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Abstract

Deep unsupervised generative models are regarded as a promising alternative to supervised
counterparts in the field of MRI-based lesion detection. They denote a principled approach
for detecting unseen types of anomalies without relying on large amounts of expensive
ground truth annotations. To this end, deep generative models are trained exclusively on
data from healthy patients and detect lesions as Out-of-Distribution (OOD) data at test
time (i.e. low likelihood). While this is a promising way of bypassing the need for costly
annotations, this work demonstrates that it also renders this widely used unsupervised
anomaly detection approach particularly vulnerable to non-lesion-based OOD data (e.g.
data from different sensors). Since models are likely to be exposed to such OOD data in
production, it is crucial to employ safety mechanisms to filter for such samples and run
inference only on input for which the model is able to provide reliable results. We first
show extensively that conventional, unsupervised anomaly detection mechanisms fail when
being presented with true OOD data. Secondly, we apply prior knowledge to disentangle
lesion-based OOD from their non-lesion-based counterparts.

1. Introduction

MRI (Magnetic Resonance Imaging) scans pose the primary screening method to detect, as-
sess and segment brain pathologies for diagnosis and subsequent treatment planning. While
supervised Deep Learning approaches contribute state-of-the-art lesion segmentation tech-
niques [(Valverde et al., 2017), (Menze et al., 2014)], they are constrained to the distribution
of anomalies used during training and the need for corresponding pixel-wise ground-truth
labels from domain experts. This process is expensive and subject to an inter-/intra-rater
ambiguity (Moraal et al., 2010). Unsupervised methods on the other hand have the potential
to serve as a class-agnostic anomaly detection framework and might act as a quality assur-
ance tool for practitioners without the need to curate large specialized training datasets.

Nevertheless, unsupervised anomaly detection techniques exploit OOD detection as their
working principle, making them vulnerable to actual OOD samples during inference. Those
are samples that might or might not contain lesions but more importantly originate from
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Figure 1: Working principle of unsupervised lesion detection based on Variational Autoen-
coders (VAEs) as used in this work. During training, a VAE learns to approximate
the distribution of healthy images by maximizing the so-called Evidence Lower
Bound (ELBO) L, cf. Equ. 1. During inference, the residual map of an input test
image yields the pixel-wise lesion detection map. Since this process inherently
equates OOD detection with lesion detection, it is blind to domain-shift effects.
Thus, disentangling the sources of abnormality of the image (OOD?, lesional?),
be it due to a domain-shift or due to an actual lesion is of utmost importance
and should be considered by default.

a different domain compared to the training distribution, which might be due to different
scanner models used or changed parameters such as magnetic field strength. While the
issue of unreliable model behavior for OOD samples is well-known and has received much
attention in the case of supervised approaches in the past (Mårtensson et al., 2020), it is even
more pronounced for unsupervised anomaly detection - which equates anomaly detection
with OOD detection - by nature. Since models performing unsupervised anomaly detection
in the field of MRI will be presented with data whose generating process is governed by
numerous influencing factors that might provoke a domain-shift, this is of great concern for
safe model deployment and is usually not addressed assuming that test samples follow the
same distribution like the training data. Furthermore, datasets that contain both healthy
and lesional samples are typically not publicly available which complicates the investigation
of the severity of model performance degradation under such domain-shifts and makes this
a particularly challenging problem since there is no access to lesional samples originating
from the same domain. Thus, it is important to investigate whether common approaches
can disentangle the underlying factors for a sample to be OOD - i.e. whether it is lesional
or not. To this end, we also examine whether novel scores that arise from OOD detection
using neural networks yield improvements with respect to finding the underlying cause.

