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Abstract

Direct alignment methods typically train large language models (LLMs) by con-
trasting the likelihoods of preferred and dispreferred responses. While effective
for matching relative preferences, these methods have been widely observed to
depress the absolute likelihoods of example responses. Consequently, aligned
models often exhibit behaviors that deviate from expected patterns, resembling the
well-known reward-hacking effect even in the absence of an explicit reward model.
This phenomenon exposes a fundamental limitation of contrastive alignment, which
we characterize as likelihood underdetermination. In this work, we revisit direct
preference optimization (DPO)—the seminal direct alignment method—and show
that its loss admits a principled decomposition. The resulting reformulation not
only extends naturally to a broader range of feedback types, but also sheds light
on the origin of likelihood underdetermination. In particular, we identify that the
standard DPO implementation implicitly oversimplifies a regularizer in the reformu-
lated loss, and restoring its full version effectively resolves the underdetermination.
Building on these insights, we introduce PRoximalized PReference Optimization
(PRO), a unified alignment method that handles diverse feedback types while elimi-
nating likelihood underdetermination through an efficient approximation of the full
regularizer. Empirical evaluations demonstrate the consistent superiority of PRO
over existing methods across pairwise, binary and scalar feedback.

1 Introduction

Human values are nuanced, complex, and hard to formalize. These characteristics make curating
supervised datasets for aligning pretrained large language models (LLMs) difficult and costly. Re-
cently, learning from feedback has become a promising alternative. In place of meticulously crafted
supervised data, it relies solely on preference labels to reinforce desired behaviors and discourage
undesired ones. This shift in learning signal enables scalable data collection, forming the foundation
for efficient alignment. At the same time, moving beyond traditional supervised fine-tuning also
stimulated the development of more advanced alignment approaches.

Initially, reinforcement learning from human feedback (RLHF) converts pairwise preference feedback
into continuous rewards, which are then used to train LLM via reinforcement learning algorithms
[1, 2]. RLHF has shown empirical success. However, it introduces significant computational overhead,
due to the need for an auxiliary reward model and on-policy sampling during training. Moreover,
as an imperfect proxy, the reward model may yield unreliable evaluations when confronted with
responses outside its training distribution, making RLHF vulnerable to reward hacking [3–7].

Direct preference optimization (DPO) sidesteps the explicit reward modeling, and learns directly
from offline preference data [8]. Its core methodology involves constructing a contrastive loss,
that maximizes the likelihood differences between preferred and dispreferred responses. Owing
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to the simplicity, DPO has inspired the development of numerous contrastive approaches [9–11].
However, an unanticipated phenomenon frequently arises in DPO: the likelihoods of both preferred
and dispreferred responses decrease after alignment [12–15]. This decline inadvertently encourages
the generation of out-of-distribution responses, suggesting persistent reward hacking even in the
absence of an explicit reward model [16]. Recent investigations into this phenomenon have primarily
focused on the training dynamics of DPO and its generalized variants. Proposed explanations
include embedding similarity between paired responses [15], asymmetric update ratios for response
probabilities [17], and the “squeezing effect” produced by softmax when applying gradient ascent
to dispreferred responses [18]. While these studies offer valuable insights, they largely overlook
the intrinsic limitation of the loss function itself. In particular, when attention is limited to relative
likelihood differences, the contrastive loss becomes insensitive to concurrent decreases or increases
in absolute likelihoods. We characterize this issue as likelihood underdetermination. While several
works also notice and attempt to remedy it, they incorporate additional supervised or regression
signals into DPO [12, 14], which may unintentionally compromise the original intent of alignment.

The aforementioned line of research is primarily grounded on pairwise feedback. Meanwhile, parallel
studies have also explored alternative types of feedback for LLM alignment. Considering that
response-pair annotation demands more effort than single-response evaluation, Kahneman-Tversky
optimization (KTO) constructs separate utility functions for desired and undesired responses [19].
Conversely, in scenarios where finer-grained scalar feedback is available, noise contrastive alignment
(NCA) formulates a classification task to capture the varying degree of desirability for each labeled
response [13]. Both KTO and NCA depart from the contrastive framework. Although they can either
directly or under certain assumption be adapted to pairwise feedback, KTO does not support scalar
feedback, and NCA is incompatible with binary feedback. Currently, there is still no unified approach
that seamlessly accommodates all these feedback types.

In this work, we revisit DPO, the seminal method in field of direct alignment. Through a theoretical
reformulation of its loss, we demonstrate that DPO inherently supports heterogeneous feedback
and uncover new insights into the underlying cause of likelihood underdetermination. Leveraging
these findings, we propose a practical approach that both mitigates underdetermination and unifies
alignment across diverse feedback types, thereby realizing the best of both worlds pursued in prior
studies. Specifically, our contributions are as follows:

• DPO Reformulation We show that the DPO loss admits a decomposed reformulation, which
consists of separate optimizer and regularizer terms. The optimizer reorganizes pairwise
feedback into a pointwise signal, naturally extending applicability to a wider range of feedback
types. The regularizer is independent of the preference label, allowing for a more flexible
development of sample-based variant.

• Origin of Likelihood Underdetermination We find that the standard DPO implementation
implicitly oversimplifies the regularizer introduced in the reformulation. Importantly, once
the full regularizer is restored, any optimal solution to the reformulated loss—if it exists—no
longer suffers from likelihood underdetermination.

• Practical Approach Directly computing the full regularizer is intractable, and an optimal
solution may not exist. To overcome these challenges, we propose PRoximalized PReference
Optimization (PRO), which employs a hyper-response mechanism for efficiently approximating
the regularizer, and guarantees the existence of an optimal solution whenever its hyperparameter
is properly chosen.

• Empirical Evaluation The experiments show that PRO mitigates likelihood underdetermi-
nation, performs effectively across diverse feedback types, and achieves performance compa-
rable to or better than DPO and several other methods designed for specific feedback types.
Remarkably, even in the challenging scenario with extremely imbalanced binary feedback
(desired:undesired = 1:100), PRO demonstrates comparable performance to that obtained with
fully balanced feedback.

2 Preliminaries

In LLM alignment, preference data is commonly collected through two steps: prompting a baseline
model with inputs x to generate response pair y1, y2 ∼ µ(y|x); human annotators labeling the
generated responses to indicate which is preferred. Let yw ≻ yl|x denote the pairwise preference
feedback, where yw and yl are preferred and dispreferred responses amongst y1 and y2.
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RLHF employs reward modeling to infer scalar reward signals from pairwise preference data D ={
x(i), y

(i)
w , y

(i)
l

}I
i=1

. These reward estimates are subsequently used to fine-tune LLMs through
reinforcement learning. Recently, DPO [8] circumvents the need for explicit reward modeling, by
recognizing that the optimal solution to the RL problem possesses a closed-form relationship with its
underlying reward function. This connection allows the reward model to be expressed as:

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

,

where πθ is the LLM to be fine-tuned, and πref is a fixed reference model that serves as a regularization
anchor during optimization. Alignment is thus performed by fitting the LLM-induced reward model
to preference data via the following loss:

L̂DPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
rθ(x, yw)− rθ(x, yl)

)]
,

where we use the hatted notation L̂DPO to indicate that the loss is computed from preference samples.

DPO has been widely adopted in LLM alignment [20–24], yet an overlooked issue is likelihood
underdetermination of its loss function. Specifically, when log πθ(yw|x) and log πθ(yl|x) are shifted
by a same constant, the loss value remains unaffected. Furthermore, as indicated by its gradient:

∇θL̂DPO(πθ;πref)=−E(x,yw,yl)∼D

[
σ
(
rθ(x, yl)−rθ(x, yw)

)
︸ ︷︷ ︸

importance weight

·β
(
∇θ log πθ(yw)−∇θ log πθ(yl)

)]
, (1)

the importance weight for model update approaches zero whenever the relative difference
log πθ(yw|x)− log πθ(yl|x) is sufficiently large, regardless of the absolute probability values. Such
characteristics can substantially hinder effective alignment: After pretraining or supervised fine-
tuning, the values of log πθ(yw|x) and log πθ(yl|x) are markedly higher than those assigned to
meaningless sentences. As the DPO loss focuses solely on the relative difference between log p(yw|x)
and log p(yl|x), their absolute values are prone to decrease due to catastrophic forgetting, and there
is no incentive to increase them again once the relative difference has been sufficiently enlarged.

Notations Without loss of generality, we consider a single prompt and omit x for brevity in the
following. Let Y be the set of all possible responses, and supp(·) the support of a distribution.

3 Theoretical Re-Examination of DPO

At first glance, the contrastive nature of pairwise feedback seems to suggest that DPO is inherently
restricted to comparing only the relative likelihoods between alternative responses. However, as we
will show in Section 3.1, the DPO loss can, perhaps surprisingly, be reformulated into a decomposition
that explicitly accounts for the absolute likelihoods of labeled responses. This reformulation confers
several appealing properties, enabling the extension of DPO to a wider range of feedback types
and facilitating the design of more flexible sample-based loss variants. Building on this foundation,
Section 3.2 identifies the fundamental source of likelihood underdetermination in standard DPO,
which in turn motivates our proposed approach in Section 4.

3.1 Reformulation of Population-Based DPO

To more clearly elucidate the underlying properties of DPO, we consider its population-based loss:

LDPO(πθ;πref) = −Ey1,y2∼µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]
.

While this loss is not directly computable due to the inaccessibility of true preference probability, it
nevertheless allows us to examine DPO from a novel perspective, as articulated in the theorem below.
Theorem 3.1. The population-based DPO loss is equivalent to the following one, in that they share
same gradient:

LeDPO(πθ;πref)=−βEy∼µ

[
s(y) · log πθ(y)

]
︸ ︷︷ ︸

optimizer

+
1

2
Ey1,y2∼µ

[
DKL

(
B
(
1

2

)∣∣∣∣
∣∣∣∣B
(
σ
(
rθ(y1)−rθ(y2)

)))
]

︸ ︷︷ ︸
regularizer

,
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where B denotes Bernoulli distribution,

s(y) = Ey′∼µ

[
p(y ≻ y′)

]
− 1

2

is a score function indicating the extent to which y is favored across other responses and satisfies
Ey∼µ[s(y)] = 0.

The reformulation decomposes the DPO loss into an optimizer and a regularizer. Upon examination
of these components, we identify two attractive properties:

• The optimizer reorganizes pairwise feedback into a pointwise signal s(y), with which log πθ(y)
is independently optimized for each response. This property naturally extends the applicability
of LeDPO. For instance, given −1/2 ≤ s(y) ≤ 1/2, we can interpret s(y) as the expected value
of a Bernoulli distribution, with binary feedback in {−1/2,+1/2} serving as its empirical
sample for loss evaluation. Alternatively, s(y) can be viewed as the expectation of a continuous
reward distribution, where scalar feedback represents realized reward samples during training.

• The optimizer relies on preference feedback, whereas the regularizer operates independently
of such information. Given the limited availability of preference feedback in practice, the
optimizer must be estimated from a finite dataset. In contrast, the regularizer can be applied to
an expanded set of responses, irrespective of preference labels. This decomposition therefore
provides greater flexibility in developing sample-based loss.

These two properties play pivotal roles in this work. The first one enables devising a unified alignment
loss for diverse feedback types. The second property offers an elegant way to understand and resolve
likelihood underdetermination, as detailed in the following section.

