
SENSEI: Semantic Exploration Guided by Foundation Models
to Learn Versatile World Models

Cansu Sancaktar * 1 2 Christian Gumbsch * 1 3 4 Andrii Zadaianchuk 1 5 Pavel Kolev 1 Georg Martius 1 2

Abstract
Exploration is a cornerstone of reinforcement
learning (RL). Intrinsic motivation attempts to
decouple exploration from external, task-based
rewards. However, established approaches to in-
trinsic motivation that follow general principles
such as information gain, often only uncover low-
level interactions. In contrast, children’s play sug-
gests that they engage in meaningful high-level
behavior by imitating or interacting with their
caregivers. Recent work has focused on using
foundation models to inject these semantic biases
into exploration. However, these methods often
rely on unrealistic assumptions, such as language-
embedded environments or access to high-level
actions. We propose SEmaNtically Sensible Ex-
ploratIon (SENSEI), a framework to equip model-
based RL agents with an intrinsic motivation for
semantically meaningful behavior. SENSEI dis-
tills a reward signal of interestingness from Vision
Language Model (VLM) annotations, enabling
an agent to predict these rewards through a world
model. Using model-based RL, SENSEI trains an
exploration policy that jointly maximizes seman-
tic rewards and uncertainty. We show that in both
robotic and video game-like simulations SENSEI
discovers a variety of meaningful behaviors from
image observations and low-level actions. SEN-
SEI provides a general tool for learning from foun-
dation model feedback, a crucial research direc-
tion, as VLMs become more powerful.1
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1. Introduction
Achieving intrinsically-motivated learning in artificial
agents has been a long-standing dream, making it possible
to decouple agents’ learning from an experimenter manually
crafting and setting up tasks. Thus, the goal in intrinsically-
motivated reinforcement learning (RL) is for agents to ex-
plore their environment efficiently and autonomously, con-
stituting a free play phase akin to children’s curious play.
Various intrinsic reward definitions have been proposed in
the literature, such as aiming for state space coverage (Belle-
mare et al., 2016; Tang et al., 2017; Burda et al., 2019), nov-
elty or retrospective surprise (Pathak et al., 2017; Schmidhu-
ber, 1991), and information gain of a world model (Pathak
et al., 2019; Sekar et al., 2020; Sancaktar et al., 2022). How-
ever, when an agent starts learning from scratch, there is one
fundamental problem: just because something is novel does
not necessarily mean that it contains useful or generalizable
information for any sensible task (Dubey & Griffiths, 2017).

Imagine a robot facing a desk with several objects. The
robot could explore by trying to move through the entire
manipulable space or hitting the desk at various speeds. In
contrast, human common sense would primarily focus on
interacting with the objects or drawer of the desk since po-
tential task distributions likely revolve around those entities.

Agents exploring their environment with intrinsic motiva-
tions suffer from a chicken-or-egg problem: how do you
know something is interesting before you have tried it and
experienced interesting consequences? This is a bottleneck
for the types of behavior that an agent can unlock during
free play. We argue that incorporating human priors into
exploration could alleviate this roadblock. Similar points
have been raised for children’s play. During the first years
of life, children are surrounded by their caregivers who ide-
ally encourage and reinforce them while they explore their
environment. Philosopher and psychologist Karl Groos has
stipulated that there is “a strong drive in children to observe
the activities of their elders and incorporate those activities
into their play" (Gray, 2017; Groos & Baldwin, 1901).

A potential solution in the age of Large Language Mod-
els (LLMs), is to utilize language as a cultural-transmitter
to inject “human notions of interestingness" (Zhang et al.,
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Figure 1. SENSEI overview: (a) During pre-training we prompt a VLM to compare observations (e.g. images) from an environment with
respect to their interestingness. We distill this ranking into a reward function (SENSEI) for exploration. (b) An exploring agent not only
receives observations (ot) and rewards (rt) from interactions with the environment, but also a semantic exploration reward (rsemt ) from
SENSEI. (c) The agent learns a world model from its experience to judge the interestingness (r̂semt ) of states without querying SENSEI.

2023a) into RL agents’ exploration. LLMs are trained on
an immense amount of data produced mostly by humans.
Thus, their responses are likely to mirror human preferences.
However, the most prominent works in this domain assume
(1) a language-grounded environment (Zhang et al., 2023b;
Du et al., 2023; Klissarov et al., 2023), (2) the availability of
an offline dataset with exhaustive state-space coverage (Klis-
sarov et al., 2023), or (3) access to high-level actions (Zhang
et al., 2023a; Du et al., 2023). These assumptions are de-
tached from the reality of embodied agents, e.g. in robotics,
which don’t come with perfect state or event captioners, pre-
existing offline datasets nor with robust, high-level actions.
Furthermore, none of these approaches learn an internal
model of “interestingness.” Thus, they rely on the LLM, or
a distilled module, to continuously guide their exploration.

In this work, we propose SEmaNtically Sensible Explo-
ratIon (SENSEI), a framework for Vision Language Model
(VLM) guided exploration for model-based RL agents, il-
lustrated in Fig. 1. SENSEI starts with a short description of
the environment and a dataset of observations (e.g. images)
collected through self-supervised exploration. A VLM is
prompted to compare the observations pairwise with respect
to their interestingness and the resulting ranking is distilled
into a reward function. When the agent explores its en-
vironment, it receives semantically-grounded exploration
rewards from SENSEI. It learns to predict this exploration
signal through its learned world model, corresponding to
an internal model of “interestingness”. The agent improves
its exploration strategy by aiming for states for which it
predicts a high interestingness and then branching out to
uncertain situations. Our main contributions are as follows:

• We propose SENSEI, a framework for foundation model-
guided exploration with world models.

• We show that SENSEI can explore rich, semantically
meaningful behaviors with few prerequisites.

• We demonstrate that the versatile world models learned

through SENSEI enable fast learning of downstream tasks.

2. Method
We consider the setup of an agent interacting with a
Partially Observable Markov Decision Process. At each
time t, the agent performs an action at ∈ A and receives an
observation ot ∈ O, composed of an image and potentially
additional information. We assume that there exist one or
more tasks in the environment with corresponding rewards
rtaskt ∈ R. However, during task-free exploration, the agent
should select its behavior agnostic to task rewards.

We assume that SENSEI starts with a dataset Dinit ⊂ O,
collected from self-supervised exploration with information
gain as intrinsic reward (Sekar et al., 2020), thus not relying
on a pre-existing expert dataset. SENSEI has access to a
pretrained VLM and is provided with a short description of
the environment, either from a human expert or generated
by the VLM, based on some observations from Dinit.
Prior to task-free exploration, SENSEI distills a semantic
exploration reward function from VLM annotations
(Sec. 2.1). During exploration, SENSEI learns a world
model (Sec. 2.2) and optimizes an exploration policy
through model-based RL (Sec. 2.3).

2.1. Reward function distillation: MOTIFate SENSEI

Prior to task-free exploration, SENSEI needs to distill a
semantically grounded intrinsic reward function Rψ with
learnable parameters ψ based on the preferences of a pre-
trained VLM. While the overall framework of SENSEI is
agnostic to the exact distillation method, we chose to use
a vision-based extension of MOTIF (Klissarov et al., 2023;
illustrated in Fig. 2a), which we refer to as VLM-MOTIF.2

2Original MOTIF (Klissarov et al., 2023) assumes an environ-
ment where events are captioned in natural language. Thus, they
can use LLMs to annotate captions of observations.
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Figure 2. Intrinsic rewards in SENSEI: (a) Prior to exploration, we prompt GPT-4 to compare images with respect to the interestingness
for a certain environment. From the resulting ranking we distill a reward function Rψ using VLM-MOTIF. (b) Later, an agent learns an
RSSM world model from exploration. From each state the agent predicts two intrinsic rewards, i.e., the distilled semantic rewards rsemt
and uncertainty-based rewards rdist .

MOTIF consists of two phases. In the first phase of dataset
annotation, the pretrained foundation model is used to com-
pare pairs of observations, creating a dataset of preferences.
For this, we prompt the VLM with an environment descrip-
tion and pairs of observations from Dinit, asking the VLM
which image it considers to be more interesting. The anno-
tation function is given by the VLM : O ×O → Y , where
O is the space of observations, and Y = {1, 2, ∅} is a space
of choices for the first, second or none of the observations.
In the reward training phase, a reward function is derived
from the VLM preferences using standard techniques from
preference-based RL (Wirth et al., 2017). A cross-entropy
loss function is minimized on the dataset of preference pairs
to learn a semantically grounded reward model Rψ : O →
R. We use the final semantic reward function Rψ when-
ever the agent interacts with its environment: the agent not
only receives an observation ot and reward rt after execut-
ing an action at, but also receives a semantically-grounded
exploration reward rsemt ← Rψ(ot) (see Fig. 1, center).

2.2. World model: Let your SENSEI dream

We assume a model-based setting, i.e., the agent learns a
world model from its interactions. Following DreamerV3
(Hafner et al., 2023), we implement the world model as a
Recurrent State Space Model (RSSM) (Hafner et al., 2019b).
The RSSM with learnable parameters ϕ is computed by

Posterior: zt ∼ qϕ(zt | ht,ot) (1)
Dynamics: ht+1 = fϕ(at,ht, zt) (2)

Prior: ẑt+1 ∼ pϕ(ẑt+1 | ht+1) (3)

In short, the RSSM encodes all interactions through two la-
tent states, a stochastic state zt and a deterministic memory

ht. At each time t, the RSSM samples a new stochastic state
zt from a posterior distribution qϕ computed from the cur-
rent deterministic state ht and new observation ot (Eq. 1).
The RSSM updates its deterministic memory ht+1 based on
the action at and previous latent states (Eq. 2). Then, the
model predicts the next stochastic state ẑt+1 (Eq. 3). Once
the new observation ot+1 is received, the next posterior qϕ
is computed and the process is repeated.

Besides encoding dynamics within its latent state, the RSSM
is also trained to reconstruct external quantities yt from its
latent state via output heads oϕ:

Output heads: ŷt ∼ oϕ(ŷt | ht, zt) (4)

with yt ∈ {ot, ct, rt, rsemt }. The RSSM of DreamerV3
(Hafner et al., 2023) reconstructs observations ot, episode
continuations ct, and rewards rt. For SENSEI, we addi-
tionally predict the semantic exploration reward rsemt . The
world model is trained end-to-end to jointly optimize the
evidence lower bound.

