
Under review as a conference paper at ICLR 2022

NEURAL MANIFOLD CLUSTERING AND EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Given a union of non-linear manifolds, non-linear subspace clustering or manifold
clustering aims to cluster data points based on manifold structures and also learn
to parameterize each manifold as a linear subspace in a feature space. Deep neural
networks have the potential to achieve this goal under highly non-linear settings
given their large capacity and flexibility. We argue that achieving manifold clus-
tering with neural networks requires two essential ingredients: a domain-specific
constraint that ensures the identification of the manifolds, and a learning algo-
rithm for embedding each manifold to a linear subspace in the feature space. This
work shows that many constraints can be implemented by data augmentation. For
subspace feature learning, Maximum Coding Rate Reduction (MCR2) objective
can be used. Putting them together yields Neural Manifold Clustering and Em-
bedding (NMCE), a novel method for general purpose manifold clustering, which
significantly outperforms autoencoder-based deep subspace clustering and achieve
state-of-the-art performance on several important benchmarks. Further, on more
challenging natural image datasets, NMCE can also outperform other algorithms
specifically designed for clustering. Qualitatively, we demonstrate that NMCE
learns a meaningful and interpretable feature space. As the formulation of NMCE
is closely related to several important Self-supervised learning (SSL) methods, we
believe this work can help us build a deeper understanding on SSL representation
learning.

1 INTRODUCTION

Here we investigate unsupervised representation learning, which aims to learn structures (features)
from data without the use of any label. If the data lie in a linear subspace, the linear subspace can
be extracted by Principal Component Analysis (PCA) (Jolliffe, 1986), one of the most basic forms
of unsupervised learning. When the data occupy a union of several linear subspaces, subspace
clustering (SC) (Vidal et al., 2016) is needed to cluster each data point to a subspace as well as
estimating the parameters of each subspace. Here we are concerned with even more challenging
scenarios, when data points come from a union of several non-linear low-dimensional manifolds. In
such scenarios, the clustering problem can be formulated as follows (Elhamifar & Vidal, 2011):

Task 1. Manifold Clustering and Embedding: Given that the data points come from a union of low-
dimensional manifolds, we shall segment the data points based on their corresponding manifolds,
and obtain a low-dimensional embedding for each manifold.

Various methods have been developed to solve this problem (Abdolali & Gillis, 2021), but it is still
an open question how to use neural networks effectively in manifold clustering problems (Haeffele
et al., 2020). In this paper, we propose neural manifold clustering and embedding (NMCE) that
follows three principles: 1) The clustering and representation should respect a domain-specific con-
straint, e.g. local neighborhoods, local linear interpolation or data augmentation invariances. 2) The
embedding of a particular manifold shall not collapse. 3) The embedding of identified manifolds
shall be linearized and separated, i.e. they occupy different linear subspaces. We achieve 1) using
data augmentations, and achieve 2) and 3) with the subspace feature learning algorithm maximal
coding rate reduction (MCR2) objective (Yu et al., 2020). This work make the following specific
contributions:

1

Under review as a conference paper at ICLR 2022

1. We combine data augmentation with MCR2 to yield a novel algorithm for general purpose
manifold clustering and embedding (NMCE). We also discuss connections between the
algorithm and self-supervised contrastive learning.

2. We demonstrate that NMCE achieves state-of-the-art performance on standard subspace
clustering benchmarks, and can outperform the best clustering algorithms on more chal-
lenging high-dimensional image datasets like CIFAR-10 and CIFAR-20. Further, empirical
evaluation suggests that our algorithm also learns a meaningful feature space.

2 RELATED WORK

Manifold Learning. In classical manifold learning, the goal is to map the manifold-structured
data points to a low-dimensional representation space such that the manifold structure is preserved.
There are two key ingredients: 1) Choosing a geometric property from the original data space to
be preserved. For example, the local euclidean neighborhood (Belkin & Niyogi, 2003), or linear
interpolation by neighboring data points (Roweis & Saul, 2000). 2) The embedding should not
collapse to a trivial solution. To avoid the trivial solution, the variance of the embedding space is
typically constrained in spectral-based manifold learning methods.

Manifold Clustering and Embedding. When the data should be modeled as a union of several
manifolds, manifold clustering is needed in addition to manifold learning. When these manifolds are
linear, subspace clustering algorithms (Ma et al., 2007; Elhamifar & Vidal, 2013; Vidal et al., 2016)
can be used. When they are non-linear, manifold clustering and embedding methods were proposed.
They generally divide into 3 categories (Abdolali & Gillis, 2021): 1. Locality preserving. 2. Kernel
based. 3. Neural Network based. Locality preserving techniques implicitly make the assumption
that the manifolds are smooth, and are sampled densely (Souvenir & Pless, 2005; Elhamifar &
Vidal, 2011; Chen et al., 2018). Additionally, smoothness assumption can be employed (Gong et al.,
2012). Our method generalizes those techniques by realizing them with geometrical constraints.
The success of kernel based techniques depends strongly on the suitability of the underlying kernel,
and generally requires a representation of the data in a space with higher dimension than the data
space (Patel & Vidal, 2014). Deep subspace clustering methods, such as Ji et al. (2017); Zhang et al.
(2019); Zhou et al. (2018) jointly perform linear subspace clustering and representation of the data,
and has the potential to handle high dimensional data effectively. However, it has been shown that
most performance gains obtained by those methods should be attributed to an ad-hoc post-processing
step applied to the self-expression matrix. Using neural networks only provide a very marginal gain
compared to clustering the raw data directly using linear SC (Haeffele et al., 2020). Our work
differs from those techniques mainly in two aspects: i) While most of the previous methods were
generative (autoencoders, GANs), our loss function is defined in the latent embedding space and is
best understood as a contrastive method. ii) While previous methods use self-expression based SC
to guide feature learning, ours uses MCR2 to learn the subspace features. Recently, some deep SC
techniques also applied data augmentation (Sun et al., 2019; Abavisani et al., 2020). However, in
those works, data augmentation played a complementary role of improving the performance. In our
method, data augmentation plays a central role for enabling the identification of the clusters.