3.2 The Completeness of Regularizer Matters in Sample-Based Loss

For practical use, it is essential to develop a sample-based loss, whose computation only requires
the limited feedback data. The most straightforward strategy is to estimate both the optimizer and
regularizer in eDPO using the labeled responses.2 As can be verified by applying Theorem 3.1
in reverse, this substitution recovers the sample-based DPO loss. However, there appears to be a
contradiction regarding the existence of likelihood underdetermination. On one hand, the gradient of
sample-based DPO in (1) includes an importance weight, causing it to vanish whenever the relative
likelihood difference between response pair is sufficiently large. On the other hand, the optimizer
in eDPO directly evaluates the absolute log-probabilities of labeled responses; even estimated with
limited samples, its gradient remains free of any importance weighting. Considering that eDPO
incorporates an additional regularizer, it is plausible that this term is responsible for the likelihood
underdetermination presented in sample-based DPO. We next investigate its effect.

A key observation of the regularizer is that, when µ(y) > 0 for all y, the regularizer effectively
constrains πθ around πref, and its value becomes zero only if πθ = πref. In other words, the regularizer
is well-defined, albeit in a contrastive form analogous to DPO. However, it is easy to verify that,
when estimated with a subset of responses, the regularizer revives the underdetermination issue.3
Moreover, as indicated by the recovery to sample-based DPO, this underdetermination dominates the
optimizer’s effect on absolute likelihoods, rendering the overall loss function underdetermined.

In fact, the regularizer itself is independent of preference labels, thus need not be restricted to labeled
responses. This motivates us to study whether likelihood underdetermination can be addressed by
retaining the full regularizer in sample-based loss. Formally, define the sample-based eDPO loss as:

L̂eDPO(πθ;πref)=−βEy∼µ̂

[
ŝ(y) · log πθ(y)

]
+
α

2
Ey1,y2∼µ

[
DKL

(
B
(
1

2

)∣∣∣∣
∣∣∣∣B
(
σ
(
rθ(y1)−rθ(y2)

)))
]
,

where µ̂ denotes the empirical response distribution derived from the preference dataset, in contrast
to the full response distribution µ. The coefficient α > 0 is newly introduced for general tradeoff

2That means replacing µ and p by their empirical counterparts estimated from the dataset.
3Since

∑
y∈Y πθ(y) = 1, any uniform likelihood reduction (or increment) within a subset must be offset by

an opposite change on its complement. However, the regularizer only compares likelihoods inside the subset, but
disregards its relation to the rest of Y . It is therefore blind to the widening probability gap between the two parts.
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between preference optimization and regularization. The empirical score ŝ(y) is given by

ŝ(y) =





Ey′∼µ̂

[
p̂(y ≻ y′)

]
− 1

2 for pairwise feedback

b̂(y)− Ey∼µ̂

[
b̂(y)

]
for pointwise feedback

,

where p̂ denotes the empirical pairwise preference and b̂ is the sample mean of the pointwise feedback.
The structure of ŝ for pointwise feedback is designed so that Ey∼µ̂[ŝ(y)] = 0, mirroring the property
of s established in Theorem 3.1.

To analyze the theoretical property of L̂eDPO, we treat πθ as an arbitrary distribution in ∆ =
{
π |

π(y) > 0,∀y ∈ Y and
∑

y∈Y π(y) = 1
}

. This allows to derive the necessary condition for
optimality as follows.
Theorem 3.2. Let µ := µ(y) > 0 for all y ∈ Y . If an optimal solution π∗ to L̂eDPO exists, it satisfies
the condition for any y ∈ Y:

αEy′∼µ

[
σ

(
β log

π∗(y)

πref(y)
−β log

π∗(y′)

πref(y′)

)
− 1

2

]
=

µ̂(y)

µ(y)
ŝ(y). (2)

Condition (2) can be interpreted as a weighted score matching: The expectation term on the left-hand
side acts as a learned score, analogous to the empirical score ŝ for pairwise feedback except that it is
derived from the LLM; The weight on the right-hand side contains µ(y) and µ̂(y), which respectively
signify the strengths of the regularizer and the observed evidence.

Recall that ŝ(y) indicates whether y is preferred over other responses. When condition (2) holds,
the modeled score should reflect the preference accordingly. In particular, the sign of ŝ(y) should
determine how π∗(y) deviates from πref(y). This relationship is formally confirmed in Corollary 3.3.
Corollary 3.3. Under the preconditions of Theorem 3.2, the following results hold for a constant C:

π∗(y)

πref(y)
= C, ∀y : µ̂(y) = 0 or ŝ(y) = 0, (3)

π∗(y)

πref(y)
> C, ∀y : µ̂(y) > 0 and ŝ(y) > 0, (4)

π∗(y)

πref(y)
< C, ∀y : µ̂(y) > 0 and ŝ(y) < 0. (5)

Corollary 3.3 imposes an ordering among the probability updates compare to reference model.
Specifically, it constrains the probability ratio of any unobserved response (i.e., one absent from the
preference dataset) to fall between those of the preferred and dispreferred responses. Consequently, a
simultaneous decrease in the probabilities of preferred and dispreferred responses would necessarily
entail a decrease for the unobserved responses as well, which is impossible due to the fixed total
probability. This demonstrates that the absolute likelihoods of both labeled and unobserved responses
can not be adjusted arbitrarily, thereby resolving the underdetermination issue. Under the guarantee,
we conclude that:

The likelihood underdetermination in DPO stems from an oversimplified regularizer,
and can be mitigated by restoring the regularizer to its full form.

4 Proximalized Preference Optimization

The analysis in previous section rest on two preconditions: (i) µ assigns non-zero probability to
all responses, and (ii) an optimal solution π∗ exists. While the first condition can be satisfied by
presetting µ appropriately, computing the regularizer in L̂eDPO requires traversing all responses
with non-zero probability under µ. Given the enormous cardinality of Y , the regularizer rapidly
becomes computationally intractable. We address this challenge by developing a carefully crafted
approximation to the regularizer in Section 4.1. The second precondition—existence of an optimal
solution—has been shown to always fail in sample-based DPO, referred to as degeneracy issue [10].
In Section 4.2, we establish a sufficient condition that guarantees the existence of an optimal solution
for the proposed loss. We further provide an explicit pairwise-feedback example satisfying this
condition and show that it is directly pertinent to sample-based DPO.
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Figure 1: Shaded boxes denote labeled responses; blank boxes denote unobserved responses. By
aggregating unobserved responses into a single hyper response, the response space becomes compact,
such that the probabilities of its elements can be enumerated.

4.1 Introducing Hyper Response for Tractable Loss Approximation

To avoid enumerating all possible responses, one may incorporate additional samples drawn from
µ, together with the labeled responses, into the regularizer’s computation. While this yields a more
accurate estimation than sample-based DPO, auto-regressive sampling is computationally expensive,
typically 10-100x slower than the training process itself. Moreover, this simplification again reduces
µ to an empirical distribution with limited supports, risking a recurrence of underdetermination.

To overcome these limitations, we introduce an approximation mechanism that evaluates the regular-
izer within a compact yet complete response space. The central idea is to define a hyper response,
denoted by H ⊂ Y , which aggregates multiple individual responses into a single, indistinguishable
unit. This abstraction gives rise to the following modified response space:

YH = {H} ∪ {y | y /∈ H}.
The regularizer is then computed using the probability values µ(y), πθ(y) and πref(y) exclusively
over YH. To ensure these probabilities well-defined for y = H, we extend any probability distribution
p on Y to YH by setting:

p(H) =
∑

y∈H
p(y) = 1−

∑

y/∈H

p(y). (6)

Importantly, p(H) can be derived entirely from the probabilities of its complement. As illustrated in
Figure 1, when H encompasses all unobserved responses, computing p(H) requires only the proba-
bilities of labeled responses, without the need for additional sampling. Moreover, this construction
provides the most compact form of YH, as it augments the labeled responses with a single hyper
response. Owing to these advantages, we adopt this construction as the default setting.

Building on the above foundations, we now introduce the refined loss:

L̂PRO(πθ;πref)=−βEy∼µ̂

[
ŝ(y) · log πθ(y)

]
+
α

2
Ey1,y2∼̇µ

[
DKL

(
B
(
1

2

)∣∣∣∣
∣∣∣∣B
(
σ
(
rθ(y1)−rθ(y2)

)))
]
,

whose only difference from L̂eDPO lies in the use of y1, y2 ∼̇ µ within the regularizer. Here, y ∼̇ µ
denotes that y is sampled according to µ over YH. Accordingly, for any function f , the expectation
with respect to y ∼̇µ reduces to Ey∼̇µ[f(y)]=µ(H)f(H) +

∑
y/∈H µ(y)f(y), which substantially

reduces the number of terms compared to the full expectation over Y . When substituting this
expectation into the regularizer, f(H) corresponds to the KL term involving µ(H), πθ(H) and
πref(H), all of which can be efficiently computed via (6). Crucially, due to the aforementioned
construction of H, L̂PRO incurs negligible additional computational cost compared to L̂DPO, requiring
only lightweight operations on response probabilities already computed in DPO.

Three questions naturally arise concerning L̂PRO: (i) How does its optimal solution relate to that of
L̂eDPO? (ii) Does it preserve protection against underdetermination? and (iii) What is the cost of this
approximation? The following theorem and the subsequent discussion addresses these questions.
Theorem 4.1. Let H ⊆ Y \ supp(µ̂) and µ := µ(y) > 0 for all y ∈ Y . If optimal solutions π∗ and
π∗
H to L̂eDPO and L̂PRO exist, they satisfy:

π∗
H(y) = π∗(y), ∀y ∈ Y \ H, (7)

∑

y∈H
π∗
H(y) =

∑

y∈H
π∗(y) = C ·

∑

y∈H
πref(y), (8)

where C is the constant as defined in Corollary 3.3.
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The precondition H ⊆ Y \ supp(µ̂) implies that the hyper response contains no labeled responses.
Consequently, Y \ H comprises all labeled responses. By (7), these responses retain the properties
stated in Corollary 3.3: after training, their absolute likelihoods—not merely their relative gaps—are
well determined. This protects the aligned LLM from likelihood underdetermination.

Adopting the hyper-response mechanism sacrifices the ability to distinguish among the probabilities
of unobserved responses in H. However, the inability to regulate the distribution over unobserved
responses during alignment is a limitation shared by existing approaches. Methods such as DPO [8],
KTO [19], NCA [13], and IPO [10] incorporate the probabilities only for labeled responses, leaving
the rest under-specified. In contrast, a distinctive property of our approach is that the total probability
mass assigned to the elements in H remains fixed, as shown in (8). This constraint prevents any single
response from continuously increasing its probability throughout training. Since most unobserved
responses have extremely low initial probabilities, even moderate increases during training leave their
generation likelihood minor, thereby limiting the practical impact of this limitation.

In summary, the hyper-response mechanism enables an efficient and effective approximation to
L̂eDPO. With the guarantee of mitigating likelihood underdetermination, aligned LLM is successfully
proximalized around reference model. We therefore refer to the proposed approach as PRoximalized
PReference Optimization (PRO).

4.2 The Existence of Optimal Solution for PRO

Finally, we establish a sufficient condition ensuring the existence of optimal solutions for the losses
discussed in previous sections. Noting that L̂eDPO is a special case of L̂PRO obtained by restricting H
to a single response, we hereafter take L̂PRO as the general loss.

Recall that the feasible region of L̂PRO, ∆ =
{
π | π(y) > 0 ∀y ∈ YH,

∑
y∈YH

π(y) = 1
}

, is an
open set. The absence of an optimal solution would imply the existence of a sequence within ∆
whose elements approach its boundary, along which the loss function strictly decreases (see Lemma
B.1 in Appendix B.4). However, as one approaches the boundary, i.e, π(y) → 0 for some y, the
regularizer in PRO can be shown to diverge to +∞. Thus, any overall decrease in the loss must result
from the optimizer decreasing towards −∞ at a faster rate.

The above observation leads us to ask whether the value of α can be adjusted so that the regularizer
dominates the loss function at the boundary. If so, the unbounded descent of the loss function can be
prevented, thereby guaranteeing the existence of an optimal solution. This conjecture is established
by the following theorem.

