
Streaming Active Learning with Deep Neural Networks

Akanksha Saran 1 Safoora Yousefi 2 Akshay Krishnamurthy 1 John Langford 1 Jordan T. Ash 1

Abstract
Active learning is perhaps most naturally posed as
an online learning problem. However, prior active
learning approaches with deep neural networks
assume offline access to the entire dataset ahead
of time. This paper proposes VeSSAL, a new al-
gorithm for batch active learning with deep neural
networks in streaming settings, which samples
groups of points to query for labels at the mo-
ment they are encountered. Our approach trades
off between uncertainty and diversity of queried
samples to match a desired query rate without
requiring any hand-tuned hyperparameters. Alto-
gether, we expand the applicability of deep neu-
ral networks to realistic active learning scenarios,
such as applications relevant to HCI and large,
fractured datasets.

1. Introduction
Active learning considers a supervised learning situation
where unlabeled data are abundant, but acquiring labels is
expensive (Settles, 2010; Dasgupta, 2011). One example
of this might be classifying underlying disorders from his-
tological images, where obtaining labels involves querying
medical experts. Another might be predicting drug effi-
cacy, where labels corresponding to candidate molecules
could require clinical trials or intensive computational ex-
periments. In these settings, we typically want to carefully
consider what samples to request labels for, and to obtain
labels for data that are maximally useful for progressing the
performance of the model.

Active learning is a classic problem in machine learning,
with traditional approaches typically considering the convex
and well-specified regime (Settles, 2010; Dasgupta, 2011;
Hanneke, 2014a). Much recent interest in active learning
has turned to the neural network case, which requires some
special considerations. One such consideration is the ex-

1Microsoft Research NYC 2Microsoft Bing. Correspondence
to: Akanksha Saran <akankshasaran@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

pense associated with fitting these neural architectures —
when used in conjunction with a sequentially growing train-
ing set, as one has in active learning, the model cannot be
initialized from the previous round of optimization without
damaging generalization performance. Instead, practition-
ers typically re-initialize model parameters each time new
data are acquired and train the model from scratch (Ash &
Adams, 2020). This structure has repositioned active learn-
ing to focus on the batch domain, where we are interested
in simultaneously labeling a batch of k samples to be inte-
grated into the training set. The model is typically retrained
only after the entire batch has been labeled.

In the convex case, where a model can easily be updated
to accommodate for a single sample, active learning algo-
rithms have tended to focus on uncertainty or sensitivity.
That is, a label for a given sample should be requested if
the model is highly uncertain about its corresponding la-
bel, or if incorporating this sample into the training set
will greatly reduce the set of plausible model weights. In
contrast, a high-performing, batch-mode active learning al-
gorithm must also consider diversity. If two samples are
relatively similar to each other, it is inefficient to include
them both in the batch, regardless of the model’s uncertainty
about their labels; having only one such sample labeled and
integrated into the current hypothesis may be enough to
resolve the model’s uncertainty on the other.

Popular approaches for batch active learning rely on sam-
plers that require all unlabeled data to be simultaneously
available. This reliance poses several major concerns for
the deployment of these algorithms. For one, the run time
of these methods is conditioned on the number of unlabeled
samples in a way that makes them unusable for extremely
large datasets. To exacerbate the issue, it is unclear how to
deploy these algorithms on modern databases, where sam-
ples might be stored in a fractured manner and cannot easily
be made available in their entirety.

It is especially unclear how to perform active learning in
a streaming setting, where data are not all simultaneously
available, and we do not know how many samples will
be encountered. Here we might instead prefer to specify
an acceptable labeling rate rather than a fixed acceptable
batch size. In this streaming setup, it is further desirable to
commit to a decision about whether to include an unlabeled

1

Streaming Active Learning with Deep Neural Networks

sample in the batch as soon as it is encountered, rather
than only after the stream has terminated. As a concrete
example, consider an HCI application where a user interacts
with the world while wearing an assistive or diagnostic
device (Bohus et al., 2022; Singh et al., 2016). The software
on the device might involve a classifier that detects objects
being interacted with or the activity being performed by
the user. Requesting a label to update the model to better
classify these phenomena can only be done in the moment;
it would be cumbersome to ask the user to provide a label
corresponding to an event that occurred far in the past. How
can we efficiently identify samples from a data stream for
neural networks while respecting a maximum query rate?

We propose a simple active learning algorithm, Volume
Sampling for Streaming Active Learning (VeSSAL)1, that
addresses the concerns mentioned above. VeSSAL is made
to accommodate the streaming setting, and as such it only
needs to see each unlabeled point once in order to arrive at
a decision about whether it should be labeled. This makes
VeSSAL attractive even for fixed datasets that might be
extremely large or fractured, as these are often interacted
with using streaming, distributed database frameworks. VeS-
SAL is a natural choice for “committal” situations, when
labeling decisions need to be made on the fly. On non-
sequential datasets, where more conventional active learning
algorithms could be exercised, VeSSAL can be significantly
faster, especially for large batch sizes.

Despite its simplicity and flexibility, VeSSAL is surpris-
ingly high performing. We show that VeSSAL produces
models with predictive capabilities on par with state-of-the-
art approaches, even though they are not restricted to this
streaming, committal setting. We further demonstrate this
to be the case in adversarial situations, where VeSSAL is
presented with data that have been sorted to induce domain
drift. VeSSAL is hyperparameter free, making it a powerful
candidate for a wide range of active learning scenarios.

The paper proceeds as follows. We overview related work in
Section 2. In Section 3, we present the mathematical formu-
lation for the streaming active learning setting, along with
details of our proposed algorithm. We give empirical sup-
port for our proposed approach in Section 4 via experiments
on three benchmark datasets and one real-world dataset,
in conjunction with two neural network architectures and
three different batch sizes. We conclude with a discussion
in Section 5.

2. Related Work
This section situates VeSSAL with respect to prior work on
streaming active learning (Sec. 2.1) as well as batch active
learning strategies for training neural networks (Sec. 2.2).

1Code for the implementation of VeSSAL can be found at
https://github.com/asaran/VeSSAL.git

Figure 1. A comparison in terms of sampling rate for our pro-
posed tuning approach and choosing fixed zt values, used to
scale the probability mass on a candidate point as pt = zt ·
g(xt)

⊤Σ−1g(xt). We plot the fraction of the batch size that has
been selected as a function of the amount of data in the stream
that has been encountered. Fixed scaling values can drastically
undersample or oversample, and distribute the labeling budget
inequitably across the stream. The active learning round is denoted
by line opacity, with darker colors corresponding to higher round
numbers — here we show the first ten rounds for each strategy.

