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Abstract

In an effort to catalog insect biodiversity, we propose a new large dataset of
hand-labelled insect images, the BIOSCAN-1M Insect Dataset. Each record is
taxonomically classified by an expert, and also has associated genetic information
including raw nucleotide barcode sequences and assigned barcode index numbers,
which are genetically-based proxies for species classification. This paper presents
a curated million-image dataset, primarily to train computer-vision models capa-
ble of providing image-based taxonomic assessment, however, the dataset also
presents compelling characteristics, the study of which would be of interest to the
broader machine learning community. Driven by the biological nature inherent
to the dataset, a characteristic long-tailed class-imbalance distribution is exhib-
ited. Furthermore, taxonomic labelling is a hierarchical classification scheme,
presenting a highly fine-grained classification problem at lower levels. Beyond
spurring interest in biodiversity research within the machine learning community,
progress on creating an image-based taxonomic classifier will also further the
ultimate goal of all BIOSCAN research: to lay the foundation for a comprehensive
survey of global biodiversity. This paper introduces the dataset and explores the
classification task through the implementation and analysis of a baseline clas-
sifier. The code repository of the BIOSCAN-1M-Insect dataset is available at
https://github.com/zahrag/BIOSCAN-1M

1 Introduction
Global change is restructuring ecosystems on a planetary scale, creating an increasingly urgent need
to track impacts on biodiversity. Such tracking is exceptionally challenging because life is highly
diverse: the biosphere comprises more than 10 million multicellular species [42]. Until recently,
this complexity has meant that an Earth observation system for biodiversity was inconceivable,
however the increased power of DNA sequencing and the recognition that living organisms can be
discriminated by short stretches of DNA have revealed a way forward, which has become the central
focus of the International Barcode of Life (iBOL) Consortium.

Discriminating organisms by DNA sequences [22, 6] can revolutionize our understanding of bio-
diversity, not only by providing a reliable species proxy for known and unknown species, but also
by revealing their interactions and assessing their responses to changes in the ecosystem. This is
essential to mitigate a looming mass extinction, where an eighth of all species may become extinct by
2100 unless there is a significant change in human behaviour [10, 11].
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Figure 1: BIOSCAN-1M Insect dataset records contain high-quality microscope images of insects
and labels including the taxonomic classification, raw DNA sequences, and Barcode Index Number
(BIN). Pictured here is a mosquito of the subfamily Culicinae, the most populous subfamily of
mosquitoes with species found around the world.

The BIOSCAN project [2], lead by iBOL, has the following three main goals:

1. Species discovery.

2. Studying the interactions between species.

3. Tracking and modelling species dynamics over geography and time.

To that end, BIOSCAN collects samples of multicellular life from around the world. Each sample
is individually imaged, genetically sequenced and barcoded [22], and then classified by expert
taxonomists. Of particular interest to the BIOSCAN project are insects, which constitute a great
proportion of the Earth’s species and many of which remain unknown. Indeed, it is estimated that
5.5 M insect species exist worldwide, of which only roughly one million have been identified [54, 23].
The rate of insect collection within the BIOSCAN project is increasing as the project progresses,
such that 3 M insect specimens will be collected in 2023 and 10 M by 2028.

Using high-resolution photographs, human taxonomists can accurately classify insects from within
their domain of expertise. However, human annotation cannot scale to the volume of samples needed
to measure and track global biodiversity. Moreover, many taxonomists with highly specialized
knowledge are leaving the practice and won’t be replaced. Thus, the use of artificial intelligence and
machine learning to process visual and textual information collected by the BIOSCAN project is
crucial to the success of a planet-scale observation system. Classification of the insect images to their
taxonomic group ranking is especially useful in regions of the world where the facilities required to
perform genetic barcoding are not available. Indeed, even beyond this project, there are opportunities
for computer vision to transform entomology [25].

This article has two main contributions.

1. The publication of the BIOSCAN-1M Insect image dataset, containing approximately 1.1 M
high-quality microscope images, each of which is annotated by the insect’s taxonomic
ranking and accompanied by its raw DNA sequences and Barcode Index Number (BIN)
[47], an example of which is shown in Figure 1.

2. The design and implementation of a deep model, classifying BIOSCAN-1M Insect images
into specific taxonomic ranking groups, to serve as a baseline for future work utilizing this
dataset.