Theorem 4.2. Given any H ⊆ Y \ supp(µ̂) and µ := µ(y) > 0,∀y ∈ YH, there is a threshold α0

such that, whenever α > α0, an optimal solution π∗
H to L̂PRO exists.4

As an illustrative example, consider the pairwise feedback setting, where we choose µ = µ as:

µ(y) =

{
η · µ̂(y) if y ∈ supp(µ̂)

(1− η) · ρ(y) otherwise
. (9)

Here, ρ := ρ(y) > 0 denotes an arbitrary probability distribution over y ∈ YH \ supp(µ̂), and
0 < η < 1 is a preset hyperparameter. This construction serves as a general and practically effective
choice: in real-world scenarios, labeled responses yield the empirical distribution µ̂, whereas the true
underlying distribution µ, from which these responses are drawn, often remains inaccessible.

Under this specification of µ, the next theorem characterizes an admissible range of α, and further
reveals a direct connection between the induced loss and sample-based DPO.

Theorem 4.3. Consider the pairwise feedback setting, where µ = µ and H ⊆ Y \ supp(µ̂). For
any α ≥ 1/η2, an optimal solution π∗

H to L̂PRO exists. Moreover, when α = 1/η2, the PRO loss is
equivalent to the following one in that they share same gradient:

L̂PRO-P(πθ;πref) = − 1

η2
Ey1,y2∼̇µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]
,

4A constructive choice of α0 for general preference feedback is given in Corollary B.2.
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where

p(y1 ≻ y2) =

{
p̂(y1 ≻ y2) if y1, y2 ∈ supp(µ̂)
1/2 otherwise

is an augmented empirical preference.

The PRO-P loss can be viewed as an enhanced variant of sample-based DPO, which integrates pseudo
preference labels and employs the hyper-response approximation. Nevertheless, it should be noted
that PRO-P is merely a special case resulting from particular choices of µ and α. More broadly, PRO
offers a general approach that accommodates diverse feedback types and permits versatile control
over both the strength and distribution of regularization.

5 Experiments

Our experiments address four questions: (i) To what extent does PRO mitigate likelihood under-
determination in practice? (ii) How does it compare with other alignment methods under pairwise
and binary feedback? (iii) Given KTO’s suitability for imbalanced binary feedback, does PRO
exhibit greater robustness under severe imbalance? (iv) While NCA is specifically tailored for scalar
feedback, can PRO match or surpass its performance?

We utilize two datasets to construct three types of feedback across different experimental settings.
The Anthropic-HH dataset originally comprises 170k pairwise feedback instances [25]. Following
[19], we split each paired response into individual ones, and convert the feedback into binary format
by labeling preferred responses as desired and dispreferred ones as undesired. The UltraFeedback
dataset includes 64k instructions, each accompanied by four responses annotated with scalar feedback
[26]. To derive a pairwise version, we select the response with the highest scalar feedback as preferred
and randomly choose one of the others as dispreferred, following [24]. A binary version is also
generated from the pairwise data in a manner consistent with the processing of Anthropic-HH.

In experiments, we apply PRO to each feedback type: PRO-P denotes the use of L̂PRO-P for pairwise
feedback, PRO-B and PRO-S correspond to L̂PRO applied to binary and scalar feedback, respectively.
The hyper response is set to encompass all unobserved responses. Further implementation details
(including the choice of α) and the full experimental setup are provided in Appendices D and F.

5.1 Resolving Likelihood Underdetermination

As discussed, likelihood underdetermination often manifests as a uniform reduction in probabilities
across all example responses, ultimately leading to reward hacking. Because reward hacking exerts
a more immediate influence on model performance, this section focuses on its analysis. Detailed
probability dynamics throughout training are reported in Appendix G (see Figures 5 and 6), showing
that PRO consistently increases the probabilities of preferred responses for all feedback types.

In the absence of a reward model and ground-truth rewards, we examine reward hacking through its
most recognized symptom—length exploitation [27–30], wherein models tend to produce excessively
long responses after alignment. To trace the development and severity of this effect, we continuously
monitor the model’s average response length on test dataset during the alignment process. Simultane-
ously, model performance is evaluated in terms of win rate against preferred responses, measured on
dimensions of helpfulness, harmlessness and conciseness, using DeepSeek-V3 [31] as the evaluator.
To highlight variations over time, we report relative changes in both win rate and average response
length with respect to their initial evaluations.
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Figure 2: Performance fluctuation of different
alignment methods. β is uniformly set to 0.1.
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Figure 2 shows the results of aligning the Pythia-6.9B model [32] with Anthropic-HH dataset. For
DPO, we observe a sharp increase in response length as training progresses, accompanied by a
substantial decline in win rate. In contrast, the response lengths and win rates of both PRO-P
and PRO-B remain stable throughout training, suggesting effective mitigation of reward hacking.
Since KTO and NCA are derived from non-contrastive frameworks, they are expected to avoid the
underdetermination issue. However, our results reveal that the fully trained KTO model still exhibits
a significant increase in response length, from 113.6 to 235.6, along with a 6.64% drop in win rate.

We hypothesize that the degradation of KTO arises from the direct use of sigmoid function in its loss
formulation:

L̂KTO(πθ;πref) = E(x,yw,yl)∼D
[
λDσ

(
β(rθ(x, yw)− z0

)
+ λUσ

(
β(z0 − rθ(x, yl)

)]
,

where λD, λU are hyperparameters and z0 is a non-negative reference value. The sigmoid function
tends to saturate as its input moves far from zero, causing the gradient to vanish at extreme regions.
During training, particularly in the later stages of an epoch, the term rθ(x, yw) − z0 may become
strongly negative. This typically occurs because prior updates to the model, driven on other samples,
potentially cause the model to “forget” prompt-response pairs it has not yet encountered during
alignment. As a result, when these pairs are eventually processed, the diminished value of rθ(x, yw)
suppresses the sigmoid’s gradient, thereby impeding effective learning. In contrast, NCA and the PRO
series incorporate the log-sigmoid function in their loss functions. The log-sigmoid saturates only
on one side—when the implicit reward becomes sufficiently positive for the preferred response or
sufficiently negative for the dispreferred one. This asymmetry avoids the vanishing-gradient problem
inherent to the plain sigmoid and enables more stable parameter updates during training.

5.2 Performance Comparison Under Pairwise and Binary Feedback

Both PRO and the baseline methods employ β to regulate the degree of preference optimization;
however, the optimal β may differ across methods. To ensure a fair comparison, we evaluate each
method under a range of β values.

Figure 3 shows the results of aligning the Pythia-6.9B model with Anthropic-HH dataset. NCA and
KTO clearly outperform DPO in win rate while keeping response length within a more reasonable
range. This improvement likely stems from their non-contrastive loss formulation. Remarkably,
although PRO-P remains contrastive, both it and PRO-B consistently performs well, further supporting
that oversimplifying the regularizer is the root cause of underdetermination in contrastive alignment.

Next, we align the Mistral-7B-sft model [33] with the UltraFeedback dataset, conducting hyperparam-
eter sweeps over the same range of β values. Each aligned model is evaluated on AlapcaEval 2 [34],
MT-Bench [35] and multiple benchmarks from LM Evaluation Harness [36]. Table 1 summarizes
the best results of each method over all β values. The results indicate that DPO outperforms KTO
and NCA on AlpacaEval 2, while the reverse is true on MT-Bench. For both tasks, PRO-P and
PRO-B either closely match or surpass the best baseline. Similar results are observed for tasks from
LM Evaluation Harness: DPO outperforms KTO and NCA on ARC and TruthfulQA, but faces
performance bottleneck on IFEval. The PRO methods generally exhibit performance comparable to
the best baseline.

Method AlpacaEval 2 MT-Bench ARC IFEval TruthfulQA GPQA Avg Rank
LC (%) WR (%) Score

SFT 8.69 4.29 4.87 51.54 2.40 42.23 29.02 6.0

DPO 18.36 19.80 5.52 61.77 19.22 43.45 32.04 3.3
KTO 17.39 14.60 5.98 55.38 25.69 41.00 33.04 3.9
NCA 17.21 13.43 6.03 58.62 26.43 42.35 32.14 4.0
PRO-P 20.21 19.56 6.06 61.26 29.02 43.81 32.59 2.0
PRO-B 20.46 21.48 6.06 59.81 30.13 42.72 32.81 1.7

Table 1: Results of aligning Mistral-7B-sft with UltraFeedback. Avg rank is computed by ranking the
method among all competitors for each task and then averaging its ranks over all tasks.

9



5.3 Aligning with Extremely Imbalanced Binary Feedback

To further assess the effectiveness of alignment using binary feedback, we consider the challenging
settings where 99% of the desired or undesired responses in Anthropic-HH dataset are discarded. The
resulting “1%-desired” and “1%-undesired” datasets are then used to align the Pythia-6.9B model.

On the 1%-desired dataset, we conduct preliminary experiments with PRO-B and KTO using the
optimal β values from Figure 3 (0.003 and 0.03, respectively). However, these configurations yield
low win rates of only 5.57% and 22.56%. In addition, both aligned models produce a large number
of duplicate and meaningless tokens. We hypothesize that these poor performances stem from
overoptimization: with substantially reduced training data, the best-performing LLM we can optimize
is expected to remain closer to the reference model. To investigate this hypothesis, we first increase β
by one and two orders of magnitude, but the performances still suffer.

Dataset α=2.5 α=10 α=17.5 α=25

1%-desired 5.57 35.24 57.21 52.02
1%-undesired 48.87 50.64 47.83 47.94

Table 2: Effectiveness of α in improving win rates
(%) under extremely imbalanced binary feedback.

PRO introduces an extra hyperparameter α
that mediates the trade-off between optimiza-
tion and regularization. We therefore tune α
and report the results in Table 2. Remark-
ably, increasing α from 2.5 to 17.5 improves
the win rate to 57.21%, even surpassing the
performance achieved with the full dataset
(53.37%). This underscores the importance of
α in learning stability. A detailed comparison between the effects of α and β is given in Appendix E.

In contrast, on the 1%-undesired dataset, PRO-B and KTO attain satisfactory win rates of 48.87%
and 48.33% under the same β settings. Once again, increasing β fails to yield better performance,
but tuning α for PRO-B leads to further improvements, as shown in Table 2. These results suggest
that unlearning undesired responses is more challenging than learning desired ones, yet appropriate
tuning of α benefits both processes.

5.4 Aligning with Scalar Feedback Method N ARC IFEval TruthfulQA GPQA

NCA 2 59.39 27.73 43.45 31.70
4 59.61 28.96 ↑ 45.78 ↑ 32.14 ↑

PRO-S 2 59.47 29.31 45.90 30.80
4 59.47 29.43 49.45 ↑ 32.81 ↑

Table 3: Results of Aligning Mistral-7B-sft. Including
more suboptimal examples improves performance.

The raw UltraFeedback dataset provides
four responses labeled with scalar feedback
per instruction. Following existing work
[13], we evaluate model performance using
different numbers of responses per instruc-
tion, denoted by N . For N = 2, the best and
a random remaining response are selected.
As shown in Table 3, PRO matches or surpasses NCA, verifying its effectiveness on scalar feedback.
Besides, increasing N from 2 to 4 improves both methods across several benchmarks, suggesting
that additional suboptimal examples further enhance alignment.

6 Discussion

While DPO has become a predominant approach for aligning LLMs, it remains limited to pairwise
feedback. Additionally, the DPO loss is susceptible to likelihood underdetermination, inadvertently
encouraging reward hacking. In this study, we introduced a decomposed perspective on DPO that not
only reveals its potential to generalize to richer forms of feedback but also exposes the fundamental
cause of likelihood underdetermination. Building on these insights, we proposed PRO, a practical
method unifying alignment across diverse feedback while mitigating the underdetermination issue.
Experimental results demonstrated that PRO effectively mitigates length exploitation and performance
degradation during alignment, and performs consistently well across diverse feedback types.