2.1. Streaming Active Learning

Active learning has enjoyed many successes for problems in
the convex learning setting (Hanneke, 2014b; Beygelzimer
et al., 2009; 2010; Roth & Small, 2006; Beygelzimer et al.,
2010; Huang et al., 2015; Hsu, 2010; Hanneke & Yang,
2015). Beygelzimer et al. (2009) propose a statistically
consistent method using importance weighting for actively
learning binary classifiers under general loss functions.
Krishnamurthy et al. (2017) present a version-space based
active learning method with performance guarantees for
cost-sensitive multiclass classification. Similar to these
methods, there is a long line of theoretical work on active
learning for linear models (Hanneke, 2014b). While these
approaches are indeed designed for the streaming setting,
they rely on updating the linear hypothesis after each
sample is labeled, precluding them from being used in
conjunction with deep neural networks, where updating the
model is known to be extremely expensive. Furthermore,
Sun et al. (2022) consider the problem of filling a replay
buffer for use in continual learning. Unlike in active
learning, the model has access to a ground-truth label for
each sample it encounters.

Successful streaming-based techniques with theoretical
guarantees have been developed for the related setting
of adaptive sampling and low-rank matrix approxima-
tion (Frieze et al., 2004; Deshpande & Vempala, 2006;

2

https://github.com/asaran/VeSSAL.git

Streaming Active Learning with Deep Neural Networks

Deshpande et al., 2006; Ghashami & Phillips, 2014;
Bhaskara et al., 2019). These methods find utility in
several problem domains such as online PCA (Boutsidis
et al., 2014; Bhaskara et al., 2019), online column subset
selection (Bhaskara et al., 2019), and online k-means
clustering (Braverman et al., 2011). We take inspiration
from this line of prior theoretical work to design a streaming
algorithm for neural batch active learning.

2.2. Batch Active Learning for Deep Neural Networks

In recent years, several advancements have been made in
the area of pool-based active learning for deep neural net-
works (Ren et al., 2021). Prior approaches have either
employed diversity-based sampling (Sener & Savarese,
2018; Geifman & El-Yaniv, 2017; Gissin & Shalev-
Shwartz, 2019), uncertainty-based sampling (Gal et al.,
2017; Ducoffe & Precioso, 2018; Beluch et al., 2018) or
both (Ash et al., 2020; 2021). Ash et al. (2020) propose
a pool-based deep active learning method which leverages
gradient embeddings to capture both diversity and uncer-
tainty by pairing a gradient-based representation with an
approximate k-DPP sampling technique. Gudovskiy et al.
(2020) give an active learning approach to tackle the dis-
tribution shift between the train and test data via a feature
density matching method using Fisher kernels. Still, these
approaches are not designed to handle the streaming setting.
Instead, these samplers require access to the entire candidate
pool in order to identify each valuable point to include in
the batch of unlabeled samples.

More recently, Ban et al. (2022) proposed a stream-based
deep active learning approach, albeit not a batch active learn-
ing algorithm. Instead, they query only a single point at a
time, and add it to their replay buffer after its corresponding
label has been obtained. Because this work is outside of
the batch setting, there are no diversity considerations to
the label acquisition rule. Instead, decisions are only based
on predictive uncertainty, as measured by the difference
in probability mass between the most likely and second
most likely predicted label. Lavania et al. (2021) propose a
streaming submodular maximization-based active learning
approach, but the queies are sampled in a non-committal
fashion (unlike VeSSAL).

Several works have designed active learning approaches
specifically for image classification (Kovashka et al., 2016)
and object detection (Choi et al., 2021; Brust et al., 2018;
Senzaki & Hamelain, 2021). Sun & Gong (2019) leverage
deep reinforcement learning to train a data selection policy
for training neural networks to perform image classifica-
tion. Roy et al. (2018) use an uncertainty based sampling
approach for active learning via the paradigm of “query by
committee”, leveraging the disagreement between convolu-
tional layers for Single Shot Multibox Detector architectures

Algorithm 1 Volume sampling for streaming active learning
(VeSSAL)
Require: Neural network f(x; θ), unlabeled stream of sam-

ples U , ideal sampling rate q
1: Initialize t = 1
2: Initialize Σ̂−1

0 = λ−1Id {regularized by λ for stability}
3: Initialize A0 = 0d,d {covariance over all data}
4: Initialize B = ∅ {set of chosen samples}
5: for xt ∈ U : do
6: At ← t−1

t At−1 +
1
t g(xt)g(xt)

⊤

7: pt = q · g(xt)
⊤Σ̂−1

t g(xt) tr(Σ̂
−1
t At)

−1

8: with probability min(pt, 1):
9: Query label yt for sample xt

10: B ← B ∪ (xt, yt)

11: Σ̂−1
t+1 ← Σ̂−1

t −
Σ̂−1

t g(xt)g(xt)
⊤Σ̂−1

t

1+g(xt)⊤Σ̂−1
t g(xt)

{rank-1 Wood-

bury update}
12: else:
13: Σ̂−1

t+1 ← Σ̂−1
t

14: t← t+ 1
15: return labeled batch B for retraining f
16: end for

(Liu et al., 2016). Still, these approaches assume access to
the entire dataset for decision making, and cannot be used
in the streaming setting.

Brust et al. (2018) use uncertainty-based margin sampling
for streaming active learning with object detectors. They
present various methods to aggregate uncertainty estimates
for all objects in an image to determine their selection
strategy. While their approach is designed for continual
object learning settings, it is limited to the problem of object
detection and cannot be applied to classification tasks.

3. Volume Sampling for Streaming Active
Learning (VeSSAL)

Neural active learning algorithms that incorporate diver-
sity can largely be thought of as making two design deci-
sions. The first decision is how unlabeled candidate samples
should be represented. Common choices include using the
penultimate layer representation of the current state of the
network (Sener & Savarese, 2018) or using a hypothetical
gradient that might be induced by a given sample (Ash et al.,
2020). In either case, once data are in this space, the sec-
ond decision is regarding how unlabeled points should be
selected in order to encourage batch diversity.

In VeSSAL, these decisions are made to produce a high-
performing active learner that is amenable to the streaming,
committal setting. Specifically, we assume that each candi-
date xt is seen only once, and that we must make a decision
about whether or not to include it in the batch B as soon as

3

Streaming Active Learning with Deep Neural Networks

it is encountered. Once the labeling budget k is allocated,
we retrain the model and repeat the process.

VeSSAL performs approximate volume sampling over unla-
beled candidate points in a gradient space computed with
respect to the last layer of the neural network. For a neural
network f with parameters θ, last-layer parameters θL ∈ θ
and cross-entropy loss function ℓ, the gradient representa-
tion for a sample xt is

g(xt) =
∂

∂θL
ℓ(f(xt; θ), ŷt), (1)

where ŷ denotes the most likely label according to the cur-
rent state of the model, i.e. ŷt = argmax f(xt; θ).

