
Published as a conference paper at COLM 2024

COOKBOOK: A framework for improving LLM generative
abilities via programmatic data generating templates

Avanika Narayan∗, Mayee F. Chen∗, Kush Bhatia & Christopher Ré
Department of Computer Science
Stanford University
Stanford, CA 94305, USA
{avanikan,mfchen,kushb,chrismre}@stanford.edu

Abstract

Fine-tuning large language models (LLMs) on instruction datasets is a com-
mon way to improve their generative capabilities. However, instruction
datasets can be expensive and time-consuming to manually curate, and
while LLM-generated data is less labor-intensive, it may violate user pri-
vacy agreements or terms of service of LLM providers. Therefore, we seek
a way of constructing instruction datasets with samples that are not gener-
ated by humans or LLMs but still improve LLM generative capabilities. In
this work, we introduce COOKBOOK, a framework that programmatically
generates training data consisting of simple patterns over random tokens,
resulting in a scalable, cost-effective approach that avoids legal and pri-
vacy issues. First, COOKBOOK uses a template—a data generating Python
function—to produce training data that encourages the model to learn
an explicit pattern-based rule that corresponds to a desired task. We find
that fine-tuning on COOKBOOK-generated data is able to improve perfor-
mance on its corresponding task by up to 52.7 accuracy points. Second,
since instruction datasets improve performance on multiple downstream
tasks simultaneously, COOKBOOK algorithmically learns how to mix data
from various templates to optimize performance on multiple tasks. On
the standard multi-task GPT4ALL evaluation suite, Mistral-7B fine-tuned
using a COOKBOOK-generated dataset attains the best accuracy on average
compared to other 7B parameter instruction-tuned models and is the best
performing model on 3 out of 8 tasks. Finally, we analyze when and why
COOKBOOK improves performance and present a metric that allows us to
verify that the improvement is largely explained by the model’s generations
adhering better to template rules.

1 Introduction

Fine-tuning large language models (LLMs) on instruction datasets (Lian et al., 2023a; Long-
pre et al., 2023; Achiam et al., 2023; "Teknium", 2023), can significantly improve LLM
generative capabilities. However, these datasets can be time-consuming and expensive
to curate. Moreover, recent alternatives such as user chat logs (e.g., shareGPT) and LLM-
generated data (Lian et al., 2023a; "Teknium", 2023) are less labor-intensive but can still be
costly and may violate user privacy and the terms of service of LLM providers. Programmat-
ically generated data, where samples are generated by programs rather than by humans or
LLMs, is a potential alternative that is more scalable, cost-effective, and avoids privacy and
legal issues. Examples of programmatic data include data used in Dyck languages, sequence
copying, and bit parity tasks (Jelassi et al., 2024; Hahn, 2020). However, it is unclear to what
extent programmatic data can be used in place of standard instruction datasets to improve
model capabilities; existing work focuses on using it for understanding how models learn
specific patterns and for improving pre-training, which is still followed by fine-tuning on
the downstream task (Nanda et al., 2023; Wu et al., 2022). This raises the question: is it

∗Equal contribution.

1

Published as a conference paper at COLM 2024

Figure 1: COOKBOOK. (1) Templates approximate a given task’s “rule” and generate data consisting
of patterns over random tokens. (2) Template-generated data can be mixed to improve multiple
capabilities. (3) The template alignment statistic measures the extent to which the rule learned by the
template is responsible for improving LLM performance.

possible to programmatically generate an instruction dataset whose performance is competitive with
human or LLM-generated instruction datasets on multiple downstream generative tasks?

There are two key considerations for programmatically generating a performant instruction
dataset.

• First, how do we design programmatic data that teaches the model rules correspond-
ing to complex generative tasks that instruction datasets typically improve on? It is
straightforward to construct programmatic data that teaches simple patterns like copy-
ing, but doing the same for more complex rules is challenging. For example, consider the
document-based question answering (QA) task, where a model must answer a question
about a document. One underlying rule for this task is to identify the relevant subpassage
and extract an answer; it is unclear how to translate this rule into programmatic data.

• Second, since instruction datasets improve on many tasks, how do we mix programmatic
data corresponding to different rules to optimize performance of multiple downstream
tasks simultaneously? Recent work has shown that data mixture proportions can signifi-
cantly impact downstream performance (Albalak et al., 2024). Since naive trial-and-error
is costly and has a large search space, we need a principled mixing approach.

We propose COOKBOOK, a framework that explores the use of templates—simple Python
functions—to produce programmatic training data that improves LLM performance by
encouraging the model to learn explicit pattern-based rules that approximate desired gener-
ative task capabilities. Each template is designed for a given natural language (NL) task
and has two key properties: 1) it invokes task-specific data generating functions, which
specify how inputs and outputs are generated in order to approximate a task rule, and 2)
it operates over a random token space, which not only avoids privacy and legal concerns
but also allows us to express a complex rule as a pattern over the tokens. While templates
are task-specific, they are composed using simple list operations—sampling, span selection,
shuffling, replacement, and concatenation—and we show that their construction can be
either manually specified or automatically generated using models such as GPT-4. To more
clearly understand our templates, consider a rule for document QA (Figure 1) which is to
identify the text in the document that pertains to the question and extract the answer from
nearby. Our template for document QA constructs the document as a random sequence
uniformly sampled over the token vocabulary. To instantiate the identify and extract rule, our
template samples the question as a small span of the document token sequence and defines
the answer as the span of tokens surrounding the question.

2

Published as a conference paper at COLM 2024

Next, to improve performance on many downstream tasks simultaneously, we discuss
how to construct our instruction dataset as a mixture of samples generated from multiple
templates. We propose a simple mixing algorithm over COOKBOOK templates, which we
call COOKBOOK-MIX. Given COOKBOOK templates that generate data for several tasks, this
algorithm first finetunes the base model on data generated by each template. Then, we
use weak supervision (WS) methods (Ratner et al., 2019) to estimate the accuracy of each
fine-tuned model on each downstream task without requiring labeled evaluation data. The
proportions are set as the softmax of the estimated accuracies, and our instruction dataset
is generated according to these proportions. Notably, these proportions are theoretically
optimal under a linearity assumption on the accuracies, which we empirically validate.

Empirically, COOKBOOK programmatically generates instruction data that improves LLM
performance on generative tasks, unveiling an exciting finding: we can improve a model’s
natural language capabilities via standard supervised fine-tuning on patterned sequences of random
tokens. We find that Mistral fine-tuned on COOKBOOK-MIX-generated data outperforms Mis-
tral and Llama 2 fine-tuned on existing instruction datasets (e.g., OpenOrca, OpenHermes,
Capybara) on average on the multi-task GPT4ALL evaluation suite, and, on an individual
task level, is the best performing model on 3 out of 8 tasks (top-1 for win-rate). We further
find that fine-tuning on data generated from individual COOKBOOK templates improves
performance of the corresponding NL task across 6 out of 7 downstream tasks—spanning
document QA, retrieval, commonsense QA, entity matching, and entity disambiguation—
on GPT-NEO-1.3B. In particular, COOKBOOK outperforms the base model by up to 52.7
points, confirming the efficacy of COOKBOOK at both the instruction dataset level and a
more fine-grained single-task level.

Finally, we analyze when and why COOKBOOK can improve model performance. First,
we define template alignment scorers, which quantify adherence of a NL task sample to
a template rule; for instance, in document QA (Figure 1) we score samples based on how
close the answer and question words are in the document (i.e., the identify and extract rule).
Using these scorers, we develop the template alignment statistic, which empirically confirms
that the models improvement is largely due to better adherence to template rules. Second,
we study the role of the template’s data generating function, random tokens, and the base
model to better understand when training on COOKBOOK data generalizes to NL tasks.

2 Related work

We present an abbreviated related work and provide a full treatment in Appendix C.
Instruction datasets range from those that are manually curated (Wang et al., 2022b; Longpre
et al., 2023) to those that are generated by LLMs (Taori et al., 2023; Li et al., 2023a; Lian et al.,
2023a). Programmatically generated data is an alternative to human and LLM-generated
datasets, and has been explored as a replacement for manually labeled data (Ratner et al.,
2020; Zhang et al., 2022a). Programmatic data is also used in pre-training, incorporating
latent structures similar to those in natural language (Wu et al., 2022; Papadimitriou &
Jurafsky, 2020; Krishna et al., 2021) and for understanding models (Nanda et al., 2023; Zhang
et al., 2022b). For multi-task performance, recent data mixing algorithms set proportions
based on online model performance, largely for pre-training (Chen et al., 2023; Xie et al.,
2023).

3 COOKBOOK

We set up the problem of constructing a template for a single task and mixing template-
generated data for multiple tasks in Section 3.1. We then describe our framework, COOK-
BOOK, of task-specific templates for generating programmatic data that can improve model
abilities on generative tasks (Section 3.2). In Section 3.3, we present COOKBOOK-MIX, which
mixes data from several templates to improve performance on multiple tasks.

3

Published as a conference paper at COLM 2024

def matching(noise: float):
e1 = random.sample(token_ids)
inputs: use e1 to get e2
e2 = (e1.replace(k=1) if rand.random() < 0.5

else e1.replace(k=noise))

outputs: use e1 and e2 to get answer
answer = 'yes' if e1 ∩ e2 > (1-noise) else ‘no'

instruction = “Determine whether Product A and
Product B are the same."

return f"""
{instruction}
Product A: {e1}
Product B: {e2}
Question: Are Product A and Product B the same?
Answer: {answer}"""

COMPARE

def commonsense_reasoning(overlap_len: int):
 sent, c1, c2 = random.sample(token_ids)
inputs: use sent to get c1 and c2

 c1 = c1 + random.sample(sent, k=overlap_len)
c2 = c2 + random.sample(token_ids, k=overlap_len)
choices = [c1, c2].shuffle()

outputs: use sent and choices to get answer
 ans_idx = argmax([sent ∩ choices[0],sent ∩ choices[1]])
 answer = choices[ans_idx]

 instruction = "Select the correct choice.”

return f"""
{instruction}
{sent}
Choices:
- {choices[0]}
- {choices[1]}
Answer: {answer}"""

SELECT

Figure 2: Example templates (pseudocode). Templates construct the inputs, outputs, and then return
a formatted sample. (Left) template for commonsense reasoning which generates two answer choices,
where one choice (the answer) has a greater token overlap to the sentence. (Right) template for entity
matching, which generates two entities which are labeled a match if their overlap exceeds a threshold.

3.1 Setup

Constructing templates (single task). We are given a natural language (NL) generative
task T as input. Samples of T have several components. Let I ∈ I be the NL instruction
for the task, x ∈ X denote its inputs, and y ∈ Y denote the task output. Let fmtT() be the
task formatter that formats the text sample using x and y, prepending I. Using document
QA as an example, x = {x1, x2} where x1 is the document and x2 is the question, y is the
answer, and fmtT(x, y, I) could be f“Use the document to answer the following question.
Document: {x1}. Question: {x2}. Answer: {y}”. Given this information about T, we
construct a template GT , a Python function that generates samples. The goal is to design the
template such that the generated samples can be used to fine-tune a model that does well
on T. More precisely, we fine-tune a base model f : X → Y on n samples generated from
GT to yield fGT ,n, and our goal is for fGT ,n to perform well on T.