This study also opens several avenues for future works. Prior studies have proposed various im-
provements to DPO [37–42], and recent work [43] shows that many of them can be equivalently
realized by selecting appropriate reference models in the DPO loss. Since PRO is derived as a
reformulation of DPO, it is interesting to explore how these strategies can further improve PRO’s
performance. Moreover, the DPO reformulation itself serves as a conceptual bridge to RLHF, as both
incorporate an optimizer–regularizer composition. This connection invites opportunities for gentler
regularization, improved model diversity, and integration with calibrated preference models in more
general alignment/post-training scenarios, as detailed in Appendix C.
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A Related Work

Reward Hacking in RLHF RLHF employs a learned reward model to align LLM. While the
reward model faithfully ranks responses within the training distribution [25, 44–46], it often fails to
generalize beyond. Consequently, LLM can exploit this weakness to achieve high rewards without
genuinely matching human intent. This effect, known as reward hacking, poses a significant challenge
in RLHF [3–7].

Recent studies have explored various mitigation strategies, covering the improvements in reward
modeling, policy optimization and data augmentation. For instance, the research in [47] introduces an
information bottleneck framework to filter out irrelevant noise that may introduce spurious features
in reward modeling. Recognizing the limitations of a single reward model, works in [48, 49] propose
the use of reward ensembles, which aggregate outputs from multiple models to produce more robust
reward estimates; these models can be further combined through weight averaging [50] to improve
efficiency. Additionally, authors in [51] advocate a conservative approach by optimizing LLMs
against the minimum reward predicted from a plausible set of reward models. In terms of RL
algorithms, several studies [52, 53] argue that the widely used proximal policy optimization [2] is
insufficient to prevent reward hacking, and suggest incorporating explicit constraints to enforce more
cautious use of reward model. Regarding training data, demonstrations are utilized to guide LLM
towards generating responses with calibrated rewards [54]; and augmentation tools [55] are applied
to diversify the dataset in hopes of improving model generalization. Despite these advances, reward
hacking remains a challenging and unresolved issue in RLHF.

Direct Alignment with Pairwise Preference Direct alignment methods [8–10] bypass the need for
explicit reward models and instead optimize LLMs directly using the preference data. Removing
reward model not only lowers computational cost, but also restricts loss evaluation to the offline
data. Since no on-policy samples are involved, these methods were initially considered immune
to reward hacking. However, recent studies [29, 30, 11] have shown that length exploitation—a
familiar form of reward hacking observed in RLHF [27, 28]—persists in methods like DPO. To
address, several methods have been proposed: R-DPO [29] incorporates response length as a penalty
into the DPO loss; SamPO [30] proposes down-sampling tokens of both preferred and dispreferred
responses to equal lengths when computing the implicit reward in DPO; and SimPO [11] introduces
length-normalized rewards to define a novel alignment loss. Although these methods effectively
reduce length exploitation, they rely on explicit manipulation or regularization of response length,
which unlikely addresses general reward hacking issues. As reported in RLHF literature [56], reward
hacking can also manifest as lazy generation [6], degraded downstream task performance [52], and
hedging or self-doubt [57]. These observations underscore the necessity for a more comprehensive
understanding of reward hacking in direct alignment methods.

An important clue arises from the widely reported phenomenon where the likelihoods of both
preferred and dispreferred responses decrease after alignment [12–14]. In consequence, the generation
probabilities for unobserved responses are unintentionally elevated, echoing the reward-hacking
effect in RLHF. Several research efforts examine this likelihood decline, attributing it to factors such
as embedding similarity between paired responses [15], asymmetric update ratios for the probabilities
of paired responses [17], and the “squeezing effect” of softmax when applying gradient ascent
to dispreferred responses [18]. Notably, these conclusions are chiefly drawn from the analyses of
training dynamics in DPO and its variants. In contrast, the presented work focuses on the loss function
itself, providing new insights into the underlying cause of this phenomenon and proposing a natural
resolution. Additionally, our study also differs from previous attempts to remedy the likelihood
decrease, which commonly incorporate additional supervised or regression signals into DPO [12, 14]
and may inadvertently compromise the original intent of alignment.

Direct Alignment with Pointwise Feedback Parallel studies have explored alignment methods
that utilize feedback beyond the pairwise format. In [58], an upper bound is derived for DPO to
accommodate binary feedback, and it is shown that refining this bound can enhance alignment
performance. Departing from the DPO framework, KTO [19] utilizes prospect theory [59] to create a
utility function tailored for binary feedback. More generally, there is an extensive body of literature
concerning binary feedback that focuses on model unlearning [60–62], where negative responses are
used to eliminate unwanted behaviors from LLMs. Among them, gradient-ascent methods [63, 64]
are the most straightforward but often lead to catastrophic collapse. Interestingly, alignment-inspired
methods exponentially slow down this collapse [60]. Apart from binary feedback, NCA [13] considers
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scalar feedback, and formulates a classification task to capture the varying degree of desirability for
each labeled response. While these existing methods tackle the different types of feedback, a unified
approach capable of handling pairwise, binary and scalar feedback is still lacking.

B Proof of Theorems

B.1 Equivalent Loss for Population-Based DPO

Theorem 3.1. The population-based DPO loss is equivalent to the following one, in that they share
same gradient:

LeDPO(πθ;πref)=−βEy∼µ

[
s(y) · log πθ(y)

]
︸ ︷︷ ︸

optimizer

+
1

2
Ey1,y2∼µ

[
DKL

(
B
(
1

2

)∣∣∣∣
∣∣∣∣B
(
σ
(
rθ(y1)−rθ(y2)

)))
]

︸ ︷︷ ︸
regularizer

,

where B denotes Bernoulli distribution,

s(y) = Ey′∼µ

[
p(y ≻ y′)

]
− 1

2

is a score function indicating the extent to which y is favored across other responses and satisfies
Ey∼µ[s(y)] = 0.

Proof. Theorem 3.1 is derived from an analytical property of the log-sigmoid function, namely,

∇δ

[
a log σ(δ) + (1− a) log σ(−δ)

]

= aσ(−δ)− (1− a)σ(δ)

= a− σ(δ) = ∇δ

[
aδ + log σ(−δ)

]
(10)

= a− 1 + σ(−δ) = ∇δ

[
(a− 1)δ + log σ(δ)

]
(11)

=
1

2

[
2a− 1− σ(δ) + σ(−δ)

]
= ∇δ

[(
a− 1

2

)
δ −DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ(δ)

))
]
, (12)

where we use ∇δ log σ(δ) = σ(−δ) and ∇δ log σ(−δ) = −σ(δ), the last equation is obtained by
averaging (10) and (11). In other words, the convex combination of log-sigmoid gradients can be
decomposed into two distinct components: one dependent on a, and another independent of it. When
a encodes the learning signal from training data, the latter term naturally acts as a data-independent
regularizer.

We next apply this identity to the gradient of

LDPO(πθ;πref)

= −Ey1,y2∼µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]

= −1

2
Ey1,y2∼µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)
+ p(y2 ≻ y1) · log σ

(
rθ(y2)− rθ(y1)

)]
,

yielding

∇θLDPO(πθ;πref) = ∇θδ · ∇δLDPO(πθ;πref)

= −1

2
∇θδ · ∇δEy1,y2∼µ

[(
a− 1

2

)
δ −DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ(δ)

))
]

= −1

2
∇θEy1,y2∼µ

[(
a− 1

2

)
δ

]

︸ ︷︷ ︸
A

+
1

2
∇θEy1,y2∼µ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ(δ)

))
]
,

(13)

where a = p(y1 ≻ y2) and δ = rθ(y1)− rθ(y2).
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The fist term A can be further simplified as follows:

A = −1

2
∇θEy1,y2∼µ

[(
p(y1 ≻ y2)−

1

2

)
·
(
rθ(y1)− rθ(y2)

)
]

= −1

2
Ey1,y2∼µ

[(
p(y1 ≻ y2)−

1

2

)
· β∇θ log πθ(y1)

]

+
1

2
Ey1,y2∼µ

[(
p(y1 ≻ y2)−

1

2

)
· β∇θ log πθ(y2)

]

= −1

2
Ey1,y2∼µ

[(
p(y1 ≻ y2)−

1

2

)
· β∇θ log πθ(y1)

]

+
1

2
Ey1,y2∼µ

[(
p(y2 ≻ y1)−

1

2

)
· β∇θ log πθ(y1)

]

= −1

2
Ey1,y2∼µ

[(
2p(y1 ≻ y2)− 1

)
· β∇θ log πθ(y1)

]

= −Ey1∼µ

[(
Ey2∼µ

[
p(y1 ≻ y2)

]
− 1

2

)
· β∇θ log πθ(y1)

]
.

Substituting this result into (13) produces the final expression:

∇θLDPO(πθ;πref)

= −Ey1∼µ

[(
Ey2∼µ

[
p(y1 ≻ y2)

]
− 1

2

)
· β∇θ log πθ(y1)

]

+
1

2
Ey1,y2∼µ

[
∇θDKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ

(
β log

πθ(y1)

πref(y1)
− β log

πθ(y2)

πref(y2)

)))]

= ∇θLeDPO(πθ;πref).

Finally, to show that Ey∼µ[s(y)] = 0, note the following relationship:

Ey∼µ[s(y)] = Ey,y′∼µ

[
p(y ≻ y′)

]
− 1

2

= Ey,y′∼µ

[
p(y′ ≻ y)

]
− 1

2

= Ey,y′∼µ

[
1− p(y ≻ y′)

]
− 1

2

=
1

2
− Ey,y′∼µ

[
p(y ≻ y′)

]

= −Ey∼µ[s(y)].

The proof follows immediately by rearranging terms.

B.2 Necessary Condition and Key Properties of the Optimal Solution to eDPO Loss

Theorem 3.2. Let µ := µ(y) > 0 for all y ∈ Y . If an optimal solution π∗ to L̂eDPO exists, it satisfies
the condition for any y ∈ Y:

αEy′∼µ

[
σ

(
β log

π∗(y)

πref(y)
−β log

π∗(y′)

πref(y′)

)
− 1

2

]
=

µ̂(y)

µ(y)
ŝ(y). (2)
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Proof. For notational simplicity, we denote πy = π(y). The gradient of L̂eDPO can then be expressed
as:

∇πy
L̂eDPO(π;πref)

= −ŝ(y) · β µ̂(y)
π(y)

+
α

2
Ey1,y2∼µ

[
∇πy

DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ

(
β log

π(y1)

πref(y1)
− β log

π(y2)

πref(y2)

)))]

= −ŝ(y) · β µ̂(y)
π(y)

− αEy1,y2∼µ

[(
σ

(
β log

π(y2)

πref(y2)
− β log

π(y1)

πref(y1)

)
− 1

2

)
· β∇πy log π(y1)

]

= −ŝ(y) · β µ̂(y)
π(y)

− αEy′∼µ

[
σ

(
β log

π(y′)

πref(y′)
− β log

π(y)

πref(y)

)
− 1

2

]
· βµ(y)

π(y)
. (14)

In the last equation, we relabel y1 and y2 as y and y′ in the last equation, respectively, to highlight
that the subsequent discussion focuses on y1.

According to the theorem’s precondition, an optimal solution π∗ exists. This solution must first
satisfy the following feasibility constraints:

π∗(y) > 0, ∀y, (15)
∑

y

π∗(y) = 1.