A typical way of doing volume sampling is to select a batch
of points with probability proportional to the determinant of
their gram or covariance matrix (Kulesza et al., 2012). In
the latter case, this would mean the probability mass on a
batch of samples B is proportional to

det
(∑

x∈B

g(x)g(x)⊤
)
, (2)

where |B| = k, the pre-specified labeling budget.

There are several reasons to favor the covariance matrix ver-
sion over the gram matrix. From a theoretical point of view,
when used in an outer product, g(x) could be thought of as
a rank-1 approximation of the Fisher information matrix,
I(x; θ) := Ey∼pθ(·|x,θ)∇2ℓ(x, y; θ) (Ash et al., 2021). As
such, this construction is reminiscent of a classic goal in ac-
tive learning, which is to maximize the determinant for the
Fisher (MacKay, 1992). This objective is attractive because,
in the realizable setting, it selects samples that maximize
the information gained by model parameters after labeling.

From a more practical point of view, the covariance matrix
will stay fixed in dimensionality even as the batch size k is
changed. In the gram matrix alternative, which is suggested
in Ash et al. (2020), the size of the matrix grows with k,
potentially becoming intractable for larger batch sizes.

A process that samples from a distribution characterized
by a determinant like this is referred to as a determinantal
point process (DPP). Sampling from a DPP is usually done
via Markov Chain Monte Carlo, and making this procedure
efficient is an active area of research with wide-ranging
statistical applications (Bardenet et al., 2017). Still, the
mixing times associated with these algorithms generally
makes them too inefficient to be used in conjunction
with modern active learning algorithms. For example,
BADGE (Ash et al., 2020) suggests using kmeans++ as a
surrogate for DPP sampling, and Coreset (Sener & Savarese,
2018) uses a furthest-first traversal approach (though not
in gradient space).

These sampling approaches are workable surrogates for true

volume sampling, but they require all data to be simultane-
ously accessible. Our algorithm demonstrates that this is not
necessary and that near state-of-the-art performance can be
obtained by a sampler that (1) sees samples in a streaming
fashion, such that each point is only observed once and that
(2) commits to a labeling decision as soon as a sample is
encountered.

VeSSAL choses a sample xt for labeling with probability pt
proportional to the determinantal contribution of its gradient
when considering other items that have already been chosen,

pt ∝ det
(
Σ̂t + g(xt)g(xt)

⊤
)

Using the matrix determinant lemma (Greub, 2012; Strang,
2006), the expression for pt reduces to

pt ∝ det(Σ̂t)(1 + g(xt)
⊤Σ̂−1

t g(xt))

∝ g(xt)
⊤Σ̂−1

t g(xt).

Here Σ̂t is the covariance over samples that have already
been selected for inclusion in the batch,

∑
x∈B g(x)g(x)⊤.

To compute a pt in practice, g(xt)
⊤Σ̂−1

t g(xt) must be
scaled by some value zt, which reflects the labeling budget
available to the algorithm. Because the amount of data in the
stream might not be known, we consider tuning zt to reflect
a desired labeling frequency q. In HCI applications (Bohus
et al., 2022; Singh et al., 2016; Wang et al., 2021), for exam-
ple, we might not know how long a user will interact with
a device (the total number of candidate samples), but we
might instead have some sense of an acceptable frequency
with which labels can be queried. If we instead do know
the total number of samples, then we could consider q to
be the ratio between the labeling budget and the size of the
candidate set. Specifically, we desire to find some scalar zt
such that

Ex[pt] = Ex

[
zt · g(x)⊤Σ̂−1

t g(x)
]
= q. (3)

How should this zt be chosen? Because the statistics of gra-
dient representations g(x) vary with the state of f , one fixed
value is unlikely to work well across model architectures,
datasets, batch sizes, and rounds of data selection. Instead,
we aim to find an adaptive strategy, such that we both obtain
the desired sampling frequency q and that we do so in a way
that does not allocate probability mass disproportionately
across temporal regions of the stream.

One option for adaptively adjusting zt as selection pro-
gresses might be a multiplicative weights approach, where
we select a scaling parameter from a distribution over a
number of zt values, and constantly update this distribution
to reflect whatever choice is giving us the best rate. Another

4

Streaming Active Learning with Deep Neural Networks

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.1 0.2 0.3
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, ResNet, Batch Size: 1000

0.02 0.04 0.06 0.08 0.10
Fraction of Labeled Dataset

0.20

0.25

0.30

0.35

0.40

0.45 CIFAR10, MLP, Batch Size: 100

0.1 0.2 0.3 0.4
Fraction of Labeled Dataset

0.8

0.9

1.0 MNIST, MLP, Batch Size: 10000

Figure 2. Learning curves for different neural active learning methods tested with i.i.d data streams. Two network architectures, three
batch sizes, and three datasets are shown here. These plots have been zoomed to highlight discriminative regions, but complete results are
shown in the Appendix and are aggregated in Figure 3 (a).

option is to use gradient descent, making zt larger or smaller
at each step in the service of minimizing error between the
current and target sampling rate q. Unfortunately, these ap-
proaches are unlikely to work well, because the underlying
distribution given by the determinantal contribution changes
with each selected point. Specifically, every time a sample
is added to the batch, and Σ̂t is updated, the distribution
of responses g(xt)

⊤Σ̂−1
t g(xt) can change drastically. This

domain shift precludes adaptive solutions from efficiently
finding a suitable zt like those mentioned above, because
they assume the underlying distribution is stationary.

To circumvent this, we simply rewrite the expectation to
disentangle Σ̂−1

t from statistics relating to g(x):

Ex

[
zt · g(x)⊤Σ̂−1

t g(x)
]
= zt · Ex

[
tr
(
g(x)⊤Σ̂−1

t g(x)
)]

= zt · Ex

[
tr
(
Σ̂−1

t g(x)g(x)⊤
)]

= zt · tr
(
Σ̂−1

t Ex

[
g(x)g(x)⊤

])
.

Here, our ability to find a suitable zt relies only on our
ability to estimate the covariance of g(x), and is not af-
fected by the frequently changing Σ̂−1

t . If we approximate
Ex

[
g(x)g(x)⊤

]
as 1

t

∑t
i=1 g(xi)g(xi)

⊤, this immediately
suggests a way to compute pt that is amenable to the stream-
ing setting:

pt =
q · g(xt)

⊤Σ̂−1
t g(xt)

tr
(

1
t Σ̂

−1
t

∑t
i=1 g(xi)g(xi)⊤

) . (4)

Empirically, we find that this auto-tuning of the probability
mass on each sample to be far more effective than using
a fixed value for zt. In Figure 1, we demonstrate that this
approach not only consistently matches the desired label-
ing frequency q, but it also distributes our labeling budget
equitably across the data stream. This is evident from the
identity line between proportion of data seen and budget
consumed. In contrast, fixed values of zt can drastically

oversample or undersample, by a degree that varies with
each round of active learning. Further, because of the nature
of the determinant, these fixed-zt versions often sample far
more aggressively in the beginning of the stream than the
end.