Mixing template-generated data (multi-task). We have as input l templates GT =
{GT1 , . . . , GTl} generated using COOKBOOK for tasks T1, . . . , Tl . We use these templates to
generate n samples of programmatic data with mixture proportions p = {p1, . . . , pl} ∈ △l ,
the probability simplex. Define fGT ,np as the base model f fine-tuned on this mixture, with
npi samples generated by each GTi . Suppose there are m downstream evaluation tasks
Teval = {Teval

1 , . . . , Teval
m } (note that they may be different from the l tasks that the templates

were constructed for), and let acc(fGT ,np, Teval
j) be the accuracy of fGT ,np on Teval

j . Our goal

is to determine the p that maximizes average accuracy, maximize
p∈△l

1
m ∑m

j=1 acc(fGT ,np, Teval
j).

3.2 COOKBOOK templates

We first describe the high-level process by which a template generates samples. We present
examples of COOKBOOK templates in section 3.2.1, explaining how they are composed using
common operators. In section 3.2.2, we explore ways to automate template creation.

Data generation process The data generation process involves (1) constructing the inputs,
x̂, and (2) constructing the output ŷ based on x̂. Inputs are categorized into a parent input
and child inputs; the parent input is a sequence of randomly sampled tokens, and the child
inputs are constructed from the parent input. The output is constructed from the parent and
child inputs using a data generating function that approximates the task rule. The sample is
then formatted as fmtT(x̂, ŷ, I).

3.2.1 Example templates

We present example templates from three generative task families, described below.

4

Published as a conference paper at COLM 2024

• Selection tasks involve choosing one of the given inputs (answer choices) as an output.
Examples: entity disambiguation, commonsense reasoning QA, and multiple choice QA.

• Search tasks require extracting from the input. Examples: document QA and retrieval.

• Comparison tasks involve outputting “yes”/“no” based on the relationship among
inputs. Example: entity matching.

For each example template, we describe its inputs (parent, child) and outputs and present
corresponding pseudocode. Across the tasks, we identify five operators for generating
inputs: random.sample(), random.shuffle(), get_span() (extract a random span from a
sequence of tokens), replace(k) (replace tokens in a sequence with probability k), and list
concatenation (+). All task templates (7 total) can be found in Appendix B.
Document QA (Search) The document QA tasks involves answering a question over a
provided textual context.

• Template pseudocode: See “doc_QA_template” in Figure 1.

• Inputs: document is the parent input, and question is the child input. document is gener-
ated as a sequence of randomly sampled tokens from the token vocabulary. question is
generated as a subspan of document.

• Outputs: answer is the output which is generated by locating the question in the
document and returning the tokens within k indices of the location.

Commonsense Reasoning (Selection) The task of commonsense reasoning QA is to select
the answer choice which best completes the sentence. For example, given a sentence of “to
eat more sweets I should” and two choices of (1) “drink water” and (2) “eat more candy”,
the correct answer choice is “eat more candy”.

• Template pseudocode: See “commonsense_reasoning” in left of Figure 2.

• Inputs: sent is the parent input, and c1, c2 are the child inputs. sent is generated as a
sequence of randomly sampled tokens from the token vocabulary. Both c1 and c2 are
generated as sequences of randomly sampled tokens from the token vocabulary. For c2
we append additional tokens which is a sequence of tokens sampled from sent. choices
is the list containing c1 and c2 which is randomly shuffled.

• Outputs: answer is the index of choices which has the greatest overlap with sent.

Entity Matching (Comparison) The task of entity matching is to determine whether two
entities are equivalent.

• Template pseudocode: See “matching” in right of Figure 2.

• Inputs: The first entity e1 is the parent input, and the second entity e2 is the child
input. e1 is generated as a sequence of randomly sampled tokens from the token
vocabulary. With 50% probability, e2 is set to e1 with a small amount of tokens replaced
(as determined by the noise threshold); otherwise, e2 is generated as a sequence of
randomly sampled tokens from the token vocabulary of the same length as e1.

• Outputs: answer is determined by the amount of overlap between e1 and e2. If the
amount of overlap is above a threshold, the output is “yes”. If not, it is “no”.

Note that across all templates, the task rules are approximated by translating them into
patterns that involve token overlap; that is, outputs are constructed from inputs based on
token overlap among the inputs. However, we do not claim that the token overlap and the
five operators above are necessary components of a template; in section B.7 we present a
poetry generation task and template, which does not invoke most of these components.

3.2.2 Automating template creation

We introduce a method for automatically generating COOKBOOK templates using GPT-
4. We do so by prompting the model with a description of the data generation process
(see Section 3) alongside two in-context examples mapping a task description to a data
generating template (see Appendix E for prompt details). We evaluate the performance
of GPT-NEO-1.3B finetuned on data generated from these templates — which we call

5

Published as a conference paper at COLM 2024

COOKBOOK-NEO-AUTO — finding that performance of COOKBOOK-NEO-AUTO is within
0.2% of manually curated templates (see Appendix E for details).

3.3 COOKBOOK-MIX: mixing template-generated data

Given multiple templates and downstream tasks, we study how to set template proportions
to construct a training dataset that improves model performance across all the downstream
tasks. First, we impose a simple linearity assumption on model accuracy and derive the op-
timal data proportions p⋆ that maximize average downstream accuracy of the COOKBOOK-
tuned model. This approach requires evaluating models on labeled data, so we present an
extension where we can approximate p⋆ using unlabeled data via a latent variable model
inspired by weak supervision (Ratner et al., 2019). Our full algorithm, COOKBOOK-MIX, is
provided as Algorithm 1 in Appendix D.1.

Optimal template-generated data proportions. Our objective is to maximize fGT ,np’s
average downstream accuracy, maximize

p∈△l

1
m ∑m

j=1 acc(fGT ,np, Teval
j). To solve this problem,

we impose a simple linear assumption: that acc(fGT ,np, Teval
j) = ∑m

i=1 piacc(fGTi
,n, Teval

j)

for all j ∈ [m]. That is, the accuracy of a model trained on a weighted mixture is equal to
the weighted average of models trained on each template, which we empirically assess in
Appendix D.2. We also add an entropy term H(p) = −∑l

i=1 pi log pi with a weight η ≥ 0
to control how close to uniform p should be. Our optimization problem is now

maximize
p∈△l

1
m

m

∑
j=1

l

∑
i=1

piacc(fGTi
,n, Teval

j) + ηH(p). (1)

Solving this optimization problem yields the following solution.

Proposition 1. Define A ∈ Rl×m where Aij = acc(fGTi
,n, Teval

j). Let σi = exp(1
mη ∑m

j=1 Aij) for
all i ∈ [l]. Then, the p⋆ that maximizes (1) satisfies p⋆i = σi

∑l
k=1 σk

for all i ∈ [l].

See Appendix D.3 for the proof. The computation of p⋆ is straightforward. We train one
model per template, fGTi

,n for each i ∈ [l]. We compute the average accuracy across the m
downstream tasks per model, and then compute the softmax over these accuracies to get
the proportions p⋆ to determine how many samples are needed from each template.

Extension to evaluation data without ground-truth outputs. Note that computing
acc(fGTi ,n, Teval

j) requires evaluating on a dataset with ground-truth outputs. However,
in practice datasets are not often annotated with outputs, which requires us to estimate the
accuracy of the model. Since we have multiple individual models, we can frame them as
noisy “voters” that make predictions on the true label and cast accuracy estimation as a
weak supervision problem, a line of work that estimates labels given an unlabeled dataset
and several heuristic voters using latent variable models.We describe this extension of
our approach, which uses the MeTaL weak supervision algorithm (Ratner et al., 2019) in
Appendix D.1.

3.4 Training on COOKBOOK-data

All models trained on COOKBOOK-template data were finetuned by running a hyper-
parameter search, sweeping across learning rate ([4e − 06, 5e − 06, 8e − 06, 5e − 05, 8e − 05]),
batch size ([8, 16, 32, 64]) and total training steps ([100, 200, 300, 400 and 500]). In finetuning
COOKBOOK-models, no training samples were repeated.

4 Experimental evaluations
We evaluate the empirical performance of COOKBOOK in a multi-task evaluation setting
(i.e., against standard instruction datasets on many downstream tasks) and in a single-task
evaluation setting on NL tasks that our COOKBOOK templates correspond to. In Appendix F,
we show that COOKBOOK can be extended to creative tasks (i.e., poetry generation) going
beyond select, search, and compare tasks.

6

Published as a conference paper at COLM 2024

Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
LLAMA-2-7B 46.25 74.58 77.74 75.99 73.92 44.20 79.11 69.14 67.61
LLAMA-2-7B-NH 49.74 76.09 80.00 77.72 72.99 46.40 79.76 70.01 69.09
MISTRAL-7B 54.10 79.50 83.49 81.12 75.59 44.40 82.05 73.88 71.76
MISTRAL-7B-ORCA 56.14 79.59 86.57 81.73 72.37 45.60 83.03 73.24 72.28
MISTRAL-7B-OH 59.98 81.65 86.73 81.77 73.90 44.20 82.70 73.56 73.06
COOKBOOK-LLAMA 48.04 76.77 79.20 76.04 77.10 43.40 78.56 69.30 68.55
COOKBOOK-MIST 57.76 83.21 85.23 80.99 78.23 44.00 82.32 74.27 73.25

Table 1: Performance on GPT4ALL benchmark. We denote our COOKBOOK-MIX-tuned MISTRAL-7B
model as COOKBOOK-MIST. Averaged across tasks, COOKBOOK-MIST has the best accuracy. For
baseline datasets, “NH” denotes NousHermes, “OH” is Open-Hermes, and “ORCA” is OpenOrca.

4.1 Multi-task Evaluation

We evaluate if the COOKBOOK framework can improve multiple generative capabilities at
once. Here, we compare COOKBOOK-MIX to SoTA instruction datasets (e.g., OpenOrca,
OpenHermes).

Our method. We fine-tune two pre-trained base models, LLAMA-2-7B (Touvron et al., 2023)
and MISTRAL-7B (Jiang et al., 2023). The set of templates we consider is: MATCHING, ENTITY-
DISAMBIGUATION, MULTI-CHOICE-QA, and COMMONSENSE-SELECT (refer to Appendix B
for their constructions). We fine-tune each base model on these templates using the data
proportions obtained using COOKBOOK-MIX as described in Section 3.3.

Evaluation datasets. We evaluate on the standard GPT4ALL (NomicAI) benchmark consid-
ered by many models (e.g., Mamba (Gu & Dao, 2023), Cerebras-GPT (Dey et al., 2023)). We
report average zero-shot accuracy for all tasks using the standard EleutherAI LM Evaluation
Harness library (LM eval) (Gao et al., 2023). The LM eval harness provides a fixed set of
prompt formats for all tasks, generating accuracy and standard deviation metrics.

Baselines. As baselines we consider the base LLAMA-2-7B and MISTRAL-7B models.
Additionally, we compare against the current SoTA open-source instruction-tuned versions
of these models (OpenHermes-Mistral-7B (Teknium, 2023), Mistral-7B-OpenOrca (Lian
et al., 2023b)) and the closed source versions (Nous-Llama-2-7b (Research, 2023b), Nous-
Capybara-7B (Research, 2023a)).