Moreover, its optimality requires that the gradients of the loss and the equality constraint satisfy

∇πy
L̂eDPO(π;πref)

∣∣∣∣
π=π∗

= λ · ∇πy

(∑

y

π(y)− 1

)∣∣∣∣
π=π∗

, ∀y (16)

for some λ. This condition is necessary; otherwise, there would exist a loss-descent direction that is
orthogonal to the gradient of equality constraint. Moving along such a direction would reduce the
loss while still satisfying the equality constraint. Furthermore, as indicated by (15), π∗ lies in the
interior of the feasible region. Therefore, a sufficiently small update step would also preserve the
inequality constraints. These analyses indicate that if (16) is violated, the solution can be further
improved within the feasible region, contradicting the optimality of π∗.

Noting that the gradient on the right-hand side of (16) equals one, we obtain

∇πy
L̂eDPO(π;πref)

∣∣∣∣
π=π∗

= λ, ∀y. (17)

Taking the expectation over y ∼ π∗ on both sides and substituting (14) together with Ey∼µ̂

[
ŝ(y)

]
= 0,

we arrive at

−αβEy,y′∼µ

[
σ

(
β log

π∗(y′)

πref(y′)
− β log

π∗(y)

πref(y)

)
− 1

2

]
= λ. (18)

Exchanging y and y′, we have

λ = −αβEy,y′∼µ

[
σ

(
β log

π∗(y)

πref(y)
− β log

π∗(y′)

πref(y′)

)
− 1

2

]

= −αβEy,y′∼µ

[
1

2
− σ

(
β log

π∗(y′)

πref(y′)
− β log

π∗(y)

πref(y)

)]
, (19)
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where the second equality follows from σ(z) = 1− σ(−z). Combining (18) and (19) yields λ = 0.

Then, multiplying both sides of (17) by π∗(y) and substituting (14) give

−βŝ(y) · µ̂(y)− αβEy′∼µ

[
σ

(
β log

π∗(y′)

πref(y′)
− β log

π∗(y)

πref(y)

)
− 1

2

]
· µ(y) = 0

After rearranging the terms and substituting the above identities, the desired relation follows, com-
pleting the proof:

αEy′∼µ

[
σ

(
β log

π∗(y)

πref(y)
− β log

π∗(y′)

πref(y′)

)
− 1

2

]
=

µ̂(y)

µ(y)
ŝ(y).

Corollary 3.3. Under the preconditions of Theorem 3.2, the following results hold for a constant C:

π∗(y)

πref(y)
= C, ∀y : µ̂(y) = 0 or ŝ(y) = 0, (3)

π∗(y)

πref(y)
> C, ∀y : µ̂(y) > 0 and ŝ(y) > 0, (4)

π∗(y)

πref(y)
< C, ∀y : µ̂(y) > 0 and ŝ(y) < 0. (5)

Proof. For those values of y where either µ̂(y) = 0 or ŝ(y) = 0, the right-hand side of equation (2)
vanishes. Given that sigmoid function is strictly monotonic, the solution necessarily satisfies

π∗(y)

πref(y)
= C, ∀y : µ̂(y) = 0 or ŝ(y) = 0, (20)

for some constant C.

Similarly, the monotonicity of sigmoid function also indicates

π∗(y)

πref(y)
> C, ∀y : µ̂(y) > 0 and ŝ(y) > 0, (21)

π∗(y)

πref(y)
< C, ∀y : µ̂(y) > 0 and ŝ(y) < 0. (22)

B.3 Relationship between the Optimal Solutions to PRO and eDPO Losses

Theorem 4.1. Let H ⊆ Y \ supp(µ̂) and µ := µ(y) > 0 for all y ∈ Y . If optimal solutions π∗ and
π∗
H to L̂eDPO and L̂PRO exist, they satisfy:

π∗
H(y) = π∗(y), ∀y ∈ Y \ H, (7)

∑

y∈H
π∗
H(y) =

∑

y∈H
π∗(y) = C ·

∑

y∈H
πref(y), (8)

where C is the constant as defined in Corollary 3.3.

Proof. Although the optimization variables π∗
H and π∗ are defined on distinct response spaces, the

two objectives L̂eDPO and L̂PRO can be shown to be equivalent under an appropriate reparameterization.
The proof follows directly by substituting condition (3) into relevant terms of both objectives. For
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clarity and completeness, the detailed derivation is presented below.

L̂eDPO(π;πref)

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]
+

α

2
Ey1,y2∼µ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))
]

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]

+
α

2

∑

y1 /∈H

∑

y2 /∈H

µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2

∑

y1∈H

∑

y2 /∈H

µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2

∑

y1 /∈H

∑

y2∈H
µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2

∑

y1∈H

∑

y2∈H
µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]

+
α

2

∑

y1 /∈H

∑

y2 /∈H

µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2
µ(H)

∑

y2 /∈H

µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
β logC − r(y2)

)))

+
α

2
µ(H)

∑

y1 /∈H

µ(y1)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− β logC

)))
,

where the last equation follows from noting that H ⊆ Y \ supp(µ̂) and applying condition (3).
Concretely, H ⊆ Y \ supp(µ̂) implies

µ̂(y) = 0, ∀y ∈ H.

Combining with condition (3), we have

π∗(y)

πref(y)
= C, ∀y ∈ H.

In the last equation, all probability ratios for responses within H are replaced by C. Therefore, the
objective function is expressed using the more compact set of variables

{
C, π(y) | y ∈ Y \ H

}
.
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Similarly,

L̂PRO(π;πref)

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]
+

α

2
Ey1,y2∼̇µ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))
]

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]

+
α

2

∑

y1 /∈H

∑

y2 /∈H

µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2

∑

y2 /∈H

µ(H)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(H)− r(y2)

)))

+
α

2

∑

y1 /∈H

µ(y1)µ(H)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(H)

)))

+
α

2
µ(H)µ(H)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(H)− r(H)

)))

= −βEy∼µ̂

[
ŝ(y) · log π(y)

]

+
α

2

∑

y1 /∈H

∑

y2 /∈H

µ(y1)µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− r(y2)

)))

+
α

2
µ(H)

∑

y2 /∈H

µ(y2)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
β logC − r(y2)

)))

+
α

2
µ(H)

∑

y1 /∈H

µ(y1)DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y1)− β logC

)))
,

where we apply the reparameterization π(H) = Cπref(H) in the last equation, considering that π(H)
is a single variable in this objective.

Under the reparameterized variables
{
C, π(y) | y ∈ Y \ H

}
, the two objectives L̂eDPO and L̂PRO

coincide exactly. This establishes the equivalence of their optimal solutions, leading to the following
relations:

π∗
H(y) = π∗(y), ∀y ∈ Y \ H,

π∗
H(H)

πref(H)
= C∗ =

π∗(y)

πref(y)
, ∀y ∈ H,

where C∗ denotes the optimal value of C for the above two objectives. The second equation further
implies

∑

y∈H
π∗
H(y) = π∗

H(H) =
π∗
H(H)

πref(H)
·
∑

y∈H
πref(y) =

∑

y∈H

π∗
H(H)

πref(H)
· πref(y)

=
∑

y∈H

π∗(y)

πref(y)
· πref(y) =

∑

y∈H
π∗(y).

Given that H ⊆ Y \ supp(µ̂), by applying equation (3) again, we have
∑

y∈H
π∗
H(y) =

∑

y∈H
π∗(y) = C ·

∑

y∈H
πref(y).

B.4 Existence of Optimal Solution to the PRO Loss

Lemma B.1. If no optimal solution exists for the minimization of L̂PRO, there is an infinite sequence
within the feasible region that approaches its boundary and strictly decrease the loss value.

23



Proof. Let L denote the infimum of L̂PRO over its feasible region, which may be finite or infinite. By
definition of the infimum, there exists a sequence of feasible solutions {πn} such that

L̂PRO(π1;πref) > L̂PRO(π2;πref) > · · · > L̂PRO(πn;πref)) > · · · ,
and

lim
n→∞

L̂PRO(πn;πref) = L.

Since the sequence {πn} lies in the bounded set ∆, the Bolzano–Weierstrass theorem guarantees the
existence of a convergent subsequence {πkn

} with

lim
n→∞

πkn = π∞.

Because
{
L̂PRO(πkn ;πref)

}
is a subsequence of

{
L̂PRO(πn;πref)

}
, it follows that

lim
n→∞

L̂PRO(πkn
;πref) = L.

Suppose for the sake of contradiction that π∞ ∈ ∆. Then, by the continuity of L̂PRO on the feasible
region, we have

L̂PRO(π∞;πref) = L,

implying that the infimum is attained within the feasible region, contradicting the assumption that no
optimal solution exists.

Hence, π∞ /∈ ∆, and the subsequence {πkn
} represents the sequence we aim to identify, i.e., it

approaches the boundary of the feasible region while strictly decreases the loss value.

Theorem 4.2. Given any H ⊆ Y \ supp(µ̂) and µ := µ(y) > 0,∀y ∈ YH, there is a threshold α0

such that, whenever α > α0, an optimal solution π∗
H to L̂PRO exists.5

Proof. For convenience, we restate the PRO loss as follows:

L̂PRO(π;πref)=−βEy∼µ̂

[
ŝ(y) · log π(y)

]
+
α

2
Ey1,y2∼̇µ

[
DKL

(
B
(
1

2

)∣∣∣∣
∣∣∣∣B
(
σ
(
r(y1)− r(y2)

)))
]
.

Suppose that no optimal solution exists. According to B.1, there exists an infinite sequence of feasible
solutions {πn}, which converges to the boundary of feasible region and strictly decreases the loss
value. Denote the limit of this sequence by {πn}.

Since π∞ lies on the boundary of the feasible region ∆ =
{
π | π(y) > 0,∀y ∈

YH and
∑

y∈YH
π(y) = 1

}
, at least one response must have zero probability. Define

Y0 =
{
y | π∞(y) = 0, y ∈ YH

}
.

Moreover, being on the boundary remains π∞ a valid probability mass function, which implies that
at least one response must also have positive probability; we denote this set as

Y+ =
{
y | π∞(y) > 0, y ∈ YH

}
.

Both Y0 and Y+ are therefore non-empty.

For elements in these two sets, we have6

r∞(y0) = −∞ < r∞(y+), ∀y0 ∈ Y0,∀y+ ∈ Y+, (23)

where r∞(y) = β log π∞(y)
πref(y)

. Thus,

σ
(
r∞(y0)− r∞(y+)

)
= 0, ∀y0 ∈ Y0,∀y+ ∈ Y+.

5A constructive choice of α0 for general preference feedback is given in Corollary B.2.
6Since πref is typically instantiated as a reference LLM that calculates response probabilities using the

softmax function, it follows that πref(y) > 0 for all possible responses y.
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Combining this observation with DKL(B(1/2) || B(0)) = +∞ implies that the regularizer in L̂PRO
diverges to +∞ as {πn} approaches π∞. This suggests that, to achieve a reduction in the overall
loss value, the optimizer needs to decrease towards negative infinity at a faster rate. Conversely, if it
decreases at a slower rate, the total loss would increase, which contradicts the assumption that the
sequence {πn} continuously reduces loss.

A sufficient condition to ensure this contradiction is

lim sup
π→π∞

βµ̂(y0)ŝ(y0) · log π(y0)
α
2µ(y

0)Ey∼̇µ

[
DKL

(
B
(
1
2

) ∣∣∣
∣∣∣ B
(
σ
(
r(y0)− r(y)

)))] < 1, (24)

for all y0 satisfying

ŝ(y0) < 0 and y0 ∈ Y0. (25)

Condition (25) identifies all responses that push the optimizer towards negative infinity, while
Condition (24) ensures that their corresponding terms in the optimizer, i.e. −βµ̂(y0)ŝ(y0) · log π(y0),
decrease more slowly than the increase of the regularizer.

We next derive how to satisfy (24). The main technical difficulty is evaluating the limit superior in
(24), as the expression involves multiple variables. To address this, we construct an upper bound by
mapping the multivariate ratio to a univariate function, whose limiting behavior can then be analyzed
directly via L’Hôpital’s rule.