The complete VeSSAL approach is presented as Algo-
rithm 1. In it, the estimated covariance over all samples
is denoted as A, which is initialized to all zeros. We incre-
ment Σ̂ efficiently using a Woodbury update on each chosen
sample (Woodbury, 1950).

One interesting note is that our estimate for zt is only as
good as our estimate of Ex

[
g(x)g(x)⊤

]
, which we obtain

as a simple average of outer products of the g(xt) vectors
observed in the stream. A consequence of this is that the
estimate will be biased if data are ordered in the stream in a
non-I.I.D. fashion. In the following section, we empirically
demonstrate that this appears to not be an issue — VeS-
SAL performs on-par with state-of-the-art, non-streaming
algorithms regardless of how data are ordered.

4. Experiments
We evaluate the performance of VeSSAL against several
baselines on three academic benchmark datasets and one
real-world dataset. In addition to measuring performance
for a variety of architectures and batch sizes, we evaluate
our approach in terms of robustness to feature drift in the
data stream, and in terms of its fidelity to the predefined
query rate.

Baselines. We compare our method against the following set
of baselines. Most of these are non-streaming, meaning they
have access to all unlabeled data when selecting samples to
query. We also introduce two streaming baselines.

• BADGE: A recent, hyperparameter-free approach that
incorporates both uncertainty and diversity in sampling
using k-means++ in the hallucinated gradient space
(Eq. 1) (Ash et al., 2020) (non-streaming).

5

Streaming Active Learning with Deep Neural Networks

coreset conf BADGE rand unif pen VeSSAL

coreset

conf

BADGE

rand

unif

pen

VeSSAL

0 1.6 0.24 1.14 0.98 1.52 0.74

4.15 0 0.25 2.79 2.58 3.11 0.38

5.91 3.61 0 3.6 4 4.35 1.07

3.95 3.07 0.24 0 0.34 0.24 0.61

3.13 2.55 0.2 0.31 0 0.57 0.2

4.62 3.2 0.43 0.65 1.1 0 0.34

6.58 3.69 0.1 3.38 3.59 4.33 0

4.05 2.53 0.21 1.7 1.8 2.02 0.48

(a) I.I.D. Data Stream

coreset conf BADGE rand unif pen VeSSAL

coreset

conf

BADGE

rand

unif

pen

VeSSAL

0 1.8 0.29 1.77 2.72 1.74 1.08

1.26 0 0 1.3 2.04 1.49 0.25

2.24 3.11 0 2.95 3.36 2.46 1.37

1.34 1.92 0.14 0 1.62 0.29 0.75

1.3 1.49 0 0.17 0 0.14 0.54

1.21 1.6 0 0.67 1.38 0 0.64

2.27 2.11 0.14 1.63 2.2 1.47 0

1.37 1.72 0.08 1.21 1.9 1.08 0.66

(b) Non-I.I.D. Data Stream

Figure 3. Pairwise penalty matrix for all experiments with (a) I.I.D. data streams and (b) Non-I.I.D data streams. Each cell corresponds
roughly to the amount of times the row algorithm outperforms the column algorithm by a statistically significant amount. Averages are
shown at the bottom, where lower values imply better-performing algorithms. VeSSAL is the highest-performing streaming approach, and
is only bested by BADGE, a non-streaming baseline.

• rand: A naive random sampling baseline (non-
streaming).

• conf: An uncertainty-based method that selects sam-
ples with smallest probability pŷ of the top predicted
class: pŷ = max f(x, θ) (Wang & Shang, 2014) (non-
streaming).

• coreset: A diversity-based method that uses a greedy
approximation to the k-center problem on represen-
tations from the model’s penultimate layer (Sener &
Savarese, 2018) (non-streaming).

• VeSSAL-pen: This baseline is similar to VeSSAL
but uses the penultimate layer embeddings instead of
hallucinated gradients of the last layer, making it a
purely diversity-based hyperparameter-free approach
(streaming).

• stream-uniform: A naive baseline for the streaming
setting where data points are sampled at a fixed fre-
quency as they arrive (streaming).

At each round of active learning, streaming algorithms are
only permitted to see each unlabeled example once, at what-
ever time it is presented. Further, they must commit to a
labeling decision as soon as a sample is encountered, and

are unable to refine their decisions as more data arrive. This
puts the streaming approaches at a marked disadvantage in
comparison to their non-streaming peers.

Datasets. We evaluate all algorithms on three im-
age benchmarks, namely SVHN (Netzer et al., 2011),
MNIST (LeCun et al., 1998), and CIFAR10 (Krizhevsky,
2009), and one real-world dataset from Bohus et al. (2022).
We refer to this dataset as CLOW and use it with permis-
sion from the authors. CLOW is collected through an aug-
mented reality (AR) human-computer interaction device,
where users provide object labels through a headset as they
interact with objects in their home. This dataset includes
43 object classes and ∼ 11K training samples. More de-
tails about the dataset and its preprocessing are described in
Appendix A.2.

Setup. We perform multiple rounds of active learning in
all experiments, with a fixed budget k in each round. We
consider a single round of active learning to correspond to a
single batch of acquired points. We conduct as many rounds
as are required to fully label the dataset under consideration.
On these datasets, where the number of candidates is known,
we choose to let the target rate qt evolve throughout the
streaming process as qt =

k−|Bt|
n−t , where n is the total num-

ber of samples in the unlabeled pool and Bt is the set of sam-

6

Streaming Active Learning with Deep Neural Networks

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.05 0.10 0.15
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, MLP, Batch Size: 1000

0.02 0.04 0.06 0.08 0.10
Fraction of Labeled Dataset

0.20

0.25

0.30

0.35

0.40

0.45 CIFAR10, MLP, Batch Size: 1000

0.0 0.1 0.2 0.3
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

CLOW, ResNet, Batch Size: 10

Figure 4. Learning curves for different neural active learning methods tested with non-I.I.D. data streams. Two network architectures, two
batch sizes, and three datasets are shown here. These plots have been zoomed to highlight discriminative regions, but complete results are
shown in the Appendix and are aggregated in Figure 3(b).

ples that have been added to the batch so far. This allows the
algorithm to adjust its sampling behavior in case of a flawed
approximation of Ex[g(x)g(x)

⊤]. Still, even with this pre-
caution, the sampling rate seems to be somewhat constant
at k

n (Figure 1). We emphasize that in the case of real-world
streaming settings, where the total number of unlabeled
samples is unknown, qt can be set to any desired frequency.

It is worth mentioning that this setup technically makes our
approach committal only for a fixed round of active learning.
That is, a sample that is not selected at one round will be
made available again on the next. Our approach is made to
work with truly committal environments, but we adopt this
setup so that we can readily compare with non-committal,
non-streaming, batch-mode active learning benchmarks.