Thus, our world model learns to predict semantic interest-
ingness r̂semt of states (see Fig. 1, right). We could base
exploration exclusively on this signal. However, we (1) ex-
pect to face many local optima when optimizing for this
signal and (2) we do not want to only explore a fixed set
of behaviors, but ensure that the agent goes for interesting
and yet novel states. To overcome this limitation, Klissarov
et al. (2023) post-process rsemt and normalize it by episodic
event message counts. As we do not assume ground-truth
countable event captions, we instead combine our seman-
tic reward signal with epistemic uncertainty, a quantity
that was shown to be an effective objective for model-based
exploration (Sekar et al., 2020; Pathak et al., 2017; San-
caktar et al., 2022). Following Plan2Explore (Sekar et al.,
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Figure 3. Switching exploration behavior in SENSEI: (a) When
the agent is in an uninteresting state it mainly strives to maximize
“interestingness” (rsemt ), e.g. by going to a key. (b) When in an
interesting state, the agent more strongly attempts to increase
uncertainty (rdist ) by trying new actions, e.g. picking up the key.

2020), we train an ensemble of N models with weights
{θ1, . . . , θN} to predict the next stochastic latent states with

Ensemble predictor: ẑnt ∼ gθn(ẑnt | ht, zt,at). (5)

We quantify epistemic uncertainty as ensemble disagree-
ment rdist by computing the variance over the ensemble
predictions averaged over latent state dimensions J :

rdist =
1

J

J∑
j=1

Var(ẑnj,t), (6)

Thus, the model learns to predict two intrinsic rewards
(r̂semt , rdist ) for a state-action-pair (Fig. 2b).

2.3. Exploration policy: Go and Explore with SENSEI

We could use a weighted sum of the two intrinsic reward
signals, e.g. rsemt +βrdist , as the overall reward rexplt for op-
timizing an exploration policy. However, ideally the weight-
ing of the two signals should depend on the situation. In un-
interesting states, we want the agent to mostly pursue inter-
estingness (via rsemt ). However, once the agent has found an
interesting state, we would like the agent to branch out and
discover new behavior (via rdist ). This follows the principle
of Go-Explore (Ecoffet et al., 2021), where the agent should
first go to a subgoal and explore from there (illustrated in
Fig. 3). We implement this using an adaptive threshold pa-
rameter β ∈ {βgo, βexplore}, with βexplore > βgo, whose
value depends on the following switching criteria:

rexplt = r̂semt +

{
βexplorerdist , if r̂semt ≥ Qk(r̂sem);
βgordist , otherwise.

(7)

Here Qk denotes the kth quantile of r̂sem, which we esti-
mate through a moving average. Thus, until a certain level
of r̂sem is reached, the exploration reward mainly aims to
maximize interestingness. After exceeding this threshold,
exploration more strongly favors uncertainty-maximizing
behaviors. As soon as the agent enters a less interesting
state with r̂sem < Qk, SENSEI switches back to focusing

on semantic interestingness. The two trade-off factors βgo

and βexplore, as well as the quantile k are hyperparameters.
More details on this adaptation and hyperparameters can be
found in Suppl. B. We learn an exploration policy based on
rexplt using DreamerV3 (Hafner et al., 2023).

3. Related work
Intrinsic rewards are applied either to facilitate exploration
in tasks where direct rewards are sparse or in a task-agnostic
setting where they help collect diverse data. Many
different reward signals have been proposed as exploration
rewards (Baldassarre & Mirolli, 2013), such as prediction
error (Schmidhuber, 1991; Pathak et al., 2017; Kim et al.,
2020), Bayesian surprise (Storck et al., 1995; Blaes et al.,
2019; Paolo et al., 2021), learning progress (Schmidhuber,
1991; Colas et al., 2019; Blaes et al., 2019), empower-
ment (Klyubin et al., 2005; Mohamed & Jimenez Rezende,
2015), metrics for state-space coverage (Bellemare
et al., 2016; Tang et al., 2017; Burda et al., 2019) and
regularity (Sancaktar et al., 2024). While effective for low-
dimensional observations, such objectives are challenging
to apply for high-dimensional image observations. Here,
alternatives are employing low-dimensional goal spaces
(Colas et al., 2019; OpenAI et al., 2021; Nair et al., 2018;
Pong et al., 2019; Zadaianchuk et al., 2021; Mendonca et al.,
2021) or learning latent world models (Hafner et al., 2019a;
2023; Gumbsch et al., 2024) that can be employed for
model-based exploration (Pathak et al., 2019; Sekar et al.,
2020). In particular, Plan2Explore (Sekar et al., 2020) uses
ensemble disagreement of latent space dynamics predictions
as an intrinsic reward. While this is a very general strategy
for exploration, this could be limited in more challenging en-
vironments where semantically meaningful or goal-directed
behavior (Spelke, 1990) is needed for efficient exploration.

Exploration with foundation models: Recent improve-
ments of in-context learning of LLMs open additional ways
to explore using human bias of interestingness during ex-
ploration (Klissarov et al., 2023; Du et al., 2023; Zhang
et al., 2023a) and skill learning (Colas et al., 2020; 2023;
Zhang et al., 2023b). MOTIF (Klissarov et al., 2023) lever-
ages LLMs to derive intrinsic rewards by comparing pairs
of event captions, demonstrating its efficacy in the com-
plex game of NetHack (Küttler et al., 2020). Similarly,
ELLM (Du et al., 2023) uses LLMs to guide RL agents
towards goals that are meaningful, based on the agent’s cur-
rent state represented by text. Furthermore, OMNI (Zhang
et al., 2023a) introduces a novel method to prioritize tasks
using LLMs. Thereby, OMNI focuses on tasks that are
not only learnable but also generally interesting. LAMP
(Adeniji et al., 2023) proposes to use VLMs for reward mod-
ulation by first generating a set of potential tasks with an
LLM and then generating task-based rewards using VLMs.
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(b) semantic exploration reward

Figure 4. Semantic exploration rewards for example trajectories: From top to bottom we show example trajectories for MiniHack
KeyRoom and KeyChest (see Fig. 10 for map view), Robodesk, and Pokémon Red.We showcase rewards from VLM-MOTIF distilled
from GPT-4 annotations. The reward trajectories peak at the “interesting” moments of exploration, such as opening a drawer in Robodesk,
picking up the key in MiniHack, or landing a critical hit in Pokémon. For Robodesk we show reward trajectories for both SENSEI and a
version of SENSEI with a more general, zero pre-knowledge prompting strategy (SENSEI GENERAL, see Sec. 4.2.2).

Reward-shaping through VLMs: Most works that
rely on VLMs as reward sources try to solve the reward
specification problem in RL. In these works, a task is
assumed to be described as a language caption (Cui et al.,
2022; Rocamonde et al., 2023; Baumli et al., 2023; Adeniji
et al., 2023), as a goal image (Cui et al., 2022), or as a
video demonstration (Sontakke et al., 2023). In particular,
RL-VLM-F (Wang et al., 2024) uses a very similar setup to
SENSEI. Pairs of images from initial rollouts are compared
using a VLM to distill a reward function via MOTIF (Klis-
sarov et al., 2023). However, we assume a model-based
setup and do not explicitly prompt the task and distill an
environment-specific but general exploration reward.

4. Results
Our experiments set out to empirically evaluate the follow-
ing questions:

1. Does the distilled reward function Rψ from VLM anno-
tations encourage interesting behavior?

2. Can SENSEI discover semantically meaningful behavior
during task-free exploration?

3. Is the world model learned via exploration suitable for
later learning to efficiently solve downstream tasks?

4. Can SENSEI be combined with extrinsic rewards to solve
tasks that require substantial exploration?
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Figure 5. Interactions in MiniHack: We plot the mean number of interactions with task-relevant objects and the environment reward
(unknown to the agents) collected by SENSEI, Plan2Explore (P2X) and pure VLM-MOTIF (SENSEI with no information gain, i.e. β = 0)
for KeyRoom-S15 (a) and KeyChest (b). Error bars show the standard error (10 seeds).

We answer these questions by (1) illustrating that the seman-
tic rewards obtained from VLM-MOTIF reflect interesting
events in the environment, (2) quantitatively showing that
SENSEI leads to more interaction-rich behavior during task-
free exploration, (3) employing the learned world models
to successfully train task-based policies and (4) combin-
ing SENSEI’s exploration strategy with extrinsic rewards to
tackle a challenging environment that cannot be efficiently
explored using rewards alone. We use three fundamentally
different types of environments:

MiniHack (Samvelyan et al., 2021) is a sandbox to design
RL tasks based on NetHack (Küttler et al., 2020). In Mini-
Hack, an agent needs to navigate dungeons by meaningfully
interacting with its environment, e.g. open a door with a key.
We tested two tasks: fetching a key in a large room to unlock
a smaller room with an exit (KeyRoom-S15) or fetching
a key to open a chest in a maze of rooms (KeyChest).
MiniHack uses discrete actions. As observations we use
pixel-based, egocentric views around the agent and a binary
flag indicating key pick-ups (details in Suppl. C.2).

Robodesk (Kannan et al., 2021) is a multi-task RL bench-
mark in which a simulated robotic arm can interact with vari-
ous objects on a desk, including buttons, two types of blocks,
a ball, a sliding cabinet, a drawer, and a bin. For different
objects, there exist different tasks, e.g. open_drawer.
Robodesk uses pixel-based observations and continuous
actions. In order to deal with occlusions, we use images
from two camera angles for VLM annotations but only one
camera angle as input to our agents (details in Suppl. C.1).

Pokémon Red is a Game Boy role-playing game where
players control a trainer exploring a world of collectible crea-
tures called Pokémon. Exploration is essential for progress,
as players must navigate a vast, interconnected world and
master a semantic battle system (e.g. Water beats Rock) to
defeat Gym leaders and become Pokémon Champion. Our
implementation (Whidden, 2023; Suarez, 2024) use the raw
game screen as pixel-based observations and discrete actions
corresponding to Game Boy button presses (see Suppl. C.3).