Self-Supervised Representation Learning. Recently, self-supervised representation learning
achieved tremendous success with deep neural networks. Similar to manifold clustering and em-
bedding, there are also two essential ingredients: 1) Data augmentations are used to define the
domain-specific invariance. 2) The latent representation should not collapse. The second require-
ment can be achieved either by contrastive learning (Chen et al., 2020), momentum encoder (He
et al., 2020; Grill et al., 2020) or siamese network structure (Chen & He, 2021). More directly re-
lated to our work is Tao et al. (2021), which proposed feature orthogonalization and decorrelation,
alongside contrastive learning. Recently, variance regularization along was also successfully used to
achieve principle 2) (Zbontar et al., 2021; Bardes et al., 2021), attaining state-of-the-art SSL repre-
sentation performance. Part of our method, the total coding rate (TCR) objective achieves a similar
effect, see discussion in Appendix A.6. However, beyond self-supervised features, our algorithm
additionally show strong clustering performance, and directly learns a meaningful latent space. The
simultaneous manifold clustering and embedding in NMCE is also related to online deep clustering
(Caron et al., 2018; 2020) method. Also notable is Deshmukh et al. (2021), where the concept of
population consistency is closely related to the constraint functional we discussed.

2

Under review as a conference paper at ICLR 2022

Clustering with Data Augmentation Our method use data augmentation to ensure correct cluster-
ing of the training data. Although not explicitly pointed out, this is also the case for other clustering
techniques (Shen et al., 2021; Tsai et al., 2020; Li et al., 2021). Our understanding of data augmen-
tation is also consistent to works that specifically study the success of data augmentations (HaoChen
et al., 2021; von Kügelgen et al., 2021).

3 NEURAL MANIFOLD CLUSTERING AND EMBEDDING

3.1 PROBLEM SETUP

Let’s assume data points xi ∈ Rd are sampled from a union
⋃n

j=1 Xj of manifolds X1,X2, ...,Xn.1

As stated in Task 1, the goal of manifold clustering and embedding is to assign each data point to the
corresponding manifold (clustering), as well as learning a coordinate for each manifold (manifold
learning). To achieve this goal, we use neural network f , which learns to map a data point x to
the feature embedding z ∈ Rdemb and the cluster assignment c ∈ [1, n], i.e. z, c = f(x). The
cluster assignment shall be equal to the ground-truth manifold assignment,2 z should parameterize
the coordinates of the corresponding manifold Xc.

To make the feature space easier to work with, one can enforce the additional separability require-
ment that for any Xj ,Xk and j 6= k, the feature vectors are perpendicular, Zj ⊥ Zk. Here Zj denotes
the embedding feature vectors of data points in Xj, and we define perpendicular between two sets in
the following fashion: If Z̃j ⊆ Zj , Z̃k ⊆ Zk such that ∀zj ∈ Z̃j , zk ∈ Z̃k, we have zj · zk 6= 0, then
either Z̃j or Z̃k has zero measure.

In the following, we first argue that to make clustering possible with a neural network, one should
define the additional geometric constraint that makes the manifold clusters identifiable. Second,
we discuss how to implement the required geometric constraints and combine them with a recently
proposed joint clustering and subspace learning algorithm MCR2 (Yu et al., 2020) to achieve neural
manifold clustering and embeddng (NMCE).

Clustering with neural
network does not respect

the manifold structure.

Addional constraint implemented
via data augmentation allows

clustering to respect the manifold.

Learned feature is
orthogonal for di�erent

clusters.

x
f

z

Figure 1: Adding small Gaussian noise data augmentation and requiring the augmented samples of
the same point to be assigned to the same cluster and have similar embedding allows neural network
to find the desired manifolds.

3.2 CLUSTERING ALWAYS INVOLVES IMPLICIT ASSUMPTIONS

Even the simplest clustering algorithms rely on implicit assumptions. For example, in k-means
clustering, the implicit assumption is that the clusters in the original data space are continuous
in terms of L2 distance. For Linear SC, the assumption is that data points are co-linear within
each cluster. If a neural network is trained on example data to learn a cluster assignment function

1We do not consider topological issues here and assume that all of them are homeomorphic to Rdi for some
di

2Up to a permutation since the training is unsupervised.

3

Under review as a conference paper at ICLR 2022

c = f(x), the resulting clustering will be arbitrary and not resemble the solution of k-means or
linear SC clustering. This is because neural networks are flexible and no constraint is imposed on
the clustering function to force the result to respect the geometry of the original data. One example
of this is shown in Figure 1 left panel, where a deep clustering method outputs a rather arbitrary
clustering for the double spiral data.

To make the clusters learnable for a neural network, one needs to introduce constraints explicitly.
In the example in Figure 1, one can easily reason that, to be able to separate the two spirals from
each other, the clustering function needs to ensure that all close neighbors of a point from the data
distribution are assigned to the same cluster, essentially the same assumption implicitly made in
locality-based manifold clustering algorithms (Abdolali & Gillis, 2021). We formalize the notion
of constraints to a constraint functional D(f) (for a specific data distribution) that has the following
property: All cluster assignment functions f that makes D attain its minimum value (assumed to
be 0) and also cluster data points to the ground truth number of clusters will correctly cluster all
data points. For example, we can construct a functional D that takes value D = 0 for all clustering
functions that satisfy the locality constraint on the dataset, and D > 0 otherwise. This notion of
constraint function is completely general. For example, linear subspace clustering is recovered if
the constraint function take value 0 if and only if the found clusters are linear subspace.

In practice, one usually cannot optimize the neural network clustering function f subject to D = 0,
since the correct solution would have to be found at initialization. A more practical way to use the
constraint function is to use the relaxed objective with weighting λ:

L(f) = Lclst(f) + λ ∗D(f) (1)

where Lclst is some objective function that will force f to cluster the dataset. With a suitable λ,
optimizing this objective leads to learning of the correct clusters, by the assumption above. To
achieve manifold clustering, one just needs to find the appropriate constraint functional.

3.3 SUBSPACE FEATURE LEARNING WITH MAXIMUM CODING RATE REDUCTION

Having introduced explicit constraints for learning the manifold clustering with neural networks,
we still need a concrete algorithm for learning a linear subspace-structured representation given the
clustering (manifold learning). Fortunately, the recently proposed principle of Maximum Coding
Rate Reduction (MCR2) (Yu et al., 2020) provides a principled learning objective for this purpose.
We denote the dataset (union of all manifolds) by X, and random variable that represent distribution
on each manifold Xi byXi. For a certain encoderZ = f(X) (without clustering output), z ∈ Rdemb ,
the Gaussian coding rate function is defined to be:

R(Z, ε) =
1

2
logdet(I +

demb

ε2
cov(Z)) (2)

where cov denotes the covariance matrix function for a vector random variable: cov(Z) =
Ep(z)[zz

T]. This function is approximately the Shannon coding rate of a multivariate Gaussian
distribution given average distortion ε (Cover, 1999), and can be motivated by a ball-packing argu-
ment. However, we focus on its geometric implication and do not discuss the information-theoretic
aspect further. Readers interested to the full introduction of this objective can refer to the original
papers (Yu et al., 2020; Ma et al., 2007).