For any ϵ > 0, when π is close enough to π∞, Inequation (23) guarantees

r(y0) < r∞(y+)− ϵ, ∀y0 ∈ Y0,∀y+ ∈ Y+,

where r(y) = β log π(y)
πref(y)

. This inequation further implies

σ
(
r(y0)− r(y+)

)
< σ

(
r(y0)− r∞(y+) + ϵ

)
< 1/2.

Since the second sigmoid value is closer to 1/2 compared to the first one, we have

DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y0)− r(y+)

)))
> DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
r(y0)− r∞(y+) + ϵ

)))
.

By substituting the above inequation for all y+ ∈ Y+ into the left-hand side of (24), and utilizing the
non-negativity of KL divergence for y /∈ Y+, we obtain

lim sup
π→π∞

βµ̂(y0)ŝ(y0) · log π(y0)
α
2µ(y

0)Ey∼̇µ

[
DKL

(
B
(
1
2

) ∣∣∣
∣∣∣ B
(
σ
(
r(y0)− r(y)

)))]

≤ lim sup
π(y0)→0+

βµ̂(y0)ŝ(y0) · log π(y0)
α
2µ(y

0)
∑

y∈Y+ µ(y) ·DKL

(
B
(
1
2

) ∣∣∣
∣∣∣ B
(
σ
(
r(y0)− r∞(y) + ϵ

))) .

Now, the function on right hand side contains only π(y0) as the free variable. By tentatively applying
L’Hôpital’s rule, we find that its ordinary limit exists:

lim
π(y0)→0+

βµ̂(y0)ŝ(y0) · log π(y0)
α
2µ(y

0)
∑

y∈Y+ µ(y) ·DKL

(
B
(
1
2

) ∣∣∣
∣∣∣ B
(
σ
(
r(y0)− r∞(y) + ϵ

)))

= lim
π(y0)→0+

βµ̂(y0)ŝ(y0) · 1
π(y0)

α
2µ(y

0)
∑

y∈Y+ µ(y) ·
(
σ(r(y0)− r∞(y) + ϵ)− 1

2

)
β

π(y0)

= − 4µ̂(y0)ŝ(y0)

αµ(y0)µ(Y+)
.

The limit superior equals the ordinary limit upon its existence. Then, Condition (24) can be satisfied
once

α > − 4µ̂(y0)ŝ(y0)

µ(y0)µ(Y+)
, ∀y0 ∈ Y0 : ŝ(y0) < 0. (26)
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Since µ(y) > 0 for all y ∈ YH, the right-hand side is finite, allowing us to fulfill this inequality by
selecting a sufficiently large α.

In summary, Inequality (24) is guaranteed to hold for sufficiently large α, implying that the sequence
{πn} can not continuously decrease the loss when approaching π∞. This establishes the desired
contradiction.

Corollary B.2. For general preference feedback, a valid α0 can be constructed as:

α0 = max
y∈YH:ŝ(y)<0

[
4µ̂(y) · (−ŝ(y))

µ(y) ·miny′∈YH µ(y′)

]
.

Proof. As stated in the proof of Theorem 4.2, to prevent the PRO loss from decreasing indefinitely as
the solution approaches a specified boundary point π∞ of the feasible region, it suffices to select

α >
4µ̂(y0) · (−ŝ(y0))

µ(y0)µ(Y+)
, ∀y0 ∈ Y0 : ŝ(y0) < 0,

where
Y0 =

{
y | π∞(y) = 0, y ∈ YH

}
and Y+ =

{
y | π∞(y) > 0, y ∈ YH

}
.

Once α satisfies this condition for all boundary points, the loss cannot decrease continuously on the
whole boundary, thus ensuring the existence of an optimal solution within the feasible region.

This can be achieved by further strengthening the above condition to make it π∞-independent:

• Instead of enforcing the inequality only for y0 ∈ Y0 : ŝ(y0) < 0, we can require it for all
y0 ∈ YH : ŝ(y0) < 0.

• Since µ(Y+) =
∑

y∈Y+ µ(y) ≥ miny∈Y+ µ(y) > miny∈YH µ(y), we can safely use this
lower bound for further simplification.

Putting these together, a sufficient and easily computable choice is

α0 = max
y∈YH:ŝ(y)<0

[
4µ̂(y) · (−ŝ(y))

µ(y) ·miny′∈YH µ(y′)

]
.

Theorem 4.3. Consider the pairwise feedback setting, where µ = µ and H ⊆ Y \ supp(µ̂). For
any α ≥ 1/η2, an optimal solution π∗

H to L̂PRO exists. Moreover, when α = 1/η2, the PRO loss is
equivalent to the following one in that they share same gradient:

L̂PRO-P(πθ;πref) = − 1

η2
Ey1,y2∼̇µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]
,

where

p(y1 ≻ y2) =

{
p̂(y1 ≻ y2) if y1, y2 ∈ supp(µ̂)
1/2 otherwise

is an augmented empirical preference.

Proof. We first establish the second part of this theorem. Under the choices of µ = µ and α = 1/η2,
we have

L̂PRO(πθ;πref) = −βEy∼µ̂

[
ŝ(y) · log πθ(y)

]

+
1

2
Ey1,y2∼µ̂

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
rθ(y1)− rθ(y2)

)))
]

+
(1− η)2

2η2
Ey1,y2∼̇ρ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
rθ(y1)− rθ(y2)

)))
]

+
1− η

η
Ey1∼µ̂,y2∼̇ρ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
rθ(y1)− rθ(y2)

)))
]
,
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where the distribution in the second term reduces to y1, y2 ∼ µ̂, because the responses in supp(µ̂)
are excluded from the hyper response

(
by the precondition H ⊆ Y \ supp(µ̂)

)
so that y1, y2 ∼ µ̂

and y1, y2 ∼̇ µ̂ are equivalent.

By applying the reverse direction of Theorem 3.1 for the first two terms, and expanding the remaining
KL terms, we have

L̂PRO(πθ;πref)

= −Ey1,y2∼µ̂

[
p̂(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]
(27a)

− (1− η)2

2η2
Ey1,y2∼̇ρ

[
1

2
log σ

(
rθ(y1)− rθ(y2)

)
+

1

2
log σ

(
rθ(y2)− rθ(y1)

)]
(27b)

− 1− η

η
Ey1∼µ̂,y2∼̇ρ

[
1

2
log σ

(
rθ(y1)− rθ(y2)

)
+

1

2
log σ

(
rθ(y2)− rθ(y1)

)]
(27c)

− 1− η2

2η2
log 2

= − 1

η2
Ey1,y2∼̇µ

[
p(y1 ≻ y2) · log σ

(
rθ(y1)− rθ(y2)

)]
− 1− η2

2η2
log 2

= L̂PRO-P(πθ;πref)−
1− η2

2η2
log 2,

where

p(y1 ≻ y2) =

{
p̂(y1 ≻ y2), if y1, y2 ∈ supp(µ̂)
1/2, otherwise

is the augmented empirical preference.

For the first part of the theorem, it suffices to prove the existence of optimal solution for α = 1/η2.
This is because such existence requires the regularizer to dominate the loss function at the boundary
of feasible region, as elaborated in the proof of Theorem 4.2. If α = 1/η2 already guarantees the
dominance, increasing α—the strength of the regularizer—only further enhances this effect.

Assume that no optimal solution exists when α = 1/η2. By Lemma B.1, there is an infinite
sequence of feasible solutions, which converges to the boundary of feasible region and strictly
decreases the loss value. Let π∞ denote the limit of this sequence. Since π∞ lies on the boundary of
∆ =

{
π | π(y) > 0,∀y ∈ YH and

∑
y∈YH

π(y) = 1
}

, if follows that

π∞(y0) = 0 and π∞(y+) > 0, ∃y0, y+ ∈ YH.

Then, we have7

log σ
(
r∞(y0)− r∞(y+)

)
= −∞,

log σ
(
r∞(y+)− r∞(y0)

)
= 0,

where r∞(y) = β log π∞(y)
πref(y)

.

We now analyze the behavior of L̂PRO-P as π approaches π∞, by examining the following mutually
exclusive cases:

• y0, y+ ∈ supp(ρ̂): In this case, the term in (27b) with y1 = y0 and y2 = y+ diverges to
positive infinity.

• y0 ∈ supp(µ̂) and y+ ∈ supp(ρ̂): Here, the term in (27c) with y1 = y0 and y2 = y+ also
diverges to positive infinity.

• y0 ∈ supp(ρ̂) and y+ ∈ supp(µ̂): Similarly, the term in (27c) with y1 = y+ and y2 = y0

diverges to positive infinity.
• y0, y+ ∈ supp(µ̂): This case is more complex. Specifically, if p̂(y0 ≻ y+) = 0, the term in

(27a) with y1 = y0 and y2 = y+ can remain finite as π → π∞. However, consider an arbitary
response y′ ∈ supp(ρ̂):

7Since πref is typically instantiated as a reference LLM that calculates response probabilities using the
softmax function, it follows that πref(y) > 0 for all possible responses y.
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– If π∞(y′) > 0, the term in (27c) with y1 = y0 and y2 = y′ diverges to positive infinity.
– Otherwise, i.e. π∞(y) = 0, the term in (27c) with y1 = y+ and y2 = y′ diverges to

positive infinity.

In summary, as π approaches π∞, at least one term in (27) diverges to positive infinity. Considering
the non-negativity of − log σ(·) for the other terms, it follows that the overall loss L̂PRO-P also
diverges to positive infinity. This result contradicts the expected monotonous descent of L̂PRO-P as
{πn} approaches π∞.

C Comparison of the PRO Loss and the RLHF Objective

Both the PRO loss and the RLHF objective incorporate an optimizer and a regularizer, yet they
differ in the specific implementations. This section discusses these differences in detail and identifies
several research problems that warrant further investigation.

The objective function (to be minimized) in RLHF is

−Ey∼πθ

[
rϕ(y)

]
+ βDKL(πθ || πref),

which shares the same gradient with

−Ey∼sg(πθ)

[
rϕ(y) · log πθ(y)

]
+ βDKL(πθ || πref), (28)

where sg(·) denotes the operation of stop gradient. For convenience of comparison, we rewrite L̂PRO
here:8

−βEy∼µ̂

[
ŝ(y) · log πθ(y)

]
+

α

2
Ey1,y2∼̇µ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
rθ(y1)− rθ(y2)

)))
]
. (29)

The key distinctions between (28) and (29) are highlighted as below:

Hypothesis Reliance RLHF optimizes LLM through the guidance provided by a learned reward
model. One crucial yet often overlooked element in this framework is selecting an appropriate
hypothesis for the reward model. The Bradley-Terry model, appreciated for its simplicity and intuitive
nature, is commonly used by default. However, when actual user preferences deviate from its
underlying assumptions (e.g., user preferences may be non-transitive, which the Bradley-Terry model
cannot accommodate [65, 66]), the reward model can produce inexact evaluations that mislead LLM
optimization. As comparison, the PRO loss directly leverages the preference signal without relying
on the rewards derived from another model. This direct approach hopefully improves robustness
against discrepancies between the model hypothesis and true nature of user preferences.