2 Background and Related work
This section provides background on taxonomic classification, the use of genetic barcoding, and
several challenges in the field of machine learning associated with our dataset.
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2.1 Taxonomic Classification

In biology, taxonomic classification is the study of hierarchically categorizing lifeforms based on
shared characteristics. In particular, Linnean taxonomy [7, 20, 32] forms the basis for the modern
(generally accepted) system of taxonomy, of which the main hierarchical ranks are domain, kingdom,
phylum, class, order, family, genus, and species, as shown in Figure 3. All insect life is part of the
class Insecta.

Conventionally, expert taxonomists classify organisms based on their appearance and behaviour [7].
However, this approach is susceptible to both misclassification and lacks consensus throughout the
community of taxonomists, since it is difficult to prove with certainty that a given classification is
absolutely correct. This shortcoming of traditional taxonomy has prompted the use of classification
heuristics, based on fairly concrete evidence in the form of genetic codes, that are sensitive to species
identity.

Table 1 presents a comprehensive overview of both the number of unique categories and the degree
to which the BIOSCAN-1M Insect dataset is labelled at each taxonomic rank. According to the
table, a substantial number of samples lack labels at more specific taxonomic ranks. This limitation
underscores the challenge of incomplete taxonomic labeling within the dataset. However, the ongoing
efforts of expert curation are continuously improving this aspect, and future versions of the dataset are
expected to include a more comprehensive taxonomic classification for a larger number of samples.

Based on the statistical analysis of the BIOSCAN-1M Insect dataset, it is evident that there are 3,441
distinct categories at the genus level and 8,355 at the species level. However, the amount of data
to train such fine-grained classifiers is limited, with 254,096 samples classified by experts at the
genus level and only 84,397 samples at the species level. This substantial class-number-to-data-size
imbalance poses a notable challenge when training models for fine-grained classification, specifically
at the genus and species level.

Table 1: An overview of the number of unique categories and number / proportion of expert-labelled
samples within the BIOSCAN-1M Insect dataset at each taxonomic rank. Additionally, in the bottom
row, the corresponding information is given in relation to Barcode Index Number (BIN), presented as
a genetic alternative to taxonomic labels (species proxy). Observe that all samples have an associated
BIN, and there are roughly 10× more unique BINs than species labels.

Taxonomic Level Categories Labelled Samples Labelled (%)
Phylum 1 1,128,313 100.0
Class 1 1,128,313 100.0
Order 16 1,128,313 100.0
Family 491 1,112,968 98.6
Subfamily 760 265,492 23.5
Tribe 535 60,477 5.4
Genus 3,441 254,096 22.5
Species 8,355 84,397 7.5

Barcode Index Number (BIN) 90,918 1,128,313 100.0

2.2 Genetic Barcoding and Barcode Index Numbers

DNA barcoding [22, 6] employs large-scale screening of one or a few reference genes for assigning
unknown individuals to species, as well as aiding in the discovery of new species [43]. Barcoding is
commonly used in several fields including taxonomy, ecology, conservation biology, diet analysis
and food safety [49, 53]. It is faster and more accurate than traditional methods, which rely on the
judgment of experts [46].

Barcoding is based on the use of a short, standardized segment of mitochondrial DNA, typically
a portion of the mitochondrial cytochrome c oxidase subunit I (COI) gene, which is nearly always
unique for different species. Once the DNA sequence is obtained, it can be compared to a reference
library of known sequences to identify the species.

The concept of genetic barcoding can be taken a step further by mapping barcodes to clusters
of organisms (characterized by their barcodes) with a highly similar genetic code, known as an
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Operational Taxonomic Unit (OTU) [52, 5]. OTUs act as a proxy for species based on the high degree
of genetic similarity exhibited by their members. To enable indexing, each OTU is assigned a Uniform
Resource Identifier (URI), commonly referred to as the Barcode Index Number (BIN) [47], which
offers a unique representation such that genetically identical taxa will be assigned the same BIN, and
each BIN is registered in the Barcode Of Life Data system (BOLD) [1]. BINs additionally provide an
alternative to the use of Linnean names, offering a genetics-based classification of organisms.

BOLD, the Barcode of Life Data System [1], is a pivotal resource in biodiversity science. It facilitates
DNA barcode acquisition, storage, validation, and analysis, integrating molecular, morphological,
and distributional data. BOLD hosts 17 million specimen records and 14 million barcodes, spanning
over a million species worldwide. It plays a central role in species identification, genetic diversity
exploration, and evolutionary studies. Launched in 2005, BOLD aims to identify all eukaryotic species
and offers integrated analytical tools, comprehensive data management, and secure collaboration.