Results. Results for our multi-task evaluations can be found in Table 1, with full results in
Table 5. Averaging across tasks we find that (1) COOKBOOK-MIX improves performance
across model variants—Llama and Mistral (see Table 1), (2) MISTRAL-7B fine-tuned with
COOKBOOK-MIX (which we abbreviate COOKBOOK-MISTRAL) is the best fine-tuned model
on the benchmark suite and also outperforms other mixtures of COOKBOOK templates, such
as a uniform mixture (Table 6), and (3) COOKBOOK-MISTRAL is the best performing model
on 3/8 tasks.

4.2 Single-task Evaluation

This section evaluates single-task performance of task-specific COOKBOOK templates, offer-
ing a more fine-grained study of the templates themselves without mixing.

Dataset NEO-BASE NEO-FEW COOKBOOK-NEO
TYDIQA 21.8 ± 0.49 14.0 ± 2.4 41.9 ± 0.40
SQUAD 14.5 ± 0.78 50.4 ± 5.2 60.5 ± 0.68
PIQA 0.0 ± 0.0 48.5 ± 0.5 52.7 ± 0.43
MS_MARCO 12.6 ± 1.08 17.7 ± 1.0 18.6 ± 0.16
WINOGRANDE 3.9 ± 0.25 64.6 ± 32.4 54.3 ± 0.87
BEER 26.7 ± 0.0 26.7 ± 0.0 66.6 ± 0.0
ITUNES-AMAZON 39.7 ± 0.0 63.1 ± 0.0 69.6 ± 0.0

Table 2: Single-task evaluations. We report accuracy for all datasets except BEER and ITUNES-
AMAZON (F1-score). COOKBOOK-tuned models exhibit improved performance over the base model.

7

Published as a conference paper at COLM 2024

Our method. For each evaluation task, we generate data from the associated COOKBOOK
template (see Table 8 for the mapping between task and template). We fine-tune two base
pre-trained models, GPT-NEO-1.3B (Gao et al., 2020) and CEREBRAS-GPT-1.3B (Dey et al.,
2023), using data generated from the template. In our data generating process, a new batch is
sampled at each step. Across tasks, we fine-tune models over an average of 4.2K datapoints.
We evaluate the fine-tuned model’s zero-shot performance.

Evaluation datasets. For our evaluations, we consider 7 tasks across selection (PIQA,
WINOGRANDE), search (TYDIQA, SQUAD, MS_MARCO) and comparison (BEER, ITUNES-
AMAZON) categories. For all tasks excluding BEER and ITUNES-AMAZON, for which we
report F1-score, we report accuracy. Table 7 in Appendix G.5.2 contains dataset statistics.

Baselines. We compare our COOKBOOK-tuned models to the base model via two baselines:
zero-shot and few-shot (where k=3) using natural language task samples as in-context
examples. Zero-shot involves directly evaluating the base model’s ability on a given task,
while few-shot primes the base model with task-specific formatting and context.

Results. Table 2 shows the results for GPT-NEO-1.3B. We defer results for CEREBRAS-
GPT-1.3B to Table 9 in Appendix G.5.2. Our results show that (1) COOKBOOK-NEO out-
performs the zero-shot and ICL performance on 6/7 tasks, (2) performance of COOKBOOK
models can be 52.7 points better than base zero-shot performance, suggesting that COOK-
BOOK-generated data can help the model learn a task it was previously unable to do, (3)
similar trends can be seen across model families (see Appendix G.5.2).

5 Analysis of COOKBOOK

First, we propose and measure the template alignment statistic on several tasks to validate
that the rules taught by templates are responsible for improved task performance. Then, we
analyze the key components of COOKBOOK to better understand its effectiveness, finding
that 1) the extent of NL knowledge the base model has impacts COOKBOOK’s performance; 2)
training on data from one COOKBOOK template can improve on multiple tasks; 3) rules, not
only the instruction formatting of samples, are necessary to the performance of COOKBOOK.

5.1 Template Alignment Framework

We introduce the template alignment scorer, which measures how similar a NL sample and
a template are. We use this to define the template alignment statistic, which measures how
better adherence to the template’s rule is responsible for improved performance on the task.

Template Alignment Scorer Given a task T and its corresponding template GT as con-
structed in Section 3, we propose a template alignment scorer sGT : X × Y → [0, 1]. The
template-specific scorer captures how well the input sample’s relationship between x and y
follows that of GT’s data generating functions. We provide three examples below:

• Document QA: the template selects a random span of a document as the question and
defines the answer as the surrounding span. sGT scores a sample by finding where the
answer is located in the document and computing the fraction of words in the question
that are near the answer (Fig 1). Note that template-generated samples have a score of 1.

• Commonsense Reasoning: the template generates two answer choices, with only one
choice containing tokens from the sentence. sGT scores a sample by finding the words that
are unique to the two choices, measuring the minimum normalized embedding distance
between each choice’s unique words and the words in the sentence, and computing
the absolute value of the difference between the two choices’ distances to the input
sentence. This quantity is large if one answer choice has much higher word similarity
to the input sentence than the other. Note that when we use the hamming distance,
template-generated samples have a score of 1.

• Entity Matching: the template first generates one entity randomly, and then generates
the second entity to have some overlap with the first one. sGT scores a sample by
computing the word overlap between the two entities. Note that template-generated
samples have a score equal to 1 − noise when the entities are equivalent.

8

Published as a conference paper at COLM 2024

Template Alignment Statistic Next, we use the alignment scorer to relate model per-
formance to template rule adherence. Recall the base model f : X → Y and the COOK-
BOOK-tuned model fGT ,n. Given NL task samples DT , let D+

T (GT) = {(x, y) ∈ DT : f (x) ̸=
y, fGT ,n(x) = y} be the set of samples that f gets incorrect and fGT ,n gets correct, and let
D−

T (GT) = {(x, y) ∈ DT : f (x) ̸= y, fGT ,n(x) ̸= y} be the set of samples that both f and
fGT ,n get incorrect. We now define the template alignment statistic, which characterizes how
different the template alignment scores are on samples that the COOKBOOK-tuned model
gets correct versus incorrect.

Definition 1. Let S+
T (GT) = {sGT (x, y) ∀(x, y) ∈ D+

T (GT)} and S−
T (GT) =

{sGT (x, y) ∀(x, y) ∈ D−
T (GT)} be the alignment scores over D+

T (GT) and D−
T (GT), respectively.

Define F+
T,GT

: [0, 1] → [0, 1] as the empirical CDF over S+
T (GT) and similarly define F−

T,GT
. Then,

the template alignment statistic for task T, template GT is

A(T, GT) = sup
s∈[0,1]

|F+
T,GT

(s)− F−
T,GT

(s)|. (2)

Note that A(T, GT) is the total variation distance between the empirical distributions of the
template alignment scores for D+

T (GT) and D−
T (GT), as well as the Kolmogorov-Smirnov

test statistic for the two-sample hypothesis test on whether the scores for these two subsets
of DT come from the same distribution. This statistic is thus bounded between 0 and 1. A
large value for this statistic suggests that there is significant difference between improved
and non-improved samples in terms of how they adhere to template rules.

Template GT / Task T TEMPLATE-MISTRAL A(T, GT)
PIQA / COMMONSENSE-SELECT (0.867, 7.1 × 10−46)
DBLP-ACM / MATCHING (1.0, 0.0025))
TYDIQA / DOCUMENT-QA (0.615, 0.013)

Table 3: Template alignment statistics. Template alignment statistics for COOKBOOK-tuned models.
Values are the (template alignment statistic, p-value). COOKBOOK-tuned models have learned the rule
captured by the synthetic.

Results. We compute the template alignment statistic for the MISTRAL-7B-template models
on the tasks TYDIQA, PIQA and DBLP-ACM using the DOCUMENT-QA, COMMONSENSE-
SELECT and MATCHING templates respectively. Note that for PIQA, we use Sentence-BERT
embeddings (Reimers & Gurevych, 2019) to compute embedding distance between the
words in the answer choices and the words in the goal. We find that the template alignment
statistic for each task (Table 3) is statistically significant (< 0.05), suggesting that rules taught
by the templates are responsible for improvement on downstream NL tasks.

5.2 Understanding COOKBOOK random tokens and rules

When do random tokens work? We hypothesize that fine-tuning on random tokens helps
learn a NL task when the model already has sufficient NL capabilities. To test this, we
evaluate COOKBOOK on PYTHIA-1B checkpoints (log scale from 0 to 144K) as the base
models, where later model checkpoints have more sufficient NL capabilities. We do this on
PIQA, ITUNES-AMAZON, SQUAD, WINOGRANDE, and their respective templates, finding that
there exists a checkpoint at which COOKBOOK starts to help performance significantly, before
which it has little effect (see Figure 4 in Appendix H). This suggests that the generalization
from random tokens to NL is dependent on the base model’s NL capabilities.

Do rules taught over random tokens result in less overfitting? We compare the overfitting
of rules taught over random tokens versus rules taught over NL tokens. We fine-tune
models on the COOKBOOK MATCHING template and on the NL matching task itself (ITUNES-
AMAZON), and evaluate them on ITUNES-AMAZON and two other tasks, PIQA and TYDIQA
(see Table 11). We observe that COOKBOOK-tuning actually improves base model perfor-
mance across tasks beyond matching (up to 5 points), whereas NL-tuning worsens base
performance (by up to 7 points) for all tasks outside of matching. This suggests that skills

9

Published as a conference paper at COLM 2024

taught in the random token space help generalize to multiple tasks and overfit less, offering
a potential explanation for how COOKBOOK-MIX outperforms standard instruction datasets.

Do we need data generating functions: Are random tokens all we need? We empirically
inspect the importance of the template rules vs. the task format (fmtT) in improving
downstream performance by replacing our rule-based generated input and outputs in fmtT()
with random tokens without any structured patterns. Our results show that finetuning on
data without rules leads to worsened performance — an average performance drop of 18.3
accuracy points (see Table 12 in Appendix H).

6 Discussion

In this work, we tackle the challenge of building instruction datasets for improving genera-
tive abilities. Via COOKBOOK, we show that it is possible to programmatically generate data
that teaches task-specific rules. Moreover, we show how such programmatic data can be
mixed to improve performance on many tasks at once. Finally, we propose a method for
measuring whether a model has indeed learned a task rule, and whether learning that rule
improves downstream task performance. In future work, we seek to further explore how to
use programmatic data generation to enable self-improving systems.

7 Acknowledgements

We thank Michael Zhang, Neel Guha, Michael Wornow, Ben Spector, Silas Alberti, Jordan
Juravsky, Eric Nguyen, and Alyssa Unell for their feedback and discussion.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF
under Nos. CCF2247015 (Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078
(Volume to Velocity), and 1937301 (RTML); US DEVCOM ARL under Nos. W911NF-23-2-
0184 (Long-context) and W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under
Nos. N000142312633 (Deep Signal Processing); Stanford HAI under No. 247183; NXP, Xilinx,
LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture,
Ericsson, Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud
Credits for Research program, the Stanford Data Science Initiative (SDSI), Knight-Hennessy
Scholarship, NSF Graduate Research Fellowship and members of the Stanford DAWN
project: Meta, Google, and VMWare. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

10

Published as a conference paper at COLM 2024

References
Winogrande: An adversarial winograd schema challenge at scale. 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data
mixing for language model pre-training, 2023.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi
Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel,
Shiyu Chang, Tatsunori Hashimoto, and William Yang Wang. A survey on data selection
for language models, 2024.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou,
Atri Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient
language models. arXiv e-prints, pp. arXiv–2312, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human feedback. arXiv preprint
arXiv:2204.05862, 2022.