Suppose for now that we are also given the cluster assignment function c(x) that outputs the mani-
fold index c(x) = i for x ∈ Xi. We can then calculate the average coding rate for a particular cluster
i as R(Zi, ε), where Zi = f(Xi). The MCR2 principle states that, to learn a subspace-structured
representation, one needs to optimize f by maximizing the difference between the coding rate of all
of Z and the sum of coding rate for each cluster Zi:

∆R(Z, c, ε) = R(Z, ε)−
n∑

i=1

R(Zi, ε) (3)

It has been shown that MCR2 guarantees the perpendicularity requirement in the problem setup
above. Theorem A.6 in Yu et al. (2020) states that under the assumption that rank(Zi) is bounded,
and the coding error ε is sufficiently low, maximizing the MCR2 objective guarantees that Zi ⊥ Zj

for any i 6= j, and the rank of each Zi is as large as possible. For full details and proof, see Yu et al.
(2020).

4

Under review as a conference paper at ICLR 2022

3.4 NEURAL MANIFOLD CLUSTERING AND EMBEDDING

The MCR2 principle can be extended to the case where the labeling function c(x) is not given, but
is instead learned jointly by optimizing the MCR2 objective. In this case, we fuse the clustering
function into f : z, c = f(x), note that now Zi depends on f implicitly. However, as discussed
earlier, one will not be able to find the correct clusters by using MCR2 alone, as it is unconstrained
in the data space. An additional constraint term D(f) has to be included to make the clusters
identifiable. This leads to the Neural Manifold Clustering and Embedding (NMCE) objective:

LNMCE(f, ε) =

n∑
i=1

R(Zi, ε)−R(Z, ε) + λD(f) (4)

It is possible to replace the MCR2 objective in (4) by any other objective for subspace feature
learning, however, this generalization is left for future work. Given a suitable constraint functional
D, the NMCE objective will guide the neural network to cluster the manifold correctly and also learn
the subspace-structured feature, thus achieving manifold clustering and embedding. We explain in
the next section how D can be practically implemented.

3.5 IMPLEMENTING CONSTRAINTS VIA DATA AUGMENTATION

Here we propose a simple method to implement various very useful constraints. The proposed
method uses data augmentations, a very common technique in machine learning, and enforce two
conditions on the clustering and embedding function f : 1. Augmented data points generated from
the same point should belong to the same cluster. 2. The learnt feature embedding of augmented
data points should be similar if they are generated from the same point. We use T (x) to represent
a random augmentation of x: c, z = f(T (x)), c′, z′ = f(T ′

(x)), then D(f) = Ep(x)sim(z, z′).
Here, sim is a function that measures similarity between latent representations, for example cosine
similarity, or L2 distance. The requirements c = c′ can be enforced by using average of c and c′ to
assign z and z′ to clusters during training.

For the double spiral example, the augmentation is simply to add a small amount of Gaussian noise
to data points. This will have the effect of forcing neighboring points in the data manifold to also
be neighbors in the feature space and be assigned to the same cluster. The result of using this
constraint in the NMCE objective can be seen in Figure 1 middle and right panel. For more difficult
datasets like images, one needs to add augmentations to constrain the clustering in the desired way.
The quality of clustering is typically measured by how well it correspond to the underlying content
information (object class). Therefore, we need augmentations that perturbs style information (color,
textures and background) but preserves content information, so that the clustering will be based
on content but not style. Fortunately, extensive research in self-supervised contrastive learning has
empirically found augmentations that achieves that very effectively (Chen et al., 2020; von Kügelgen
et al., 2021).

3.6 MULTISTAGE TRAINING AND RELATIONSHIP TO SELF-SUPERVISED CONTRASTIVE
LEARNING

In practice, we find that for all but the simplest toy experiments it is difficult to optimize the full
NMCE objective (Eq. 4) from scratch. This is because the clusters are incorrectly assigned at the
start of training, and the sum in Eq 4 effectively cancels out the total coding rate term R(Z, ε). To
achieve good performance, it is critical to achieve high total coding rate, and high similarity between
augmented samples in the feature space. We thus resort to a multistage training procedure, with the
first stage always being optimizing the following objective:

LTCR(f, ε) = −R(Z, ε) + λD(f) (5)

We call this the Total Coding Rate (TCR) objective, which is a novel self-supervised learning objec-
tive by itself. Through simple arguments (Appendix A.6) one can see that this objective encourages
the covariance matrix of Z to be diagonal. Along with a similarity constraint between augmented
samples, this objective turns out to asymptotically achieve the same goal as VICReg (Bardes et al.,
2021) and BarlowTwins (Zbontar et al., 2021). We discuss this further in Appendix A.6.

5

Under review as a conference paper at ICLR 2022

After training with the TCR objective, we found that usually the feature Z already possess approxi-
mate subspace structure. For simple tasks, the features can be directly clustered with standard linear
SC techniques such as EnSC (You et al., 2016). For more difficult tasks, we found that the full
NMCE objective performs much better.

4 RESULTS

We provide code to reproduce the double spiral toy example in the supplementary material, the full
code will be released upon publication.

For the synthetic experiments, a MLP backbone is used as backbone and two linear last layers are
used to produce feature and cluster logits output, ELU is used as the activation function. For all
image datasets, standard ResNet with ReLU activation and various sizes is used as the backbone.
After the global average pooling layer, one linear layer with 4096 output units, batch normalization
and ReLU activation is used. After this layer, two linear heads are used to produce feature and cluster
logits outputs. The number of clusters used is always equal to the ground truth. For all experiments,
two augmented samples, or ”views”, are used for each data sample in a batch. Gumbel-Softmax
(Jang et al., 2016) is used when the cluster assignment is learned. Similar to Yu et al. (2020), feature
vectors are always normalized to the unit sphere. The constraint term D is always cosine similarity
between two augmented samples. Cluster assignment probabilities and feature vectors are averaged
between augmentations before sending into the NMCE loss. The regularization strength λ is always
determined empirically. Hyper-parameters and further details are available in the Appendix B.

Table 1: Clustering performance comparison on COIL20 and COIL100. Listed are error rates,
NMCE is our method, see text for references for other methods.

Dataset SSC KSSC AE+EDSC DSC S2ConvSCN MLRDSC-DA NMCE (Ours)

COIL20 14.83 24.65 14.79 5.42 2.14 1.79 0.0
COIL100 44.90 47.18 38.88 30.96 26.67 20.67 11.53

4.1 SYNTHETIC AND IMAGE DATASETS

For the toy example in Figure 1, data augmentation is simply adding a small amount of noise, and
full NMCE objective is directly used, the clustering output is jointly learned.