After each round of data acquisition, we train the mod-
els from scratch and measure accuracy on a held-out test
set. We primarily experiment with two architectures, a
two-layer MLP and an 18-layer ResNet (He et al., 2016).
All datasets are considered with both architectures except
for MNIST, for which we only use the MLP. Models are
trained with the Adam optimizer (Kingma & Ba, 2014) with
a fixed learning rate 0.001 until they reach > 99% train-
ing accuracy. We experiment with different budgets per
round k ∈ {100, 1K, 10K} for the benchmark datasets and
k ∈ {10, 100, 1K} for the CLOW dataset (since it has a total
of ∼ 11K training samples). Each experiment was repeated
three times, and we show both mean and standard error in
our learning curve plots. In all experiments we start with
100 labeled samples and acquire the rest of the labeled sam-
ples via active learning. All methods are implemented in
PyTorch (Paszke et al., 2017). We set λ in Algorithm 1 to .01
in all VeSSAL experiments, which ensures a numerically
stable inversion.

In the subsections that follow, we show experimental results
under two different assumptions about the data stream: I.I.D
data streams and adversarially ordered data streams.

4.1. I.I.D. Data Stream

In this section we discuss experimental results when the
data stream is randomized, meaning there is no induced
correlation between consecutive data points or in the order
of samples in the stream. We show that VeSSAL is superior
or equal to non-streaming algorithms in this setting.

Representative learning curves averaged over three repli-
cates for various choices of batch size, dataset, and model
architecture in this setting are shown in Figure 2. In each,
VeSSAL performs about as well as the highest-performing,
non-streaming baseline, despite being restricted to the
demands of the streaming setting. Detailed results for each
combination of dataset, batch size, and network architecture
are shown in Appendix B.

We aggregate results following the protocol of Ash et al.
(2020). For each active learning experiment, we only con-
sider a subset of labeling budgets where learning is still
progressing. This is due to the fact that with labeling bud-
gets approaching the data-set size, all algorithms achieve
similar accuracy. At exponentially spaced intervals, we cal-
culate if a given row algorithm outperforms a given column
algorithm by a statistically significant margin according to a
two-sided t-test. When this happens we increment the corre-
sponding cell of Figure 3(a) by 1 divided by the total number
of evaluations in the experiment. More experimental details
can be found in Appendix A.1.

Here, higher-performing algorithms are associated with a
lower column-wise average, displayed at the bottom of the
figure. We see that overall, VeSSAL is the highest per-
forming streaming method. When considering all baselines,
VeSSAL is only outperformed by BADGE, which is not
encumbered by streaming requirements. In a small num-
ber of experiments, VeSSAL surprisingly even manages to
outperform BADGE.

7

Streaming Active Learning with Deep Neural Networks

carton of milk
(1543)

water boiler
(2477)

instant pot
(3731)

mug
(3810)

oatmilk
(6470)

hello fresh
bag (4350)

cooking spray
(6173)

shredded
cheese (6586)

bowl of fruit
(8048)

water boiler
(11395)

paper towel
(1179)

paper towel
(2359)

paper towel
(3539)

pot
(4719)

stack of plates
(5899)

paper towel
(7078)

box of cookies
(8258)

pepper shaker
(9438)

pepper shaker
(10618)

water bottle
(11798)

(a) VeSSALcarton of milk
(1543)

water boiler
(2477)

instant pot
(3731)

mug
(3810)

oatmilk
(6470)

hello fresh
bag (4350)

cooking spray
(6173)

shredded
cheese (6586)

bowl of fruit
(8048)

water boiler
(11395)

paper towel
(1179)

paper towel
(2359)

paper towel
(3539)

pot
(4719)

stack of plates
(5899)

paper towel
(7078)

box of cookies
(8258)

pepper shaker
(9438)

pepper shaker
(10618)

water bottle
(11798)

(b) Uniform Rate Sampling

Figure 5. The first round of queries on the data stream from the CLOW dataset for different streaming active learning methods with an
MLP and budget k = 10 (top: VeSSAL, bottom: uniform rate sampling). Red boxes denote repeated classes and green boxes denote
unique classes. VeSSAL only repeats a single class, corresponding to an object view that is quite different than the other selection of the
same class. Each queried image is described by its label name and time stamp (in parentheses) depicting the index at which it arrives in
the stream. Here, there are about 11.8k candidates, and the indices suggest that sampling mass is well-distributed across the stream.

4.2. Non-I.I.D. Data Stream

To investigate the robustness of our algorithm to non-I.I.D.
circumstances, we compare all methods under naturally
occurring or artificially induced domain drift, where the
observed data distribution is non-stationary. Note that non-
streaming baselines are not at all affected by this change, and
it is only a burden for streaming approaches that use sequen-
tial estimates of data statistics for decision making. Despite
the disadvantage, we show that VeSSAL is still performing
roughly as well as state-of-the-art, non-streaming baselines.

Artificial Drift We adversarially sort the unlabeled data to
introduce domain drift. To do so, sort two academic datasets
(CIFAR-10, SVHN) by their first principal component.

Natural Drift The CLOW data stream is sorted by the times-
tamp at which objects were encountered and labeled by a
user, and hence naturally contains feature drift (Figure 5).
For this dataset, MLP and ResNet-18 architectures have
pretrained components. In the MLP case, we use data repre-
sentations taken from the visual encoder of the multimodal
CLIP model (Radford et al., 2021), and although the MLP
is trained from scratch at each round, the CLIP feature
extractor is fixed. In the ResNet case, we use a model
that has been pretrained on ImageNet (Russakovsky et al.,
2015), and refine the entire model with actively selected
data. Each time new data are acquired, the ResNet is reset
to to the ImageNet pretrained weights before being updated.

Figure 4 highlights the effectiveness of VeSSAL under the
challenging setting of feature drift in the data stream. VeS-
SAL performs both on par with other non-streaming sky-
line approaches and better than other streaming baseline

methods. Detailed learning curves for all datasets, archi-
tectures, and hyperaparameters are shown in Appendix C.
In Figure 3(b), a pairwise comparison matrix analogous to
Figure 3(a) shows that, with the exception of BADGE, VeS-
SAL outperforms all streaming and non-streaming baselines
in presence of distribution shift. Again, VeSSAL some-
times outperforms BADGE even though BADGE sees all
unlabeled data before sampling. Figure 5 contains quali-
tative evidence that VeSSAL samples diverse images even
when data points are correlated and the streaming uniform
sampling baseline repeatedly queries duplicate objects.

BADGE VeSSAL

Figure 6. Label amplification for BADGE and VeSSAL with re-
spect to stream-uniform, averaged over all experiments. VeS-
SAL achieves roughly the same label efficiency as BADGE in the
I.I.D. case, even though VeSSAL is limited by streaming require-
ments. In the non-I.I.D. setting, which is adversarial for streaming
algorithms like VeSSAL but not for pool-based algorithms like
BADGE, VeSSAL only does slightly worse than BADGE.