In all environments, we collect the initial dataset Dinit with
Plan2Explore (Sekar et al., 2020), the current state-of-the
art in exploration with pixel-based observations. We collect
data from 500k steps in MiniHack and Pokémon Red and
1M steps in Robodesk. For data annotation, we use GPT-4
(details in Suppl. D).

4.1. Reward function of SENSEI

In Fig. 4 we illustrate how the distilled VLM-MOTIF reward
function Rψ assigns semantic rewards rsemt for exemplary
sequences. In MiniHack, rsemt clearly jumps for significant
events. Frames 2 & 3 in KeyRoom-S15 and KeyChest
respectively, are right before the key is picked up. Later,
rsemt increases further once the agent is at the door or chest
with a key (Frame 3 in KeyRoom-S15 and Frames 4&5
in KeyChest). For Robodesk, we see that as the robot is
interacting with objects, rsemt increases, e.g., when open-
ing the drawer or pushing the blocks. For Pokémon Red,
rsemt rises while winning a battle, with surges for inflicting
damage and drops for setbacks such as getting poisoned.
More examples of Robodesk are shown in Suppl. Fig. 17
and examples of Pokémon Red in Suppl. Fig. 26.

4.2. Task-free exploration

4.2.1. MINIHACK

We quantify the interactions uncovered by SENSEI during
task-free exploration in two tasks of MiniHack. For task-
relevant events, the mean number of interactions are plotted
in Fig. 5. SENSEI focuses more on semantically interesting
interactions compared to Plan2Explore, e.g. picking up a
key, opening a locked door, or finding the chest with a key.
As a result, SENSEI completes both tasks more frequently
than Plan2Explore during task-free exploration, as evident
by the higher number of collected rewards. We believe
this indicates that SENSEI is well suited for initial task-free
exploration in these environments, enabling the discovery
of state-space regions crucial for solving downstream tasks.
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Figure 6. Interactions in Robodesk: We plot the mean number of
object interactions during 1M steps of exploration for SENSEI (en-
vironment description provided by us), a more general variant of
SENSEI with a VLM-generated environment description (SENSEI

GENERAL), Plan2Explore (P2X), and Random Network Distilla-
tion (RND). Error bars show the standard deviation (3 seeds).

Is information gain crucial for SENSEI? We show re-
sults for exploration with pure semantic reward rsemt , corre-
sponding to SENSEI without an information gain reward rdist
(β = 0). In this VLM-MOTIF ablation, we emphasize the
crucial role of the information gain objective. Optimizing
only for the semantic reward rsemt can cause the agent to
get stuck in local optima and hinder further exploration. For
example in KeyRoom, the agent with VLM-MOTIF often
picks up the key. However, it fails to explore the room well
enough after key pick-ups to find and open the door and
reach the exit, as reflected in the interaction metrics in Fig. 5.
We observe a similar scenario for KeyChest: although the
pure VLM-MOTIF agent reaches the chest often after hav-
ing picked up the key, it collects substantially less rewards
than SENSEI. For the episode to end, the agent needs to use
the key to open the chest. The VLM-MOTIF agent, however,
simply hovers around the chest. As being at the chest with
a key is an "interesting" state and opening a chest immedi-
ately terminates the episode, there is no real incentive for
the agent to explore chest openings. This ablation shows the
importance of combining novelty and usefulness in order
to continually push the frontier of experience.

4.2.2. ROBODESK

Next, we analyze exploration in the challenging visual
control suite of Robodesk. Here we compare 1M steps
of exploration in SENSEI with Plan2Explore and Random
Network Distillation (RND, Burda et al., 2019), a strong
model-free exploration approach that uses prediction errors
of random image embeddings as intrinsic rewards to max-
imize state space coverage. Fig. 6 plots the mean number
of object interactions during exploration for the three meth-
ods. On average, SENSEI interacts more with most available
objects than the baselines. As a result, in a majority of
tasks SENSEI receives more task rewards during exploration
than Plan2Explore or RND (shown in Suppl. E.3). Qualita-
tively, we observe that Plan2Explore mostly performs arm
stretches3, whereas RND mostly moves the arm around in
the center of the screen, mostly hitting buttons, as they are
also centered on the table, and occasionally hitting objects.

Thus, our semantic exploration scheme leads to more object
interactions than uncertainty-based exploration, even in a
low-level motor control robotic environment.

Is an environment description by a human expert neces-
sary for SENSEI? In the previous SENSEI experiments,
we provided a small environment description in the prompts
for the VLM annotations. We investigate whether SENSEI
relies on this external description in Robodesk, and compare
against a version of SENSEI using a more general, zero-
knowledge prompting strategy (SENSEI GENERAL). SEN-
SEI GENERAL first prompts the VLM for an environment
description given an image of the environment and uses
the generated answer as context to annotate the dataset of
preferences (details in Suppl. D.2). As shown in Fig. 6, SEN-
SEI GENERAL interacts roughly as often with the relevant
objects as SENSEI, outperforming both Plan2Explore and
RND in terms of overall number of object interactions. Thus,
injecting external environment knowledge to the prompts
is not necessary and this step can be fully automated. This
further cements the generality of our approach.

Ablations We perform ablations to see (1) how noisy an-
notations from VLMs affect SENSEI compared to an oracle
annotator, (2) how much the behavior richness of the initial
dataset affects SENSEI’s performance (Suppl. Fig. 14), and
(3) ablate our Go-explore switching strategy. We observe
that as VLMs get better, there is indeed more to gain from
SENSEI, and richer exploration data helps SENSEI bootstrap
faster. See Suppl. E.2 for more information. We further
showcase the robustness of our Go-Explore switching strat-
egy in terms of hyperparameter sensitivity compared to a
variant of SENSEI where the semantic and disagreement
rewards get fixed weights (Suppl. E.6).

3Interestingly, this can still lead to solving tasks. For example,
stretching the arm against the sliding cabinet can close it, and
stretching the arm toward a block can push it off the table.
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Figure 7. Downstream task performance in MiniHack: Mean
episode scores for (a) KeyRoom-S15 and (b) KeyChest, using
world models learned during task-free exploration with SENSEI

and Plan2Explore (P2X). We also compare learning from scratch
with DreamerV3 and PPO. Shaded areas show standard error (10
seeds); curves are smoothed with a window size of 3.

4.3. Fast downstream task learning

We hypothesize that world models learned from richer ex-
ploration would enable model-based RL agents to quickly
learn to solve new downstream tasks. We investigate this
in MiniHack by running DreamerV3 (Hafner et al., 2023)
using the previously explored world models to learn a novel
task-based policy. To this end, we initialize DreamerV3 with
the pre-trained world models from the initial 500K steps of
exploration (see Sec. 4.2). We compare world models from
task-free exploration with either SENSEI or Plan2Explore.
Additionally, we compare running DreamerV3 and training
Proximal Policy Optimization (PPO, Schulman et al. 2017),
a state-of-the-art model-free baseline, from scratch.

Figure 7 shows the performance of task-based policies over
training. A previously explored world model from SENSEI
allows the agent to learn to solve the task faster than all
other baselines. Compared to Plan2Explore, SENSEI allo-
cates more resources to explore the relevant dynamics in
the environment, e.g. opening the chest more, resulting in
well-suited world model for policy optimization. Unlike the
clear improvements of SENSEI, task-free exploration with
Plan2Explore does not outperform learning a task policy
from scratch with DreamerV3 consistently across environ-
ments. In KeyRoom, the model-free baseline PPO takes
more than 20M steps to consistently solve the task (full PPO
curves in Supp. Fig. 13). Thus, in this task SENSEI outper-
forms PPO by roughly two orders of magnitude. This shows
the improved sample efficiency of our approach: combining
foundation model-guided exploration and model-based RL.
In KeyChest, the model-free baseline PPO shows the first
successes in the tasks early during training, but on average
takes longer to learn to reliably solve the task.

In a supplementary experiment (Suppl. E.7), we analyze
fast downstream task learning also on representative
Robodesk tasks, and demonstrate more sample-efficient
policy learning compared to exploration with Plan2Explore.
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Figure 8. Task-based exploration in Pokémon Red comparing
SENSEI GENERAL to Plan2Explore and DreamerV3 for 750k steps.
We partition the overall game map into unique map segments
for different routes, towns, or buildings (details and full map in
Suppl. C.3). We sequentially numbered segments that need to be
traversed from game start (0) to the first Gym (9) and plot the
percentage of random seeds that reach each segment (a). Temporal
exploration trends are visualized by plotting the mean number of
unique map segments visited (b) and the highest level of the agent’s
Pokémon (c) over episodes, smoothed with a moving average
(window size 5). Shaded areas indicate standard error (5 seeds).

4.4. Task-based exploration

Some environments are so complex that meaningful task
progress is only possible through effective exploration.
We investigate such task-based exploration in Pokémon
Red. We compare 750k steps of exploration with SEN-
SEI GENERAL (using rt + rexplt ) to Plan2Explore (using
rt+βr

dis
t ) and DreamerV3 (using only rt). Thus, all agents

receive extrinsic task rewards rt during exploration, but only
Plan2Explore and SENSEI also utilize intrinsic signals.

Progress in the game requires navigating a vast world to
reach Pokémon Gyms, as well as assembling and training
a strong team to defeat Gym Leaders. To evaluate spatial
exploration, we partition the game world into distinct map
segments, corresponding to towns, routes, forests, or build-
ings (details in Suppl. C.3). Over the course of exploration,
SENSEI consistently discovers new segments, outperform-
ing baselines in terms of total map coverage (Fig. 8b). To
assess whether this exploration is goal-directed, Figure 8a
labels the specific segments required to progress from the
game start (segment 0) to the first Gym (segment 9), and
plots the segments reached per method (high-resolution map
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in Fig. 12). Only SENSEI reaches the first Gym, demonstrat-
ing superior exploration aligned with the game’s objectives.

