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ABSTRACT

The targeting of disease-driving proteins is a critical goal of biomedicine. How-
ever, many of these proteins do not possess accessible small molecule binding
pockets and are oftentimes conformationally disordered, precluding binder design
via structure-dependent methods. Here, we present PPI-Llama2, which tasks
Meta’s Llama2 autoregressive language model architecture to de novo generate
protein binders conditioned directly on target sequences. Without relying on struc-
tural data and training only on protein-protein interaction (PPI) sequences, PPI-
Llama2 effectively learns the evolutionary semantics of PPIs, enabling the gener-
ation of both novel and biologically-plausible binders. Comparative evaluations
highlight PPI-Llama2’s performance in generating binders for evolutionarily dis-
tant targets, performing strongly against structure-dependent methods like RFD-
iffusion. In total, our findings showcase PPI-Llama2’s potential to aid therapeutic
discovery for diseases driven by undruggable and disordered target proteins, and
motivate further experimental screening efforts.

1 INTRODUCTION

Protein-protein interactions (PPIs) are foundational to numerous biological processes, such as sig-
nal transduction and enzyme activity regulation, as well as in the development and progression of
various diseases, including cancer and neurodegenerative disorders (Xie et al., 2023). Proteins in-
volved in these disease-driving pathways, however, oftentimes possess large and flat interfaces and
are largely disordered, precluding design of standard small molecule-based therapeutics to these
taregets (Xie et al., 2023; Behan et al., 2019). The design of protein-based binders, such as anti-
bodies, nanobodies, miniproteins, and peptides, thus present exciting opportunities for therapeutic
intervention (Chen et al., 2023). Nonetheless, traditional methods for binder generation, such as
phage display and yeast two-hybrid systems, are labor-intensive and time-consuming, prompting
the exploration of computational alternatives.
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Current state-of-the-art computational methods for binder design, most notably RFDiffusion
(Watson et al., 2023), rely on structural templates for binder scaffolding, precluding design to
conformationally-disordered, disease-driving target proteins, such as transcription factors and fu-
sion oncoproteins (Chen et al., 2023). In contrast, autoregressive protein language models (pLMs)
such as ProtGPT2 have been trained on millions of protein sequences and demonstrate the abil-
ity to generate novel protein sequences without structural inputs (Ferruz et al., 2022), highlighting
the semantic understanding of these models and motivating novel generation from their vocabulary
space.

In this work, we present PPI-Llama2, leveraging Meta’s Llama2 model (Touvron et al., 2023a;b) to
develop an autoregresive pLM that generates binding proteins de novo conditioned directly on target
sequence inputs. Distinct from GPT models, Llama2 offers systematic advantages, allowing cus-
tomization of the model’s architecture, training objectives, and procedures tailored to specific protein
corpuses. Trained directly on PPI datasets without pre-training on extensive protein databases such
as UniRef (Suzek et al., 2007), PPI-Llama2 captures sequence diversity and interaction patterns of
naturally-occurring PPIs. By conditioning the sequence generation process solely on the target se-
quence during inference (Figure1), we direct PPI-Llama2’s generative capabilities to produce novel,
complementary binder candidates to diverse, non-homologous target substrates, facilitating rapid
in silico screening without the requirement of structural information. As an extrinsic benchmark,
we successfully confirm the binding capacity of our generated sequences via AlphaFold2-Multimer
(Evans et al., 2021), and further establish their novelty and biomolecular and functional similarities
to cognate targets. Overall, our results suggest that PPI-Llama2 grasps intricate relationships be-
tween protein sequence and function to generate stable and plausible binders, motivation utilization
of the model for downstream therapeutic applications.

Figure 1: PPI-Llama2 Overview. A) Training procedure. B) Screening pipeline.

