
Linear Transformations in Autoencoder Latent Space
Predict Time Translations in Active Matter System

Enrique Amaya∗
Caltech

Pasadena, CA 91125
eamaya@caltech.edu

Shahriar Shadkhoo
Caltech

Pasadena, CA 91125
shahriar@caltech.edu

Dominik Schildknecht
Caltech

Pasadena, CA 91125
dominik.schildknecht@gmail.com

Matt Thomson
Caltech

Pasadena, CA 91125
mthomson@caltech.edu

Abstract

Machine Learning (ML) approaches are promising for deriving dynamical predic-
tions of physical systems from data. ML approaches are relevant in active matter,
a field that spans scales and studies dynamics of far-from-equilibrium systems
where there are significant challenges in predicting macroscopic behavior from
microscopic interactions of active particles. A major challenge in applying ML
to active systems is encoding a continuous representation of time within a neural
network. In this work, we develop a framework for predicting the dynamics of
active networks of protein filaments and motors by combining a low-dimensional
latent representation inferred through an autoencoder with a linear shift neural
network that encodes time translation as a linear transformation within the latent
space. Our method enables predicting the contraction and boundary deformations
of active networks with various geometries. Although our method is trained to
predict 20 time steps into the future, it can generalize to periods of 60 time steps
and recapitulate the past 30 frames of a single given observation with less than 10%
error. Finally, we derive an approximate analytic expression for the linear transfor-
mation in the latent space that captures the dynamics. Broadly, our study reveals
that neural networks are powerful for forecasting the behavior of active matter
systems in the complete absence of knowledge of the microscopic dynamics.

1 Introduction

Active matter systems are made of many autonomous agents that consume energy to generate motion.
Examples of living and non-living active systems across scales include the cellular cytoskeleton,
bacterial colonies, schools of fish, and drone swarms, to name a few [1]. To engineer active systems at
all scales and in different settings, we need to predict how active systems self-organize into collective
spatiotemporal patterns [2]. A fundamental limitation for mechanistic models of active matter arises
from its out-of-equilibrium nature, which breaks detailed balance, and time-reversal symmetry [3].
Furthermore, the vast diversity of active agents makes it difficult to find a comprehensive theoretical
framework of active matter.
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Figure 1: A) Schematic of the proposed DNN: The latent representation of the input image is linearly
combined with an encoding of time translation. This combined representation is decoded to arrive at
the output prediction. B) Active matter system used in this study: Microtubule filaments and motors
cross-link under illumination, and three snapshots of the contracting network at t=50, 100, and 150.

An alternative approach to forecast the dynamics of active systems that bears great potential is Ma-
chine Learning. Specifically, Deep Neural Networks (DNNs) offer data-driven model-free predictions
of complex systems [4, 5]. The multilayered hierarchical structure of DNNs provides an automated
way to identify the most relevant degrees of freedom of a system by iteratively coarse-graining struc-
tured data without any prior knowledge of the underlying complexity [6]. However, the designing
principles of DNNs’ architectures that model active systems, as well as the physical interpretations of
the representations learned by DNNs, are still largely unexplored.

In this work, we use DNNs to investigate the dynamics of an optically-controlled active matter system
composed of microtubule filaments and light-switchable kinesin motor proteins [7]. In the active
system under study, light patterns can be used to determine when and where motors reorganize
microtubules to create non-equilibrium structures. We predict the dynamics of macroscopic patterns
that emerge from light-induced microtubule reorganization using what we refer to as the Translational
Convolutional Autoencoder (TCAE). TCAE learns a low-dimensional representation of microscopy
data, constrained by a learned translation function. The translation function makes it possible to map
input time differences to translation vectors in latent space. By feeding an initial image observation
and varying scalar time differences to the TCAE, we can evolve the single observations through
time and achieve low-error predictions. Although our method is trained to predict a fixed future
time interval, it generalizes to prolongated periods. Surprisingly it can also infer the past dynamics
if negative scalar time differences are provided to the TCAE. We hypothesize that the physical
properties of the active system are embedded in the latent space our DNN constructs. This work
shows the potential DNNs have for extracting physical properties and predicting the behavior of
complex non-linear out-of-equilibrium systems.

2 Methodology

2.1 Data Description

The data consists of 16 active matter experiments as described in [8]. The light patterns include
4 different shapes (circle, hexagon, rectangle, and triangle), with four initial sizes (900, 750, 600,
450 µm). The raw videos have a resolution of 2048× 2048, and a total video length of 170 frames.
We down-sampled the videos to a resolution of 112× 112 pixels, and normalized to have a range of
values between 0 and 1. We chose 15 videos for training and left 1 for test evaluation.

2.2 Approach

We extend the input reconstruction capabilities of the Convolutional Autoencoder [9] for time
propagation prediction. Our proposed method takes as input the image at time t and a change in time
∆t to output a prediction for the image at time t+∆t. First, an encoder function E : Rm×m 7→ Rn

maps an image Xs
t to a latent representation zst , where s indexes the list of movies, and t is time. Then,

a linear time translation operator translates the image embedding zst by a learned time-translation Φ,
scaled by time shift ∆t; namely zst 7→ zst +Φ∆t. Finally, the decoder D : Rn 7→ Rm×m takes the
translated image embedding and predicts the frame at time t+∆t; i.e. D(zst +Φ∆t) = X̃s

t+∆t. We
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Figure 2: 2D visualization of TCAE latent space. A) Embeddings of all the images in the dataset and
their corresponding translations using a ∆t from 0 to 20, colored by light pattern. B) Embeddings
without translations grouped by geometry. The dashed line is the test video. C,D) Embeddings of
triangular geometries and their translations colored by ∆t and time, respectively.