Kush Bhatia, Avanika Narayan, Christopher De Sa, and Christopher Ré. Tart: A plug-and-
play transformer module for task-agnostic reasoning. arXiv preprint arXiv:2306.07536,
2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nick Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monosemanticity:
Decomposing language models with dictionary learning. Transformer Circuits Thread, pp.
2, 2023.

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue WANG, Ce Zhang, Frederic Sala, and
Christopher Ré. Skill-it! a data-driven skills framework for understanding and training
language models. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 36000–36040. Cur-
ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/
2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-
finetuned language models. arXiv preprint arXiv:2210.11416, 2022.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
In NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

Luigi Daniele and Suphavadeeprasit. Amplify-instruct: Synthetically generated diverse
multi-turn conversations for effecient llm training. arXiv preprint arXiv:(coming soon), 2023.
URL https://huggingface.co/datasets/LDJnr/Capybara.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin
Tom, Joel Hestness, et al. Cerebras-gpt: Open compute-optimal language models trained
on the cerebras wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://huggingface.co/datasets/LDJnr/Capybara

Published as a conference paper at COLM 2024

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher
Re. Hungry hungry hippos: Towards language modeling with state space models. In The
Eleventh International Conference on Learning Representations, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of
diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell,
Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL
https://zenodo.org/records/10256836.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

Michael Hahn. Theoretical Limitations of Self-Attention in Neural Sequence Models. Trans-
actions of the Association for Computational Linguistics, 8:156–171, 01 2020. ISSN 2307-387X.
doi: 10.1162/tacl_a_00306. URL https://doi.org/10.1162/tacl_a_00306.

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In COLING
1992 Volume 2: The 14th International Conference on Computational Linguistics, 1992. URL
https://aclanthology.org/C92-2082.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me:
Transformers are better than state space models at copying, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Kundan Krishna, Jeffrey P Bigham, and Zachary C Lipton. Does pretraining for summariza-
tion require knowledge transfer? In Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3178–3189, 2021.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for "mind" exploration of large scale language
model society, 2023a.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun Wang, Xingxing Zhang, Haoyang
Huang, Shaohan Huang, Xiaolong Huang, Zeqiang Huang, Dongdong Zhang, Yuxian
Gu, Xin Cheng, Xun Wang, Si-Qing Chen, Li Dong, Wei Lu, Zhifang Sui, Benyou Wang,
Wai Lam, and Furu Wei. Synthetic data (almost) from scratch: Generalized instruction
tuning for language models, 2024.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston,
and Mike Lewis. Self-alignment with instruction backtranslation, 2023b.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and
"Teknium". Openorca: An open dataset of gpt augmented flan reasoning traces.
https://https://huggingface.co/Open-Orca/OpenOrca, 2023a.

Wing Lian, Bleys Goodson, Guan Wang, Eugene Pentland, Austin Cook, Chanvichet Vong,
and "Teknium". Mistralorca: Mistral-7b model instruct-tuned on filtered openorcav1 gpt-4
dataset. https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca, 2023b.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods
for effective instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

12

https://zenodo.org/records/10256836
https://doi.org/10.1162/tacl_a_00306
https://aclanthology.org/C92-2082
https://https://huggingface.co/Open-Orca/OpenOrca
https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca

Published as a conference paper at COLM 2024

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao,
Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language
models with evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor
conduct electricity? a new dataset for open book question answering. In EMNLP, 2018.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task
generalization via natural language crowdsourcing instructions. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3470–3487, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International
Conference on Learning Representations, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
9XFSbDPmdW.

Nihal V. Nayak, Yiyang Nan, Avi Trost, and Stephen H. Bach. Learning to generate instruc-
tion tuning datasets for zero-shot task adaptation, 2024.

NomicAI. Gpt4all performance benchmark. https://gpt4all.io/index.html.

Isabel Papadimitriou and Dan Jurafsky. Learning Music Helps You Read: Using transfer
to study linguistic structure in language models. In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 6829–6839, Online, November 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.554. URL https://
aclanthology.org/2020.emnlp-main.554.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolu-
tional language models. arXiv preprint arXiv:2302.10866, 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly, 2016.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey,
and Christopher Ré. Training complex models with multi-task weak supervision.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-
First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Sym-
posium on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014763. URL
https://doi.org/10.1609/aaai.v33i01.33014763.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. Snorkel: Rapid training data creation with weak supervision. The VLDB Journal, 29
(2-3):709–730, 2020.

Shauli Ravfogel, Yoav Goldberg, and Tal Linzen. Studying the inductive biases of RNNs
with synthetic variations of natural languages. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 3532–3542, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1356. URL https://aclanthology.
org/N19-1356.

13

https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://gpt4all.io/index.html
https://aclanthology.org/2020.emnlp-main.554
https://aclanthology.org/2020.emnlp-main.554
https://doi.org/10.1609/aaai.v33i01.33014763
https://aclanthology.org/N19-1356
https://aclanthology.org/N19-1356

Published as a conference paper at COLM 2024

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, 2019. doi: 10.18653/v1/d19-1410.
URL http://dx.doi.org/10.18653/v1/D19-1410.

Nous Research. Nous-capybara-7b-v1.9, 2023a. URL https://huggingface.co/
NousResearch/Nous-Capybara-7B-V1.9. Hugging Face Model.

Nous Research. Onousresearch-llama-2-7b-hf, 2023b. URL https://huggingface.co/
NousResearch/Llama-2-7b-hf. Hugging Face Model.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially
usable llms, 2023. URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

"Teknium". Openhermes. https://huggingface.co/datasets/teknium/openhermes, 2023.

Teknium. Openhermes-2.5-mistral-7b, 2023. URL https://huggingface.co/teknium/
OpenHermes-2.5-Mistral-7B. Hugging Face Model.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2:
Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated
instructions, 2022a.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar,
David Stap, et al. Super-naturalinstructions: Generalization via declarative instructions
on 1600+ nlp tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 5085–5109, 2022b.

Yuhuai Wu, Felix Li, and Percy S Liang. Insights into pre-training via simpler synthetic
tasks. Advances in Neural Information Processing Systems, 35:21844–21857, 2022.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang,
Quoc V. Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds
up language model pretraining, 2023.

Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data
mixing laws: Optimizing data mixtures by predicting language modeling performance,
2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4791–4800, 2019.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander
Ratner. Wrench: A comprehensive benchmark for weak supervision, 2021.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on
programmatic weak supervision, 2022a.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal
Wagner. Unveiling transformers with lego: a synthetic reasoning task, 2022b.

14

http://dx.doi.org/10.18653/v1/D19-1410
https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9
https://huggingface.co/NousResearch/Nous-Capybara-7B-V1.9
https://huggingface.co/NousResearch/Llama-2-7b-hf
https://huggingface.co/NousResearch/Llama-2-7b-hf
https://github.com/tatsu-lab/stanford_alpaca
www.mosaicml.com/blog/mpt-7b
https://huggingface.co/datasets/teknium/openhermes
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B

Published as a conference paper at COLM 2024

Appendix

We provide an overview of the sections of the Appendix:

• Appendix A: we provide a glossary of the variables and symbols used in this paper.
• Appendix B: we present templates corresponding to generative tasks as well as a sample

data point generated from each template.
• Appendix C: we provide a full related work.
• Appendix D: we provide more details on COOKBOOK-MIX, including the formal algo-

rithm, experiments to verify the linearity assumption, and a proof of Proposition 1.
• Appendix E: we explain how to use GPT-4 to automatically generate COOKBOOK tem-

plates and evaluate these generated templates.
• Appendix F: we demonstrate how the COOKBOOK framework can be extended to a more

creative poetry generation task.
• Appendix G: we provide additional details on the experiments in Section 4.
• Appendix H: we provide additional experiments and details for understanding COOK-

BOOK.

A Notation

The glossary is given in Table 4 below.

Symbol Used for

T Natural language (NL) task that we aim to construct a template for improving.
I Natural language instruction I ∈ I for task T.
x Inputs x ∈ X for task T.
y Output y ∈ Y for task T.
fmt() Function that formats instruction, inputs and output for task T into fmt(x, y, I).
GT Data generating template corresponding to task T.
f Base model f : X → Y whose generative capabilities we aim to improve.
n Number of samples generated from templates used for fine-tuning f .
fGT ,n Base model f fine-tuned on n samples generated by template GT .
GT A set of l templates GT = {GT1 , . . . , GTl} used as input for

the data mixing multi-task evaluation setting.
p Mixture proportions p = {p1, . . . , pl} ∈ △l over data generated from GT .
fGT ,np Base model f fine-tuned on n samples, with npi samples from each GTi .
Teval A set of m downstream tasks Teval = {Teval

1 , . . . , Teval
m } we aim to

improve performance on.
acc(fGT ,np, Teval

j) The accuracy of fGT ,np on Teval
j .

η Weight η ≥ 0 on entropy term H(p) in (1) controlling how close to
uniform p should be.

sGT Template alignment scorer sGT : X ×Y → [0, 1] that measures how much
a NL sample from T adheres to the rule of template GT .

A(T, GT) Template alignment statistic for task T, template GT which measures the
total variation distance in template alignment scores for samples of T that the
model fine-tuned on data from GT gets correct versus incorrect (see def. 1).

Table 4: Glossary of variables and symbols used in this paper.

15

Published as a conference paper at COLM 2024

B Templates

We present seven templates (MATCHING, MULTI-CHOICE-QA, DOCUMENT-QA, ENTITY-
DISAMBIGUATION, COMMONSENSE-SELECT, TOKEN-RETRIEVAL, and POETRY GENERATION)
and a sample data point generated from each.