Unsupervised Lesion Detection Prior to the rise of Deep Learning-based approaches,
works have been proposed to detect lesions in an unsupervised manner, such as registering
images to a healthy standardized brain Atlas and fitting, amongst others, mixture models
based on tissue-specific densities to detect lesions as model outliers (Kamber et al., 1995;
Van, 2001; ?). More recently, Deep Generative models based on Variational Autoencoder
(VAE) (Kingma and Welling, 2014) and Generative Adversarial Networks (GAN) (Good-
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fellow et al., 2014; Schlegl et al., 2017, 2019) have become popular due to their abilities to
model high dimensional distributions, essentially learning what is referred to as the norma-
tive data distribution. During inference, anomaly detection is then performed by assessing
the deviation of test samples from the training distribution. One common way within VAE-
based frameworks is to do this via the reconstruction error of the reconstructed to the input
sample. For images, pixel-level anomaly detection is performed by thresholding the residual
map between an input and reconstruction images, as shown in Fig. 1, which builds upon the
assumption that lesional regions are expected to have high reconstruction errors since they
deviate from the training distribution. Recently, different metrics for pixel-level anomaly
detection have been proposed by (Zimmerer et al., 2019). (Baur et al., 2018) introduced
a VAE based framework incorporating adversarial training to improve the realism of re-
constructions and avoid memorization. (Chen and Konukoglu, 2018) identified the lack of
and improved latent space consistency by adding a regularizing constraint. (Chen et al.,
2020) used a VAE with mixtures of Gaussian in the latent space, which is a more expressive
prior distribution. At the same time, they applied Image Restoration on the reconstructed
image prior to assessing the residual image. (Baur et al., 2021) presented a comprehensive
comparative study for recent approaches to unsupervised lesion detection.

Out-of-Distribution Detection Unsupervised lesion detection techniques introduced
above are based on the idea of detecting OOD samples using generative models since le-
sional samples do not fit the training distribution. There has been a rising interest in OOD
detection, driven by the need to enable safe and interpretable model deployment since
machine learning models usually perform inferior on OOD samples (Louizos and Welling,
2017; Goodfellow et al., 2014). Recently, (Mårtensson et al., 2020) raised awareness for
this issue on medical MRI data in particular. Generative models seem to offer a principled
approach to detecting OOD samples by applying a single-sided threshold on the data log-
likelihood based on the training distribution (Bishop, 1994). However, recent work (Choi
et al., 2019; Nalisnick et al., 2019a) has shown that generative models might assign a higher
likelihood to OOD data than to in-distribution data, rendering this method problematic.
The latter also proposed the so-called Watanabe–Akaike information criterion (WAIC) score
which gives an asymptotically correct estimate of the gap between the training set and test
set expectations. While this metric does not address the notion of typicality like (Nalis-
nick et al., 2019b), that is, assessing where the largest amount of probability mass resides
within a high-dimensional feature space, it works surprisingly well in practice. Recently,
(Morningstar et al., 2020) introduced another density-based OOD detection framework by
aggregating various inference statistics, e.g. the reconstruction errors, into the so-called
Density of States Estimation (DoSE) score. Specifically, they fit a Kernel Density Estima-
tor (KDE) to each statistics distribution evaluated on the training data and mark novel
samples as OOD by thresholding their sum of likelihoods under said estimators.

Contributions This work raises awareness of the issue that the predominant approach
to unsupervised lesion detection is particularly vulnerable to OOD samples. This is done
by assessing multiple common metrics for anomaly and OOD detection and concluding that
predictions don’t reflect the true underlying reason for a sample to be labeled abnormal.
While this work does not aim to provide state-of-the-art lesion segmentation performance,
we explore concepts originating from recent work in OOD detection for Deep Generative
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Models, to enhance model robustness when presented with OOD data. More precisely, we
deploy and adapt recent approaches for OOD detection to answer the following questions:
Are OOD detection metrics suitable for sample-wise anomaly detection and is it possible to
disentangle lesion-based OOD samples from their non-lesion-based counterparts? Finally,
we explore the use of prior knowledge in the form of the entropy on the residual map in an
attempt to disentangle the influencing factors of lesions and domain-shifts during inference.

2. The OOD Blind Spot of Unsupervised Anomaly Detection

The following describes the theoretical foundations of the unsupervised lesion detection
framework based on VAE and its limitations due to entanglement of domain-shift and lesion
effects before finally discussing proposals on how to overcome those difficulties. Note that
while we discuss the limitations here on the of VAE-based approaches, these also extrapolate
to other unsupervised methods (Schlegl et al., 2019) that equate anomaly detection with
OOD detection. The objective of unsupervised lesion detection (cf. Fig. 1) is to train a
generative model fθ(·) on a set of healthy images X = {x(i)}Ni=1, where x(i) ∈ Rm×n, to

predict whether a query sample x
(i)
q ∈ Rm×n is anomalous, i.e. contains lesions (Sec. ??),

and to obtain a pixel-wise lesion map l ∈ {0, 1}m×n. We hypothesize that a sample might
be predicted to be anomalous either due to actual lesions or due to a domain-shift which
might cause the model to generate unreliable predictions since the commonly used metrics
for anomaly detection do not differentiate those two sources.