2.3 Machine Learning Challenges

As will be demonstrated in Section 3, the dataset exhibits two key characteristics corresponding to
open problems in the field of machine learning.

Class imbalance. The degree to which the expected quantity of instances varies between classes is
known as the class imbalance. In the context of a closed dataset, the class imbalance describes the
disparity in number of examples among classes [27, 30]. As we describe in Section 3, and Figure 2
the published dataset exhibits a long-tailed class distribution whereby the distribution of class sizes
closely follows a power-law, indicating that there is a substantial class imbalance. This represents a
challenge due to the disproportionate amounts of available training data for majority vs. minority
classes.
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Class	Distribution:	BIOSCAN-Insect	Dataset

Order	list

Diptera

Hymenoptera

Coleoptera

Hemiptera

Lepidoptera

Psocodea

Thysanoptera

Trichoptera

Orthoptera

Blattodea

Neuroptera

Ephemeroptera

Dermaptera

Archaeognatha

Plecoptera

Embioptera

Sum	of	Order	count	for	each	Order	list.		Color	shows	details	about	Order	list.	The	view	is	filtered	on	Order	list,	which	excludes	Siphonaptera,

Strepsiptera	and	Zoraptera.
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Family	Count	for	each	Families	of	Diptera.		Color	shows	Family	Count	and	count	of	Sheet1.
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Family	Count	for	each	Families	of	Diptera.		Color	shows	Family	Count	and	count	of	Sheet1.
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Figure 2: Class distribution and class imbalance in the BIOSCAN-1M Insect dataset. We focus on
the 16 most densely populated orders (top) and the 40 most densely populated families (bottom).

Hierarchical classification. Classification problems involving data with labels that are inherently
hierarchical present a unique challenge in comparison to simpler “flat” classification problems [50].
The outputs of hierarchical classification algorithms are defined over tree-like class taxonomies,
where the relationship between parent and child nodes is given by the asymmetric “is-a” relationship.
A basic example of this is the relationship that “all dogs are canines, but not all canines are dogs”,
whereby “dogs” would be a child node of the parent node “canines”, which itself may be a child of
“mammals”. The dataset published here perfectly matches this paradigm and may be used to study
novel approaches for handling the hierarchical classification problem. Note that the baselines we
adopt in this paper do not pursue a hierarchical strategy but instead classify to fixed levels of the
taxonomy: order and family. Hierarchical strategies are a topic of present and future work.

4



2.4 Biological Datasets

Image-based insect classification [39] most often finds use in agricultural settings, where Integrated
Pest Management (IPM) systems are used to identify and count harmful insect pests [33, 51]. In
combination with this, holistic systems capable of also identifying plant diseases through computer
vision are a popular area of research [15, 12, 40].

Recently, DNA sequences have been analyzed [28] using tools from the field of Natural Language
Processing [44], and in particular, through the application of bidirectional encoder representations
from transformers (BERT) [14]. Indeed, BERT-based models have been used to taxonomically
classify genetic sequences [24, 41]. Other recent work has used DNA barcodes as “side information”
to perform zero-shot species-level recognition from images, albeit at a much smaller scale than the
BIOSCAN-1M Insect dataset [4].

Perhaps the best known and largest biological dataset is iNaturalist [56, 26, 57], the 2021 version
of which contains 2.7 M images from over 10,000 different species of plants, animals, and fungi,
specifically with 2,526 species of insects with 663 k annotated insect images. Many insect-specific
image datasets focus on insect as pests found in agricultural settings [62, 59, 58, 16, 63, 19, 37, 34];
the most prominent of which, the IP102 [62] dataset, contains roughly 75 k insect images, covering
102 species of common crop insect pests. 19 k of these are annotated with bounding boxes for object
detection. In the space of plants, the PlantNet-300K [18] dataset has 306 k images labeled by species
and was constructed by sampling the larger PlantNet database [3]. Table 2 highlights key biological
datasets across a variety of domains and indicates the degree of class imbalance [13], β, which is
defined as the ratio of the number of samples in the largest to the smallest class.