restrict our training task to predict for ∆t = {1, . . . , 20} frames into the future. With training dataset
X = {Xs

t}
∣∣s∈[1,15]

t∈[1,170]
; and a dissimilarity (i.e. loss) function L , we find the network operators:

argmin
E,D,Φ

∑
s

150∑
t=1

20∑
∆t=0

L
(
X̃s

t+∆t,X
s
t+∆t

)
We choose L to be a summation over all pixels of the pixel-wise binary cross-entropy function:
L (X̃s

t ,X
s
t ) =

∑
i,j H(pij , p̃ij) where (i, j) labels the pixels, and pij , p̃ij are the values of pixels in

Xs
t and X̃s

t , respectively. The cross entropy reads H(p, p̃) = − (p log(p̃) + (1− p) log(1− p̃)).

3 Results

3.1 Interpretation of Time Translation in the Latent Space

Calculating the mismatch between the ground truth and predicted images exhibits up to ∼ 95%
accuracy of prediction; see Fig. (3). Such a high accuracy is suggestive of a dynamical mechanism
that can be recapitulated by uniform translation of the latent space. In the 2D latent space spanned
by coordinates (z1, z2). We expand the argument of the function D, i.e. the latent space coordinates
z + Φ∆t; and demand that L (D(z(t) +Φ∆t)−D(z(t+∆t))) is minimized. Note that cross
entropy is always non-negative; hence zero lower bound. For the first term we have: D(z(t) +
Φ∆t) = D(z(t)) + (Φ∆t)∇z(t)D(z(t)) +O(Φ2∆t2), and for the second term: D(z(t+∆t)) =

D(z(t)) + (∂tz(t)∆t)∇z(t)D(z(t)) + O(∂tz(t)
2∆t2). Since the loss function is minimized over

the entire data set, we claim that ⟨Φ − ∂tz(t)⟩s,t,∆t = 0; thus Φ = ⟨∂tz(t)⟩s,t,∆t. Here ⟨•⟩s,t,∆t

denotes averaging over all the data sets, time points, and time translations. Therefore, to the first
order approximation, Φ can be thought of as the average over ∂tz(t), namely the slopes of the lines
connecting the points z(t) and z(t +∆t) for all the points along the ∆t = 0 curves. The average
over t, is equivalent to connecting the two ends of the curves: ∆z = z(tmax)− z(tmin). Averaging
these vectors over all datasets we obtain the translation Φ that minimizes the loss function.
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Figure 3: TCAE performance on the test set. A) Heatmap of shape mismatch in whole video
prediction. Starting with one frame as input, we predicted the full video by varying ∆t. Then we
computed the shape mismatch between the predicted and ground truth videos. The error value for
the frame used as input lies on the main diagonal (reconstruction error), and the rest of the error
values for the predictions of the past and future frames lie on the row containing the input frame.
B) Microtubule network size evolution: We predicted the past and future dynamics of the image at
t = 75, then we used a segmentation algorithm to quantify the area of the microtubule network on
both prediction and ground truth data. C,D) Perceptual comparison between the prediction of future
and past time points with ground truth data.

Finally we shall mention that the qualitative similarity between the curves corresponding to different
geometries suggests that they would possibly collapse onto a single curve upon performing rotation
and scaling transformations in the latent space. Therefore, while the latent space carries informa-
tion about the geometry and size, its 2D embedding predominantly captures the features that are
independent of specific shapes, namely the contraction of the networks.

3.2 Active Matter Dynamics Prediction Analysis

An example of predictions on the test dataset made by the TCAE is shown in Fig. (3C). Perceptually,
the predictions made by taking the test frame at t = 50 as starting point agree with unseen experi-
mental data up to ∆t = 60. We can observe the contraction and shape preservation of the microtubule
network. Although in the training phase, we constrained ∆t to take positive values between 0 and
20, the time embedding Φ can be scaled by negative values, namely time translation in the opposite
direction. Given that we can move in either time direction in the latent space, TCAE can perform
whole video predictions from a single given frame. An example is shown in Fig. (3B). We see that
TCAE predictions follow closely the microtubule network area dynamics observed in experimental
data at least for 90 percent of the predicted frames from t = 33 to t = 150.

Finally, we define a simple metric to evaluate the shape mismatch between the ground truth and the
predicted segmented (binary) images, XTCAE and XGT. The normalized mismatch index ε is defined
as deviation of the overlapping area from unity. The overlapping area is in turn defined as the area of
the bit-wise product of the two binary images, normalized by the area of the ground truth image. Using
the double-sum notation A : B =

∑
i,j AijBij , we get: ε = 1− (XTCAE : XGT)/(XGT : XGT). This

metric is used to quantify the error of whole video prediction across all frames. Results are shown in
Fig. (3A). For 90% of frames, it is possible to predict on average 38.5 frames into the future with less

4



than 10% error. A maximum of 57 future frames (with less than 10% error) can be predicted if we
fix t = 66 , 67. If we consider predicting past dynamics, we can take 90% of frames to predict on
average 25.6 frames with less than 10% error. If we set t = 79 , 80, we can reach a maximum of 36
frames in the past (with less than 10% error).

4 Summary

We propose TCAE, an autoencoder-based framework that incorporates a linear shift neural network
that encodes time translation as a linear transformation within the latent space. Using our method,
we construct a latent representation of an active matter system that predominantly captures the
contraction of its microtubule networks. By leveraging the constructed latent representation, we can
make whole video predictions from single observations. We obtained high accuracy (less than 10%
error) in our predictions when compared to unseen ground truth data.
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