2.1. Background

Using generative models to perform unsupervised anomaly detection has been widely adopted
in tackling unsupervised lesion detection using MR images (Baur et al., 2021). Hereby, the
predominant approach is to approximate the generally intractable data distribution p(x)
using the VAE framework for a set of healthy images X.

VAEs (Kingma and Welling, 2014) aims to solve the generally intractable integral p(x) =∫
p(x|z)p(z)dz. It does so by introducing a surrogate posterior distribution q(z|x) and

approximating the data log-likelihood log p(x) by maximizing the so-called Evidence Lower
Bound (ELBO) L

log p(x) ≥ L = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Reconstruction Error

−DKL[qφ(z|x)||p(z)]︸ ︷︷ ︸
Prior Loss

, (1)

where qφ(z|x) and pθ(x|z) are modelled as neural networks with parameters φ and θ, re-
spectively. The former encodes input samples into the latent space z and thus is denoted
as the encoder. The latter is trained to reconstruct the input from this latent representa-
tion and hence is called the decoder. This framework allows for posterior inference via the
learned approximate posterior distribution qφ(z|x) which is being pushed towards a prior
p(z), N (0, I) in our case, during training by minimizing their KL Divergence denoted as
the prior loss.

Using a VAE trained on p(x), a potentially lesional test sample x̃(i) is being fed through
the generative model to obtain a reconstruction x̂(i). Being trained on healthy samples
exclusively, the model is expected to not be able to reconstruct lesional components while it
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Figure 2: Densities for sample-wise loss term contributions (cf. Equ.1) for various OOD
datasets. CamCAN T2 (teal) represents the in-distribution training data con-
taining only healthy slices. CamCAN T2 lesion holds samples from CamCAN
T2 but with artificially added Gaussian blobs to simulate lesional samples as
explained in Sec. 3 and shown in Fig. 3. All other datasets can be regarded as
OOD. We can conclude that non of the commonly used metrics, that is, DKL, l1
(reconstruction error) or L is able to differentiate between whether a sample is
being detected as abnormal due to a domain-shift or due to actual lesions.

should succeed in reconstructing healthy parts of the input. A pixel-wise anomaly segmen-
tation map can thus be retrieved by thresholding the pixel-wise residual r = ‖x̂(i)− x̃(i)‖p ∈
Rm×n, where ‖ · ‖p is the `p-norm, and p is chosen to be 1. A pixel is being marked as

anomaly if the per-pixel value in the residual image r = ‖x̂(i)−x̃(i)‖p exceeds some threshold
τ (cf. Sec. 5).

2.2. OOD Detection

For a given dataset {x(i)}Ni=1,x
(i) ∈ Rm×n, sampled from a distribution pdata(x), OOD

detection aims to answer the question whether a novel sample x(i) is sampled from the
same data generating distribution pdata(x) or some other unknown distribution.

At test time, the model might be exposed to samples from the following three categories
cf. Fig. 2:

(i) healthy & in-distribution, anomaly-free images from the same domain as the train-
ing data (e.g. CamCAN T2)

(ii) healthy & OOD, anomaly free-images with domain shift from the training data (e.g.
BraTS T2 healthy),

(iii) lesional & OOD, images with lesions regardless of domain shift (e.g. BraTS T2
lesional),

.
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To gain an intuition for the capabilities of each OOD score, we first assess their overall
capability to distinguish between in- and out-of-distribution samples. Interestingly, we
find that one recently proposed score indeed outperforms all commonly used metrics in
unsupervised lesion detection. The following metrics act as OOD scores for which we report
the area under ROC AUROC and PRC AUPRC curves. (1) the mean reconstruction error `1
per pixel for a whole sample, (2) the KL divergence DKL between posterior and prior and
(3) the ELBO L from Equ. 1. Furthermore, we exploit recent OOD metrics, namely the
(4) WAIC = Eθ[pθ(x)] − V arθ[log pθ(x)] score (Choi et al., 2019), where θ denote model
parameters of an ensemble of models, and (5) the DoSE =

∑
jKDEj(x) (Morningstar

et al., 2020) score. For DoSE, metrics (1)-(3) are being used as training statistics.

2.3. Disentangling Lesional and Non-Lesional OOD Samples

Our results (cf. Sec. 3.1) suggest that these classical OOD detection scores are incapable
of discriminating between healthy and lesional samples which is in agreement with the
findings from Fig. 2. However, the DoSE score offers the possibility to craft statistics
which potentially help to disentangle OOD scores for samples originating from groups (i) -
(iii).