To verify the NMCE objective, we perform synthetic experiment by clustering a mixture of
manifold-structured data generated by passing Gaussian noise through two randomly initialized
MLPs. Small Gaussian noise data augmentation is used to enforce the locality constraint. A two
stage training process is used, the first stage uses TCR objective while the second stage uses full
NMCE objective. Much like the toy experiment, the result is consistent with our interpretation, see
Appendix A.1 for results and details.

To compare NMCE with other subspace clustering methods, we apply it to COIL20 (Nene et al.,
1996a) and COIL100 (Nene et al., 1996b), both are standard datasets commonly used in SC liter-
ature. They consist of images of objects taken on a rotating stage in 5 degree intervals. COIL20
has 20 objects with total of 1440 images, and COIL100 has 100 objects with total of 7200 images.
Images are gray-scaled and down-sampled by 2x. For COIL20, a 18-layer ResNet with 32 filters are
used as the backbone, the feature dimension is 40. For COIL100, and 10-layer ResNet with 32 filters
is used, and feature dimension is 200. We determined the best augmentation policy for this experi-
ment by manual experimentation on COIL20, and the same policy is applied to COIL100. Details
on the searched policy can be found in Appendix B. For this experiment, we use EnSC (You et al.,
2016) to cluster features learned with TCR objective. We found this procedure already performs
strongly, and full NMCE objective is not necessary.

We compare with classical baseline such as Sparse Subspace Clustering (SSC) (Elhamifar & Vidal,
2013) as well as recent deep SC techniques including KSSC(Patel & Vidal, 2014), AE+EDSC(Ji
et al., 2014), DSC(Ji et al., 2017), S2ConvSCN(Zhang et al., 2019) and MLRDSC-DA(Abavisani

6

Under review as a conference paper at ICLR 2022

et al., 2020). As can be seen in Table 1, our method achieves a perfect result of 0.0 error rate for
COIL20, and error rate of 11.53 for COIL100, substantially outperforming previous state of the art
of 1.79 and 20.67 error rate. This indicates that NMCE can truly leverage the non-linear processing
capability of deep networks, unlike previous deep SC methods, which only marginally outperform
linear SC on the pixel space (Haeffele et al., 2020).

4.2 SELF-SUPERVISED LEARNING AND CLUSTERING OF NATURAL IMAGES

Recently, unsupervised clustering has been extended to more challenging image datasets such as
CIFAR-10, CIFAR-20 (Krizhevsky et al., 2009) and STL-10 (Coates et al., 2011). The original
MCR2 paper (Yu et al., 2020) also performed those experiments, but they used augmentation in a
very different way (See Appendix A.2 for a discussion). The CIFAR-10 experiment used 50000
images from the training set, CIFAR-20 used 50000 images from training set of CIFAR-100 with
20 coarse labels. The STL-10 experiment used 13000 labeled images from original train and test
set. ImageNet-10 and ImagetNet-Dogs used 13000 and 19500 images subset from ImageNet, re-
spectively (Li et al., 2021). We use ResNet-18 as the backbone to compare with MCR2, and use
ResNet-34 as the backbone to compare with other clustering methods. In both cases, the feature
dimension is 128. Standard image augmentations for self-supervised learning is used (Chen et al.,
2020).

Table 2: Supervised evaluation performance for different feature types and evaluation algorithms.
See text for details.

Model Proj Pre-feature Pool Proj (16 avg) Pre-feature (16 avg) Pool (16 avg)

SVM 0.911 0.889 0.895 0.922 0.905 0.929
kNN 0.904 0.851 0.105 0.910 0.800 0.103

NearSub 0.898 0.902 0.903 0.903 0.909 0.911

4.2.1 TRAINING STRATEGY, SUPERVISED EVALUATION

Here we use a three stage training procedure: 1. Train with TCR objective. 2. Reinitialize the last
linear projection layer and add a cluster assignment layer. Then, freeze parameters in the backbone
network and train the two new layers with full NMCE objective. 3. Fine tune the entire network
with NMCE objective.

As discussed earlier, the first stage is very similar to self-supervised contrastive learning. Therefore,
we study features learned at this stage with supervised evaluation, the result with ResNet-34 is
listed in Table 2. To evaluate the learned features, we use SVM, kNN and a Nearest Subspace
classifier (NearSub). We use SVM instead of linear evaluation training because we find that it
is more stable and insensitive to particular parameter settings. Here we compare three types of
features, Proj: 128d output of the projector head. Pre-feature: 4096d output of the linear layer after
backbone. Pool: the 2048d feature from the last average pooling layer. We find that averaging
features obtained from images processed by training augmentations improves the result. Therefore
we also compare performance in this setting and denote it by 16avg, as 16 augmentations are used per
image. Images from both training and test set are augmented. As can be seen from the table, without
augmentation, SVM using the projector head feature gives the best accuracy. This is surprising,
as most self-supervised learning techniques effectively use Pool features because the performance
obtained with Proj features is poor. When averaging is used, a SVM with Pool feature becomes
the best performer, however, SVM and kNN with Proj feature also achieve very high accuracy. In
Appendix, we further compared Proj and Pool features using SVM in cases where limited labeled
data are available. In such cases, Proj feature significantly outperform Pool feature, showing that
the TCR objective encourages learning of meaningful feature in the latent space – unlike other
algorithms, where the gap between performance of Pool and Proj features can be very large (Chen
et al., 2020).

7

Under review as a conference paper at ICLR 2022

Table 3: Clustering performance comparisons. Clustering: clustering specific methods. SC: sub-
space clustering methods. See text for details.