To assess battle-related progress, we track the levels of
the agent’s Pokémon (Fig. 8c), which serve as a proxy for
battle experience and overall strength. Dreamer fails to
sufficiently explore the battle system and does not manage
to train its Pokémon. Its highest-level Pokémon remains
at the same level as at the start of the episode. In con-
trast, SENSEI begins leveling up its Pokémon early during
exploration, and from episode 100 onward, it consistently
achieves higher levels than Plan2Explore. From episode
390 onward, SENSEI, on average, obtains twice as many
level-ups per episode as Plan2Explore, indicating greater
battle success and a higher potential for future encounters.

Together, these results highlight SENSEI’s ability to per-
form meaningful, goal-directed exploration in rich, open-
ended environments. We provide a more detailed analysis
in Suppl. E.8.

Second generation of annotations With more explo-
ration, and due to the vastness of the world in Pokémon
Red, SENSEI increasingly enters regions outside the distri-
bution of its annotation data (Dinit). This leads to degraded
semantic rewards. In Suppl. E.9, we show how this lim-
itation can be addressed by refining the reward function
through a second round of VLM annotations on SENSEI-
collected data. When continuing the SENSEI run used for
annotation for 200 additional episodes, now using the up-
dated reward function, the agent is able to defeat the first
Gym and obtain the Boulder Badge. This marks a critical
milestone, highlighting the strong potential of iterative se-
mantic reward refinement to unlock meaningful progress in
complex environments.

5. Discussion
We have introduced SENSEI, a framework for guiding the
exploration of model-based agents through foundation mod-
els. SENSEI bootstraps a model of interestingness from
previously generated play data. On this dataset, SENSEI
prompts a VLM to compare images with respect to their
interestingness and distills a semantic reward function. SEN-
SEI learns an exploration policy via model-based RL using
two sources of intrinsic rewards: (1) trying to reach states
with high semantic interestingness and (2) branching out
from these states to maximize epistemic uncertainty. We
show that in the video game environments of MiniHack and
Pokémon Red and a robotic simulation, this strategy leads
to more meaningful interactions, e.g. opening a chest with a
key or manipulating objects on a desk.

Internal model of interestingness Unlike prior work of
foundation model-guided exploration (Klissarov et al., 2023;

Wang et al., 2024), SENSEI learns an internal model of inter-
estingness. This is a sensible design choice when working
with world models (as detailed in Suppl. A.3), enabling SEN-
SEI to predict semantic rewards also while imagining states
during policy training. We demonstrate that this can lead to
significantly faster learning, since both VLM guidance as
well as model-based RL improve sample efficiency.

Limitations SENSEI benefits from fully-observable obser-
vations, e.g. images that capture all relevant aspects of the
environment. The VLM annotations degrade when dealing
with occlusions. In Robodesk we mitigate this using multi-
ple camera angles. In future work this could be remedied
further by annotating videos to better convey temporal or
partially-observable information.

Future work One promising direction is to systemati-
cally investigate iterative refinement of the semantic reward
function. In Suppl. E.9, we show that incorporating SENSEI-
collected data into a second round of annotations reduces
out-of-distribution errors for states not present in the initial
annotation set. We believe this iterative process can un-
lock increasingly complex behaviors with each generation.
Another avenue is to explore SENSEI in photorealistic or
real-world environments. Photorealism of observations are
likely to help VLM annotations because a large portion
of VLMs’ training data comes from real world photos or
videos. Thus, SENSEI is likely to scale well to these settings.
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This work introduces a framework for semantically mean-
ingful exploration in reinforcement learning (RL), guided
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els (VLMs). The approach enables agents to efficiently
discover useful, high-level behaviors without relying on
task-based rewards. RL often suffers from computational
inefficiencies due to extensive trial-and-error processes, but
effective exploration strategies can alleviate this by guiding
agents towards more purposeful behaviors. In real-world set-
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tings, exploration poses additional challenges due to safety
concerns, as aimless interactions can lead to damage or
unsafe situations. By emphasizing semantically meaning-
ful exploration, our approach offers a step toward more
energy-efficient and potentially safer exploration. We have
identified no significant ethical concerns beyond standard
considerations for responsibly deploying autonomous learn-
ing agents.
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Supplementary Material for:
SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile

World Models

A. SENSEI: Implementation Details
We provide code with VLM-MOTIF checkpoints at https://github.com/martius-lab/sensei.

A.1. World model

RSSM We base our RSSM implementation on DreamerV3 (Hafner et al., 2023). For MiniHack we use the small model
size setting with roughly 18M parameters (ht dimensions: 512, CNN multiplier: 32, dense hidden units: 512, MLP layers:
2). For the more complicated Robodesk environment, we use the medium model size with around 37M parameters (ht
dimensions: 1024, CNN multiplier: 48, dense hidden units: 640, MLP layers: 3). By default, when the input observation ot
is only an image, it is en- and decoded through CNNs. For MiniHack, we have an additional inventory flag that is processed
by a separate MLP, as is customary for the Dreamer line of work when dealing with multimodal inputs (Wu et al., 2023).
The MLP decoder outputs a Bernoulli distribution from which we sample the decoded inventory flag.

Reward predictors To handle rewards of widely varying magnitudes, DreamerV3 uses twohot codes predicted in symlog
space when predicting rewards (Hafner et al., 2023). We use the same setup for all reward prediction heads, i.e., for extrinsic
rewards rit for task i or the semantic exploration reward rsemt . During task-free exploration, the gradients from reward
predictions are stopped to not further affect world model training. We do this to keep the world model task-agnostic and to
avoid biasing task-free exploration. Similarly, to avoid overfitting to the exploration regime, we also stop the gradients from
the semantic reward prediction heads.

Plan2Explore Both our Plan2Explore baseline as well as our ensemble predictors (Eq. 5) are based on the re-
implementation on top of DreamerV3. The most notable difference is that in original Plan2Explore the ensemble is
trained to predict image encodings (Sekar et al., 2020), whereas the new version is trained to predict stochastic states zt.
Recent re-implementations (Hafner, 2021; Hafner et al., 2022; Gumbsch et al., 2024) also used Plan2Explore with ensemble
disagreement over zt as a baseline and verified a strong exploration performance. For our experiments on task-based
exploration (Sec. 4.4), we use a weighted sum of extrinsic and intrinsic rewards, i.e. rt + αrdist . We determined the best
value α = 0.5 through a hyperparameter search, as for SENSEI’s hyperparameters.

Quantile estimation We update our estimate of the quantile Qk(r̂sem) whenever we train the exploration policy. For this,
we compute the k-th quantile of r̂semt in each training batch (16× 16). We keep an exponential moving average over these
estimates with a smoothing factor of α = 0.99.

Reward weighting In practice, we compute exploration rewards (Eq. 7) overall five reward factors:

rexplt = χrt +

{
αexplorer̂semt + βexplorerdist , if r̂semt ≥ Qk(r̂sem);
αgor̂semt + βgordist , otherwise.

(8)

i.e. χ ∈ {0, 1} to scale extrinsic rewards rt, α to scale semantic rewards r̂semt and β to scale uncertainty-based rewards rdist .
We set χ = 0 for task-free exploration and χ = 1 for task-based exploration (Sec. 4.4). When training the value function
with DreamerV3, the scale of the reward sources are normalized. To compute this normalization for the exploration policy
we use αexplore and βexplore of the high percentile region of interestingness (≥ Qk).

A.2. Semantic Reward Distillation: VLM-MOTIF

For the semantic reward function Rψ : O → R, we use a 2D-convolutional neural network to encode the images. We use
3 convolutional layers, where we progressively increase the number of channels to num_channels_max = 64. The
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output then gets downsampled via max pooling before going into a two-layer MLP with hidden dimensions 256 & 512 and
outputting the scalar reward value. Additionally, in MiniHack we include inventory information via a separate multi-layer
perceptron (MLP) head, consisting of 2 layers with 512 hidden units. The extracted features are concatenated with the image
features and get further processed by the output MLP. The training hyperparameters for all Rψ can be found in Suppl. B.

A.3. Design Choice: Semantic Reward Predictions

World models typically encode and predict dynamics fully in a self-learned latent state (Ha & Schmidhuber, 2018; Hafner
et al., 2023; Hansen et al., 2024). Thus, for a world model to predict rsemt at any point in time t, we need a mapping from
latent states to semantic rewards. We chose to directly predict r̂semt using a reward prediction head of the RSSM. Another
option would be to decode the latent state to images and use those as inputs for MOTIF. However, we believe this has
several disadvantages: (1) Decoding latent states to images is a computationally costly step that would significantly decrease
computational efficiency. (2) We would use an indirect target (the image) instead of the direct target (rsemt ) for training
the semantic reward predictions. There would exist no gradient signal to correct somewhat reasonable image predictions
that lead to inconsistent reward predictions at a given state. (3) The image predictions of the RSSM can contain artifacts,
blurriness or hallucinations. Since MOTIF is only trained on real images from the simulation, we will likely encounter
out-of-distribution errors.

B. Hyperparameters
We provide the hyperparameters used for the world model, exploration policy, VLM-MOTIF annotations & reward model
training as well as the environment-specific settings.

Name Value
Robodesk KeyRoom KeyChest Pokémon Red

World Model

RSSM size M S S L
Ensemble size N 8 8 8 8
Train ratio 512 512 512 512

Exploration policy

Quantile 0.75 - 0.85 -0.75 - 0.80 0.90 0.90 0.6
χ 0 - 0 - 0 - 0 0 0 1
αexplore 0.1 - 0.1 - 0.05 - 0.01 0.3 0.25 0.025
βexplore 1 - 1 - 1 - 1 1 1 0.5
αgo 1 - 1 - 1 - 1 1 1 0.5
βgo 0 - 0 - 0 - 0 0.1 0.05 0.1

Annotations for MOTIF

VLM GPT-4 turbo (right) & GPT-4 omni (left) GPT-4 omni GPT-4 omni GPT-4 omni
Temperature 0.2 0.2 0.2 0.2
Dataset size 200K 100K 100K 100K
Image res. 224×224 80×80 80×80 1202×1080
MOTIF Training

Batch size 32 - 64 - 32 - 32 32 32 32
Learning rate 10−5 - 10−5- 3×10−5 - 3×10−5 10−4 10−4 10−5

Weight decay 10−5 - 0 - 0 - 0 10−5 10−4 0

Environment

Action repeat 2 1 1 1
Episode length 250 600 800 1k/2k/4k
Steps of exploration 1M 500K 500k 750k
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(a) Default observations (b) Our observations (c) Left camera

Figure 9. Robodesk environment: We modify the default top-down camera view (a) to a side view with less occlusion (b). For annotation
with GPT-4 we also provide a left camera observation (c).