8

Streaming Active Learning with Deep Neural Networks

4.3. Label Amplification

The promise of active learning is that it can deliver signifi-
cantly more predictive power for a fixed labeling budget than
naive sampling. This is demonstrated by Figure 6, where
algorithm performance is cast in terms of “label amplifica-
tion” instead of accuracy. As learning progresses, we plot
the ratio between the number of samples used by streaming
uniform sampling and the number of samples required by
active sampling to achieve the same performance. For a
good active learning algorithm, labeling amplification will
be much larger than one, reflecting the increase in labeling
efficiency over passive sampling. Our plots average over
all experiments conducted, and despite VeSSAL being con-
strained to the streaming, committal setting, they show that
it is roughly as efficient as BADGE in the I.I.D. streaming
case and only slightly worse in the non-I.I.D. case.

4.4. Compute Requirements

VeSSAL is able to decide whether to include a given unla-
beled sample in the batch as soon as it is encountered. In
doing so, and unlike previous neural batch active learning
algorithms, VeSSAL does not need to compare every unla-
beled candidate point to every sample that has already been
selected. Particularly for large batch sizes, this makes VeS-
SAL substantially more time efficient than baseline neural
active learning algorithms. Figure 7 (logged y-axis version
shown in Appendix Figure 15) demonstrates this by com-
paring the run time of several active learning algorithms
as a function of their query batch size using the CIFAR-10
dataset. VeSSAL enjoys run times times that stay nearly
fixed for increasing batch sizes, while other approaches
have compute requirements that grow superlinearly. For
large batch sizes, VeSSAL can be more efficient than its
counterparts by several orders of magnitude.

5. Discussion
We presented VeSSAL, a new approach for batch active
learning with deep neural networks in a streaming setting.
Unlike prior pool-based active learning approaches for deep
neural networks, our method can commit to queries as soon
as samples are made available to the model from a data
stream. Even in fixed-data settings, VeSSAL performs
roughly as well as state-of-the-art methods — despite the
fact that they are not hindered by streaming constraints.
We envision several potential benefits of the proposed ap-
proach, expanding the applicability of neural networks for
real-world, interaction-centric applications. Our algorithm
can be run in settings that are inherently streaming, commit-
tal, or on datasets too large to be entirely stored in one place.

Our work also opens up exciting directions for future re-
search. Currently, VeSSAL assumes that the number of

100 500 1k 5k 10k 49k
Batch Size

0

1000

2000

3000

4000

5000

6000

7000

Co
m

pu
te

 T
im

e
(s

ec
on

ds
)

VeSSAL
BADGE
Coreset

Figure 7. The compute time required to select a batch for three
different algorithms on CIFAR-10 as a function of the query batch
size. While non-streaming algorithms require compute that grows
superlinearly as a function of labeling budget, VeSSAL stays rela-
tively constant. Results are averaged over five replicates and each
algorithm was given identical computational resources.

label classes is known a priori. In real-world applications,
where an interaction environment continues to evolve, the
number of label classes may grow over time. Moreover,
some queries can be costlier than others. For example, ask-
ing a user for an object label in their peripheral vision could
distract them from performing the current task. Addressing
these challenges are exciting topics for further work.

Acknowledgements
The authors would like to thank Sean Andrist, Dan Bohus,
and the Platform for Situated Intelligence (PSI) team at Mi-
crosoft Research Redmond for providing inspiration on the
problem statement, feedback on our approach, and access
to the CLOW dataset.

References
Ash, J., Goel, S., Krishnamurthy, A., and Kakade, S. Gone

fishing: Neural active learning with fisher embeddings.
Advances in Neural Information Processing Systems, 34:
8927–8939, 2021.

Ash, J. T. and Adams, R. P. On warm-starting neural net-
work training. Advances in Neural Information Process-
ing Systems, 2020.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. Deep batch active learning by diverse, un-
certain gradient lower bounds. International Conference
on Learning Representations, 2020.

Ban, Y., Zhang, Y., Tong, H., Banerjee, A., and He, J. Im-

9

Streaming Active Learning with Deep Neural Networks

proved algorithms for neural active learning. Advances
in eural Information Processing Systems, 2022.

Bardenet, R., Lavancier, F., Mary, X., and Vasseur, A. On
a few statistical applications of determinantal point pro-
cesses. ESAIM: Proceedings and Surveys, 60:180–202,
2017.

Beluch, W. H., Genewein, T., Nürnberger, A., and Köhler,
J. M. The power of ensembles for active learning in image
classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 9368–9377,
2018.

Beygelzimer, A., Dasgupta, S., and Langford, J. Importance
weighted active learning. In Twenty-Sixth International
Conference on Machine Learning, 2009.

Beygelzimer, A., Hsu, D. J., Langford, J., and Zhang, T.
Agnostic active learning without constraints. In Neural
Information Processing Systems, 2010.

Bhaskara, A., Lattanzi, S., Vassilvitskii, S., and Zadi-
moghaddam, M. Residual based sampling for online
low rank approximation. In 2019 IEEE 60th Annual Sym-
posium on Foundations of Computer Science (FOCS), pp.
1596–1614. IEEE, 2019.

Bingham, E. and Mannila, H. Random projection in di-
mensionality reduction: applications to image and text
data. In Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pp. 245–250, 2001.

Bohus, D., Andrist, S., Feniello, A., Saw, N., and Horvitz,
E. Continual learning about objects in the wild: An
interactive approach. In Proceedings of the 2022 In-
ternational Conference on Multimodal Interaction, pp.
476–486, 2022.

Boutsidis, C., Garber, D., Karnin, Z., and Liberty, E. Online
principal components analysis. In Proceedings of the
twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pp. 887–901. SIAM, 2014.

Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A.,
Shindler, M., and Tagiku, B. Streaming k-means on well-
clusterable data. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms,
pp. 26–40. SIAM, 2011.

Brust, C.-A., Käding, C., and Denzler, J. Active learning for
deep object detection. arXiv preprint arXiv:1809.09875,
2018.

Choi, J., Elezi, I., Lee, H.-J., Farabet, C., and Alvarez, J. M.
Active learning for deep object detection via probabilistic
modeling. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10264–10273, 2021.

Dasgupta, S. Two faces of active learning. Theoretical
computer science, 2011.

Deshpande, A. and Vempala, S. Adaptive sampling and fast
low-rank matrix approximation. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms
and Techniques, pp. 292–303. Springer, 2006.

Deshpande, A., Rademacher, L., Vempala, S. S., and Wang,
G. Matrix approximation and projective clustering via
volume sampling. Theory of Computing, 2(1):225–247,
2006.

Ducoffe, M. and Precioso, F. Adversarial active learn-
ing for deep networks: a margin based approach.
arXiv:1802.09841, 2018.