The BIOSCAN-Order and BIOSCAN-Diptera datasets, introduced in Section 4, refer to subsets of
the full BIOSCAN-1M Insect dataset for use in order- and family-level classification, respectively.
Observe that while there is significant variety in the imbalance factor among datasets, the imbalance
of BIOSCAN-Order is orders of magnitude greater than that of all the other datasets. The Pl@ntNet-
300K [18] dataset also has remarkably high class imbalance, exceeding that of the BIOSCAN-Diptera
dataset. While a high imbalance ratio was expected of the BIOSCAN-1M Insect dataset based on the
dataset’s biological nature, the metric is highly sensitive due to its dependence on only the two most
extreme classes.

The iNaturalist dataset encompasses a greater number of insect species than any pre-existing dataset.
We measured the number of genera (plural of genus) and species that were common across both
datasets. Of the 2,526 insect species in iNaturalist and 8,355 species annotated in BIOSCAN-1M
Insect, only 153 genera and 62 species appeared in both datasets. This indicates the species in
BIOSCAN-1M Insect predominantly do not appear in iNaturalist. Furthermore, based on the number
of unique BINs present in the BIOSCAN-1M Insect dataset, it can be assumed that the dataset in fact
encompasses almost 91 k distinct (possibly as yet unnamed) insect species, a far greater quantity than
that of iNaturalist.

3 Dataset
This section describes the information made available through the publication of the BIOSCAN-1M
Insect dataset, and details the procedures which generated the information.

3.1 BIOSCAN-1M Insect dataset resources

The BIOSCAN-1M Insect dataset provides four main sources of information about insect specimens.
Each sample in the dataset consists of a biological taxonomic annotation, DNA barcode sequence,
Barcode Index Number (BIN), and a RGB image of a single specimen. In the following sections, this
information is described in detail.

3.1.1 Biological taxonomy

The BIOSCAN-1M Insect dataset specifies biological taxonomic rank following the Linnean tax-
onomy as described in Section 2.1. In addition to the main groups shown in Figure 3, the dataset
also provides the subfamily and subspecies ranks. The subfamily rank is an auxiliary (intermediate)
taxonomic rank, the next below family but more inclusive than genus. Subspecies is a taxonomic
rank below species, and it is used for populations that live in different areas and vary in size, shape,
or other physical characteristics, but that can successfully interbreed. Finally, we also provide “Name”
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Table 2: Summary of biological fine-grained and long-tailed datasets. Note that “iNaturalist-Insect”
describes the subset of iNaturalist (2021 version) images that comprises insects. *For the BIOSCAN-
1M Insect dataset, we report the number of unique Barcode Index Numbers (BINs) instead of the
number of unique Linnean taxonomic species. The BIN is a mitochondrial DNA-based identifier
which provides a species-like proxy of an organism and can be used as an alternative to Linnean
taxonomy (see Section 2.2).

Name / Citation Domain Images Categories Taxonomic Rank Imbalance, β

iNaturalist (2021) [57] All 2,686 k 10,000 Species 1.97
iNaturalist-Insect [57] Insects 663 k 2,526 Species 1.97
Pl@ntNet-300K [18] Plants 306 k 1,000 Species 3,604.00
Urban Trees [60] Trees 80 k 18 Species 7.51
IP102 [62] Insects 75 k 102 Species 13.63
NA Birds [55] Birds 48 k 400 Species 15.00
LeafSnap [31] Plants 31 k 184 Species 8.00
Pest24 [59] Insects 25 k 24 Common name / species 493.95
Flowers 102 [45] Flowers 8 k 102 Genus 1.00

BIOSCAN-1M Insect Insects 1,128 k 90,918 Barcode Index (BIN)* 12,491.00
BIOSCAN-Order Insects 1,128 k 16 Order 156,856.75
BIOSCAN-Diptera Insects 891 k 40 Family 1,092.61

Domain Phylum OrderKingdom Class Family Tribe Genus Species

Eukaryota Animalia Arthropoda Insecta Hymenoptera
Bees,  Wasps,

Ants

Apidae
Bees

Apini Apis Apis mellifera
Western

honey bee
Eukaryotes Animals  Arthropods  Insects Honey bees Honey 

bees

Figure 3: Biological taxonomic ranking and classification. Taxonomic ranks are shown in the top
row, with the classification (i.e., labels) for the Western honey bee shown below.

to indicate the lowest (most specific) known rank label. For instance, if there exists a species name
of an organism, “Name” will show that, but if the organism only has Family level ID, then “Name”
will show that ID. Each sample has a name and there are in total 10,952 unique names labelled in the
dataset.