Weighting Factor of ∇θ log πθ(y) in Loss Gradient Equation (1) illustrates that examining the
loss gradient, particularly the weighting factor associated with ∇θ log πθ(y), provides valuable
insights into the alignment process. We now inspect this factor in the contexts of RLHF and PRO,
revealing another noteworthy distinction. First, when computing the optimizer gradients, RLHF
weights ∇θ log πθ(y) with the unbounded reward value rϕ, whereas PRO uses the bounded preference
score ŝ. Second, by simplifying the regularizer gradients as

β∇θDKL(πθ || πref) =

∫
β log

πθ(y)

πref(y)
· ∇θπθ(y)dy +

∫
πθ(y) · ∇θ log πθ(y)dy

=

∫
β log

πθ(y)

πref(y)
· ∇θ log πθ(y) · πθ(y)dy +∇θ

∫
πθ(y)dy

= Ey∼πθ

[
rθ(y)︸ ︷︷ ︸

Unbounded

·∇θ log πθ(y)
]
, (30)

8L̂eDPO can be viewed as an instantiation of L̂PRO by letting H consist of only a single individual response.
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and

α

2
∇θEy1,y2∼̇µ

[
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ
(
rθ(y1)− rθ(y2)

)))
]

=
α

2
Ey1,y2∼̇µ

[
− 1

2

(
∇θ log σ

(
rθ(y1)− rθ(y2)

)
+∇θ log σ

(
rθ(y2)− rθ(y1)

))
]

=
α

2
Ey1,y2∼̇µ

[
− 1

2

(
σ
(
rθ(y2)−rθ(y1)

)
−σ
(
rθ(y1)−rθ(y2)

))
· β
(
∇θ log πθ(y1)−∇θ log πθ(y2)

)
]

=
α

2
Ey1,y2∼̇µ

[(
σ
(
rθ(y1)− rθ(y2)

)
− 1

2

)
· β
(
∇θ log πθ(y1)−∇θ log πθ(y2)

)
]

=
α

2
Ey1,y2∼̇µ

[(
σ
(
rθ(y1)− rθ(y2)

)
− 1

2

)
· β∇θ log πθ(y1)

]

− α

2
Ey1,y2∼̇µ

[(
σ
(
rθ(y2)− rθ(y1)

)
− 1

2

)
· β∇θ log πθ(y1)

]

= Ey1,y2∼̇µ

[
αβ

(
σ
(
rθ(y1)− rθ(y2)

)
− 1

2

)

︸ ︷︷ ︸
Bounded

·∇θ log πθ(y1)

]
. (31)

we find that the weight boundedness here is consistent to that in the optimizers. Overall, the integrated
weight of ∇θ log πθ(y) for PRO is bounded, in contrast to the unbounded one in RLHF. Given the
stochastic nature of loss gradient and the tendency of LLM to forget, the bounded weight would
result in a more cautious model update, which potentially improves training stability and model
performance when utilizing PRO.

Mode Seeking v.s. Mass Covering The RLHF objective includes reverse KL divergence as a
regularizer, which is characterized by mode-seeking behavior. This means, minimizing the reverse
KL tends to concentrate probability mass around the modes of the target distribution, while rela-
tively neglecting low-probability regions. Formally, when πθ(y) → 0 for certain y, the regularizer
diminishes even if πref(y) is non-zero:

lim
πθ(y)→0

πθ(y) log
πθ(y)

πref(y)
= lim

πθ(y)→0
πθ(y) log πθ(y) = lim

πθ(y)→0

log πθ(y)
1

πθ(y)

= lim
πθ(y)→0

1
πθ(y)

− 1
πθ(y)2

=0,

where the penultimate equation follows from L’Hôpital’s rule. This behavior has been reported to
reduce diversity in LLM generation [67, 68]. By contrast, PRO employs forward KL divergence as
the regularizer, which diverges to infinity as πθ(y) → 0:

lim
πθ(y)→0

1

2

(
log

1
2

σ
(
rθ(y)− rθ(y′)

) + log
1
2

σ
(
rθ(y′)− rθ(y)

)
)

= − log(2)− lim
πθ(y)→0

log σ
(
rθ(y)− rθ(y

′)
)
+ log σ

(
rθ(y

′)− rθ(y)
)

2
= +∞, ∀y′ : πθ(y

′) > 0.

This regularizer prevents response probability from collapsing to zero, exhibiting mass-covering
behavior. Besides, it is computed over every response pair constructed from YH. By adjusting the
composition of H, we can flexibly modulate the extent of probability mass coverage over the original
response space Y .

The presented work focuses exclusively on direct alignment, specifically optimizing LLMs using
offline data, without the inclusion of on-policy or online samples. However, we want to emphasize
that the proposed PRO method can be directly adopted in on-policy or online scenarios. Considering
the above distinctions between PRO and RLHF, several followup research problems arise:

• Despite the risk of unreliable evaluations, the reward model in RLHF provides additional
alignment signals for unlabeled responses, which may further improve performance if applied
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appropriately. This motivates extending PRO to incorporate on-policy samples within such
a paradigm, particularly when computational resources are sufficient. A key difference in
implementation is that we require a score model to predict ŝ(y), rather than the reward model.
Since the score is no longer a latent variable inferred from user preferences, it does not rely on
any model hypothesis. Moreover, by its definition and the property established in Theorem
3.1, the score is bounded in [−1/2, 1/2] and has an expectation of zero. These information can
be leveraged to calibrate the score model or determine when it is reliable. Considering these
potential benefits, it is worthwhile to investigate how PRO performs compared to RLHF when
applied in the on-policy setting.

• Recent progress has shown that online reinforcement learning can substantially enhance the
reasoning capabilities for LLMs [69]. Popular approaches, such as PPO [2] and GRPO [70],
incorporate DKL(πθ || πref) as a regularizer. However, it is reported [71] that the regularizer is
excessively strong, resulting in overly constrained optimization of the LLM. Although fully
removing the regularizer mitigates this issue, it may lead to performance degeneration on
other unconsidered tasks during post training. This highlights the need for alternative methods
to address over-regularization. As noted, the regularizer in PRO is milder since its gradient
involves a bounded weighting factor on ∇θ log πθ(y). Given the rule-based rewards are also
bounded, PRO presents a promising objective function for such settings and warrants further
empirical investigation.

• During the reinforcement learning stage, LLMs explore response space by leveraging the prior
knowledge acquired from pretraining or supervised fine-tuning. Maintaining response diversity
is critical for enabling a broad spectrum of meaningful exploration, which in turn fosters the
development of more advanced reasoning abilities [72]. Since the regularizer in PRO exhibits a
mass-covering behavior, it is likely more effective at preserving diversity during post-training.
We consider examining its practical effects as another future research direction.

D Implementation Details of the PRO Loss

Pairwise Feedback In practical pairwise-feedback datasets, each prompt x is commonly associated
with only one pair of responses. Therefore, the empirical distribution over responses is given by
µ̂(yw) = µ̂(yl) =

1
2 . By setting H = Y \ {yw, yl} and η = 2

3 , we can rewrite L̂PRO-P as

L̂PRO-P(πθ;πref)

= E(x,yw,yl)∼D

[
log σ

(
rθ(x, yw)− rθ(x, yl)

)

+
∑

y∈{yw,yl}

(
1

2
log σ

(
rθ(x, y)− rθ(x,H)

)
+

1

2
log σ

(
rθ(x,H)− rθ(x, y)

))]
,

where

rθ(x,H) = β log
1−∑y∈{yw,yl} πθ(y|x)
1−∑y∈{yw,yl} πref(y|x)

.

The value of η is chosen so that all response pairs from {yw, yl,H} contribute equally to the overall
loss.

Binary Feedback Following the KTO implementation, the binary-feedback data is structured as
D =

{
(x(i), y(i), s(i))

}I
i=1

. That is, even though multiple responses may exist for a prompt, they
are treated separately. Consequently, the empirical distribution reduces to µ̂(y) = 1. By setting
H = Y \ {y} and µ = µ as in (9), we can rewrite L̂PRO as

L̂PRO-B(πθ;πref)

=−βE(x,y,s)∼D

[
s log πθ(y) + α

(
1

2
log σ

(
rθ(x, y)−rθ(x,H)

)
+
1

2
log σ

(
rθ(x,H)−rθ(x, y)

))
]
,

where

rθ(x,H) = β log
1− πθ(y|x)
1− πref(y|x)

.
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The regularizer coefficient is in fact αη(1 − η). Since there is no need to have two parameters to
determine the regularization strength, we re-denote the coefficient by α for notational simplicity. In
the experiments, we tune α so that the performance of PRO-B on Anthropic-HH test dataset matches
that of PRO-P under β = 0.003. The resulting value is α = 2.5, which we use throughout unless
otherwise noted.

Scalar Feedback Following the NCA implementation, the scalar-feedback data is structured as
D =

{
(x(i), y

(i)
1:N , s

(i)
1:N )

}I
i=1

, where N is the number of labeled responses per prompt. Then, the
empirical distribution over responses for a prompt x is µ̂(yn) = 1

N for all n ∈ {1, · · · , N}. By
setting H = Y \ {y1:N}, µ = µ and η = N

N+1 , we can rewrite L̂PRO as

L̂PRO-S(πθ;πref)

= −βE(x,y1:N ,s1:N )∼D

[
1

N

N∑

n=1

sn · log πθ(yn|x)

+
2α

N(N + 1)

∑

n,n′∈{1,··· ,N}
n<n′

(
1

2
log σ

(
rθ(x, yn)− rθ(x, yn′)

)
+

1

2
log σ

(
rθ(x, yn′)− rθ(x, y)

))

+
2α

N(N + 1)

N∑

n=1

(
1

2
log σ

(
rθ(x, yn)− rθ(x,H)

)
+

1

2
log σ

(
rθ(x,H)− rθ(x, yn)

))
]
,

where

rθ(x,H) = β log
1−∑N

n=1 πθ(yn|x)
1−∑N

n=1 πref(yn|x)
.

The value of η is chosen so that all response pairs from {y1:N ,H} contribute equally to the overall
loss. The regularizer strength is in fact given by α

(N+1)2 . We rescale it to 2α
N(N+1) to ensure that the

optimizer-regularizer weight ratio remains consistent with L̂PRO-B for any α. In accordance with the
binary-feedback case, we set α = 2.5 by default.

A common characteristic of the three cases above is that H contains a countless number of responses,
making πθ(H|x) and πref(H|x) extremely close to one. Moreover, a small step of parameter update
along any direction does not significantly alter the closeness of πθ(H|x) to one. Consequently, both
the value and the gradient of rθ(x,H) are approximately zero, allowing us to safely omit this term
from the loss function. This behavior was verified in our preliminary experiments, and in all the
reported experiments we set rθ(x,H) = 0 for simplicity.

E The Role of α and β in PRO’s Regularizer

By rewriting the PRO loss as

L̂PRO(πθ;πref)

β
= −Ey∼µ̂

[
ŝ(y) · log πθ(y)

]
+ Ey1,y2∼̇µ[fα,β(δ)],

where

fα,β(δ) =
α

2β
DKL

(
B
(
1

2

) ∣∣∣∣
∣∣∣∣ B
(
σ(βδ)

))
and δ = log

π(y1)

πref(y1)
− log

π(y2)

πref(y2)
,

the hyperparameters α and β are only involved in the function fα,β . This allows us to analyze their
impacts on the loss by simply examining fα,β .

Noticing that

∇δfα,β(δ) =
α

2

[
1

2
σ(βδ)− 1

2
σ(−βδ)

]
=

α

2

[
σ(βδ)− 1

2

]
,

we see that α determines the maximum gradient magnitude of the regularizer, while β governs how
rapidly the gradient grows as δ departs 0. These effects are illustrated in Figure 4. Notably, if α is
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too small, the gradient of the overall loss can be dominated by the optimizer, causing unpreferred
responses reduced towards zero probability and compromising our theoretical guarantees. This
explains why increasing β fails to mitigate performance deterioration but increasing α helps in
Section 5.3.
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Figure 4: α determines the maximum norm of the regularizer gradient, while β controls the rate at
which the gradient norm increases from zero to its maximum value.

We now have two hyperparameters α and β in PRO, however, tuning them is considerably simpler
than it appears. In particular, it is not necessary to jointly tune α and β: for a broad range of α values
above the necessary threshold, one can choose a corresponding β that enables PRO to consistently
attain strong performance.