Models CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Clustering
k-means 0.525 0.589 0.276 0.130 0.084 0.028 0.192 0.125 0.061 0.241 0.119 0.057 0.105 0.055 0.020
Spectral 0.455 0.574 0.256 0.136 0.090 0.022 0.159 0.098 0.048 0.271 0.151 0.076 0.111 0.038 0.013
CC 0.790 0.705 0.637 0.429 0.431 0.266 0.850 0.764 0.726 0.893 0.859 0.822 0.429 0.455 0.474
CRLC 0.799 0.679 0.634 0.425 0.416 0.263 0.818 0.729 0.682
MoCo Baseline 0.776 0.669 0.608 0.397 0.390 0.242 0.728 0.615 0.524 - - - 0.338 0.347 0.197
MiCE 0.835 0.737 0.698 0.440 0.436 0.280 0.752 0.635 0.575 - - - 0.439 0.428 0.286
TCC 0.906 0.790 0.733 0.491 0.479 0.312 0.814 0.732 0.689 0.897 0.848 0.825 0.546 0.512 0.409
ConCURL 0.846 0.762 0.715 0.479 0.468 0.303 0.749 0.636 0.566 0.958 0.907 0.909 0.695 0.630 0.531
IDFD 0.815 0.711 0.663 0.425 0.426 0.264 0.756 0.643 0.575 0.954 0.898 0.901 0.591 0.546 0.413

SC
MCR2-EnSC 0.684 0.630 0.508 0.347 0.362 0.167 0.491 0.446 0.290 - - - - - -
MCR2-ESC 0.653 0.629 0.438 - - - - - - - - - - - -
MCR2-SENet 0.765 0.655 0.573 - - - - - - - - - - - -

Ours
NMCE-Res18 0.830 0.761 0.710 0.437 0.488 0.322 0.725 0.614 0.552 0.906 0.819 0.808 0.398 0.393 0.227
NMCE-Res34 0.891 0.812 0.795 0.531 0.524 0.375 0.711 0.600 0.530 - - - - - -

Figure 2: Visualization of principal components from subspace representation learned from CIFAR-
10. Rows in each panel are training images that has the largest cosine similarities with different
principle components of that subspace. Similarity of images within each component is apparent.
For a more complete visualization, see Figure A.6.

4.2.2 CLUSTERING PERFORMANCE

We compare clustering performance of NMCE after all 3 stages of training to other techniques.
Due to space limits, we only compare with important baseline methods as well as highest perform-
ing deep learning based techniques, rather than being fully comprehensive. For a more complete
list of methods, see for example Shen et al. (2021). We follow the convention in the field and
use clustering Accuracy (ACC), Normalized Mutual Information (NMI), and Adjusted Rand Score
(ARI) as metrics. For definitions, see Yu et al. (2020), for example. We list results in Table 3, K-
means(MacQueen et al., 1967) and Spectral clustering(Ng et al., 2002) results were adopted from
Zhang et al. (2021) and Shen et al. (2021), we always selected the best result. For deep learning
based techniques, we compare our ResNet-34 results with CC(Li et al., 2021), CRLC(Do et al.,
2021), MiCE(Tsai et al., 2020), TCC(Shen et al., 2021), ConCURL(Deshmukh et al., 2021), and
IDFD(Tao et al., 2021). We did not include Park et al. (2021) or Kinakh et al. (2021) since the
former is a post processing step, and the later uses a special network architecture. We also sepa-
rately compare ResNet-18 result with features learned by MCR2 (MCR2-CTRL to be precise, see
Appendix A.2) and clustered by EnSC(You et al., 2016), ESC(You et al., 2018) or SENet(Zhang
et al., 2021). They are denoted by MCR2-EnSC, MCR2-ESC and MCR2-SENet, respectively. For

8

Under review as a conference paper at ICLR 2022

MCR2-EnSC, we adopt the result from Yu et al. (2020), since the result is higher and include all 3
datasets, MCR2-ESC and MCR2-SENet results are from Zhang et al. (2021).

Compared with the result from MCR2, our method achieved a substantial gain in all metrics con-
sidered. For example, the accuracy is improved by more than 6% on CIFAR-10, and by 9% on
CIFAR-20. This shows that we used data augmentation in a much more effective way than original
MCR2. Our method can also outperform previous techniques which were specifically optimized for
clustering, this happens on most CIFAR-10 and CIFAR-20 metrics, for example.

In the experiments above, stage 1 learns pre-features that are approximately subspace-structured,
and stage 2 can be seen as performing subspace clustering on the pre-feature output, as MCR2 was
originally a subspace clustering objective (Ma et al., 2007). For CIFAR and STL-10 experiments,
fine tuning the entire network with the NMCE objective (stage 3) improves performance by a small
but significant amount, see Appendix A.3). Features learned from stage 1 of the training can also be
directly clustered by methods like EnSC, but the results were rather poor for the image dataset. It
seems that NMCE is a more robust way to cluster the learned features for the image experiments.

After all 3 training stages, one can visualize the structure of each subspace by performing PCA
and displaying the training examples that have the highest cosine similarity to each of the principle
components. In Figure 2 we show this for 4 out of 10 clusters of CIFAR-10. As can be seen, principle
components in each cluster correspond to semantically meaningful sub-clusters. For example, the
first row in ”dog” cluster are mostly close-ups of white dogs. This shows that after training with the
full NMCE objective, samples are clustered based on content similarity in the latent space, instead of
being distributed uniformly on the hyper-sphere, as training with just the TCR objective or other self-
supervised learning methods would encourage Wang & Isola (2020); Durrant & Leontidis (2021);
Zbontar et al. (2021); Bardes et al. (2021); Zimmermann et al. (2021).

5 DISCUSSION

In this paper we proposed a general method for manifold clustering and embedding with neural net-
works. It consists of adding geometric constraint to make the clusters identifiable, then performing
clustering and subspace feature learning. In the special case where the constraint is implemented
by data-augmentation, we discussed its relationship to self-supervised learning and demonstrated its
competitive performance on several important benchmarks.

In the future, it is possible to extend this method beyond data augmentation to other type of constraint
functions, or improves its performance using a stronger subspace feature learning algorithm.

REFERENCES

Mahdi Abavisani, Alireza Naghizadeh, Dimitris N Metaxas, and Vishal M Patel. Deep subspace
clustering with data augmentation. In NeurIPS, 2020.

Maryam Abdolali and Nicolas Gillis. Beyond linear subspace clustering: A comparative study of
nonlinear manifold clustering algorithms. arXiv preprint arXiv:2103.10656, 2021.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsu-
pervised learning of visual features. In Computer Vision - ECCV 2018 - 15th European Confer-
ence, Munich, Germany, September 8-14, 2018, Proceedings, Part XIV, volume 11218 of Lecture
Notes in Computer Science, pp. 139–156. Springer, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

9

Under review as a conference paper at ICLR 2022

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Yubei Chen, Dylan M. Paiton, and Bruno A. Olshausen. The sparse manifold transform. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 10534–
10545, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Victor G Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. Solo-learn: A library
of self-supervised methods for visual representation learning. arXiv preprint arXiv:2108.01775,
2021.

Aniket Anand Deshmukh, Jayanth Reddy Regatti, Eren Manavoglu, and Urun Dogan. Representa-
tion learning for clustering via building consensus. arXiv preprint arXiv:2105.01289, 2021.