Not all data samples have labels for all taxonomic ranks recognized in the BIOSCAN-1M Insect
dataset. As an example, the family group of the BIOSCAN-1M Insect dataset is indexed by 494
distinct families, however, there are 16,067 data samples that are not associated with any of these
families, since they were not classified by human taxonomists. As a consequence, there are many
data samples that are not classified into finer-level groups like subfamily, tribe, genus, species,
or subspecies. The lack of precise annotation at all ranks is one of the major challenges of the
BIOSCAN-1M Insect dataset when performing classification tasks.

3.1.2 DNA Barcode and Indexing

Section 2.2 described the concept of genetic barcoding and the generation of Barcode Index Numbers
(BINs). The BIOSCAN-1M Insect dataset contains genetic barcodes and BINs for all samples. This
information is represented as the raw nucleotide barcode sequence, under the Nuccraw field, and
the Barcode Index Number (BIN), denoted by uri. Independently, the field processid is a unique
number assigned by BOLD to each record, and sampleid is an identifier given by the collector.

3.1.3 RGB images

The BIOSCAN-1M Insect dataset offers a wealth of information through its collection of insect
images. The dataset contains high-resolution (2880×2160 pixel) RGB images in JPEG format;
Figure 4 displays a selection of images representing insects from 16 most densely populated orders.

We have released multiple packages of the BIOSCAN-1M Insect dataset aimed at different purposes.
These packages are organized into 113 chunks, each containing 10 k images. The packages include:

• Original JPEG Images stored in 113 zip files (2.3 TB).
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• Cropped images organized into 113 zip files (151 GB).

• Resized original images which have a size of 256 px on their smaller side (26 GB).

• Resized cropped images having a size of 256 px on their smaller side (7 GB).

Additionally, we also provide the dataset in HDF5 archive format for both the resized original and
cropped images.

(a) Diptera (b) Hymenoptera (c) Coleoptera (d) Hemiptera

896,324 89,311 47,328 46,970
(e) Lepidoptera (f) Psocodea (g) Thysanoptera (h) Trichoptera

32,538 9,635 2,088 1,296
(i) Orthoptera (j) Blattodea (k) Neuroptera (l) Ephemeroptera

1,057 824 676 96
(m) Dermaptera (n) Archaeognatha (o) Plecoptera (p) Embioptera

66 63 30 6

Figure 4: Examples of original insect images from 16 orders of the BIOSCAN-1M Insect dataset.
The numbers below each image identify the number of images in each class, and clearly illustrate the
degree of class imbalance in the BIOSCAN-1M Insect dataset. “Siphonaptera”, “Strepsiptera” and
“Zoraptera” are removed from classification experiments due to an insufficient number of samples.

3.2 BIOSCAN-1M Insect dataset generation

The BIOSCAN-1M Insect dataset consists of specimens mostly collected from three countries (Costa
Rica, Canada, and South Africa) using Malaise traps. RGB images of the organisms were taken with
a Keyence VHX-7000 microscope. Images are organized by workflow units: 96-well microplates of
which 96 are used in a single sequencing run (9,120 samples at a time).

DNA barcodes of the organisms were generated using a high-throughput approach utilizing the
Pacific Biosystems Sequel platform, which employs Single-molecule, real-time (SMRT) sequencing
to generate long-read length DNA and cDNA. The taxonomic classifications were created by matching
the generated barcodes to a reference library on the Barcode of Life Data System (BOLD) at the
Centre for Biodiversity Genomics in Canada.
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We provide a comprehensive metadata file alongside the RGB images, which includes taxonomic
annotations, DNA barcode sequences, and data sample indexes and labels. The metadata file also
contains image names and IDs to locate the corresponding images within the dataset packages.
Additionally, it identifies the images associated with the training, validation, and test splits.

4 Experiments
By employing stratified class-based sampling, we methodically curated three subsets of varying sizes
from the BIOSCAN-1M Insect dataset. Subsequently, we carried out two distinct sets of classification
experiments, yielding a total of six datasets. The three subsets, namely Small, Medium, and Large,
each comprising approximately 50 k, 200 k, and 1 M data samples, respectively. The initial set of
experiments primarily revolves around classifying insect images into their 16 most densely populated
taxonomic orders. Subsequently, the second set of experiments delves even deeper, focusing on
classifying samples within the Order Diptera into their 40 most densely populated families.