B.1 Matching

Data generating template:

def matching(noise: int):
import random

e1 = random.sample(token_ids , k=1)

inputs: use e1 to get e2
e2 = e1.replace(k=1) if random.random () < 0.5 else e1.replace(k=noise
↪→)

outputs: use e1 and e2 to get output
answer = 'yes' if len(set(e1) & set(e2)) > (1 - noise) * len(e1) else
↪→ 'no'
instruction = "Determine whether product A and product B are the same
↪→ .\n"

return f"""
{instruction}
Product A: {e1}
Product B: {e2}
Question: Are Product A and Product B the same?
Answer: {answer}"""

Sample data point:

Determine whether product A and product B are the same
Product A: occur Competing TObuiltembean Hollywood met
Product B: occur Competing TObuiltembean Hollywood met
Question: Are Product A and Product B the same?
Answer: yes

B.2 Multi-Choice QA

Data generating template:

def multi_choice_qa (overlap_len: int):
question = random.sample(token_ids)

(c1, c2, c3, c4, c5) = random.sample(token_ids , k=5)

inputs: use question to get correct choice c5
c5 = question.sample(k=overlap_len) + c5[:- overlap_len]

outputs: use question , [c1, . . ., c5]) to get the answer
choices = [c1, c2, c3, c4, c5]. shuffle ()

ans_idx = argmax ([question \cap choices [0],..., question \cap choices
↪→ [4]])

answer = choices[ans_idx]

instruction = "Answer the question .\n"
return f"""
{instruction}
Question: {question}

16

Published as a conference paper at COLM 2024

Choices:
- {choices [0]}
- {choices [1]}
- {choices [2]}
- {choices [3]}
- {choices [4]}
Answer: {answer}"""

Sample data point:

Answer the question.
Why lake Shares wildly Gandhi rers ademic AES 1995 ports?
Choices:
- poke installment
- ORS> unmanned Slave ellar Mart English
- visions AES wildly lakeexper Gamer Gate ports ademicE
- Haibeh Dom
- aiming 462 adultery Greenberg collar
Answer: visions AES wildly lakeexper Gamer Gate ports ademicE

B.3 Document QA

Data generating template:

def qa_template(min_slen: int , max_slen: int):
document = random.sample(token_ids) #input source

inputs: use document to get question
span_length = random.choice(min_slen , max_slen)
question = document.get_span(k=span_length) # get indexes

outputs: use document and question to get the answer
answer = document[loc(document.intersect(question)) - 3 : loc(document.
↪→ intersect(question)) + 3]

instruction = "Use the document to answer the question .\n"

return f"""{instruction}
Document: {document}

Question: {question}
Answer: {answer }""

Sample data point:

Use the document to answer the following question.
Document: Destiny Ricardo Bundle swarm trips spilling crews
trips Python disliked absorption phon Fallen Mour Wales
parameter

Question: swarm trips spilling
Answer: estiny Ricardo Bundle swarm trips spilling crews trips
Python

B.4 Entity Disambiguation

Data generating template:

17

Published as a conference paper at COLM 2024

def entity_disambiguation(e_span_len: int):
sentence_1 , sentence_2 = random.sample(token_ids)

inputs: use sentence_1 to set sentence_2 , e1 and e2
s1, s2 = sentence_1.get_span(k=e_span_len)
e1, e2 = s1[0], s2[0]

if random.rand() < 0.5
sentence_2 +=['<blank >'] + s1[1:])

else:
sentence_2 +=['<blank >'] + s2[1:])

outputs: use (question , sentence_1 , sentence_2) to get the answer
support = sentence_2.split('<blank >')[-1]
span_loc = loc(sentence_1.intersect(support) - 1]
answer = sentence_1[span_loc - 1]

instruction = "Select the choice which best completes the <BLANK >.\n"
return f"""{instruction}
{sentence_1 }.{ sentence_2}
Choices:
- {e1}
- {e2}
Answer: {answer}"""

Sample data point:

Select the phrase which best fills in the <BLANK>.
Sentence: ranc Islands solid illustrates horsepower furry Pay
early Santiago *)scan output. ographies deals privatization
<BLANK> Santiago *)scan output.
Choices:
- Islands
- early
Answer: early

B.5 Commonsense Selection

Data generating template:

def commonsense_qa(overlap_len: int):
question = random.sample(token_ids)
c1 = random.sample(token_ids)

c2 = random.sample(token_ids)

inputs: use question to set c1 and c2
c1 = c1 + question.sample(k=overlap_len)
c2 = c2 + random.sample(token_ids , k=overlap_len)
choices = [c1, c2]. shuffle ()

outputs: use (question , [c1, . . ., c5]) to get the answer
ans_idx = argmax ([len(question.intersect(choices [0])), len(question.
↪→ intersect(choices [1]]))

answer = choices[ans_idx]

instruction = "Answer the question .\n"
return f"""
{instruction}
Question: {question}

18

Published as a conference paper at COLM 2024

Choices:
- {choices [0]}
- {choices [1]}
Answer: {answer}"""

Sample datapoint:

Select the choice which best completes the sentence.
midst Gloss Quant Nest engaging Soul Customer
Choices:
- Zack extraordinarily willingly Gene Quant engaging rest
- Zack extraordinarily willingly Gene With No DXwaters shone
Answer: Zack extraordinarily willingly Gene Quant engaging rest

B.6 Token Retrieval

Data generating template:

def token_retrieval(overlap_len: int):
docs = []
for i in range (10):

docs.append(random.sample(token_id)

inputs: use docs to set question
idx = random.randint (0,10) # randomly sample an index from 0...9
doc_with_answer = docs[idx]
question = doc_with_answer.sample(overlap_len)

#outputs: use (question , docs) to get the answer
answer_idx = argmax[question.intersect(docs [0]) ,..., question.intersect(
↪→ docs [9])

answer = docs[answer_idx]

instruction = "Use the documents to answer the question .\n"
return f"""
{instruction}
{docs [0]}
{docs [1]}
...
{docs [9]}
Question: {question}
Answer: {answer}"""

Sample datapoint:

Use the documents to answer the question.
Document 0: Def culture Luc writers takingo adjustment
Document 1: saturally bites song house speak
Document 2: BEATE level arbitrator Layer eminent substant
Document 3: spend conesz identification unincorporateddemand
Document 4: incident existent Back Fellow Turk peacea Father
Document 5: citations Cove solel Nick cards removing comprise
Document 6: quilt sun instructed facil enacted council confess
Document 7: cs probably 59 specify Page harris famine pumps
Document 8: equal Originally quick Adjust hearted OCK beat
Document 9: Base Sept 168 '</resh593Mr tang moss mash pain

Question: 593Mr tang moss mash pain Dir
Answer: Base Sept 168 '</resh593Mr tang moss mash pain

19

Published as a conference paper at COLM 2024

B.7 Poetry Generation

??) Data generating template:

def rhyme_scheme(rhyme_dict: dict):
inputs
topic = random.sample(token_ids , k=1)
rhyme_scheme_A , rhyme_scheme_B = rhyme_dict.sample(k=2)

inputs: use (topic , rhyme_scheme_A , rhyme_scheme_B) to get lines
lines = []
for idx in range (5):

r_word = rhyme_scheme_A.sample () if idx % 2 == 0 else rhyme_scheme_B.
↪→ sample ()

line = random.sample(token_ids)
line = line.insert(topic) + r_word

lines.append(line)

instruction = "Write a five line poem with an ABABA rhyme scheme about"

return f"""
{instruction} {topic}
{lines [0]}
{lines [1]}
...
{lines [4]}""

Sample datapoint:

Write a five line poem with a ABABA rhyme structure about abi
abi abilities Ches 76 Purabul befriend
abi agre Chung Rapt unfit hate redditt
item Struabi pre transcend
Pedro Rescueabi 1080 vines296speed ledet
continents anticip EMP texts sigabi trend

C Complete Related Works

There is a large body of work which studies instruction-tuning dataset creation; program-
matic data for approximating rules, pre-training, and understanding; and data mixing. Here
we review some of them which relate most closely with our work.

Instruction tuning Instruction tuning datasets seek to improve the ability of LLMs to follow
instructions (i.e., “Generate a summary of the following news article”). These datasets
consist of input and output pairs, where the input is composed of an instruction with some
context and the output is the “gold” generation. Early instruction tuning datasets utilized
manual data curation to construct these <instruction, input, output> triples for tasks such
as summarization (Bai et al., 2022). In an effort to scale the instruction tuning dataset
curation process, new datasets emerged which prepend natural language instructions to
standard NLP tasks where the input-output pairs previously exist, such as Supernatural
Instructions (Mishra et al., 2022; Wang et al., 2022b), the Flan Collection (Longpre et al.,
2023), and in Chung et al. (2022). More recently, instruction tuning datasets have emerged
which use existing LLMs (e.g., GPT-4 Achiam et al. (2023)) to generate the data, such as
OpenOrca, Alpaca, Wizardcoder, Camel, Amplify-instruct, Self-instruct, and GLAN (Lian
et al., 2023a; Taori et al., 2023; Luo et al., 2023; Li et al., 2023a; Daniele & Suphavadeeprasit,
2023; Wang et al., 2022a; Li et al., 2024). In this approach, instructions are fed to the LLM
(i.e., “Generate a list of 5 animals”) and the model generates an output. While this approach
sidesteps manual data curation efforts, it suffer from privacy and terms of service violations.
COOKBOOK circumvents the need for both manual or model-generated data. Some recent

20

Published as a conference paper at COLM 2024

approaches also train their own models to generate instruction data, such as instruction
backtranslation and Bonito (Li et al., 2023b; Nayak et al., 2024). While these can avoid legal
issues, it can still be computationally expensive to use an LLM to generate a large corpus of
instruction data. In contrast, COOKBOOK’s templates generate data without the inference
costs of using an LLM.

Programmatic data for approximating rules: Programmatic data generation has been
primarily studied for the automated labeling of datasets (Ratner et al., 2020; 2016; Hearst,
1992), where heuristics are used to approximate the true labeling rule. For example, a
heuristic for Youtube spam comment classification is to check if the word “subscribe” is in
the comment (Zhang et al., 2021). These works provide programmatic labels for classification
tasks given an unlabeled dataset containing inputs only, and they find that training on data
with these programmatic labels can produce models that do well on the given task. However,
these approaches do not directly extend to our setting, which requires us to construct entire
samples for generative tasks—both programmatic inputs and outputs, which are often
open-ended generations (e.g. document QA).

Programmatic data for improved training Prior work has shown the value of synthetic,
token-level tasks such as set operations as an alternate to natural language data for LLM
pre-training (Wu et al., 2022). Similarly, other work has demonstrated the efficacy of data
with latent structure (e.g., music) in the pretraining phrase (Papadimitriou & Jurafsky,
2020) as well as for tasks such as summarization (Krishna et al., 2021). These works are
similar to COOKBOOK in that they utilize non-language based inputs to improve LLM perfor-
mance, but unlike COOKBOOK, which directly evaluates the model trained on programmatic
data, they all require some fine-tuning on natural language data afterwards. Additionally,
programmatic data has be shown to improve classification abilities by using it to train a
synthetic reasoning module and compose it with a base LLM (Bhatia et al., 2023); however,
this approach does not apply to generative tasks.

Programmatic data for LLM understanding Recent works have explore the use of synthetic
tasks for understanding the underlying mechanisms of LLMs (Bricken et al., 2023; Nanda
et al., 2022; Ravfogel et al., 2019; Zhang et al., 2022b) as well as for understanding and
improving architectures (Fu et al., 2022; Arora et al., 2023; Gu & Dao, 2023; Poli et al., 2023).
Unlike these prior works which seek to use non-language based tasks to understand LLMs,
we use such data to improve LLM capabilities.

Data mixing An important step in curating training data is to determine the mixture over
several given groups of data (e.g., domains such as CommonCrawl, ArXiv, Wikipedia,
and Github). Data sampling proportions are a key factor in model performance, with
many widely-used LLMs having seemingly arbitrary mixture proportions (Touvron et al.,
2023; Team, 2023). Since it is expensive to use trial-and-error to explore the search space
of mixture proportions, some recent works have proposed algorithms for data mixing,
where proportions are learned based on model performance throughout training (Xie et al.,
2023; Albalak et al., 2023). Data mixing scaling laws have also been proposed (Ye et al.,
2024). These approaches primarily focus on the pre-training setting and only hold when the
training groups of data are the same as the evaluation groups of data, which is not true in
our setting of instruction datasets. Skill-It (Chen et al., 2023) proposes an online algorithm
for setting proportions when the training tasks are not equal to the evaluation tasks; we
note that COOKBOOK-MIX can be considered a non-online instantiation of their approach.