For the exploration policy in Robodesk we use different values for the four different variants tested. The values listed here
stand for, from left to right: GPT-4 with Plan2Explore (P2X) data using two camera angles for VLM annotations, GPT-4
with P2X data using only the right camera angle, Oracle with P2X data, and Oracle with CEE-US data (corresponding to a
more interaction-rich exploration dataset Dinit). The VLM-MOTIF hyperparameters are also listed in the same order.

Image resolution For the world model we use 64 × 64 pixel images for all environments. However, for the GPT
annotations we use higher resolution images, as shown in the table. Inside the environment step function, the rendering is
performed at these higher resolutions, and this image is input to the semantic reward function Rψ . The image is then scaled
down to 64× 64 as part of the observation that the RSSM is trained on.

Baselines We run DreamerV3 with the same world model setup as SENSEI and Plan2Explore. We use an open source
PPO (Schulman et al., 2017) implementation of Hafner (2024)4 optimized to work well across multiple environments with a
fixed set of hyperparameters (details in Hafner et al., 2023, supplementary material). We build our RND (Burda et al., 2019)
implementation on top of PPO. For the predictor and target network we use a ResNet with 3 convolutional layers followed
by 5 dense layers. We only use the intrinsic reward to train a PPO agent. Intrinsic rewards are normalized as outlined in
Burda et al. (2019). While Burda et al. (2019) also normalize input observations through a running statistics, we found that
using LayerNorm at the input layer leads to slightly more interactions in Robodesk.

C. Environment Details
C.1. Robodesk

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a robot can interact with various objects on a desk.
We use an episode length of 250 time steps.

Observations Robodesk uses only an image observation, depicting the current scene, which we scale down (64 × 64
pixels). However, we found that the default top-down view often had occlusions and was hard to interpret from a single
image (Fig. 9a). Thus, we used a different camera angle showing the robot from one side (Fig. 9c). With this view objects
and the drawer were rarely occluded; however, lights that turn on from button presses were not as visible anymore.

Actions The continuous 5-dimensional actions control the movement of the end effector. We use an action repeat of 2 to
speed up the simulation. Thus, 1M steps of exploration correspond to 2M actions in the environment.

Interaction metrics We track how often the robot interacted with different objects to quantify the behavior during
exploration. Specifically, we track the velocity of joints and object positions. For buttons, sliding cabinet, or drawer, we

4https://github.com/danijar/embodied, version v1.2
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(a) KeyRoom-S15 (b) KeyChest (c) egocentric view

Figure 10. MiniHack : We consider two tasks KeyRoom-S15 (a) and KeyChest (b). The agent receives an egocentric view of the
environment as its observation (c).

check if the joint position changes more than a fixed value (0.02). For all other objects, we check if any of their x-y-z
velocities exceed a threshold (0.02).

Tasks We use the sparse reward versions of all the tasks available in the environment. For some tasks, we add easier
versions. All tasks describe interactions with one or multiple objects:

• Buttons: Pushing the red (push_red), blue (push_blue), or green (push_green) button.
• Sliding cabinet: Opening the sliding cabinet fully (open_slide).
• Drawer: Opening the drawer fully (open_drawer), opening the drawer half-way (open_drawer_medium), or

opening it slightly (open_drawer_light). We introduced the latter tasks.
• Upright Block: Lifting the upright block (lift_upright_block), pushing it off the table

(upright_block_off_table) or putting it into the shelf (upright_block_in shelf).
• Flat Block: Lifting the flat block (lift_flat_block), pushing it off the table (flat_block_off_table), into

the bin (flat_block_in_bin), or into the shelf (flat_block_in_shelf).
• Both blocks: Stacking both blocks (stack).
• Ball: Lifting the ball (lift_ball), dropping it into the bin (ball_in_bin) or putting it into the shelf

(ball_in_shelf).

C.2. MiniHack

Observations In MiniHack multiple observation and action spaces are possible. We use egocentric, pixel-based observa-
tions centered on the agent (±2 grids, example in Fig. 10c). In addition to that, we provide the agent’s inventory. By default,
in MiniHack the inventory is given as an array of strings (UTF8 encoded), and different player characters have different
starting equipment based on the character classes of NetHack. We simplify this by providing only a binary flag that indicates
if the agent has picked up a new item. This is sufficient for the problems we consider, in which maximally one new item can
be collected and starting equipment cannot be used.

Environments Here we detail the environments we tackle:

In the benchmark KeyRoom-S15 problem (Fig. 10a), the agent needs to fetch a key in a large room (15 × 15 grids) to
enter a smaller room and find a staircase to exit the dungeon. We use the default action space but enable autopickup and
therefore remove the PICKUP action. We use an episode length of 600 time steps, which is 1.5 times longer than the default
episode length.

KeyChest is a novel environment designed by us, based on KeyCorridorS4R3 from MiniGrid (Chevalier-Boisvert
et al., 2024) (see Fig. 10b). The agent starts in a corridor randomly connected to different rooms. A key is hidden in
one room and a chest in another room. The goal is to open the chest with the key in the inventory. Object positions are
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(a) map navigation (b) battle screen (c) low-resolution observation

Figure 11. Pokémon Red poses a strong exploration challenge as it requires an agent to learn (1) to navigate a complex overworld map
(a) and (2) to battle and catch Pokémon (b). We only use the down-scaled game screen image as observations (c).

randomized. The action space for this task contains 5 discrete actions for moving the agent in 4 cardinal directions (UP,
RIGHT, DOWN, LEFT) and an OPEN-action to open a chest when standing next to it with a key in the inventory. Episodes
terminate when the chest is opened. We enable auto-pickup, so no additional action is needed to pick up the key when
stepping on it. We use an episode length of 800 time steps.

Rewards All environments use a sparse reward of rt = 1, which the agent only receives upon accomplishing the task. A
small punishment (rt = −0.01) is given, when the agent performs an action that does not alter the screen.

Image remapping Empirically, we found that GPT-4 may encounter problems if we provide the image observations as
is. For example, when using the default character in the KeyRoom-S15 environment (Rogue), GPT-4 sometimes throws
content violation errors. We suspect that this is due to the character wearing a helmet with horns, which could be mistaken
for demonic or satanic imagery. Thus, we pre-processed the images before returning them from the environment. We
render all characters as the Tourists, a friendly looking character with a Hawaiian shirt and straw hat. Furthermore, GPT-4
sometimes mistakes entrance staircases for exit staircases. Since the entrance staircases serve no particular purpose and are
not different from the regular floor, we remap all entrance staircases to floors.

C.3. Pokémon Red

We evaluate SENSEI’s ability for semantic exploration in the classic Game Boy game, Pokémon Red. Pokémon Red
presents an extremely challenging exploration problem due to: (1) its vast and interconnected world, composed of towns,
routes, forests, and other areas that must be navigated, and (2) its complex battle system, which requires semantic knowledge
to understand type interactions (e.g., Water attacks are strong against Fire-type Pokémon). Thus, an agent needs strong
exploration capabilities to progress in the game’s primary objective, i.e., becoming the Pokémon Champion by defeating
Gym Leaders and collecting their badges. We base our implementation on PokeGym v0.1.1 (Suarez, 2024), which is based
on Whidden (2023), with minor modifications as detailed below.

Observations Unlike previous RL agents applied to Pokémon (Whidden, 2023; Pleines et al., 2025), we provide only the
raw game screen image as input, without access to the internal game state or additional memory. When input into the world
model, we downscale the game screen (to 64x64 pixels) in order to save compute (see Fig. 11c). For VLM annotations, we
use the original size (1202x1080 pixels), such that all text is clearly readable (see Fig. 11b).

Actions The agent controls the game using a 6-dimensional action space corresponding to Game Boy button presses (Left,
Right, Up, Down, A, B). Since the game only advances upon button presses (except during attack animations) we only apply
an action every 1.5 seconds real time game play (frame skip of 96) to manage episode length.
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Rewards The agent receives a weighted sum of rewards rt =
∑
ϕirit for different in-game events i. Rewarded events

include leveling up, catching Pokémon, encountering strong opponents, healing Pokémon, visiting new map tiles, earning
badges, and a penalty for blacking out after losing a battle. We leave the default values ϕi from Suarez (2024) except we
increase ϕtiles = 0.1 for reaching new map tiles (previously set to 0.01), as we found this improves exploration.

Episode Length To scaffold exploration, we gradually increase the maximum episode length over environment steps: 1k
length for 0–25k steps, 2k length for 25–50k, 4k length for 50–75k, and 8k length when continuing exploration beyong 75k
steps.

Starting point As in Whidden (2023), we skip the initial “tutorial” phase of the game, and start only when the player
can freely move and catch Pokémon. In-game, this corresponds to the point after delivering Oak’s Parcel and receiving
the Pokédex and Poké Balls from Professor Oak. We use the same checkpoint as Whidden (2023), starting with a level 6
Squirtle named AAAAAAAAAA.

Map segments The accessible game world in Pokémon Red prior to defeating the first Gym is already expansive,
comprising a variety of interconnected areas. Many of these are distinct maps that load separately when the player enters
or exits a building (see Fig. 12). To evaluate spatial exploration, we segment this world into discrete map segments, as
illustrated in Fig. 8a. Each route and town is treated as a separate segment, as are buildings or enclosed areas like forests
that load a dedicated sub-map. This amounts to 25 map segments that can be accessed before beating the first Pokémon
Gym. Reaching the first Pokémon Gym requires navigating through 10 such segments, which we enumerate in order of
appearance (cf. Fig. 8a):

Number Name Type
0 Oak’s Lab building
1 Pallet Town town
2 Route 1 route
3 Viridian City town
4 Route 2 route
5 Viridian Forest South Gate building
6 Viridian Forest forest
7 Viridian Forest North Gate building
8 Pewter City town
9 Pewter Gym building

This segmentation allows us to quantify exploration progress by measuring the highest-indexed map segment reached during
an episode.
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Figure 12. Full map of Pokémon Red accessible prior to defeating the first Gym. If entering or exiting a building brings the
agent to a submap, this is indicated by a line. The map is modified from https://blog.vjeux.com/2023/project/
pokemon-red-blue-map.html
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D. VLM prompting
We prompt the VLM with somewhat general descriptions of the environments that we consider. Here we provide the full
prompts for all environments.