Frieze, A., Kannan, R., and Vempala, S. Fast monte-carlo
algorithms for finding low-rank approximations. Journal
of the ACM (JACM), 51(6):1025–1041, 2004.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active
learning with image data. In International Conference on
Machine Learning, 2017.

Geifman, Y. and El-Yaniv, R. Deep active learning over the
long tail. arXiv:1711.00941, 2017.

Ghashami, M. and Phillips, J. M. Relative errors for deter-
ministic low-rank matrix approximations. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 707–717. SIAM, 2014.

Gissin, D. and Shalev-Shwartz, S. Discriminative active
learning. arXiv:1907.06347, 2019.

Greub, W. H. Linear algebra, volume 23. Springer Science
& Business Media, 2012.

Gudovskiy, D., Hodgkinson, A., Yamaguchi, T., and Tsuk-
izawa, S. Deep active learning for biased datasets via
fisher kernel self-supervision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9041–9049, 2020.

Hanneke, S. Theory of disagreement-based active learning.
Foundations and Trends in Machine Learning, 2014a.

Hanneke, S. Theory of active learning. Foundations and
Trends in Machine Learning, 7(2-3), 2014b.

Hanneke, S. and Yang, L. Minimax analysis of active learn-
ing. J. Mach. Learn. Res., 16(1):3487–3602, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

10

Streaming Active Learning with Deep Neural Networks

Hsu, D. J. Algorithms for active learning. PhD thesis, UC
San Diego, 2010.

Huang, T.-K., Agarwal, A., Hsu, D. J., Langford, J., and
Schapire, R. E. Efficient and parsimonious agnostic active
learning. Advances in Neural Information Processing
Systems, 28, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kovashka, A., Russakovsky, O., Fei-Fei, L., Grauman, K.,
et al. Crowdsourcing in computer vision. Foundations
and Trends® in computer graphics and Vision, 10(3):
177–243, 2016.

Krishnamurthy, A., Agarwal, A., Huang, T.-K., Daumé III,
H., and Langford, J. Active learning for cost-sensitive
classification. In International Conference on Machine
Learning, pp. 1915–1924. PMLR, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012.

Lavania, C., Wei, K., Iyer, R., and Bilmes, J. A practical
online framework for extracting running video summaries
under a fixed memory budget. In Proceedings of the 2021
SIAM International Conference on Data Mining (SDM),
pp. 226–234. SIAM, 2021.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.
Gradient-based learning applied to document recognition.
IEEE, 1998.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. SSD: Single shot multibox
detector. In European conference on computer vision, pp.
21–37. Springer, 2016.

MacKay, D. J. Information-based objective functions for
active data selection. Neural computation, 4(4):590–604,
1992.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Roth, D. and Small, K. Margin-based active learning for
structured output spaces. In European Conference on
Machine Learning, 2006.

Roy, S., Unmesh, A., and Namboodiri, V. P. Deep active
learning for object detection. In BMVC, pp. 91, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

Senzaki, Y. and Hamelain, C. Active learning for deep
neural networks on edge devices. arXiv preprint
arXiv:2106.10836, 2021.

Settles, B. Active learning literature survey. University of
Wisconsin, Madison, 2010.

Singh, K. K., Fatahalian, K., and Efros, A. A. Krishnacam:
Using a longitudinal, single-person, egocentric dataset
for scene understanding tasks. In 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV),
pp. 1–9. IEEE, 2016.

Strang, G. Linear algebra and its applications. Belmont,
CA: Thomson, Brooks/Cole, 2006.

Sun, L. and Gong, Y. Active learning for image classi-
fication: A deep reinforcement learning approach. In
2019 2nd China Symposium on Cognitive Computing and
Hybrid Intelligence (CCHI), pp. 71–76. IEEE, 2019.

Sun, S., Calandriello, D., Hu, H., Li, A., and Titsias, M.
Information-theoretic online memory selection for con-
tinual learning. journal=International Conference on
Learning Representations, 2022.

Wang, D. and Shang, Y. A new active labeling method
for deep learning. In International Joint Conference on
Neural Networks, 2014.

Wang, J., Wang, X., Shang-Guan, Y., and Gupta, A. Wander-
lust: Online continual object detection in the real world.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 10829–10838, 2021.

Woodbury, M. A. Inverting modified matrices. Statistical
Research Group, 1950.

11

Streaming Active Learning with Deep Neural Networks

A. Additional Experimental Details
A.1. Heatmaps for pairwise comparisons between algorithms

Figures 3(a) and 3(b) show a comprehensive pairwise comparison of all algorithms, summarizing experiment results over all
datasets (D), architectures (A), batch sizes (k), and total labeling budgets (L). Intuitively, entry Mi,j in the matrix is the
number of settings where algorithm i outperforms algorithm j by a statistically significant amount. For each active learning
experiment, we only consider labeling budgets r where a random strategy has not yet hit 99% of its final performance.
We checkpoint the learning curves at exponentially spaced intervals until reaching this point, Li = N0 + 2ik ≤ r,
L = [L0, L1, · · ·], for an number of seed samples N0.

For each (D, A, k, L) combination, at each we have 3 scores for algorithm i, and 3 scores for algorithm j, leading to 3 score
deltas d1i,j , d

2
i,j , d

3
i,j (since each experiment was repeated 3 times). We apply the two-sided t-test on these score deltas to

decide if an algorithm significantly wins a pairwise comparison. Specifically we compute the t-score t =
√
3µ/σ as follows:

µ =
1

3

3∑
s=1

dsi,j σ =

√√√√1

2

3∑
s=1

(dsi,j − µ)2

If the t > 2.92 algorithm i is considered to outperform algorithm j, and vice versa if t < −2.92. Suppose there are nD,A,B

labeling budgets for each (D, A, B) combination. Then when an algorithm i wins a pairwise comparison with algorithm j,
a value of 1

|L| , where |L| is the total number of evaluations in the experiment, is added to the corresponding entry in the
matrix Mi,j .

A.2. Details of the CLOW dataset

Bohus et al. (2022) introduced a dataset collected via a mixed-reality interactive approach for continual learning about
objects in the wild (CLOW). We refer to this dataset as CLOW in our work. The dataset was collected at two sites – home
environments of end-users wearing a mixed-reality headset as they go about performing everyday tasks. We use data from
Site 2 as reported in (Bohus et al., 2022). The mixed-reality multimodal interface enables users to label objects in their
surroundings via their gaze, speech, and gestures. The system uses color and depth cameras to detect and track objects in
the scene. Different views of an object are captured by the device as the user interacts with and labels it. The stream of
images thus naturally exhibits correlation due to the notion of object permanence in the environment across time. The labels
from the user are linked to multiple object views collected over time, and can be used to improve object recognition over
time. While the object label collection occurs via a user-initiated approach, the authors of this work identify the need for an
active learning solution to minimize the labeling burden on a user while an object recognition model continues to learn
about objects in the environment.