Kien Do, Truyen Tran, and Svetha Venkatesh. Clustering by maximizing mutual information across
views. arXiv preprint arXiv:2107.11635, 2021.

Aiden Durrant and Georgios Leontidis. Hyperspherically regularized networks for byol improves
feature uniformity and separability. arXiv preprint arXiv:2105.00925, 2021.

Ehsan Elhamifar and René Vidal. Sparse manifold clustering and embedding. Advances in neural
information processing systems, 24:55–63, 2011.

Ehsan Elhamifar and René Vidal. Sparse subspace clustering: Algorithm, theory, and applications.
IEEE transactions on pattern analysis and machine intelligence, 35(11):2765–2781, 2013.

Dian Gong, Xuemei Zhao, and Gérard Medioni. Robust multiple manifolds structure learning. In
International Conference on Machine Learning. PMLR, 2012.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Benjamin D Haeffele, Chong You, and René Vidal. A critique of self-expressive deep subspace
clustering. arXiv preprint arXiv:2010.03697, 2020.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense subspace clustering. In IEEE Winter
Conference on Applications of Computer Vision, pp. 461–468. IEEE, 2014.

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace clustering
networks. arXiv preprint arXiv:1709.02508, 2017.

Ian T. Jolliffe. Principal Component Analysis. Springer, 1986.

10

Under review as a conference paper at ICLR 2022

Zhao Kang, Chong Peng, Jie Cheng, and Qiang Cheng. Logdet rank minimization with application
to subspace clustering. Computational intelligence and neuroscience, 2015, 2015.

Vitaliy Kinakh, Slava Voloshynovskiy, and Olga Taran. Scatsimclr: self-supervised contrastive
learning with pretext task regularization for small-scale datasets. In 2nd Visual Inductive Priors
for Data-Efficient Deep Learning Workshop, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive cluster-
ing. In 2021 AAAI Conference on Artificial Intelligence (AAAI), 2021.

Yi Ma, Harm Derksen, Wei Hong, and John Wright. Segmentation of multivariate mixed data
via lossy data coding and compression. IEEE transactions on pattern analysis and machine
intelligence, 29(9):1546–1562, 2007.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume
1.14, pp. 281–297. Oakland, CA, USA, 1967.

SA Nene, SK Nayar, and H Murase. Columbia object image library (coil-20). Technical Report,
005-96, 1996a.

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image library (coil-100).
Technical Report, 006-96, 1996b.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems, pp. 849–856, 2002.

Sungwon Park, Sungwon Han, Sundong Kim, Danu Kim, Sungkyu Park, Seunghoon Hong, and
Meeyoung Cha. Improving unsupervised image clustering with robust learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12278–12287,
2021.

Vishal M Patel and René Vidal. Kernel sparse subspace clustering. In 2014 ieee international
conference on image processing (icip), pp. 2849–2853. IEEE, 2014.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Yuming Shen, Ziyi Shen, Menghan Wang, Jie Qin, Philip HS Torr, and Ling Shao. You never cluster
alone. arXiv preprint arXiv:2106.01908, 2021.

R. Souvenir and R. Pless. Manifold clustering. In International Conference on Computer Vision
(ICCV), pp. 648–653, 2005.

Xiukun Sun, Miaomiao Cheng, Chen Min, and Liping Jing. Self-supervised deep multi-view sub-
space clustering. In Asian Conference on Machine Learning, pp. 1001–1016. PMLR, 2019.

Yaling Tao, Kentaro Takagi, and Kouta Nakata. Clustering-friendly representation learning via
instance discrimination and feature decorrelation. In International Conference on Learning Rep-
resentations, 2021.

Tsung Wei Tsai, Chongxuan Li, and Jun Zhu. Mice: Mixture of contrastive experts for unsupervised
image clustering. In International Conference on Learning Representations, 2020.

René Vidal, Yi Ma, and S Shankar Sastry. Generalized principal component analysis, volume 5.
Springer, 2016.

Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. arXiv preprint arXiv:2106.04619, 2021.

11

Under review as a conference paper at ICLR 2022

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. Oracle based active set algorithm
for scalable elastic net subspace clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3928–3937, 2016.

Chong You, Chi Li, Daniel P Robinson, and René Vidal. Scalable exemplar-based subspace clus-
tering on class-imbalanced data. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 67–83, 2018.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
discriminative representations via the principle of maximal coding rate reduction, 2020.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi, Honggang Zhang, Jun Guo, and
Zhouchen Lin. Self-supervised convolutional subspace clustering network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5473–5482, 2019.

Shangzhi Zhang, Chong You, René Vidal, and Chun-Guang Li. Learning a self-expressive network
for subspace clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12393–12403, 2021.

Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1596–1604, 2018.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process. arXiv preprint arXiv:2102.08850, 2021.

12

Under review as a conference paper at ICLR 2022

A ADDITIONAL RESULTS AND DISCUSSIONS

A.1 SYNTHETIC EXPERIMENT

We verify the proposed manifold clustering and embedding algorithm by a simple synthetic ex-
periment. Ground truth data from a union of two manifolds with dimension 3 and 6 is generated
by passing 3d and 6d iid. Gaussian noise through two randomly initialized neural networks with
Leaky-ReLU activation function (negative part slop 0.2). Data augmentation is Gaussian noise with
manitude 0.1. Training used two stages, the first stage used only TCR objective, the second stage
with full NMCE objective.

Two situations are examined. One where the random neural network also has randomly initialized
biases, which will cause the two manifold to be far apart, making locality constraint implemented
by noise augmentation sufficient for identifying the manifolds. Another situation is when bias is
not used, the two manifolds then intersect at 0, where the density is rather high. This makes the
manifolds not identifiable with only locality constraint.

Results are listed in Table A.1. As can be seen, when the clusters are identifiable, NMCE is able
to correctly cluster the data points, as well as learn latent features that is perpendicular between
different clusters. At the same time, the feature is not collapsed within each cluster, since if so the
average cosine similarity within cluster would be 1. When the clusters are not identifiable, they
cannot be learned correctly.

Table A.1: Result from synthetic experiment. Accuracy is in % (chance level is 50%), z-sim is the
average absolute value of cosine similarity between feature vectors z for different pairs of z. True
Cluster: pairs of z are from different ground truth clusters. Found Clusters: pairs of z are from two
different found clusters. Within Cluster: pairs of z are randomly picked from the same found cluster,
averaged between two found clusters.