Assumption Lesional samples are expected to have large residual errors confined in rela-
tively small regions considering pixels within a tumor dominating the reconstruction error.
On the other hand, a (healthy) OOD sample should show a steady but spread out er-
ror due to global domain-shift effects which is equivalent to a large uncertainty in the
pixel-wise error distribution which might be captured by the following entropy measure.
We extend the framework with an entropy statistic H`1 and investigate its suitability to
disentangle the underlying reasons for which a sample appears to be marked OOD. The
normalized sample-wise entropy scores are calculated on a normalized residual map r via
H`1(r) = −

∑np
j

rj log rj
lognp

. where np is the number of pixels within the brain mask.
To conclude, our framework provides two scores, a global OOD score in the form of

WAIC or DoSE and a second score using H`1 to address the problem of slice-wise anomaly
detection in particular.

3. Experiments

Datasets. Brain scan MRI training samples from 653 healthy patients originate from
the CamCAN dataset (Taylor et al., 2017) and only T2 weighted MR images are used for
training. For detection, we use T2- (and T1-weighted) images from the BraTS 2017 dataset
(Menze et al., 2014) which contains high- and low-grade glioma samples and provides pixel-
level ground-truth lesion segmentations. BraTS is considered to be OOD w.r.t. domain-shift
due to different scanning parameters and models. Since, to the best of our knowledge, there
exist no public MR brain datasets holding both healthy and lesional samples, we artificially
crafted lesional samples on top of the in-distribution validation set as described in Sec. 5.3.
We also test our algorithms on OOD datasets of non-medical images, which in theory reside
far away from the data distribution of group (i), e.g., MNIST and images of Gaussian
noise. Finally, to assess whether the widely used practice of histogram matching mitigates
this problem, we created matched and un-matched versions of the BraTS datasets. For
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Figure 3: Examples of pixel-wise anomaly detection pipeline using various OOD datasets.
The model has been trained on CamCAN T2. Columns 1-2 show For CamCAN
T2 artifical, the lesions have been generated artificially using 2D Gaussian blobs
where the ground truth segmentation refers to the 1σ intensity drop.

all tables, HM stands for matched histograms, where the histogram of each subject in
CamCAN and BRATS is matched to that of a reference subject randomly selected from
CamCAN. As histogram matching can be seen as a naive way to reduce the domain shift,
we investigate whether it leads to an accuracy gain when detecting anomalous slices from
different domains.

3.1. OOD Detection and Sample-wise Anomaly Detection

Tab. 1 reveals that the WAIC score performs best at distinguishing between in-distribution
and OOD slices regardless of whether the OOD samples contain lesions. It outperformed
the DoSE approach (using l1, DKL and L statistics) which is seemingly affected by the DKL

term suffering from performance degradation. Thus, the WAIC score may serve as a strong
candidate to perform initial filtering for OOD samples before employing a lesion-agnostic
score to distinguish healthy from lesional slices. Tab. 2 on the other hand shows results for
classifying slices as healthy or lesional. The positive class is chosen to hold lesional slices
from the test set while the negative class consists of healthy slices from the in-distribution
training data as well as healthy slices from the test set. While we have found the DKL-
term to be a strong candidate metric for anomaly detection in some settings (similar to
(Zimmerer et al., 2019)), we have found it to be heavily influenced by architectural choices
and training dynamics which let’s us conclude that it is not a robust choice for metric for
the task at hand. The proposed normalized entropy score shows no more discriminative
power compared to the established metrics (such as l1) which demands more investigation
into ways to disentangle the underlying mechanisms for a sample to be OOD or not.
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Table 1: OOD detection performance. The negative class holds samples from CamCAN
T2 while the positive class consists of samples from the respective OOD dataset.
OOD samples are subdivided s.t. either only healthy, lesional or all of them are
considered. `1 is the mean reconstruction error per pixel for a slice, DKL the KL
divergence between the prior and approximate posterior and L the ELBO. We
further introduce recent metrics from OOD detection in the form of WAIC and
DoSE score using `1, DKL and L training statistics. We observe that WAIC
performs best at detecting domain-shifted samples across all datasets.