Preprocessing the CLOW dataset: CLOW is collected at two home environments (Site1 and Site 2) (Bohus et al., 2022),
with streaming images of objects being recorded at 5Hz. We use data from Site 2 which consists of a total of 47 object
classes and 55,657 object images. Bohus et al. (2022) filter this dataset to remove images with blur and occlusion via
hand-defined thresholds on linear and angular speed of the headset as well as the overlap of human hands with object views.
The filtered version of their dataset at Site 2 consists of 15,095 images from 47 object classes. We further filter the data
stream from Site 2 by removing images with an interaction of less than 5 frames (1 second), i.e. if an object appears for
less than 5 consecutive frames in the image stream, then we discard images from such a short interaction. This provides us
a total of 14,981 images from 43 object classes. We split this data stream into train and test sets based on the following
criteria: for each user interaction with an object instance, the first 80% are used as part of the train set and the last 20%
of the interaction is used as part of the test set. This provides us with 11,899 training images and 3082 test images. This
strategy ensures that we have 20% of the data for each object in the stream as part of the evaluation set. The distribution of
the 11,899 training images into different object classes is shown in Fig 8. We downsample each image to size 32× 32× 3
before passing it as an input to the CLIP visual encoder model (Radford et al., 2021) or the ImageNet pretrained ResNet-18
model (Russakovsky et al., 2015). To efficiently compute the covariance matrix as part of VeSSAL for this dataset with
43 object classes, we employ random projection (Bingham & Mannila, 2001) to reduce the dimensionality of the gradient
embeddings to size 2560.

12

Streaming Active Learning with Deep Neural Networks

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

Figure 8. Distribution of 43 class labels from the Site2 CLOW dataset. The y-axis denoted the fraction of images that belong to a specific
class label (class ID denoted by the indices of the x-axis).

B. Learning curves for I.I.D. Data Stream Experiments
We show learning curves below for all experiments with randomized data streams from the following datasets: SVHN
(Fig. 9), CIFAR-10 (Fig. 10), MNIST (Fig. 11)).

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SVHN, MLP, Batch Size: 100

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

SVHN, MLP, Batch Size: 1000

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

SVHN, MLP, Batch Size: 10000

(a) MLP

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, ResNet, Batch Size: 100

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, ResNet, Batch Size: 1000

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, ResNet, Batch Size: 10000

(b) ResNet

Figure 9. Learning curves for the SVHN dataset with two network architectures and three batch sizes. Streaming active learning algorithms
observe data in a randomized order.

13

Streaming Active Learning with Deep Neural Networks

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

CIFAR10, MLP, Batch Size: 100

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

CIFAR10, MLP, Batch Size: 1000

0.0 0.2 0.4 0.6 0.8
Fraction of Labeled Dataset

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

CIFAR10, MLP, Batch Size: 10000

(a) MLP

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

CIFAR10, ResNet, Batch Size: 100

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.1

0.2

0.3

0.4

0.5

0.6
Ac

cu
ra

cy
CIFAR10, ResNet, Batch Size: 1000

0.0 0.2 0.4 0.6 0.8
Fraction of Labeled Dataset

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CIFAR10, ResNet, Batch Size: 10000

(b) ResNet

0.0 0.1 0.2 0.3 0.4
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

CIFAR10, ResNet, Batch Size: 100

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CIFAR10, ResNet, Batch Size: 1000

0.0 0.2 0.4 0.6 0.8
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy
CIFAR10, ResNet, Batch Size: 10000

(c) ResNet w/ Data Augmentation

Figure 10. Learning curves for the CIFAR-10 dataset with two network architectures (MLP, ResNet) and three batch sizes (100, 1000,
10000). We show results for both ResNet training (b) without data augmentation (similar to Ash et al. (2020)) and (c) with data
augmentation. Streaming active learning algorithms observe data in a randomized order.

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6 0.8
Fraction of Labeled Dataset

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST, MLP, Batch Size: 100

0.0 0.2 0.4 0.6 0.8
Fraction of Labeled Dataset

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST, MLP, Batch Size: 1000

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST, MLP, Batch Size: 10000

Figure 11. Learning curves for the MNIST dataset with the MLP network architecture and three batch sizes. Streaming active learning
algorithms observe data in a randomized order.

14

Streaming Active Learning with Deep Neural Networks

C. Learning curves for non-I.I.D. Data Stream Experiments
We show learning curves for all experiments with non-i.i.d. data streams from the following datasets: SVHN (Fig. 12),
CIFAR-10 (Fig. 13), CLOW (Fig. 14)).

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

SVHN, MLP, Batch Size: 1000

0.0 0.2 0.4 0.6
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

SVHN, ResNet, Batch Size: 1000

Figure 12. Learning curves for the SVHN dataset with two network architectures and batch size 1000. Streaming active learning algorithms
observe data sorted by their 1st principal component.

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

CIFAR10, MLP, Batch Size: 1000

(a) MLP

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

CIFAR10, ResNet, Batch Size: 1000

(b) ResNet

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy
CIFAR10, ResNet, Batch Size: 1000

(c) ResNet w/ Data Augmentation

Figure 13. Learning curves for the CIFAR-10 dataset with two network architectures and batch size 1000. Streaming active learning
algorithms observe data sorted by their 1st principal component.

15

Streaming Active Learning with Deep Neural Networks

rand VeSSAL-pen coreset conf stream-uniform BADGE VeSSAL

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

CLOW, MLP, Batch Size: 10

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

CLOW, MLP, Batch Size: 100

(a) MLP

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

CLOW, ResNet, Batch Size: 10

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Labeled Dataset

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

CLOW, ResNet, Batch Size: 100

(b) ResNet

Figure 14. Learning curves for the CLOW dataset with two network architectures and two batch sizes. Streaming active learning algorithms
observe object images ordered by timestamps at which users interacted with and provided a label for the corresponding object.

100 500 1k 5k 10k 49k
Batch Size

101

102

103

Co
m

pu
te

 T
im

e
(s

ec
on

ds
)

VeSSAL
BADGE
Coreset

Figure 15. A y-axis logged version of Figure 7, showing compute time required to select a batch for three different algorithms on
CIFAR-10 as a function of the query batch size. While non-streaming algorithms require compute that grows superlinearly as a function
of labeling budget, VeSSAL stays relatively constant. Results are averaged over five replicates and each algorithm was given identical
computational resources.

16

Streaming Active Learning with Deep Neural Networks

Figure 16. VeSSAL distributes its labeling budget equitably across different non-I.I.D. data streams. Here we show several different
datasets, acquisition batch sizes, and model architectures, and all datasets (excluding CLOW, which is already non-I.I.D.) are sorted by
their first principal component.

17