Dataset Accuracy z-sim: True Cluster z-sim: Found Clusters z-sim: Within Cluster

Identifiable 100.0 0.017 0.017 0.503
Not-identifiable 69.8 0.717 0.287 0.770

A.2 RELATIONSHIP TO SELF-SUPERVISED LEARNING WITH MCR2

The original paper (Yu et al., 2020) performed self-supervised learning using MCR2 objective with-
out any additional term. Their method treats different augmentations of the same image as a self-
labeled subspace. They used large number of augmentations (50) of each image, with only 20
images in each batch. The performance of this method is rather poor, which is expected based on
our understanding. In this case, augmented images will form a subspace with certain dimension in
the feature space, thus large amount of information about augmentations will be preserved in the
latent space. Clustering can then utilize style information and not respect class information.

To improve performance, a variant called MCR2-CTRL is developed, where the total coding rate
term is down-scaled. This variant performs significantly better, and is also used in our comparison.
This result is also expected, since decreasing the subspace term effectively contract different aug-
mentations of the same image in the feature space, making the feature better respect the constraint
needed for correct clustering. However, since the total coding rate is not high in this case, the feature
is not diverse enough to achieve good performance.

A.3 FINE-TUNING BACKBONE WITH NMCE OBJECTIVE

For CIFAR-10, CIFAR-20 and STL-10 experiments, the first training stage already learns very strong
self-supervised features, which is then clustered into subspaces in the second stage with backbone
network frozen. The clustering performance is already quite good after this stage. In the third stage,
the backbone is fine-tuned, which further improves clustering performance. In Table A.2, we show

13

Under review as a conference paper at ICLR 2022

the effect of fine-tuning backbone network on CIFAR-10 and CIFAR-20 experiment with ResNet-
18. As can be seen, fine-tuning produces a small but noticeable gain in clustering performance
for all metrics and both datasets. This indicates that using the full NMCE objective can improve
performance. If the optimization issue can be resolved, and the entire network is trained with the
NMCE objective from scratch, the performance may be further improved.

Table A.2: Fine tuning backbone with NMCE objective. Results shown are from ResNet-18. Fine
tuning backbone improves result slightly but notably.

Model ACC NMI ARI

CIFAR-10 before 0.819 0.743 0.690
CIFAR-10 after 0.830 0.761 0.710
CIFAR-20 before 0.422 0.471 0.300
CIFAR-20 after 0.437 0.488 0.322

A.4 COMPARE POOL AND PROJ FEATURE ON LOW DATA CLASSIFICATION

Here we compare SVM accuracy of Pool and Proj features from CIFAR-10 ResNet-18 experiment.
The feature averaged over 16 augmentations. The accuracy is plotted as a function of the number of
labeled training samples used, see Figure A.1.

As can be seen, Proj feature clearly outperforms Pool feature when few labeled examples are avail-
able. This makes Proj feature much more useful than Pool feature, since labeled examples are often
scarce real applications.

Note that what shown here is obviously not the optimal way to use labeled example, if one further
leverage the clustering information, accuracy should reach 90 with only 10 labeled examples.

200 300 400 500 600 700 800 900 1000
Labeled Set Size

0.80

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

Few data SVM classification with Proj and Pool features on CIFAR-10
Proj
Pool

Figure A.1: CIFAR-10 SVM test accuracy plotted against number of labeled examples used for
Pool and Proj feature from ResNet-18 experiment. Features averaged over 16 augmentations is
used. Error bar is std. over 10 random sampling of training examples.

A.5 EFFECT OF LAMBDA PARAMETER

Here we study the effect of λ parameter that balances the constraint and subspace feature learning
term. CIFAR-10 self-supervised accuracy with SVM and kNN evaluation on Proj feature is listed in
Table A.3. As can be seen, the accuracy is reasonable in a range of λ spanning more than 3x low to
high, indicating that the quality of the learned feature is not very sensitive to this parameter.

Table A.3: Effect of parameter λ.

λ 20 30 40 50 60 70

Proj SVM acc 0.899 0.902 0.903 0.902 0.903 0.903
Proj kNN acc 0.890 0.895 0.894 0.896 0.895 0.897

14

Under review as a conference paper at ICLR 2022

A.6 UNDERSTANDING THE FEATURE SPACE

Here we show that the TCR objective used in the first stage in our training procedure for CIFAR
and STL-10 datasets theoretically achieve the same result as the recently proposed VICReg (Bardes
et al., 2021) and BarlowTwins(Zbontar et al., 2021), both are self-supervised learning algorithms.
The optimization target of the two techniques are both making the covariance matrix of latent vector
Z approach the diagonal matrix. The first stage training using TCR essentially achieves the same
result. To see this, we note the following property of the coding rate function (Kang et al., 2015):
For any Z ∈ Rm×d:

logdet(I + ZTZ) =

min(m,d)∑
i=1

log(1 + σ2
i) (6)

Where σi is the ith singular value of Z. Additionally, we have:
∑min(m,d)

i=1 σ2
i = ||Z||2F, which

follows easily from ||Z||2F = tr(ZTZ). Since the function log(1 + x) is concave, the optimization
problem maxx1,x2,...,xn

∑n
i=1 log(1+xi) given

∑n
i=1 xi = C reaches maxima when all x are equal

to each other. Since we normalize the row of Z, ||Z||2F = m, optimization of Equation 6 result in
solution with uniform singular value, which is equivalent to diagonal covariance.

We could not successfully reproduce VICReg in our setup due to the large amount of hyper-
parameters that needs to be tuned. Therefore we resort to the open-source library solo-learn
(da Costa et al., 2021), which provided VICReg implementation. Running the provided script for
VICReg produced accuracy of 91.61% on CIFAR-10. We also implemented TCR objective in solo-
learn library. Running TCR obtained accuracy of 92.1%. All hyper-parameters and augmentations
are the same as VICReg, except batch size is 1024 instead of 256, projection dimension is 64 instead
of 2048. Larger batch size or smaller projection dimension didn’t work for VICReg, so we stayed
with the original parameters.

The covariance matrices of learned feature for SimCLR, VICReg and TCR computed over entire
training set are visualized in Figure A.2. For VICReg, first 128 dimension is visualized out of 2048.
As can be seen, the diagonal structure is visible in SimCLR feature space, TCR feature space is the
closest to diagonal matrix. VICReg feature space is also quite close to diagonal, but the off-diagonal
terms seems noisier. Additionally, we plot normalized singular values for VICReg projection space
in Figure A.4. This can be compared to TCR and SimCLR singular values in Figure A.3 a). As can
be seen, TCR achieves flatter singular value distributions than VICReg, neither SimCLR or VICReg
are close to full rank in projection space.