D COOKBOOK-MIX additional details

First, we describe the full algorithm for mixing data from templates, with or without labeled
evaluation data. Then, we demonstrate that the linear assumption on accuracies empirically
holds. Finally, we provide a proof of Proposition 1, the optimal expression for p⋆.

D.1 COOKBOOK-MIX Template Mixing Algorithm

Algorithm 1 presents our approach for how to compute template data proportions. It
computes p̂ according to Proposition 1; namely, l COOKBOOK-tuned models—one per

21

Published as a conference paper at COLM 2024

Algorithm 1 COOKBOOK-MIX.

1: Input: l templates GT , base model f , m downstream task datasets Deval =
Deval

1 , . . . ,Deval
m , n number of training samples, η entropy parameter

2: Fine-tune f on n samples generated from GTi to get COOKBOOK-tuned model fGTi
,n for

all templates GTi ∈ GT .
3: if Deval has ground-truth outputs then
4: Evaluate each model fGTi

,n on Deval to get Âij = acc(fGTi
,n, Teval

j) for all j ∈ [m], i ∈
[l].

5: else
6: Set Âij = ESTIMATEACCS(fGT1 ,n, . . . , fGTl

,n,Deval
j), a weak supervision-based

method for estimating accuracy without ground-truth outputs, for all j ∈ [m], i ∈ [l].
7: end if
8: Compute σi = exp(1

mη ∑m
j=1 Âij) for all i ∈ [l].

9: Calculate sampling proportion vector p̂, where p̂i =
σi

∑l
k=1 σk

for all i ∈ [l].

10: return p̂. f is then fine-tuned on n samples from templates fGT with proportions p̂.

Algorithm 2 ESTIMATEACCS.

1: Input: l COOKBOOK-tuned models (“voters”) λi := fGTi
,n : X → Y for i ∈ [l], dataset

without ground-truth outputs, unlabeled evaluation dataset D = {xj}n
j=1.

2: Get predictions {λ1(xj), . . . λl(xj)} across COOKBOOK-tuned models for each xj ∈ D, i ∈
[l], forming votes dataset Dλ ∈ Yn×l .

3: Estimate accuracy âi ≈ Pr(λi(x) = y) for all i ∈ [l] by using Algorithm 1 from Ratner
et al. (2019) on noisy votes Dλ.

4: return {â1, . . . , âl}.

template GTi —are trained, and then evaluated on all m downstream tasks. Then, the
average accuracy across tasks for each COOKBOOK-tuned model is computed, and a softmax
(with temperature 1/η depending on the entropy regularization in (1)) is performed over
these average accuracies to get p̂.

When evaluating each COOKBOOK-tuned model, computing accuracy on each downstream
task is straightforward if ground-truth outputs are available for the task. However, if
they are unavailable but the outputs are discrete (e.g., answer choices in PIQA or “yes”
or “no” in ITUNES-AMAZON), we can use techniques from weak supervision to estimate
accuracies (line 6 of Algorithm 1). Weak supervision involves producing programmatically
labeled data by modeling several weaker “voters” using a latent variable probabilistic
graphical model over their votes. In particular, weak supervision algorithms fit the latent
variable model using predictions from the voters, estimating the voter accuracies. Then,
they aggregate the votes based on the estimated accuracies to get a programmatic label. We
utilize a popular weak supervision algorithm from Ratner et al. (2019) to get an estimated
accuracy for each COOKBOOK-tuned model in Algorithm 2. In particular, we compute a
votes dataset Dλ ∈ Ym×l by using each COOKBOOK-tuned model to produce predictions on
the downstream dataset. This votes dataset is converted into numbers (e.g., “yes” becomes
1 and “no” becomes −1) and is passed in as input to Algorithm 1 of Ratner et al. (2019). This
algorithm uses a conditional independence assumption, which implies a particular sparsity
pattern in the inverse covariance matrix of Dλ, to create a system of equations that is solved
with SGD to yield estimated accuracies.

D.2 Assessing the Linearity Assumption Empirically

To see if the linearity assumption applies on real data, we consider two templates
GT = {GT1 , GT2}, and compare the performance of individual COOKBOOK-tuned models,

22

Published as a conference paper at COLM 2024

arc_challenge

arc_easy
boolq

hellaswag

lambada_openai
piqa

winogrande

Downstream task

0

1

2

3

4

5

6

N
um

be
r

of
 te

m
pl

at
e

pa
ir

s
(o

ut
 o

f 6
)

Number of template pairs s.t. acc(f(GT1, GT2)) [acc(f(GT1)), acc(f(GT2))]

0 5 10 15 20 25 30
Mixture model deviation

0

5

10

15

20

25

30

35

40

N
um

be
r

of
 e

va
lu

at
io

n
ta

sk
s

Mixture model deviation |acc(f(GT1, GT2)) - avg(acc(f(GT1)), acc(f(GT2)))|

Figure 3: Evaluating if the linearity assumption for data proportions holds empirically. Left: we
measure the interpolation property, how often the mixture model has an accuracy in between the
individual COOKBOOK-tuned models’ accuracies. Right: we measure the mixture model deviation,
the absolute difference between the mixture model’s accuracy and the average of the individual
COOKBOOK-tuned models’ accuracies. Measurements are made across 6 pairs of templates (over the 4
templates used in Section 4.1), 8 GPT4ALL evaluation tasks, and the MISTRAL-7B base model.

fGT1 ,n and fGT2 ,n, versus a model fine-tuned on a uniform mixture over the two templates,
fGT ,n[1/2,1/2], which we call the mixture model. We re-use the setting described in Section 4.1
(4 templates, 8 tasks from GPT4ALL, fine-tuning the MISTRAL-7B model). We measure two
quantities, described below.

• Interpolation property: first, we examine how often the mixed model’s ac-
curacy interpolates between the individual COOKBOOK-tuned model accuracies,
acc(fGT ,n[1/2,1/2], Teval

j) ∈ [acc(fGT1 ,n, Teval
j), acc(fGT2 ,n, Teval

j)] on all downstream tasks

Teval
j ∈ Teval. We compute how many pairs of GT1 , GT2 (out of 6 pairs over the 4 tem-

plates) for which this condition holds per evaluation task. Our results are shown in
Figure 3 (left), where we find that all downstream tasks have at least half of the template
pairs satisfying this interpolation property.

• Mixture model deviation: second, we measure the absolute difference be-
tween the mixture model’s accuracy on a task and the average of the individ-
ual COOKBOOK-tuned models’ accuracies on the task, |acc(fGT ,n[1/2,1/2], Teval

j) −
avg(acc(fGT1 ,n, Teval

j), acc(fGT2 ,n, Teval
j))|. We call this the mixture model deviation, and

measure this across template pairs and downstream tasks in Figure 3 (right). We find
that most values of this deviation are between 0 and 1, meaning that the mixture model’s
accuracy is less than 1 accuracy point away from the average of individual accuracies.

Based on these results, we do see that there exist some template pairs for which training a
model on them results in significantly different performance. This suggests that modeling
higher-order interactions among data samples from different templates could help us
improve our estimate of p⋆, although doing so may result in an optimization problem that
lacks a simple closed-form solution.

D.3 Proof of Proposition 1

We restate Proposition 1 here for completeness.

Proposition 1. Define A ∈ Rl×m where Aij = acc(fGTi
,n, Teval

j). Let σi = exp(1
mη ∑m

j=1 Aij) for
all i ∈ [l]. Then, the p⋆ that maximizes (1) satisfies p⋆i = σi

∑l
k=1 σk

for all i ∈ [l].

23

Published as a conference paper at COLM 2024

Proof. Recall that the objective we aim to maximize is the expression

1
m

m

∑
j=1

l

∑
i=1

pi Aij + ηH(p). (3)

where Aij = acc(fGTi
,n, Teval

j) and p ∈ △l , e.g. ∑l
i=1 pi = 1. The Lagrangian function is thus

L(p, λ) =
1
m

m

∑
j=1

l

∑
i=1

pi Aij + ηH(p) + λ
(

1 −
l

∑
i=1

pi

)
. (4)

Taking the partial derivative of the Lagrangian with respect to pi for some i ∈ [l] and setting
equal to 0, we get

∂L(p, λ)

∂pi
=

1
m

m

∑
j=1

Aij + η(− log pi − 1)− λ = 0. (5)

Rearranging, we get

log pi =
1

mη

m

∑
j=1

Aij −
λ

η
− 1 (6)

⇒pi = exp
(

1
mη

m

∑
j=1

Aij −
λ

η
− 1

)
. (7)

We now plug this expression for pi into the equation ∑l
i=1 pi = 1:

l

∑
i=1

exp
(

1
mη

m

∑
j=1

Aij −
λ

η
− 1

)
= 1 (8)

⇒ exp
(λ

η

)
=

l

∑
i=1

exp
(

1
mη

m

∑
j=1

Aij − 1
)

. (9)

Finally, substituting exp(λ/η) in the expression for pi gives us

pi =
exp

(
1

mη ∑m
j=1 Aij − 1

)
∑l

i=1 exp
(

1
mη ∑m

j=1 Aij − 1
) =

exp
(

1
mη ∑m

j=1 Aij

)
∑l

i=1 exp
(

1
mη ∑m

j=1 Aij

) . (10)

E Automated Template Creation

In this section, we outline our methodology for auto-generating COOKBOOK templates
using GPT-4.

E.1 Template Generation

We generate task-specific templates by prompting GPT-4. See below for the prompt passed as
input to the GPT-4 model. Notice that the prompt has two main components (1) instructions
on how to create COOKBOOK templates and (2) two in-context examples mapping a task
description to a data generating function.

You are an analyst whose job is to help write data generating functions.

24

Published as a conference paper at COLM 2024

Here is the procedure for writing a data generating template:
* constructing the inputs: inputs are categorized into a
parent input and child inputs; the parent input is a randomly sampled

↪→ sequence of tokens
from the vocabulary
* constructing the outputs y_hat based on the inputs: output

is constructed from the parent and child inputs using a function that
↪→ approximates the task

rule

Here is a sample data generating template for the task: document question
↪→ answering

Description of task: Given a document and a questions , retrieve
↪→ information from the document that answers the question.

Inputs:
--- `Document `: random list of tokens sampled from vocabulary
--- `Question `: randomly selected span from document
Outputs:
--- `Answer `: span including all tokens +/-3 tokens before the start and

↪→ end of question span

Data Generating Template:

def qa_template(min_slen: int , max_slen: int):
document = random.sample(token_ids) #input source

inputs: use document to get question
span_length = random.choice(min_slen , max_slen)
question = document.get_span(k=span_length) # get indexes

outputs: use document and question to get the answer
answer = document[loc(document.intersect(question)) - 3 : loc(document.
↪→ intersect(question)) + 3]

instruction = "Use the document to answer the question .\n"

return f"""{instruction}
Document: {document}

Question: {question}
Answer: {answer}

#####

Here is a sample data generating template for the task: multiple choice
↪→ question answering

Description of Task: Given a question and a set of 5 answer choices ,
↪→ select the answer choice which best answers the questions

Inputs:
--- `Question `: randomly selected span from vocabulary
--- `Choices `: 5 randomly sampled sets of 5 tokens , where one answer (the

↪→ correct answer) shares tokens with the question.
Outputs:
--- `Answer `: answer choice with the maximum overlap with the question.