2 METHODS

Data Preparation PPI datasets were curated from the IntACT (Hermjakob et al., 2004) and Bi-
oGrid (Oughtred et al., 2021) databases for training purposes. A byte pair encoding (BPE) (Shibata
et al., 1999) tokenizer was trained on 569,786 proteins entries from Swiss-Prot (Boeckmann et al.,
2003) (release date: 2023-09-13) with a vocabulary size of 32k, including the special token <sep>to
indicate sequence separation. To ensure a robust training-validation split and prevent data leakage,
we used MMseqs2 (Steinegger & Söding, 2017) with a sequence identity threshold of 0.3 for filter-
ing PPI pairs and performed a cluster-based split, ensuring no sequence overlap between training and
validation data. For benchmarking, we selected Docking Benchmark 5 (DB5) PPI pairs (Townshend
et al., 2019) with less than 10% homology to the training set, identified through MMseqs2 compari-
son, to test our model’s generalizability. Only 15 sequences passed that threshold and were held-out
for benchmarking. For sequence evaluation by principal component analysis (PCA), we evaluated
data distribution and sequence novelty by analyzing embeddings from natural, random (from Prot-
GPT2), and PPI-Llama2-generated sequences using the pre-trained, state-of-the-art ESM-2 model
(esm2 t33 650M UR50D) (Lin et al., 2023).

Hyperparameters and Training Details PPI-Llama2 consists of 342 million parameters. Train-
ing was performed on a NVIDIA 8xA100 GPU system for 3 days. Our training procedure

2



Published at the GEM workshop, ICLR 2024

adopted ESM-2’s dynamic batching technique to maximize the utilization of GPU memory. Our
model was configured via HuggingFace’s Llama2 (Wolf et al., 2019) framework, incorporated with
FlashAttention-2 (Dao, 2023) optimization for enhanced processing efficiency. We also integrated
PyTorch Lightning frameworks (v2.1.4) (Falcon & The PyTorch Lightning team, 2019) to achieve
distributed data parallel (DDP) training. The learning rate was set to 1e-4, and we followed Llama2’s
cosine scheduler (Touvron et al., 2023b) to adjust the learning rate. The training process involved
using the <sep>token within PPI sequences to demarcate the transition between proteins, a method
that was mirrored during inference to signal the start of binder generation. The model was trained
with cross-entropy loss to regenerate the original PPI sequences, with pseudo-perplexity and accu-
racy meticulously tracked throughout the training period. A schematic of the training procedure can
be found in (Figure 1A).

Sequence Screening Pipeline In preliminary testing, we observed a positive correlation between
ESMFold (Lin et al., 2023) predicted Local Distance Difference Test (pLDDT) and predicted TM
score (pTM) scores with the likelihood of binding between two proteins, aligning with the recent
publications that also use these metrics to assess binding sequences (McLean, 2024) (Supplementary
Figure A). Although integrated predicted TM (ipTM) has been shown to be a more accurate metric
for binding events (Bryant et al., 2022), the computational demands of AlphaFold2-Multimer Evans
et al. (2021) led us to opt for ESMFold for the initial screening of candidate binders. We began
by selecting generation parameters that produced outputs with stable pseudo-perplexity (standard
deviation ≤ 50) within a specified parameter range (top-p: 0.7-0.95; temperature: 0.7-1; repeti-
tion penalty: 1-5; length penalty: 0.4-1.01). Subsequently, sequences were generated and screened
using ESMFold, significantly accelerating the output screening process. Generated binders were
then ranked by pLDDT changes and pTM scores to highlight the possible candidates for further
screening. Final candidates were further filtered via ipTM scores by AlphaFold2-Multimer version
1.5.5 supported by ColabFold (Mirdita et al., 2022). For homology information, generated sequences
were analyzed using BlastP (Madden, 2013) and Entrez (Schuler et al., 1996). Gene Ontology (GO)
terms, particularly focusing on molecular function, were determined for these sequences and the
target proteins via InterProScan (Paysan-Lafosse et al., 2023). Comparison of GO terms was per-
formed using GOSemSim (v2.12.0) (Yu, 2020) to assess semantic similarities. A schematic of the
screening pipeline can be found in Figure 1B.