4.1 Subset sampling and split mechanism

To create subsets of the BIOSCAN-1M Insect dataset, we followed a systematic two-step process.
Initially, we sampled a subset exclusively from the Diptera Order, specifically selecting the 40 families
with the highest number of members. This led to the creation of the BIOSCAN-Diptera dataset.
Subsequently, we divided the BIOSCAN-Diptera dataset into separate train, validation, and test
sets. Finally, we used these split sets of the BIOSCAN-Diptera dataset as a basis to construct the
corresponding train, validation, and test sets for the BIOSCAN-Order dataset. Our methodology
involved the use of stratified class-based sampling to preserve the class distribution consistently
across all subsets, ensuring the integrity of our experiments.

Table 3: The total number of samples used in the six different sized subsets of the BIOSCAN-1M
Insect dataset: The entries display the number of data samples in the train, validation, and test sets, as
well as the number of classes for order-level (16 orders) and Order Diptera family-level (40 families)
experiments.

Dataset Total Train Validation Test Categories
BIOSCAN-Order 1,128,308 789,813 112,835 225,660 16
BIOSCAN-Diptera 891,338 623,937 89,135 178,266 40
BIOSCAN-Order/Diptera Medium 200,000 140,000 20,000 40,000 16/40
BIOSCAN-Order/Diptera Small 50,000 35,000 5000 10,000 16/40

The Small and Medium subsets are generated by sampling 50 k and 200 k data samples, respectively,
from the train, validation, and test sets of the BIOSCAN-Order and BIOSCAN-Diptera datasets. In
all of our classification experiments, we used class-based stratified sampling to split the dataset into
train, validation and test sets. To this end, 70% of the samples of each class are randomly selected as
training, 10% as validation, and 20% as test samples, as shown in Table 3.

The extreme class imbalances, which are an inherent characteristic of the BIOSCAN-1M Insect
dataset, are addressed to some extent by having all classes represented in the train, validation and test
sets. Classes with no samples for either split set are omitted. In the insect order-level classification
(Figure 4), we have sufficient data samples for 16 out of 19 orders in the train, validation, and test sets.
For the Diptera family-level classification, we focus on the 40 most populous families within Diptera.

4.2 Data preprocessing

To improve computational efficiency, we crop and resize the images to be 256 px on the smaller
dimension. Preliminary experiments with ResNet-50 comparing original images with images that are
cropped show that cropping can help model learning to converge more rapidly and lead to slightly
better performance. Reducing the resolution to 256 px helps to reduce the size of the large dataset
from 2.3 TB down to 26 GB for the original uncropped images, and from 151 GB down to 7 GB for
cropped images. We choose to run experiments on the cropped and resized images due to the small
size which allows for efficient data loading from disk.

The BIOSCAN-1M image datasets have insects with varying size, pose, color and shape. Due to these
variations, cropping is not a simple task. We develop our cropping tool by fine-tuning a DETR [9]
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model with ResNet-50 [21] backbone (pretrained on MSCOCO [35]) on a small set of 2,000 insect
images annotated using the Toronto Annotation Tool Suite [29]. In DETR, the CNN-based feature
extractor extracts a set of image features that are fed into a transformer-based encoder-detector. The
detector takes a set of learned positional embeddings as object queries and uses them to attend to
the encoder outputs. Each of the output decoder embeddings is then passed to a shared FFN which
predicts whether there is an “insect” or “no object” and regresses the bounding box. The DETR
model is further trained for 10 epochs with the AdamW optimizer with learning rate of 0.0001, weight
decay of 0.0001 and a batch size of 8.

To crop the image, we apply our fine-tuned DETR model and take the predicted bounding box with
the highest confidence score. The finalized cropping is determined as the predicted bounding box,
extended equally in width and height by 0.4 of the maximum dimension.

4.3 Classification model

To run classification experiments, we fine-tuned two different pre-trained models to extract deep
visual features of insects from their RGB images. Our pre-trained models are ResNet-50 [21] and a
transformer based model, ViT-Base-Patch16-224 [17]. During training, we take random 224×224
crops from the image as input, while during validation we take the center crop. To train our model,
we used two loss functions, the Cross-Entropy (CE) as a baseline and the Focal loss, which is more
suitable for datasets having class imbalances [36, 8, 13].