D.1. Robodesk

In Robodesk, for each query, we provide two observation images (resolution 224× 224) with the following prompt:

Here are two images in a simulated environment with a robot in front of a
desk. Your task is to pick between these images based on how interesting they
are. Which image is more interesting in terms of the showcased behavior? For
context following points would constitute interestingness: (1) The robot
is currently holding an object in its gripper. (2) The robot is pushing
an object around or pushing a button or opening the drawer or interacting
with entities on the desk. (3) Objects on the desk are in an interesting
configuration: e.g. a stack. Being far away from the desk with the robot
arm retracted or just stretching your arm without interactions, is a sign the
image is not interesting. Answer in maximum one word: 0 for image 1, 1 for
image 2, 2 for both images and 3 if you have no clue.

Due to occlusions, we annotate the same pair from the initial dataset Dinit with the same prompt using images from two
camera angles: right (Fig. 9c) and left (Fig. 9c). A pair is deemed valid only if the GPT-4 response is the same across both
camera angles, otherwise the pair and the annotation are removed from the dataset. The VLM-MOTIF training as well as the
world model training are still executed using only the right camera image, such that during free play with SENSEI we only
rely on the right camera images as input.

In Robodesk, we use GPT-4 Turbo (gpt-4-turbo-2024-04-09) for the right camera annotations and GPT-4 omni
(gpt-4o-2024-05-13) for the left camera annotations. To cap the dataset size of pairs at 200K and still make sure that
we got contrastive pairs of interesting vs. uninteresting behaviors, we pre-filtered the pairs using our Oracle of interestingness
for the Plan2Explore dataset. We believe that in future work this step can be omitted by simply generating more random
pairs and expanding the dataset size. After the two-angle image annotation, we use the subset of the dataset where both left
and right camera annotations agree. This corresponds to 139409 pairs from the original 200K dataset, or 69.7% of it.

D.2. Robodesk: Zero Pre-Knowledge General Prompt

To demonstrate the generality of SENSEI, we also test a version with a general prompt (SENSEI GENERAL), using a
multi-turn strategy for getting the annotations for a pair of images. This version of the prompt does not contain any external
environment specific knowledge. First, we show a picture from the robotic environment (shown in Fig. 9c) and ask the VLM
(gpt-4o-2024-05-13) to describe what it sees in the scene using the following prompt:

I will show you an image from a simulated environment. Describe the
environment to me and what you deem the agent and then explain what types
of behavior / observations would be useful and interesting for the agent to
explore in this setting?

We obtain the following response from GPT:
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The image depicts a simulated environment featuring a robotic arm interacting
with a table that has various objects on it. The objects include buttons
of different colors, a red ball, a green cube, and a blue rectangular block.
The setting appears to be designed for testing robotic manipulation and
interaction with objects.
Agent: The robotic arm is the agent in this environment. It is likely
programmed to interact with the objects on the table, possibly for tasks
involving sorting, stacking, or pressing buttons.
Useful and Interesting Behaviors/Observations: 1. Object Manipulation:
- Grasping and moving objects like the ball, cube, and block. - Testing
different grips and force applications to handle objects of various shapes
and weights. 2. Button Interaction: - Pressing buttons to observe effects,
such as changes in the environment or triggering specific actions. -
Learning which buttons correspond to which actions or outcomes. 3. Spatial
Awareness: - Navigating the arm around the table without knocking over
objects. - Understanding the spatial relationship between objects for
tasks like stacking. 4. Task Learning: - Completing specific tasks
like sorting objects by color or shape. - Learning sequences of actions
to achieve complex goals. 5. Feedback and Adaptation: - Using sensory
feedback to adjust actions in real-time. - Adapting to changes in the
environment, such as objects being moved or removed. 6. Exploration
and Experimentation: - Experimenting with different strategies for
interacting with objects. - Exploring the effects of different actions on
the environment. These behaviors would help the agent develop skills in
manipulation, decision-making, and adaptive learning, which are crucial for
more complex real-world applications.

Next, we show the pair of images that we would like GPT-4 to annotate with the following prompt:

Now I will show you two images. Based on your answer, choose which one of
these images is more interesting in terms of the showcased behavior? Answer
in maximum one word: 0 for image 1, 1 for image 2, 2 for both images and 3 if
you have no clue.

We obtain the final annotation for the pair as the answer to this last prompt.

In this experiment, the environment description is generated using the first prompt only once. For subsequent annotations,
the initial question-answer pair is included in GPT-4’s context window as history. In the second turn, the new image pair is
presented using the final prompt. This approach is more cost-efficient, as in-context tokens are less expensive than generated
ones, and time-efficient, as generating the full environment description sequentially requires more processing time. With
this multi-turn strategy, annotating each image pair costs approximately $0.004, compared to $0.002 per annotation with the
single-turn prompt.

D.3. MiniHack

For MiniHack we provide two observation images (resolution 80×80) and the inventory. For the inventory, we only consider
items that were picked up and not items in the agent’s starting equipment5. We provide the inventory as text descriptions.
The different options are shown in purple.

5The starting equipment is taken from the NetHack game and irrelevant and inaccesible in our tasks.
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Your task is to help play the video game MiniHack. MiniHack is a roguelike
game where an agent needs to navigate through rooms and escape a dungeon. For
succeeding in the game, finding items, collecting items and exploring new
rooms is crucial. Images are egocentric around the agent, who is standing on
a dotted blue floor. Your task is to pick between two game states, composed
of images and an inventory descriptions, based on how interesting and useful
they are.
Is there any difference between the first and second game state in terms of
how interesting it is? The images depict the current view. {The first agent
has a key named The Master Key of Thievery in their inventory., The second
agent has a key named The Master Key of Thievery in their inventory., Both
agents have a key named The Master Key of Thievery in their inventory., Both
agents have no items in their inventory.}‚
Think it through and then answer in maximum one word: 0 if the first state is
more interesting, 1 if the second state is more interesting, 2 if both states
are interesting and 3 if nothing is interesting or you are very unsure.

For MiniHack we use GPT-4 omni (gpt-4o-2024-05-13).

D.4. Pokémon Red

For Pokémon Red we set the goal to reach the first Pokémon Gym (the first boss battle of the game): We assume that
GPT-4 (gpt-4o-2024-05-13) was extensively trained on game play data and various walkthroughs of Pokémon Red
and contains sufficient knowledge of the game. Thus, we again use a multi-turn strategy for image annotations, as with
SENSEI GENERAL (see Suppl. D.2), where we first ask the VLM for a game play description, which we then use as context
for further annotations. We first asked the VLM:

Your task is to help me play the Game Boy game Pokémon Red. I just obtained
my starter Pokémon, Squirtle. My goal is to find and defeat the Gym Leader,
Brock. What do I need to do, and which areas do I need to traverse to achieve
this goal? Keep it very short.

We generated five different responses from GPT-4. We sample from them uniformly as context for image-based comparisons.
We provide two observation images with the following prompt:

Here are two screenshots from the game. Which image depicts a game state that
is closer to my goal? Answer in maximum one word: 0 if the first state is
better, 1 if the second state is better.

D.5. Oracle for Interestingness

In Robodesk, we also use an Oracle of interestingness to annotate the pairs as an ablation (see Suppl. E.2). Our goal here is
to showcase an upper-bound of performance on SENSEI without the noisiness of VLMs. For the Oracle, we deem a state
interesting if: (1) any one of the entities are in motion (here only for the ball we make an exception that the ball should be in
motion with the end effector close to it as the ball in the environment is unimpeded by friction), (2) if the drawer is opened,
(3) if the drawer/sliding cabinet is not yet in motion, but the end effector is very close to their handles, (4) if the upright and
flat blocks are not yet in motion but the end effector is very close to them (almost touching), (5) if the stacking task is solved.
With these statements, we essentially cover the range of tasks defined in the Robodesk environment, as they are shown in
Fig. 16.
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Figure 13. PPO performance in MiniHack: We plot the mean episode score obtained by PPO during evaluation for the MiniHack
tasks KeyRoom-S15 (a) and KeyChest (b). Shaded areas depict the standard error (10 seeds). We apply smoothing over the score
trajectories with window size 30.

E. Extended Results
E.1. MiniHack: Extended Results

Figure 13 shows the full trajectory of evalutation scores for Proximal Policy Optimization (PPO, Schulman et al. 2017)
in MiniHack when trained until convergence. While PPO manages to learn to solve all tasks, it can be much less sample
efficient than the model-based agents we evaluated (see Fig. 7), especially in KeyRoom-S15. Here SENSEI outperforms
PPO in terms of sample efficiency in one to two orders of magnitude.

E.2. Robodesk: SENSEI Ablations

In Robodesk, we compare different versions of SENSEI in order to analyze the effect of the VLM and the initial exploration
data on SENSEI performance (Fig. 14). First, we showcase SENSEI results when annotating the initial exploration dataset
from Plan2Explore with only the right camera images. In this case, we use the whole 200K pairs in the dataset, without any
pruning. In another ablation, we replace the VLM (GPT-4) with a hand-crafted Oracle (see Suppl. D.5 for how the oracle is
computed) for annotating the pairs. After the oracle annotations, we distill these preferences into VLM-MOTIF for SENSEI,
following the same procedure as before. Furthermore, we compare two initial datasets Dinit of self-supervised exploration
collected either by CEE-US (Sancaktar et al., 2022) or by Plan2Explore for the oracle SENSEI versions. CEE-US uses
vector-based position of entities for information-gain-based exploration, in comparison to Plan2Explore, which works on
the pixel-level. Due to the privileged inputs, Dinit

CEE−US contains more complex interactions. We compare 1M steps of
exploration with the four versions of SENSEI and Plan2Explore.