OOD Metric `1 DKL L WAIC DoSE(l1,DKL,L)
OOD Dataset AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

BraTS
T2
HM

all 0.89 0.86 0.68 0.61 0.85 0.81 0.93 0.95 0.78 0.70
healthy 0.85 0.84 0.73 0.71 0.79 0.79 0.87 0.91 0.78 0.76
lesion 0.92 0.89 0.63 0.55 0.90 0.87 0.99 0.99 0.78 0.70

BraTS
T2

all 0.87 0.85 0.69 0.62 0.83 0.81 0.91 0.92 0.79 0.72
healthy 0.84 0.83 0.74 0.72 0.77 0.78 0.84 0.85 0.80 0.77
lesional 0.92 0.90 0.64 0.56 0.89 0.86 0.98 0.98 0.78 0.70

BraTS
T1
HM

all 0.92 0.91 0.73 0.64 0.88 0.88 0.92 0.95 0.82 0.76
healthy 0.88 0.88 0.76 0.71 0.83 0.85 0.86 0.91 0.82 0.79
lesional 0.96 0.95 0.70 0.60 0.95 0.93 0.99 0.99 0.83 0.76

BraTS
T1

all 0.95 0.94 0.77 0.74 0.91 0.90 0.97 0.98 0.86 0.82
healthy 0.94 0.94 0.82 0.82 0.88 0.88 0.94 0.96 0.88 0.86
lesional 0.97 0.96 0.73 0.66 0.96 0.96 1.00 1.00 0.84 0.78

CamCAN
T2
artificial

all 0.69 0.69 0.55 0.58 0.66 0.68 0.74 0.79 0.63 0.61
healthy 0.51 0.51 0.51 0.50 0.52 0.52 0.68 0.73 0.52 0.50
lesional 0.87 0.85 0.60 0.64 0.84 0.82 0.81 0.84 0.74 0.70

MNIST 1.00 1.00 0.00 0.31 1.00 1.00 1.00 1.00 1.00 1.00

Gaussian Noise 1.00 1.00 0.00 0.30 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Slice-wise anomaly detection on various Out-of-Distribution datasets. The positive
class holds lesional slices from the respective test set while the negative class holds
healthy slices from the test and in-distribution validation set (CamCAN T2). To
this point, neither the entropy score nor classical OOD detection metrics are able
to outperform the classical reconstruction error metric.

Metric `1 DKL L H`1 WAIC DoSE(`1, DKL, L, H`1)
Test Set AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

BraTS T2 HM 0.74 0.44 0.50 0.31 0.74 0.44 0.66 0.37 0.64 0.41 0.55 0.30

BraTS T2 0.72 0.41 0.47 0.29 0.73 0.42 0.65 0.35 0.62 0.39 0.53 0.29

BraTS T2 HM H-flip 0.73 0.41 0.50 0.30 0.73 0.41 0.66 0.36 0.62 0.38 0.54 0.29

BraTS T2 HM V-flip 0.59 0.31 0.38 0.22 0.59 0.31 0.53 0.27 0.62 0.36 0.46 0.25

CamCAN T2 artificial 0.83 0.82 0.53 0.61 0.82 0.82 0.71 0.75 0.77 0.78 0.67 0.66

4. Conclusion

In this work, we have shed light on the issue that unsupervised lesion detection and Out-of-
Distribution detection are by nature entangled since, by definition, the former relies on the
latter. We point out that more work needs to be done to fully understand and solve the issue
of entangled OOD factors to enable safe deployment of models performing unsupervised
lesion detection, such as further analysis with other types of detection frameworks, i.e.
restoration-based methods.
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5. Appendix

5.1. Implementation Details

We follow the generalised encoder-decoder architecture from (Baur et al., 2021). Each layer
consists of a 2D convolution followed by batch normalisation and a LeakyReLU activation
function. Models are trained for 80 epochs with a batch size of 128 and linear β-annealing
(weight of KL-term) from 0.0 to 0.3 over the first 5 epochs. The final value for β has
been found empirically by maximizing reconstruction performance (low β better) while still
producing visually coherent samples. Adam optimizer is used with an initial learning rate
of 10−4. The full source code will be made publicly available at https://github.com/

matthaeusheer/uncertify.

5.2. Pixel-wise Anomaly Detection

Determining the Pixel-wise Lesion Detection Threshold Since, in an unsupervised
setting, there is no access to ground truth labels, it is not possible to tune such hyper-
parameters with regards to the final metrics of interest, e.g. the Dice score. Instead,
we follow the approach in (Konukoglu et al., 2018), where we assume any pixel from the
training set images marked to be anomalous by the anomaly detection algorithm to be a
false positive. We set a limit lFPR on the false positive rate FPRtrain we are willing to
accept to determine a threshold that satisfies the constraint. The threshold is computed
via the Golden Section Search algorithm (Kiefer, 1953) by solving the optimization problem
τ = min

t
|FPRtrain(t)− lFPR|. Finally, the threshold τ gets deployed to convert the residual

map r to a binary lesion map for which the final segmentation metrics are being computed
per patient on unseen test data.