To elaborate, Theorem 4.2 guarantees the existence of a threshold α0 such that, for any α > α0, the
regularizer remains effective and prevents probabilities from vanishing. A value of α being sufficiently
large indicates that the magnitude of the regularizer gradient should rarely hit its saturation regime
during optimization. Let α1 be such a sufficiently large value (i.e., α1 > α0) and β1 its tuned
counterpart. Because α and β provides adequate flexibility to shape the curve of regularizer gradient,
for any α2 > α1, we can select a β2 so that the curve of ∇δfα2,β2

shows a very similar shape with
∇δfα1,β1

prior to its saturation region. For instance, in Figure 5.3 (right column), the gradient curves
for (α, β) = (1, 3) and (3, 1) largely overlap for δ ∈ (−0.5, 0.5). We also observe that different
(α, β) yield similar performance in our experiments. Under pairwise feedback, the win rates for
for (2.5, 3e-3), (7.5, 1e-3) and (22.5, 3e-4) are 53.21%, 52.97% and 53.65%, respectively. Under
1%-desired binary feedback, the win rates for (17.5, 3e-3), (52.5, 1e-3) and (157.5, 3e-4) are 57.21%,
56.51% and 56.33%, respectively.

F Additional Experimental Setup

For the Pythia-6.9B model, we first utilize the preferred responses from Anthropic-HH dataset for
supervised fine-tuning prior to alignment, following the procedures in [8]. Since the Mistral-7B-sft
model is already fine-tuned, we apply it directly for alignment.

Hyperparameters We adopt a uniform set of hyperparameters across all models, methods and
datasets, for both supervised fine-tuning and alignment. Specifically, the maximum prompt length is
1024, and the maximum sequence length is 2048. Models are trained for 1 epoch with RMSprop as
the optimizer. The learning rate linearly increases from 0 to 5e-7 over the first 150 training steps and
remains constant thereafter. The batch size is 64 for KTO and PRO-B, and 32 for the other methods.
This adjustment is due to each binary sample containing a single response, which is half that of
pairwise samples. To ensure a consistent number of gradient steps when comparing methods using
pairwise and binary feedback, we double the batch size for binary feedback.

When evaluating KTO with imbalanced binary feedback, we implement a reweighting strategy in
the loss function to balance the effective proportions of desired and undesired samples at a 1:1 ratio.
For instance, if the original ratio of desired to undesired samples is 100:1, we multiply the loss for
undesired samples by a factor of 100. This reweighting technique was initially introduced in the KTO
paper. We also apply it to PRO.
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Prompt for Evaluating Aligned LLMs on Anthropic-HH Dataset

For the following query to a chatbot, which response is more helpful, \
harmless and concise?

Query:
<the user query>

Response A:
<either the test method or baseline>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two responses and explain \
which you feel is more helpful, harmless and concise. SECOND, on a new \
line, state only "A" or "B" to indicate which response is more helpful, \
harmless and concise. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Better response: <"A" or "B">
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G Additional Experimental Results

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Steps

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

R
ew

ar
d

DPO

Preferred

Dispreferred

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Steps

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

R
ew

ar
d

NCA

Preferred

Dispreferred

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Steps

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

R
ew

ar
d

PRO-P

Preferred

Dispreferred

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Steps

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

R
ew

ar
d

PRO-B

Preferred

Dispreferred

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Training Steps

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

R
ew

ar
d

KTO

Preferred

Dispreferred

Figure 5: Dynamics of implicit reward rθ when aligning Mistral-7B-sft with the pairwise/binarized
UltraFeedback dataset. In DPO, the rewards for preferred examples initially increase but then
exhibit a continuous decline. In contrast, both NCA and PRO maintain consistently positive rewards
throughout the alignment process. Besides, the rewards of NCA, KTO and PRO demonstrate a
convergent trend as training progresses.
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Figure 6: Dynamics of implicit reward rθ when aligning Mistral-7B-sft with the raw UltraFeedback
dataset (scalar feedback), where N denotes the number of responses per instruction. Both NCA and
PRO maintain consistently positive rewards for preferred examples throughout the alignment process.

Method ARC IFEval TruthfulQA GPQA Math HellaSwag Average

SFT 51.54 2.40 42.23 29.02 1.06 61.02 31.21

DPO 61.77 19.22 43.45 32.04 0.52 64.12 36.85
KTO 55.38 25.69 41.00 33.04 0.46 62.61 36.36
NCA 58.62 26.43 42.35 32.14 0.60 63.48 37.27
PRO-P 61.26 29.02 43.81 32.59 1.36 63.47 38.59
PRO-B 59.81 30.13 42.72 32.81 1.14 63.27 38.31

Table 4: Performance comparison by aligning the Mistral-7B-sft model with UltraFeedback dataset.
All methods demonstrate significant performance improvements after alignment. DPO achieves the
leading performance on ARC and HellaSwag, but underperforms on IFEval and Math. PRO performs
comparably to or better than the best baseline across all tasks.

Method N ARC IFEval TruthfulQA GPQA Math HellaSwag Average

NCA 2 59.39 27.73 43.45 31.70 0.76 63.70 37.79
4 59.61 28.96 ↑ 45.78 ↑ 32.14 ↑ 1.12 ↑ 62.88 ↓ 38.41 ↑

PRO-S 2 59.47 29.31 45.90 30.80 1.10 62.87 38.24
4 59.47 29.43 49.45 ↑ 32.81 ↑ 1.14 62.36 ↓ 39.11 ↑

Table 5: Performance comparison by aligning the Mistral-7B-sft model with UltraFeedback dataset.
N denotes the number of responses per prompt. Increasing N effectively improves the alignment
performance for most tasks.
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Prompt < |user| >
What does a diplomat do?
< |assistant| >
A diplomat works on behalf of their country to establish and maintain international
relationships. They often serve as intermediaries between different countries to
help resolve issues. Some diplomats also work on domestic issues within their own
country.
< |user| >
It sounds pretty interesting.
< |assistant| >

Preferred It can be. I personally think it’s a fascinating job, and I often find it emotionally
rewarding to help people in need.

DPO It is, there are many challenges as a diplomat, but it can also be quite rewarding.
I find the work interesting and challenging. I also find it very rewarding to help
other countries work towards better solutions to international conflicts. I think it’s
really important to have international relationships, and maintaining them is key to
advancing the world as a whole. I also think that having international relationships
is important for any country, because without mutual respect and trust we can’t
make great progress on issues like trade and diplomacy. I also enjoy meeting
different people from around the world, as well as the work itself. I find it very
interesting and stimulating. I think it’s also really important to be well-rounded as a
person, and having a diverse skillset is a good way to stay engaged and interested
in different topics. I also think it’s very important for a diplomat to be honest and
diplomatic in their interactions with other countries, so that they can build trust and
get things done. It can be tough work though, I think.

Judgment Response B [Preferred] is more concise and focused, avoiding unnecessary elabora-
tion while still being helpful and harmless, whereas Response A [DPO] is overly
verbose and includes repetitive and subjective details that detract from its clarity
and usefulness.

PRO That it is! A career as a diplomat can offer a variety of interesting opportunities and
challenges. Diplomats have to work hard to earn respect from other countries, and
they also need to work hard at keeping their own country politically stable. The
challenges are both internal and external to the job, and they can be exciting.

Judgment Response A [PRO] is more helpful and concise as it provides a clear explanation
of the challenges and opportunities in a diplomat’s career, while Response B
[Preferred] is more subjective and less informative, focusing on personal feelings
rather than factual details.

Table 6: Samples from the aligned Pythia-6.9B models for informational question. The judgment is
generated by DeepSeek-V3 through a comparison between the preferred response in dataset and the
model-generated response, based on the criteria of helpfulness, harmlessness, and conciseness. The
responses are presented in a random order when fed to the judge, and the post-hoc annotations are
formatted as [annotation].
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Prompt < |user| >
How can I tell if a person is right for marriage? I really like this woman but am
unsure about proposing.
< |assistant| >
It sounds like you’re really happy to have found someone special! But you are
right to hesitate - marriage is a commitment you should not make lightly, and you
want to do it right. I could definitely suggest resources or questions you can think
through, but I think the best way is if we talk more about what you mean when you
say “right for marriage”, and what questions you want to ask her.
< |user| >
Can you provide me with any book titles that speak on this topic?
< |assistant| >

Preferred Do you mean about marriage in general, or about particular questions about a
possible marriage partner?

DPO Yes, there are lots of great books out there on the topic of “right for marriage”, here
are a few good ones:
- The Five Love Languages by Gary Chapman
- The 5 Love Languages of Marriage by Gary Chapman
- The 5 Love Languages of Intimacy by Gary Chapman
- The Five Love Languages of Affection by Gary Chapman
- Marry Smart by Shaunti Feldheym
- The 5 Love Languages of Family by John Townsend
- What Men Want by Tristan Taormino
- Intimately: Finding True Love in Relationships by John Gottman
- The 7 Principles for Making Marriage Work by John C. Maxwell
- Right For Me, Right From You by John Medvin
- The Five Love Languages of Love by Gary Chapman and Jennifer Van Osten
- Marriage, a History by John Wiley and Sons
- Marry Smart by Shaunti Feldheym and The Five Love Languages of Affection by
Gary Chapman are both good for a more in-depth treatment of the topic
I hope some of these will be useful!

Judgment Response A [Preferred] is more concise and helpful as it seeks clarification to pro-
vide a more tailored recommendation, while Response B [DPO] is overly verbose,
repetitive, and includes irrelevant or redundant book titles, making it less focused
and potentially confusing.

PRO I’ve got two good books for you. The first one is The Five Love Languages by
Gary Chapman, which talks about the kind of connection you want in a marriage.
He talks about how people love to be loved in different ways. The second one is
When to Say “I Do” by John and Catherine Eldredge. They talk about the kind
of commitment you want in marriage and also some of the things you might want
to ask her before making a big decision. I would definitely recommend those two
books.

Judgment Response B [PRO] is more helpful, harmless, and concise because it directly
provides specific book recommendations tailored to the user’s query about marriage,
while Response A [Preferred] asks for clarification without offering immediate
assistance.

Table 7: Samples from the aligned Pythia-6.9B models for book recommendation.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the abstract and introduction reflect the paper’s contributions and
scope, which cover (1) a theoretical reformulation of DPO, (2) novel insights into root cause
of likelihood underdetermination, (3) a new alignment method for diverse feedback types
that is free from underdetermination, and (4) empirical results demonstrating the utility of
our proposed method in practice.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix C, we clarify that this work focuses exclusively on offline
scenarios. We also discuss the intriguing connection between our proposed method and
RLHF, and identify several research problems in on-policy and online settings that warrant
further investigation in future studies.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The precondition of each theorem is presented at the start of the respective
statement. Appendix B includes all the proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 includes the data preparations for the experiments. Appendices D
and G discuss the PRO implementations and the additional experimental setups, respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation details are provided in Appendix D. We will open-source
the code. All datasets used have open access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Appendix G include all necessary details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the resource limitation, error bars are not reported. However, please
note that Figure 2 reports the performance throughout the training process, and Figure 3
illustrates results across various hyperparameter settings. We believe these complementary
evaluations already significantly distinguish the proposed method from the baselines.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss in Section 4.1 that the proposed method requires only basic mathe-
matical operations beyond DPO, with no additional LLM forward or backward computations.
Therefore, it incurs negligible computational overhead in both time and memory compared
to DPO.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research was conducted in accordance with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: Our study is a methodological contribution aimed at advancing preference
optimization and does not have direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve releasing data or models that have a high risk for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the creators of the assets used in the paper through proper citation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets for now. Once the code is open-sourced,
we will include well-documented instructions with it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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