Pseudo-Perplexity of PPI-Llama2 We adopted the transition scores from HuggingFace to cal-
culate the pseudo-perplexity as a measurement of how stable the model’s generation parameters
behaved during inference.

Pseudo-Perplexity(a) = e
− 1

N

∑N
i=1 log

(
e
lxi∑
j e

lj

)

This equation operates over all tokens i in the sequence, where N represents the total number of
tokens. It calculates the log probability of the softmax-transformed logits (l), which are the model’s
transition scores, for each token position i in the sequence. In this context, xi denotes the spe-
cific token at the position i in the sequence, as chosen or predicted by the model. lxi is the logit
corresponding to the token.

3 RESULTS AND DISCUSSION

PCA Distribution Analysis We performed PCA to compare the latent space distribution of se-
quences generated by PPI-Llama2 to both natural sequences and random sequences as defined by
ProtGPT2 Ferruz et al. (2022), using the ESM-2 model for embedding generation Lin et al. (2023).
As illustrated in Figure 2, the distribution of PPI-Llama2-generated sequences occupies an interme-
diate position between that of natural and random sequences and leans towards the natural protein
distribution (Figure 2). This positioning suggests that our model’s outputs not only adhere to the
distribution patterns characteristic of naturally-occurring proteins but also introduce a level of nov-
elty that distinguishes them from randomly generated sequences. A closer alignment with natural
sequences demonstrates the model’s efficiency in learning the underlying patterns and functions that
characterize naturally occurring proteins from the training set, which showed potential of our model
to generate protein binders that are biologically plausible and functionally relevant.
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Figure 2: PCA of PPI-Llama2 and RFDiffusion generated protein distribution compared to natural
and random proteins from ProtGPT2.

Figure 3: ipTM comparison among the original binder from DB5, the binder generated from RFD-
iffusion, and the binder generated from PPI-Llama2. ipTM are generated from AlphaFold2.
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Binder Generation Analysis Given the complexity of protein-protein interactions (PPIs) doc-
umented in databases like IntAct and BioGRID, our analysis identified a protein that binds with
over 4910 others, highlighting the extensive interconnectivity within PPI networks. To mitigate
data leakage, we meticulously ensured that each protein appeared in only one dataset split, either
for training or validation, as illustrated in Supplementary Figure B. For benchmarking, we utilized
experimentally verified DB5 data (Townshend et al., 2019), selecting 15 sequences with less than
10% homology to those in our training set through MMseqs2. This preparatory step was crucial for
assessing our model’s capability to generate novel binders.

In comparing the binder generation performance between PPI-Llama2 and RFDiffusion (Figure 3),
we observed that RFDiffusion, which requires the target structure as input, struggled with structured
targets that are evolutionarily distant, often yielding repeated tokens for binders in the 15-100 length
range. Conversely, PPI-Llama2, which only requires the target sequence as input, demonstrated a
superior ability to generate diverse targets with high AlphaFold2-Multimer ipTM scores, previously
established as an indicative metric of binding affinity Bryant et al. (2022); Zhu et al. (2023). Example
AlphaFold2-Multimer co-folds are shown in Supplementary Figures C and D.

To further validate the novelty and relevance of the generated binders, we conducted BlastP searches
McGinnis & Madden (2004) of generated sequences, finding that many binders either lacked ho-
mologs or were distantly related (E-value > 0.01) to segments of hypothetical proteins. This
was particularly notable for newly added target proteins lacking Gene Ontology (GO) annotations
(Paysan-Lafosse et al., 2023; Yu, 2020). For targets with GO labels, GO similarity analysis re-
vealed that our generated proteins shared biochemical functionalities with their targets (Table 1),
suggesting that PPI-Llama2 leverages evolutionary training data effectively to produce binders that
are biologically plausible and functionally relevant for previously unseen proteins.