Pixel-Wise Anomaly Detection Performance Tab. 3 shows the pixel-wise anomaly
detection performance of the model used throughout this study with and without post-
processing steps in comparison with the baseline from (Chen et al., 2020). Ground truth
is obtained from the lesion segmentation mask and only pixels within the brain mask are
considered for this analysis. For clinical applicability, Dice scores are calculated per patient
reporting mean and standard deviation. It is evident that performing histogram matching
prior to inference improves lesion detection performance slightly. Comparison is being made
with the state-of-the-art performance (Chen et al., 2020) since they use the same training
and test datasets. Our results cf. Tab. 3 outperform the baseline mainly due to post-
processing applied but lack behind the state-of-the-art which implements a more powerful
latent space representation and image restoration.

5.3. Preprocessing and Postprocessing steps

Preprocessing Brain scan MRI training samples from healthy patients originate from
the CamCAN dataset (Taylor et al., 2017) and only T2 weighted MR images are used for
training. Pre-processing includes bias correction using the N4 algorithm (Tustison et al.,
2010) and centering of the brain. Patient-wise histogram matching to a randomly chosen
in-distribution sample ensures similar intensity profiles throughout all training samples. Fi-
nally, all pixel values within the brain mask are normalized to zero mean and unit variance,
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Table 3: Pixel-wise anomaly segmentation (Dice) and detection (AUROC / AUPRC) perfor-
mance. * includes post-processing (smoothing & mask-erosion of residual map) ,
** no post-processing, *** results from (Chen et al., 2020).

Dataset BraTS T2 HM BraTS T2 CamCAN T2 artificial lesions BraTS T1
Model Dice AUROC AUPRC Dice AUROC AUPRC Dice AUROC AUPRC Dice AUROC AUPRC

Baseline*** 0.23 ± 0.13 0.69 - - - - - - - - - -

Ours VAE* 0.34 ± 0.12 0.75 0.25 0.31 0.73 0.20 0.63 0.92 0.66 0.10 0.51 0.07

Ours VAE** 0.25 ± 0.11 0.69 0.16 0.22 0.66 0.13 0.39 0.88 0.43 0.10 0.49 0.07

GMVAE*** 0.46 ± 0.23 0.83 - - - - - - - - - -

again, on a per-patient level. Empty MR slices are excluded during training. To obtain
lesional samples following the same distribution as CamCAN T2, we artificially crafted le-
sional samples by randomly adding high-intensity Gaussian blobs to CamCAN T2-weighted
images. The blobs standard deviations range from 0 to 10 (given images of size 128× 128)
and are weighted such as to have similar maximum intensities compared to real lesions. Fi-
nally, we applied vertical and horizontal flipping (V-flip, H-flip) following common practices
in recent OOD detection works.

Post-Processing Postprocessing, that is eroding the brain mask inwards and applying
median filtering on the residual map to reduce false positives, yields significant performance
boosts. We did not perform 3D connected component filtering which is expected to increase
performance even further (Baur et al., 2021).
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Figure 4: Similar to Fig. 2, however, now the impact of histogram matching before in-
ference shall be emphasized. While histogram matching generally improves the
reconstruction and lesion segmentation performance (cf. Tab. 3), it does not pro-
vide a solution to the entanglement of domain-shift and lesions. That is, it does
not shift the healthy OOD samples in a way that their distributions overlap with
the healthy in-distribution samples.

5.4. Volumetric Consistency of the Reconstruction Error

One might be tempted to question whether it is enough to consider individual slices in the
anomaly detection process without leveraging the information of slices nearby. That is,
could it happen that a slice predicted to be healthy might be embedded in two slices which
are predicted to be lesional. Fig. 5 reveals that this is typically an unrealistic scenario for
the case of hyper-intense lesions. Nevertheless, 3D convolutional neural networks might be
an interesting way forward, especially when the lesions are not so distinct as the one shown
in the example.
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Figure 5: Left: All axial slices comprising a single BraTS T2 sample. Right: Corresponding
slice-wise mean per-pixel reconstruction error, l1. This reveals that the recon-
struction error is close to being smooth and slices marked as healthy embedded
in lesional slices can be expected to be rather unlikely.
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