Data Generating Template:

def multi_choice_qa (overlap_len: int):
question = random.sample(token_ids)

(c1, c2, c3, c4, c5) = random.sample(token_ids , k=5)

25

Published as a conference paper at COLM 2024

inputs: use question to get correct choice c5
c5 = question.sample(k=overlap_len) + c5[:- overlap_len]

outputs: use question , [c1, . . ., c5]) to get the answer
choices = [c1, c2, c3, c4, c5]. shuffle ()

ans_idx = argmax ([question \cap choices [0],..., question \cap choices
↪→ [4]])

answer = choices[ans_idx]

instruction = "Answer the question .\n"
return f"""
{instruction}
Question: {question}
Choices:
- {choices [0]}
- {choices [1]}
- {choices [2]}
- {choices [3]}
- {choices [4]}
Answer: {answer}

####

Write a data generating template for the task: {task_name}

Description of task: {task_description}

Inputs:"""

Auto-generating Templates with External Artifacts We find that our automated template
generation approach is capable of generating external artifacts (such as the rhyming dictio-
nary in Section B.1). See more details here.

E.2 Evaluation

Using our automated template generation approach, we generate templates for two tasks,
entity matching and token retrieval. We observe that for entity matching, the generated
template exactly matches—in terms of functionality—the hand generated template (in
Appendix B.1). For token retrieval, we observe that the generated template is minorly
different than the manually generated template (in Appendix B.6) in that the “question” is
sampled as a contiguous span (in oppose to a set of randomly sample tokens) from one of the
support documents. A GPT-NEO-1.3B model finetuned on data generated by this template
(COOKBOOK-NEO-AUTO), has an accuracy of 18.4: 5.8 points better than the base model and
within 0.02 points of a model finetuned on data from the manually generated template (see
table below where COOKBOOK-NEO is the performance on manually generated templates).

Dataset COOKBOOK-NEO-AUTO COOKBOOK-NEO
MS_MARCO 18.4 ± 0.01 18.6 ± 0.16
BEER 66.6 ± 0.0 66.6 ± 0.0
ITUNES-AMAZON 69.6 ± 0.0 69.6 ± 0.0

F Poetry Generation

In this section, we show that the COOKBOOK framework can be extended beyond the three
task families to more creative tasks such as poetry generation.

Task. We create a poetry generation NL task wherein the model is prompted to write a
poem with a prespecified rhyme structure, say ABAB. We construct 30 topics covering a
wide range of subjects (e.g., shoe or cup) that the models are then prompted to generate a

26

https://chatgpt.com/share/32b9e7a5-e69b-4ab7-9eba-0d5e253e2760

Published as a conference paper at COLM 2024

poem about. We measure accuracy as how well the model is able to follow the specified
rhyme pattern when generating the poem.

Our method. We fine-tune the MISTRAL-7B model using a template designed for this
poetry task, which we call COOKBOOK-POEM; see Appendix B.7 for the exact template and
examples of datapoints. We fine-tune the model for 500 steps with a batch size of 64 where
each batch uses fresh samples from the templates. Our template uses a dictionary of rhyme
words, but does not use any examples of complete poems.

Results. When prompted to generate a 4 line poem with an ABAB rhyme scheme (given
2 in-context examples), base MISTRAL-7B has 20% accuracy, COOKBOOK-POEM has 60%
accuracy and GPT-4 has 50% accuracy.

F.1 COOKBOOK-POEM samples

We present sample poems generated by COOKBOOK-POEM below.

Topic: flower
A flower's petals, so delicate and fair
Its scent is sweet, a perfume so divine
Its beauty's rare, a sight to behold anywhere
Its petals fall, a sign of the decline.

Topic: bird
A bird that soars above the clouds so high
Its wings are strong, its flight is free
It's not afraid to try
And soars above the sea

Topic: deer
A deer, a female deer, a lovely doe
Its antlers are a symbol of its pride
Amidst the trees, it knows just where to go
To find the food that's on the other side.

Topic: galaxy
A galaxy of stars, so far away
Their light, a beacon, in the night
A cosmic dance, a celestial display
A wondrous sight, a sight so bright.

G Experimental evaluations: additional details

We provide additional experimental details for both the multi-task evaluation and single-
task evaluation settings.

G.1 Hyperparameter tuning details

For finetuning our COOKBOOK-tuned models, we ran a hyper-parameter searches, sweeping
across learning rate ([4e − 06, 5e − 06, 8e − 06, 5e − 05, 8e − 05]), batch size ([8, 16, 32, 64])
and total training steps ([100, 200, 300, 400 and 500]).

27

Published as a conference paper at COLM 2024

G.2 Multi-task evaluation details

G.2.1 Full GPT4ALL evaluations w/standard deviations

Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
LLAMA-2-7B 46.25 ± 1.46 74.58 ± 0.89 77.74 ± 0.73 75.99 ± 0.43 73.92 ± 0.61 44.20 ± 2.22 79.11 ± 0.95 69.14 ± 1.30 67.61
LLAMA-2-7B-flan 40.61 ± 1.44 73.40 ± 0.91 77.46 ± 0.73 56.87 ± 0.49 73.76 ± 0.61 31.40 ± 2.08 78.62 ± 0.96 67.72 ± 1.31 62.48
LLAMA-2-7B-self-inst 40.44 ± 1.43 73.27 ± 0.91 74.46 ± 0.76 57.10 ± 0.49 73.37 ± 0.62 32.40 ± 2.10 78.13 ± 0.96 68.82 ± 1.30 62.25
LLAMA-2-7B-chat 44.20 ± 1.45 69.74 ± 0.94 79.76 ± 0.70 75.50 ± 0.43 71.08 ± 0.63 43.80 ± 2.22 77.20 ± 0.98 66.46 ± 1.33 65.97
LLAMA-2-7B-NH 49.74 ± 1.46 76.09 ± 0.88 80.00 ± 0.70 77.72 ± 0.42 72.99 ± 0.62 46.40 ± 2.23 79.76 ± 0.94 70.01 ± 1.29 69.09
MISTRAL-7B 54.10 ± 1.46 79.50 ± 0.83 83.49 ± 0.65 81.12 ± 0.39 75.59 ± 0.60 44.40 ± 2.22 82.05 ± 0.90 73.88 ± 1.23 71.76
MISTRAL-7B-inst 54.18 ± 1.46 81.36 ± 0.80 85.44 ± 0.62 66.04 ± 0.47 71.32 ± 0.63 35.40 ± 2.14 80.30 ± 0.93 74.11 ± 1.23 68.52
MISTRAL-7B-cap 54.01 ± 1.46 78.54 ± 0.84 82.57 ± 0.66 78.74 ± 0.41 72.46 ± 0.62 44.80 ± 2.23 79.60 ± 0.94 71.03 ± 1.27 70.22
MISTRAL-7B-orca 56.14 ± 1.45 79.59 ± 0.83 86.57 ± 0.60 81.73 ± 0.39 72.37 ± 0.62 45.60 ± 2.23 83.03 ± 0.88 73.24 ± 1.24 72.28
MISTRAL-7B-OH 59.98 ± 1.43 81.65 ± 0.79 86.73 ± 0.59 81.77 ± 0.39 73.90 ± 0.61 44.20 ± 2.22 82.70 ± 0.88 73.56 ± 1.24 73.06
CB-LLAMA 48.04 ± 1.46 76.77 ± 0.87 79.20 ± 0.71 76.04 ± 0.43 77.10 ± 0.59 43.40 ± 2.22 78.56 ± 0.96 69.30 ± 1.30 68.55
CB-MISTRAL-UNI 58.70 ± 1.44 82.66 ± 0.78 79.97 ± 0.70 81.09 ± 0.39 78.46 ± 0.57 43.60 ± 2.22 81.77 ± 0.90 75.06 ± 1.22 72.66
CB-MISTRAL +WSL 57.85 ± 1.44 82.37 ± 0.78 86.39 ± 0.60 81.36 ± 0.39 77.94 ± 0.58 44.60 ± 2.23 82.32 ± 0.89 74.19 ± 1.23 73.38
CB-MISTRAL +WS 57.76 ± 1.44 83.21 ± 0.77 85.23 ± 0.62 80.99 ± 0.39 78.23 ± 0.57 44.00 ± 2.22 82.32 ± 0.89 74.27 ± 1.23 73.25

Table 5: Model performance on the GPT4ALL benchmark. “CB*” denotes our COOKBOOK tuned
models where “wsl” is aggregation with labeled evaluation data, “ws” is aggregation without using
labels (our COOKBOOK-MIX algorithm) and “uni” is a uniform mixture, “NH” denotes NousHermes
Dataset, “cap” is the Nous-Capybara model, “OH” is Open-Hermes, and “orca” is OpenOrca. Aver-
aged across tasks, CB-MISTRAL +WSL and CB-MISTRAL +WS are the best performing models.

G.2.2 GPT4ALL Benchmark

GPT4ALL (NomicAI) is a standard evaluation benchmark which covers 7 tasks: ARC-
Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), PIQA (Bisk et al., 2020), Wino-
grande (ai2, 2019), BoolQ (Clark et al., 2019), Lambada OpenAI (Radford et al., 2019),
OpenBookQA (Mihaylov et al., 2018) and HellaSwag (Zellers et al., 2019).

G.3 Template mixing evaluation details

Model arc_c arc_e boolq hellaswag lambada openbookqa piqa winogrande average
CB-MCQA 55.46 ± 1.45 80.43 ± 0.81 82.54 ± 0.66 80.88 ± 0.39 79.27 ± 0.56 44.20 ± 2.22 81.83 ± 0.90 74.35 ± 1.23 72.37
CB-MATCH 57.25 ± 1.45 82.37 ± 0.78 64.80 ± 0.84 81.32 ± 0.39 74.60 ± 0.61 44.20 ± 2.22 82.10 ± 0.89 74.19 ± 1.23 70.10
CB-ED 55.46 ± 1.45 79.76 ± 0.82 82.42 ± 0.67 80.59 ± 0.39 78.63 ± 0.57 44.20 ± 2.22 81.56 ± 0.90 73.80 ± 1.24 72.05
CB-SELECT 56.14 ± 1.45 79.92 ± 0.82 83.64 ± 0.65 81.10 ± 0.39 79.06 ± 0.57 43.80 ± 2.22 81.50 ± 0.91 73.72 ± 1.24 72.36
CB-UNI 58.70 ± 1.44 82.66 ± 0.78 79.97 ± 0.70 81.09 ± 0.39 78.46 ± 0.57 43.60 ± 2.22 81.77 ± 0.90 75.06 ± 1.22 72.66
CB-WSL 57.85 ± 1.44 82.37 ± 0.78 86.39 ± 0.60 81.36 ± 0.39 77.94 ± 0.58 44.60 ± 2.23 82.32 ± 0.89 74.19 ± 1.23 73.38
CB-WS 57.76 ± 1.44 83.21 ± 0.77 85.23 ± 0.62 80.99 ± 0.39 78.23 ± 0.57 44.00 ± 2.22 82.32 ± 0.89 74.27 ± 1.23 73.25

Table 6: WS performance analysis “CB*” denotes our COOKBOOK tuned models on MISTRAL-
7B, where -WSL combines templates using downstream datasets with ground-truth outputs, -WS
combines templates without ground-truth outputs and -UNI is the uniform mixture. MATCH, ED,
MCQA, and SELECT are abbreviations for MATCHING, ENTITY-DISAMBIGUATION, MULTI-CHOICE-QA,
COMMONSENSE-SELECT individual COOKBOOK-tuned models.