Target GO Term Binder GO Term Similarity Score
beta-lactamase activity (GO:0008800) catalytic activity (GO:0003824) 0.454
metalloendopeptidase inhibitor activity
(GO:0008191)

protein dimerization activity (GO:0046983) 0.072

NAD+-diphthamide ADP-
ribosyltransferase activity (GO:0047286)

arginine deiminase activity (GO:0016990) 0.139

complement binding (GO:0001848) antiporter activity (GO:0015297) 0.093
phosphatase activity (GO:0016791) phosphatase activity (GO:0016791) 1
serine-type endopeptidase inhibitor activity
(GO:0004867)

iron-sulfur cluster binding (GO:0051536) 0.072

cysteine-type peptidase activity
(GO:0008234)

transmembrane transporter activity (GO:0022857) 0.134

RNA binding (GO:0003723) carbohydrate binding (GO:0030246) 0.325

Table 1: The Binder GO Term is determined via the top hit (provided that its E-value > 0.01) of
BlastP (filtering out “hypothetical protein” hits) of the generated binder for the corresponding target
protein.

4 CONCLUSION

In total, PPI-Llama2 establishes the ability of autoregressive language modeling architectures to
learn meaningful sequence-function relationships from protein interaction data alone, without re-
liance on structural templates or pre-trained pLM embeddings. Notably, PPI-Llama2’s performance
in generating binders that closely resemble natural proteins suggests a high degree of biological rel-
evance and functional potential, a critical feature for the practical application of generated binders.
Our ongoing work is focused on continued model development and experimental validation via
ELISA and SPR-based binding affinity characterization. As more PPI data becomes available, fur-
ther training may enhance generalizability, especially to underrepresented protein families. High-
throughput experimental screening of generated binders via cell surface display methods, for ex-
ample, will provide real-world application of our model to novel, disease-relevant targets. In con-
clusion, PPI-Llama2 provides an innovative in silico approach to protein binder design without the
requirement of target structure. With refinement and validation, this work may open new avenues
for targeting previously undruggable, disordered proteins implicated in disease.

5



Published at the GEM workshop, ICLR 2024

REFERENCES

Fiona M. Behan, Francesco Iorio, Gabriele Picco, Emanuel Gonçalves, Charlotte M. Beaver, Gior-
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A SUPPLEMENTARY FIGURES

Figure A: Evaluation of ESMFold for binder screening. We first generated 50 synthetic binders
drawn from uniform distribution of amino acids to each of the DB5 target proteins. Then we
performed ESMFold on (1) target proteins; (2) target+experimental binders (original PPI); (3) tar-
get+synthetic binders(synthetic PPIs). And retrieved their pLDDTs accordingly. a) The uncolored
pLDDT distributions represent receptor sequences binding with random binders, and the colored
distributions represent receptor pLDDT alone and the original complex pLDDT. Patterns indicate
that binding with random synthetic binders decrease the ESMFold pLDDT compared with binding
with their natural binders. b) In general, synthetic PPIs with random binders tend to have lower
pLDDT. Our evaluation verified that ESMFold can discriminate natural, verified binders from ran-
dom, synthetic binders.

Figure B: Evaluation of ESMFold for binder screening. We ensure that there are no overlapping
partner sequences within PPIs in the train-validation data splits. As such, each PPI is unique. The
x-axis represents the number of alternate sequences to which the query sequence binds, and the y-
axis represents the total counts for each category. The 17+ bin highlights the “super” sequences that
participate in complex networks and bind to ≥17 other target proteins.

Figure C: Example visualization of binders generated for target 2I25 chain A by RFDiffusion and
PPI-Llama2.
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Figure D: Example visualization of binders generated for target 1ZHH chain B by RFDiffusion and
PPI-Llama2.
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