On average, all versions of SENSEI interact more with the objects than Plan2Explore and our semantic exploration reward
seems to lead to more object interactions than pure epistemic uncertainty-based exploration. SENSEI with Oracle for both
the Plan2Explore and especially the CEE-US initial datasets show the most object interactions. We believe this further
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Figure 14. Interactions in Robodesk: We plot the mean over the number of interactions with objects in the environment during exploration
for different versions of SENSEI (Oracle vs. VLM, CEE-US (Sancaktar et al., 2022) vs. Plan2Explore to create the data to label Dinit)
and Plan2Explore. We also ablate SENSEI using only the right camera angle for VLM annotations on the Plan2Explore dataset. Error
bars show the standard deviation (3 seeds).
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showcases that the VLM provides a much noisier signal of interestingness, making it harder to optimize for.

The initial exploration dataset Dinit influences with which objects SENSEI interacts. Qualitatively, we observe Plan2Explore
performing mostly arm stretches. Interestingly, this can still lead to solving tasks during exploration. For example, stretching
the arm against the sliding cabinet can close it, and stretching the arm toward the upright block can push it off the table. As
a result, SENSEI with Plan2Explore Oracle focuses mainly on the sliding cabinet and the upright block, reinforcing the
existing trends in the initial dataset from which VLM-MOTIF is distilled.

For CEE-US data, Oracle SENSEI interacts more with the other objects, such as the ball and the flat block, as well as the
drawer. The difference between the Oracle annotator SENSEI versions with CEE-US vs. Plan2Explore data showcases
that there is still a lot to be gained from a richer initial dataset for SENSEI, which could be obtained via multiple rounds of
SENSEI exploration.

If a VLM annotates images instead of the Oracle, SENSEI shows similar behavioral trends, but overall less object
interactions, such that neither of the GPT-4 annotations on the Plan2Explore data completely match the performance of the
oracle annotator.

Finally, when we compare the performance for SENSEI using GPT-4 annotations with two-angle camera images vs. only the
right camera angle image, we see that the two-angle version performs better in terms of drawer interactions. This is expected
since the drawer is more clearly visible in the left camera view. However, as the ball and blocks are mainly initialized on the
right side of the table, the pure right camera angle SENSEI generates more interactions with these objects during exploration.
Another factor here is that for the right camera angle we retain all 200K pairs for VLM-MOTIF distillation, whereas we
only keep ca. 70% of the pairs in the case of SENSEI using both cameras for annotation.

E.3. Robodesk: Rewards

P2X Sensei RND
0

2,000

4,000

open drawer light

Figure 15. Collected rewards for
open_drawer_light during
exploration (3 seeds).

In addition to interaction metrics, we count the number of times task rewards are
collected during exploration. We observe that for the majority of tasks SENSEI
solves more tasks in the environment during play than Plan2Explore. Note that for
the open_slide task you need to open the slide fully in one direction, which is
achieved in abundance in Plan2Explore runs by simply stretching the arm. The full
interaction metrics of exploring how the slide moves left-right is not necessarily
reflected in the task rewards, as can be seen in comparison to Fig. 6. Similar
arguments also apply for opening the drawer fully vs. opening and closing the
drawer more dynamically. Additionally as the bin is not really visible in our
camera angle, solving in_bin tasks are more due to the objects that go off the
table landing by chance in the bin for all methods, such that higher statistics for
off_table rewards also lead to higher in_bin rewards.
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Figure 16. Robodesk environment rewards: We plot the mean number of sparse rewards (successful task completions) discovered
during 1M steps of task-free exploration for all tasks for Plan2Explore, SENSEI, pure VLM-MOTIF, and the RND baseline.

25



SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile World Models

(a) screenshots

Rψ , SENSEI GENERAL Rψ , SENSEI

0 50 100 150 200 250
−0.5

0

0.5

1

1 2 3 4 5

t

rs
em t

(n
or
m
.)

1 2 3 4 5

0 50 100 150 200 250

0

0.5

1

1 2 3 4 5

t

rs
em t

(n
or
m
.)

1 2 3 4 5

0 50 100 150 200 250

0

0.5

1

1 2 3 4 5

t

rs
em t

(n
or
m
.)

1 2 3 4 5

(b) semantic exploration reward

Figure 17. Semantic exploration rewards for example trajectories with VLM-MOTIF using general vs. specialized prompts: For
three example Robodesk episodes, we showcase VLM-MOTIF semantic rewards distilled from GPT-4 annotations using a prompt
specialized to the environment vs. a general prompt using multi-turn annotations. The reward trajectories for both the general and
specialized prompts peak at the “interesting” moments of exploration, such as opening a drawer or pushing the blocks. With zero external
knowledge injection, the general prompt version of VLM-MOTIF is highly correlated with its specialized prompt counterpart.

E.4. Robodesk: VLM-MOTIF with General Prompt

In this section, we investigate the distilled reward function when using a general prompting strategy (SENSEI GENERAL, see
Suppl. D.2). As shown in Fig. 17, the semantic reward rsem

t for the general prompt seems to show a high positive correlation
or qualitatively matches with the VLM-MOTIF distilled using the specialized prompt in Robodesk (see Suppl. D.1). Thus,
we manage to distill a reward function that peaks at interesting moments of exploration without injecting any environment
specific knowledge into the prompt.

E.5. Robodesk: Baselines

We present two other baselines in Robodesk: RND trained with PPO and pure VLM-MOTIF, and analyze the interaction
metrics in Fig. 18. On average, SENSEI interacts more with most available objects than the baselines. RND mostly moves
the arm around in the center of the screen, occasionally hitting objects or mostly buttons. It is important to note that the
robot arm in Robodesk is mostly initialized close to the buttons. Pure VLM-MOTIF is an ablation of SENSEI without
any information gain objective. Here, we see the importance of the information gain reward to ensure diverse exploration.
Unlike SENSEI, we see that VLM-MOTIF interacts with specific entities: mostly the buttons, the drawer and the flat block.
The lack of interaction with the cabinet, the upright block and the ball are expected as these entities are spatially further
away from the robot initialization pose. Once high semantic rewards are found in the vicinity by interacting with the drawer
and buttons, there is no incentive for pure VLM-MOTIF to explore further. On the other hand SENSEI aims to discover
interesting and yet novel behaviors, ensuring better coverage across the different useful behaviors in the environment.
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Figure 18. Interactions in Robodesk: We plot the mean over the number of interactions with any object during 1M steps of exploration
for SENSEI, Plan2Explore (P2X), pure VLM-MOTIF and Random Network Distillation (RND) trained with a PPO policy, as a model-free
exploration baseline. Error bars show the standard deviation (3 seeds).

E.6. Robodesk: SENSEI without Dynamic Scaling and Analyzing Hyperparameter Sensitivity

In this section, we ablate the dynamic scaling of the semantic reward rsemt and the information gain reward rdist terms in
SENSEI. In SENSEI, we adjust the weight of these two terms based on whether rsemt has reached the high percentile region
of interestingness (rsemt ≥ Qk), as per equation Eq. 8. In this ablation, we instead use a linear combination with fixed
weights α and β, such that the exploration reward is given by:

rexplt = αrsemt + βrdist . (9)

We present the results in Fig. 19 for 6 different sets of fixed weights. First of all, we observe that none of the fixed scale
settings outperform SENSEI nor do they consistently perform as well as SENSEI. Second of all, we see that the exploration
behavior is very sensitive to the choice of the weights α and β. For larger α values, the behavior collapses to mostly
interacting with the drawer, buttons and the flat block, with larger fluctuations. This mode is very similar to the case of pure
VLM-MOTIF presented in Fig. 18.

Next, we test the hyperparameter sensitivity of SENSEI with dynamic scaling of the reward weights. We see in Fig. 20, that
across all 4 hyperparameter configurations, SENSEI is better or at least on par with Plan2Explore, and we don’t observe
any behavior collapse as in the fixed scale setting. We argue that although the dynamic scaling introduces additional
hyperparameters, the overall behavior is much more robust and less dependent on hyperparameter tuning.

Table 1. Hyperparameter configurations for SENSEI presented in the main experiments and the 3 other configurations that are shown in
Fig. 20.

SENSEI SENSEI HP1 SENSEI HP2 SENSEI HP3

Quantile 0.75 0.80 0.85 0.75
αexplore 0.1 0.01 0.1 0.05
βexplore 1 1 1 1
αgo 1 1 1 1
βgo 0 0 0 0
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Figure 19. Comparing interactions in Robodesk between SENSEI and fixed scaling of rewards: We plot the mean over the number of
interactions with any object during 1M steps of exploration for SENSEI and Plan2Explore (P2X) and an ablation of SENSEI, where we do
not dynamically adjust the weight of the reward terms based on the current semantic reward. For this ablation, reward is computed as
rexplt = αrsemt + βrdist with fixed weights α and β. Error bars show the standard deviation (3 seeds).

E.7. Robodesk: Downstream task learning
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Figure 22. Dreamer in Robodesk for upright
_block_off_table (5 seeds, ± SEM).

We investigate whether the world model learned by SENSEI is versa-
tile enough to efficiently support downstream task learning in the multi-
task environment of Robodesk. We evaluate this on three representa-
tive tasks: opening the drawer (Drawer-Medium), pushing the upright
block off the table (Upright-Block-Off-Table), and lifting the
ball (Lift-Ball).

As in our MiniHack experiments (see Sec. 4.3), we initialize a Dream-
erV3 agent with a pre-trained world model obtained from 1M steps of
SENSEI-driven exploration. We compare this setup to exploration with
Plan2Explore, running each agent for 1.2M steps or until SENSEI con-
verges on the task.
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Figure 20. Comparing interactions in Robodesk for SENSEI with different hyperparameters: We plot the mean over the number of
interactions with any object during 1M steps of exploration for SENSEI (winner hyperparameter configuration) and Plan2Explore (P2X)
and SENSEI with different hyperparameters as specified in Table 1. Error bars show the standard deviation (3 seeds).

Fig. 21 shows the performance of task-specific policies over training. The world model explored by SENSEI enables
significantly faster learning compared to Plan2Explore. SENSEI reliably learns to open the drawer and push the block off the
table, though it does not fully converge to 100% success on the ball-lifting task. Nevertheless, across all tasks, SENSEI
achieves higher success rates than Plan2Explore.