Table 6 provides additional experimental results around our approach for mixing data
from templates. For COOKBOOK-tuned models that use multiple templates, our main
method (COOKBOOK plus data proportions obtained using WS on data without ground-truth
outputs) is referred to as CB-WS, (previously COOKBOOK-MIST in Table 1). Furthermore,
COOKBOOK-WSL shows the results when we use the ground-truth outputs in our evaluation
datasets; while this method has slightly higher average accuracy, CB-WS is able to come
close despite not having any output information. COOKBOOK-UNI shows the results on
a uniform mixture of template-generated data, which performs worse than both previous
methods. Table 6 also contains results of the individual models that are COOKBOOK-tuned on
MATCHING, ENTITY-DISAMBIGUATION, MULTI-CHOICE-QA, and COMMONSENSE-SELECT;
we find that these models’ performance is worse than the models that use data from multiple
templates.

For the template mixing approach that does not use ground-truth outputs, we use the
MeTaL algorithm from Ratner et al. (2019) on each downstream task over 5 random seeds,

28

Published as a conference paper at COLM 2024

learning rate 1e − 4, and number of iterations equal to 5000 (except for BOOLQ, PIQA, and
WINOGRANDE, which use 2000).

G.4 Single-task evaluation details

G.4.1 Dataset statistics

We report dataset statistics for the 7 datasets considered in the single-task evaluations. We
use the “winogrande-xl” variant of the WINOGRANDE task and an evaluate on v1.1 version
of the MS_MARCO dataset. Dataset statistics are listed below in Table 7.

Dataset Train Validation Test
PIQA 16.1K 1.84K 3.08K
SQUAD 87.6K 10.6K None
TYDIQA 151K 18.7K None
MS_MARCO 82.3K 10K 9.65K
WINOGRANDE 40.4K 1.27K 1.77K
BEER 80 91 91
ITUNES-AMAZON 156 109 109

Table 7: Summary of dataset sizes for different tasks.

G.5 Single-task fine-tuning: template to task mapping

Below, we map the COOKBOOK templates used to fine-tune models for the corresponding
NL task.

Dataset Template
PIQA COMMONSENSE-SELECT
SQUAD DOCUMENT-QA
TYDIQA DOCUMENT-QA
MS_MARCO TOKEN-RETRIEVAL
WINOGRANDE ENTITY-DISAMBIGUATION
BEER MATCHING
ITUNES-AMAZON MATCHING

Table 8: Task to template mapping.

G.5.1 Evaluation details

For all single-task evaluations found in Table 2 and Table 9, we evaluate on 1K examples
from the tests sets, with the exception of PIQA, SQUAD and TYDIQA where we sample from
the validations sets because they either don’t have test sets (SQUAD, TYDIQA) or the test
sets are unlabeled (PIQA). We run our evaluations across three different test sets, generated
using three separate random seeds.

G.5.2 Single-Task fine-tuning: Additional Results

Single-task finetuning results for the CEREBRAS-GPT-1.3B model can be found in Table 9.

H Analysis: additional experiments

Below, we outline additional experiments conducted to better understand COOKBOOK.

H.1 Do rules learned on random token distributions transfer to natural language?

We evaluate transferability of rules learned over random tokens by evaluating the perfor-
mance of COOKBOOK-tuned MISTRAL-7B models on template generated data over natural

29

Published as a conference paper at COLM 2024

Dataset CEREBRAS-BASE CEREBRAS-FEW COOKBOOK-CEREB
TYDIQA 9.90 ± 0.48 8.20 ± 1.85 37.50 ± 1.19

SQUAD 32.10 ± 0.78 34.00 ± 3.40 51.30 ± 1.00

PIQA 0.00 ± 0.00 47.50 ± 0.61 52.80 ± 0.13

MS_MARCO 6.60 ± 0.49 14.40 ± 1.43 18.70 ± 1.09

WINOGRANDE 0.17 ± 0.13 30.60 ± 20.00 60.30 ± 0.79

BEER 18.40 ± 0.00 26.60 ± 0.00 74.10 ± 0.00

ITUNES-AMAZON 40.00 ± 0.00 39.90 ± 0.28 55.40 ± 0.00

Table 9: Performance comparison of CEREBRAS-GPT-1.3B. Accuracy is reported for all tasks with the
exception of BEER and ITUNES-AMAZON for which F1-score is reported.

language data samples. Concretely, for template-generated evaluation data over natural
language samples, we do not use random tokens but instead apply the input-output rule
to natural language. For example, for PIQA and COMMONSENSE-SELECT, a sample could
be “Select the choice which best completes the sentence.\nWhen boiling butter,
when it’s ready, you can \nChoices: \n- glum fray butter boil ready \n- glum
fray here crest soar wig”. By measuring COOKBOOK’s performance on these tasks, we
isolate the random token to NL transfer aspect and eliminate additional noise caused by
the gap between imperfect rules to true task reasoning. We evaluate COOKBOOK-tuned
MISTRAL-7B models on COMMONSENSE-SELECT, MATCHING, and COMMONSENSE-SELECT
template rules applied on PIQA, ITUNES-AMAZON, and TYDIQA data, respectively. Our
findings show that the rules learned over the random token distributions do transfer to
natural language (see Table 10), improving over base performance by up to 29.8 points.

MISTRAL-BASE COOKBOOK-MISTRAL
NL-TEMPLATE-PIQA 0.044 0.326
NL-TEMPLATE-ITUNES-AMAZON 0.666 0.964
NL-TEMPLATE-TYDIQA 0.016 0.076

Table 10: Random token template to NL-based template data transfer. Evaluation of random-token-
based COOKBOOK-tuned model on natural language-based template data. Rules learned over random
tokens transfer to the NL setting.

H.1.1 When do random tokens work?

Figure 4 shows the effects of pre-training duration on the efficacy of COOKBOOK. Our results
indicate that models that have a better understanding of NL (models that are trained longer)
have more performance gains from COOKBOOK.

101 103 105

Pythia-1B checkpoint (log)

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

PIQA
base model
cookbook

101 103 105

Pythia-1B checkpoint (log)

0.0

0.2

0.4

Entity Matching (iTunes-Amazon)

101 103 105

Pythia-1B checkpoint (log)

0.0

0.2

0.4

0.6

0.8

Winogrande

101 103 105

Pythia-1B checkpoint (log)

0.0

0.2

0.4

SQUAD

Figure 4: Effects of pre-training on random token to NL generalization. Performance gains from
COOKBOOK increase with longer pre-training, indicating that maturity of NL understanding is
correlated with random-to-NL generalization.

H.1.2 Do rules taught over random tokens result in less overfitting?

Table 11 compares the degree of overfitting experienced a model finetuned on a natural
language task itself, and a model finetuned on a COOKBOOK template. Comparing fine-

30

Published as a conference paper at COLM 2024

tuning on ITUNES-AMAZON versus fine-tuning on MATCHING, our results indicate that
rules taught via the template do not hurt base performance on other tasks, but the rule
taught by NL-tuning do.

MISTRAL-BASE COOKBOOK-MISTRAL NL-MISTRAL
ITUNES-AMAZON 0.696 0.823 0.875
PIQA 0.443 0.460 0.412
TYDIQA 0.150 0.200 0.077

Table 11: Rule overfitting. Comparison of COOKBOOK and NL-tuned models across tasks. The
rule taught by template MATCHING, which corresponds to ITUNES-AMAZON, doesn’t hurt base
performance on other tasks, but the skill taught by NL-tuning does.

H.1.3 Do we need data generating functions: Are random tokens all we need?

Table 12 shows the results of fine-tuning on a data generated from templates with a format
but no rule (i.e., random tokens are used as inputs and outputs without any pattern).

MISTRAL-BASE COOKBOOK-NORULE-MISTRAL
PIQA 0.464 0.442
ITUNES-AMAZON 0.697 0.195
TYDIQA 0.178 0.151

Table 12: Templates w/o rule. Evaluation of MISTRAL-7B tuned on data generated from templates
with a fmtT but no rule.

H.1.4 Does lots of COOKBOOK-data impair generative ability?

We study the extent to which training on more COOKBOOK data impacts model performance.
We run the single-task evaluation from Section 4.2 for 1000 steps (2-10X times more data).
We find that there is slight degradation for 3 tasks, while performance on SQUAD improves
TYDIQA with more COOKBOOK data.

0 200 400 600 800 1000
Steps

0.0

0.1

0.2

0.3

0.4

C
ha

ng
e

in
 a

cc
ur

ac
y

ov
er

 b
as

e
m

od
el

 (s
te

p
0) Performance of Cookbook-tuned GPT-Neo-1.3B

squad
tydiqa
piqa
winogrande
ms_marco

Figure 5: Effects of training on more COOKBOOK data. Training on more COOKBOOK data impairs
generative ability in some, but not all cases.

31

	Introduction
	Related work
	Cookbook
	Setup
	Cookbook templates
	Example templates
	Automating template creation

	Cookbook-Mix: mixing template-generated data
	Training on Cookbook-data

	Experimental evaluations
	Multi-task Evaluation
	Single-task Evaluation

	Analysis of Cookbook
	Template Alignment Framework
	Understanding Cookbook random tokens and rules

	Discussion
	Acknowledgements
	Notation
	Templates
	Matching
	Multi-Choice QA
	Document QA
	Entity Disambiguation
	Commonsense Selection
	Token Retrieval
	Poetry Generation

	Complete Related Works
	Cookbook-Mix additional details
	Cookbook-Mix Template Mixing Algorithm
	Assessing the Linearity Assumption Empirically
	Proof of Proposition 1

	Automated Template Creation
	Template Generation
	Evaluation

	Poetry Generation
	Cookbook-poem samples

	Experimental evaluations: additional details
	Hyperparameter tuning details
	Multi-task evaluation details
	Full GPT4ALL evaluations w/standard deviations
	GPT4ALL Benchmark

	Template mixing evaluation details
	Single-task evaluation details
	Dataset statistics

	Single-task fine-tuning: template to task mapping
	Evaluation details
	Single-Task fine-tuning: Additional Results

	Analysis: additional experiments
	Do rules learned on random token distributions transfer to natural language?
	When do random tokens work?
	Do rules taught over random tokens result in less overfitting?
	Do we need data generating functions: Are random tokens all we need?
	Does lots of Cookbook-data impair generative ability?