We demonstrate subspace structure of feature space after clustering with full NMCE objective by
plotting singular values of each learned subspace in Figure A.3 b). Each subspace found are around
rank 10. In all other panels of Figure A.3, we display samples whose feature vector has the highest
cosine similarity to the top 10 principle components of each subspace. One can see that most prin-
ciple components represent a interpretable sub-cluster within each class (even if the sub-cluster is
of a different class than the cluster). Same as in Figure 2, feature vectors calculated by averaging 16
augmented images are used.

a) b) c)

Figure A.2: a), b), c) Covariance matrix of feature vector computed over training set for TCR,
SimCLR and VICReg. VICReg result is slightly noisier on the diagonal than TCR. VICReg result
is the first 128 dimensions out of 2048, see text for details.

15

Under review as a conference paper at ICLR 2022

a) b)

Components Components

Figure A.3: a) Singular values of feature vector distribution for SimCLR and TCR. b) Singular
values for subspaces learned after all 3 training stages. The rest of panels: visualizing 10 training
examples most similar to principal components of each clustered subspaces.

B EXPERIMENTAL DETAILS

We list hyper-parameters for each experiment in Table B.1.

16

Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

Figure A.4: Singular values of feature vector distribution for VICReg using ResNet-18. VICReg
uses 2048d feature space.

B.1 TOY AND SYNTHETIC EXPERIMENTS

The toy dataset consists of double spiral with radius approximately equal to 15 and Gaussian noise
magnitude of 0.05, samples are generated online for each batch. Data augmentation is Gaussian
noise with magnitude 0.05.

B.2 COIL-20 AND COIL-100

The augmentation policy we found with manual search on COIL20 is (all are from torchvision
transforms): 1. Random Horizontal Flip with p = 0.5. 2. RandomPerspective with magnitude 0.3
and p = 0.6 3. ColorJitter with manitude (0.8, 0.8, 0.8, 0.2), always applied. The entire dataset is
passed as a single batch.

B.3 CIFAR-10, CIFAR-20, STL-10, IMAGENET-10 AND IMAGENET-DOGS

For CIFAR-10 and CIFAR-20, we use standard ResNet-18 and ResNet-34 with 64 input filters. The
first layer uses 3x3 kernel, and and no max pooling is used. For other experiments, we use standard
ResNet-18 and ResNet-34 with 5x5 first layer kernel and max pooling. For COIL-20 and COIL-100
experiment, 32 input filters is used, and the ResNet-10 is obtained by reducing number of blocks in
each stage in ResNet-18 to 1. For full details, see our code release.

For CIFAR-10, CIFAR-20, STL-10, ImageNet-10 and ImageNet-Dogs experiments, we used LARS
optimizer (You et al., 2017), with base batch size 256, for other experiments we used Adam. We
note that stage 2 and 3 in the 3 stage training process is quite sensitive to weight decay, a careful
search of this parameter is usually required for good performance.

B.4 COMPUTATIONAL COST

All experiments involving ResNet-34 requires 8 GPUs, others can be done in 1 GPU.

Our objective doesn’t add significant computational burden compared to neural-networks involved.
The covariance matrix is computed within a batch. For a batch of latent feature vectors with shape
[B, d], where B is batch size and d is latent dimension. We first compute the covariance matrix
with shape [d, d], with O(B2d) cost. Then the log determinant of this matrix is calculated, which
we assume has O(d3) cost. The O(B2) scaling with respect to batch size is the same as most
contrastive learning method such as SimCLR, which is known to scale to very large batch size.

17

Under review as a conference paper at ICLR 2022

Table B.1: Hyper-parameters for all experiments. lr: learning rate. wd: weight decay. ε: coding
error. dz: dimension of feature output. λ: regularization constant. bs: batch size. epochs (steps):
total epochs trained, or total steps trained if the entire dataset is passed at once. S1, S2, S3 denote 3
training stages.

Model lr wd ε dz λ bs epochs (steps)

Double Spiral 1e-3 1e-6 0.01 6 4000 4096 30000
Synthetic 1e-3 1e-6 0.01 12 100 4096 3000
COIL-20 1e-3 1e-6 0.01 40 20 1440 2000

COIL-100 1e-3 1e-6 0.001 200 20 7200 10000
CIFAR-10 ResNet-18 S1 1 1e-6 0.2 128 50 1024 600
CIFAR-10 ResNet-18 S2 0.5 0.005 0.2 128 50 1024 100
CIFAR-10 ResNet-18 S3 0.003 0.005 0.2 128 50 1024 100
CIFAR-10 ResNet-34 S1 1 1e-6 0.2 128 50 1024 1000
CIFAR-10 ResNet-34 S2 0.5 0.001 0.2 128 0 1024 100
CIFAR-10 ResNet-34 S3 0.003 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-18 S1 1 1e-6 0.2 128 50 1024 600
CIFAR-20 ResNet-18 S2 0.5 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-18 S3 0.003 0.001 0.2 128 0 1024 100
CIFAR-20 ResNet-34 S1 1 1e-6 0.2 128 50 1024 1000
CIFAR-20 ResNet-34 S2 0.5 0.002 0.2 128 0 1024 100
CIFAR-20 ResNet-34 S3 0.003 0.002 0.2 128 0 1024 100

STL-10 ResNet-18 S1 1 1e-6 0.2 128 30 1024 1000
STL-10 ResNet-18 S2 0.5 0.002 0.2 128 0 1024 400
STL-10 ResNet-18 S3 0.0005 0.002 0.2 128 30 1024 400
STL-10 ResNet-34 S1 1 1e-6 0.2 128 30 1024 2000
STL-10 ResNet-34 S2 0.5 0.002 0.2 128 0 1024 400
STL-10 ResNet-34 S3 0.0005 0.002 0.2 128 30 1024 400

18

	Introduction
	Related Work
	Neural Manifold clustering and Embedding
	Problem Setup
	Clustering always involves implicit assumptions
	Subspace feature learning with Maximum Coding Rate Reduction
	Neural Manifold Clustering and Embedding
	Implementing constraints via data augmentation
	Multistage training and relationship to self-supervised contrastive learning

	Results
	Synthetic and image datasets
	Self-supervised learning and clustering of natural images
	Training strategy, supervised evaluation
	Clustering Performance

	Discussion
	Additional Results and Discussions
	Synthetic experiment
	relationship to self-supervised learning with MCR2
	fine-tuning backbone with NMCE objective
	compare pool and proj feature on low data classification
	Effect of Lambda parameter
	understanding the feature space

	Experimental Details
	Toy and synthetic experiments
	COIL-20 and COIL-100
	CIFAR-10, CIFAR-20, STL-10, ImageNet-10 and ImageNet-Dogs
	Computational Cost

