-

suited for handling graphs with various node and relation types

evolving over time.

C Additional experimental results

Length of Trajectory. As shown in Figure 4, the model’s per-

formance exhibits an initial increase followed by a decline as the

trajectory length extends. This trend can be explained by the fact

that longer trajectories allow the model to access more historical

information, which helps capture the dynamic changes of nodes

more effectively, thereby improving predictive accuracy. However,

when the trajectory length becomes excessively long, it may encom-

pass older events that are less relevant to the current prediction,

potentially introducing noise and diminishing the model’s decision-

making capability. This observation suggests a trade-off in selecting

the trajectory length, where an optimal length balances the cover-

age of useful historical information with the avoidance of irrelevant

or noisy data.

Effect of Regularization Term. To assess the impact of the

regularization term on the learned embedding of event type, we

present the model performance w.r.t. AUC on the Aminer(D) and

Yelp(D) datasets in Table 6. The results illustrate that incorporating

the regularization improves the model’s performance to a certain

extent. For example, in the new-new setting of the Yelp(D) dataset,

the AUC increases significantly from 0.7186 to 0.7612. The im-

provement in performance suggests that the regularization aids in

10
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generating more meaningful embeddings, which in turn enhances

the model’s ability to generalize across different scenarios.

D Pseudocode

The overall training process of our model TeSais illustrated in the

algorithm shown below.

Algorithm 1: Overall Training Process of TeSa

Input: Dynamic heterogeneous graph

G = (V, E,T ,A,R,X), training event set I𝑡𝑟 ,
batch size 𝐵

Output: Learned parameters Θ, including node embeddings

and type-specific transformations

Initialization: Initialize node embeddings {h𝑣}𝑣∈V and

type-specific transformation matrices {𝑀𝜙 (𝑣) }
while not converged do

for each batch of events B ⊂ I𝑡𝑟 of size 𝐵 do

for each event (𝑢, 𝑣, 𝑡) ∈ B do

x′𝑢 ← 𝑀𝜙 (𝑢 ) · x𝑢 , x′𝑣 ← 𝑀𝜙 (𝑣) · x𝑣
x′(𝑢,𝑣) ← 𝑀𝜙 ( (𝑢,𝑣) ) · x(𝑢,𝑣)
T𝑢 (𝑡) ←
construct_trajectory(𝑢, 𝑡, event_history[𝑢])
T𝑣 (𝑡) ←
construct_trajectory(𝑣, 𝑡, event_history[𝑣])
h𝑙,𝑡𝑟𝑢 (𝑡) ← trajectory_evolution(T𝑢 (𝑡))
h𝑙,𝑡𝑟𝑣 (𝑡) ← trajectory_evolution(T𝑣 (𝑡))
for each neighbor𝑤 ∈ N (𝑢) ∪ N (𝑣) do
T𝑤 (𝑡) ←
construct_trajectory(𝑤, 𝑡, event_history[𝑤])
h𝑙,𝑡𝑟𝑤 (𝑡) ← trajectory_evolution(T𝑤 (𝑡))

h𝑙
𝑢,𝑅
(𝑡) ←

semantic_aggregation(𝑢, {h𝑙,𝑡𝑟𝑤 (𝑡) | 𝑤 ∈
N (𝑢)}, 𝑡)
h𝑙
𝑣,𝑅
(𝑡) ←

semantic_aggregation(𝑣, {h𝑙,𝑡𝑟𝑤 (𝑡) | 𝑤 ∈
N (𝑣)}, 𝑡)
h𝑙𝑢 (𝑡) ← combine(h𝑙,𝑡𝑟𝑢 (𝑡), h𝑙𝑢,𝑅 (𝑡))
h𝑙𝑣 (𝑡) ← combine(h𝑙,𝑡𝑟𝑣 (𝑡), h𝑙𝑣,𝑅 (𝑡))
node_features[𝑢] ← h𝑙𝑢 (𝑡)
node_features[𝑣] ← h𝑙𝑣 (𝑡)
event_history[𝑢] ←
event_history[𝑢] ∪ {(𝑡,Φ((𝑢, 𝑣)), h𝑙𝑢 (𝑡))}
event_history[𝑣] ←
event_history[𝑣] ∪ {(𝑡,Φ((𝑢, 𝑣)), h𝑙𝑣 (𝑡))}

𝜆𝑢,𝑣 (𝑡) ← FCL𝑟 ((h𝐿𝑢 (𝑡) − h𝐿𝑣 (𝑡))2)
𝐿𝑒 ← − log(𝜆𝑢,𝑣 (𝑡)) − log(1 − 𝜆𝑢,𝑘 (𝑡)), where 𝑘
is a negative sample

Θ← Θ − 𝜂∇Θ
(∑
(𝑢,𝑣,𝑡 ) ∈B 𝐿𝑒 + 𝜂1∥ ˜𝑘 ∥2

)
return Θ
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