Finally, we also train a DreamerV3 agent for one of the tasks (Upright-Block-Off-Table) from scratch (Fig. 22).
Dreamer does not fully learn to solve the task within 2M environment steps. This shows that exploration is crucial to reliably
learn to solve these sparse reward tasks.
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Figure 21. Downstream task performance in Robodesk: We plot the mean of the episode score obtained during evaluation for three
exemplary Robodesk tasks (a) Drawer-Medium, (b) Upright-Block-Off-Table, and (c) Lift-Ball, with world models
learned from SENSEI vs. Plan2Explore (P2X) exploration. Shaded areas depict the standard error (10 seeds) and we apply smoothing over
the score trajectories with window size 3.

E.8. Pokémon Red: Extended Results

We evaluate the exploration of battle-related mechanics in Pokémon Red, by tracking the Pokémon party size and their
levels and plot their distribution in Fig. 23. Only Plan2Explore and SENSEI explored the battle mechanics of catching
Pokémon and leveling them. Dreamer fails to consistently engage in battles or catch Pokémon. Throughout exploration
SENSEI assembles the strongest teams in terms of highest individual level and summed total levels of Pokémon in the party
(Fig. 23b & 23c).

We visualize how exploration progressess over episodes in Fig. 24. Despite being only trained on task rewards, Dreamer is
quickly outperformed by SENSEI and Plan2Explore in terms of rewards achieved (Fig. 24a). This highlights the complexity
of the Pokémon environment and how easily agents can get stuck in local optima without structured exploration. Overall,
SENSEI and Plan2Explore reach comparable reward levels.

How do SENSEI and Plan2Explore allocate their exploration? Plan2Explore appears to prioritize catching Pokémon: after
around 50 episodes, it consistently maintains a larger party than SENSEI (Fig. 24b). This is also reflected in the number of
Pokémon caught by both methods (Fig. 25). Plan2Explore manages to collect a wider variety of Pokémon across seeds.
SENSEI, on the other hand, allocates more resources to map-based progress towards the Gym (Fig. 24c) and to leveling its
Pokémon team through battles, consistently reaching higher Pokémon levels from episode 100 onward (Fig. 8c).

We hypothesize that SENSEI ’s exploration is shaped by GPT-4’s preferences and our prompt emphasizing the goal of
defeating the first Gym Leader. Most early-game wild Pokémon are weak against Brock’s Rock/Ground-type team, and
only the Water-type starter Squirtle has a type advantage. As a result, the most promising strategy, reflected in SENSEI ’s
behavior, is to repeatedly battle and level Squirtle in preparation for the Gym.
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Figure 23. Pokémon interaction statistics: We report the distribution of maximum party size (a), the highest individual Pokémon level
(b), and the total sum of levels across all Pokémon in the party (c) for 750k steps of SENSEI, Plan2Explore, and DreamerV3. Error bars
indicate standard error across 5 seeds.
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Figure 24. Exploration progress in Pokémon Red: We plot the mean return per step (a) and maximum party size reached (b) over
episodes. To visualize map progress, we plot the maximum map segment reached between episode starting point (0) and the Gym (9) (c).
We compare SENSEI GENERAL to Plan2Explore (rt + αrdist ) and Dreamer (rt). Shaded areas depict the standard error (5 seeds) and we
apply smoothing over the score trajectories with window size 5.

E.9. Pokémon Red: Second Generation VLM-MOTIF

A limitation of our current SENSEI implementation is that if an agent encounters entirely novel states, the semantic reward
may contain mostly noise, as it is outside of the training distribution for VLM-MOTIF. Here, exploration relies on epistemic
uncertainty rewards (rdist ), similar to Plan2Explore. This can be the case for large, open-ended environment such as in
Pokémon Red. The initial SENSEI dataset contains 100K pairs from a Plan2Explore run (500K steps exploration), reaching
at most Viridian Forest (map segment 6, Fig. 8a). SENSEI reaches the frontier of Viridian Forest more often, occasionally
breaking into Pewter City, where the first Pokémon Gym is located. However, the first-generation VLM-MOTIF has never
seen this area and thus relies on information gain to explore beyond Viridian Forest.

We visualize these failure cases in Fig. 26. For instance, the first-generation reward function incorrectly assigns higher
interestingness to a task-irrelevant museum (top row, frames 3 & 5) than to the Pewter Gym (top row, frames 2 & 4),
which is the actual task goal. Upon entering the Gym, the semantic reward drops sharply (middle row, frames 3–5), further
highlighting this OOD failure.

To address this, we propose a simple refinement procedure: re-annotating data collected from a SENSEI run. We sample
50K additional observation pairs explored by SENSEI and annotate them using the same VLM prompting strategy. We then
distill a second-generation semantic reward function Rψ , trained on both the original and newly collected annotations, now
including previously unseen areas such as Pewter City and the Gym. As shown qualitatively in Fig. 26 (Generation 2), the
refined reward function corrects earlier misjudgments: it spikes correctly upon seeing the Gym and peaks when the agent
enters and faces the Gym Leader (middle row, frame 5). This demonstrates the potential of iterative semantic refinement.
We see this as a promising extension to SENSEI, enabling agents to continuously improve their internal reward models by
incorporating data from newly explored regions.

We evaluate the effect of the refined semantic reward function on exploration by continuing the original SENSEI runs for
200 additional episodes. Specifically, we resume exploration from the same point used to collect the second-generation
annotations, comparing runs that use either the refined reward function (Generation 2) or the original (Generation 1). To
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Figure 25. Pokémon caught: For SENSEI GENERAL, Plan2Explore and DreamerV3 we plot the ratio of seeds that managed to obtain the
listed Pokémon at least once during 750k steps of exploration. Other Pokémon were never caught.
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Figure 26. First and second generation semantic rewards in Pokémon Red: We visualize semantic rewards from a reward function
Rψ learned either purely from Plan2Explore data (Generation 1) or refined based on SENSEI data. Generation 2 semantic rewards rsemt
correctly peak when seeing Pewter Gym (top row, 2 & 4) or entering the Gym (middle row, 3 –5). These images are out-of-distribution for
Generation 1 Rψ , which is incorrectly yielding low sematic rewards rsemt . In battle-related game play both reward functions are highly
correlated.

assess whether simply running our baselines longer would yield similar benefits, we also continue one run of Plan2Explore.
For fairness and to avoid biasing our baselines, we select the only Plan2Explore seed that managed to reach Pewter City.

Exploration progress across these runs is visualized in Fig. 27, where a dashed gray line marks the onset of the second-
generation annotations and the divergence point between Generation 1 and Generation 2. SENSEI Generation 2 broadly
continues the exploration trends of Generation 1, outperforming Plan2Explore on all metrics except Pokémon party size
(Fig. 27e). However there are a few subtle differences between SENSEI Generation 1 & 2: Both SENSEI Generation 1 & 2
seem to mostly avoid catching new Pokémon (Fig. 27e) and instead focus solely on leveling up their Squirtle. Thereby,
SENSEI Generation 2 reaches slightly higher levels than Generation 1 (Fig. 27b). We hypothesize that SENSEI’s focus
on leveling Squirtle comes from our prompt defining its objective "to find and defeat the Gym Leader, Brock". The best
option to beat Brock is a high-level Squirtle whose Water attacks are super effective against Brock’s team. While SENSEI
Generation 2 visits fewer overall map segments than Generation 1 (Fig. 27d), it concentrates more on segments 8 and 9
(Fig. 27c), corresponding to Pewter City and the Pewter Gym. This focused exploration, combined with a stronger Squirtle,
allows SENSEI Generation 2 to achieve a critical milestone: defeating Brock, the Pewter City Gym Leader, and obtaining the
Boulder Badge. This event occurs twice over the course of continued exploration (Fig. 27f), with the first badge earned after
570 episodes, or roughly 1.8 million environment steps. None of our baselines were able to achieve this milestone before.

This demonstrates the potential of iterative semantic refinement. We see this as a promising extension to SENSEI, enabling
agents to continuously improve their internal reward models by incorporating data from previously unexplored regions.
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Figure 27. Exploration with first and second generation semantic rewards in Pokémon Red: We track exploration progress when
continuing one seed of SENSEI with Rψ annotated on its previous exploration data (Generation 2) and compare against continuing with the
previous Rψ (Generation 1) or longer runs of Plan2Explore. We plot return per step (a), highest Pokémon level achieved (b), maximum
map segment reached (c), overall number of map segments explored (d), maximum party size reached (e) or Gym badges obtained (f)
over episodes. The gray dashed line marks the annotation Generation 2 Rψ . In (a)–(e) we apply smoothing over the trajectories with
window size 10.

F. Computation
SENSEI has 3 phases: (1) annotation of data pairs (offline), (2) reward model, i.e. VLM-MOTIF, training (offline), (3) online
RL training with environment interactions (DreamerV3). All experiments were performed on an internal compute cluster.

Dataset Annotation The annotation of data pairs is done using the OpenAI API, such that a single CPU is sufficient.
For instance for Robodesk with a dataset size of 200K pairs, we parallelized this over 200 CPUs, where we annotated 1K
pairs each, which took approximately 40 minutes. Note that annotations are fully offline and do not affect the runtime of
SENSEI itself. Each annotation using the single-turn strategy cost $0.002 with gpt-4o-2024-05-13 and $0.004 with
gpt-4-turbo-2024-04-09. The multi-turn prompting for the zero-knowledge Robodesk annotations also cost $0.004
per pair with gpt-4o-2024-05-13.

Reward Model Training After annotating the dataset, we train the VLM-MOTIF network using a single GPU for 50
epochs. Using e.g. Tesla V100-SXM2-32GB, this took 20min. We ran a grid search over different hyperparameters for
VLM-MOTIF training (batch size, learning rate, weight decay, network size), testing for a total of 18 different combinations,
and we chose the reward model with the best validation loss to use in SENSEI runs.

Online Model-based RL Training SENSEI is built on top of DreamerV3, just like our main baseline Plan2Explore. On a
NVIDIA A100-SXM4-80GB, SENSEI runs at ca. 7.5Hz, Plan2Explore runs at ca. 10Hz and pure VLM-MOTIF runs at ca.
8.7Hz.
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