5 Results
The detailed hyperparameters used for our experiments are shown in Table 4. For conducting the
experiments, we leveraged the computational resources provided by the Digital Research Alliance of
Canada’s Narval and Beluga clusters. To ensure efficient processing. Each experiment was performed
using a single node equipped with 1 GPU, 10 CPUs per task, and a memory allocation of 128GB.

Table 4: Detailed hyperparameter settings of the experiments.

Parameters Settings
Model ResNet-50;ViT-B/16
Loss function Cross-Entropy;Focal
Optimizer SGD
Weight Decay (µ) 0.0001
Learning rate 0.001
Momentum 0.9
K [1, 3, 5, 10]
group-level Order;Family

Parameters Settings
Batch-Size 32
Epoch 100
Num-Workers 4
Image-Size (Train/Val) 256
Crop-Size (Train) 224
Rand-Horizontal-Flip (Train) Yes
Centre-Crop (Val) 224
Dataset size L/M/S

We conducted a set of 24 trials, each executed with 3 distinct seeds. These trials were carried out to
tackle classification tasks involving Insect-Order and Diptera-Family utilizing three dataset variations:
Large, Medium, and Small. Our design encompassed the creation of 4 distinct models, integrating two
distinct loss functions (Cross-Entropy and Focal) and two different pretrained backbones (ResNet-50
and ViT-B/16).

The combination of these diverse components led to the calculation of average performance across a
range of seed values. Subsequently, the model that exhibited the highest average performance on the
validation set was selected for further evaluation during inference, as depicted in Table 5. It’s worth
noting that models employing the ViT-B/16 backbone and Cross-Entropy loss function demonstrated
superior performance across most of the experiments on the validation set, leading to their selection
for inference using test data. For the Small and Medium datasets, the models underwent 100 epochs
of training, while for the Large dataset, a lesser number of epochs were applied, as convergence was
achieved on the validation set.

We evaluate the performance of our classification models using top-K accuracy, which extracts the
K-predicted classes with the largest probabilities for each input sample and compares them with
the ground-truth class label of the sample. If the ground-truth label is among the top-K predictions
then the model counts it as a correct classification. The total counts are then divided by the total
number of input samples to yield an average. We report test results of the best model from validation
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performance for the micro, class-averaged macro top-K accuracy at K ∈ [1, 3, 5] as well as micro
and macro F1 Scores Table 5.

Figure 5 shows the per-class top-1 test accuracy for the Order and Family classification of the Large
dataset. Accuracy is quite high, above 90%, for most classes, decreasing mainly for classes with little
training data.

Table 5: Top-K accuracy and class-averaged macro top-K accuracy based on the test sets of Insect-
Order and Diptera-Family classification experiments using the Small, Medium and Large datasets.

Micro Top-K Macro Top-K F1-Scores

Classification Dataset Top-1 Top-3 Top-5 Top-1 Top-3 Top-5 Micro Macro

Insect-Order Small 97.86 99.35 99.66 85.01 91.68 99.23 97.86 85.84
Medium 99.14 99.77 99.88 85.58 97.68 98.22 99.14 87.36
Large 99.69 99.96 99.98 90.61 98.14 99.32 99.62 92.65

Diptera-Family Small 94.01 97.26 98.01 92.37 96.53 97.42 94.01 93.03
Medium 96.66 98.34 98.77 91.81 96.37 97.20 96.66 92.77
Large 97.59 98.85 99.23 91.20 95.86 96.72 97.59 91.45
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Figure 5: Per-class top-1 test accuracy of the Insect-Order and Diptera-Family classification experi-
ments of the Large dataset. The classes are listed in a descending manner with respect to the number
of test samples.

6 Conclusion
We have described a set of six novel BIOSCAN datasets, on which we conducted image-based
classification experiments using the taxonomic annotations of the insects. Looking ahead, iBOL’s
ongoing efforts will lead to further advancements in several aspects. The rate of insect sample
collection is already increasing, resulting in a dataset that is not only larger in terms of the number of
records but also more comprehensive, with additional taxa at lower taxonomic levels such as genera
and species. Moreover, the dataset will expand to encompass diverse life forms beyond insects. Thus,
while the current dataset is already the largest publicly available insect image dataset, it represents
just the beginning of what lies ahead.
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Appendix

A1 Data collection and organization
The BIOSCAN-1M Insect dataset consists of insect RGB images and a metadata file containing
taxonomic annotation, DNA barcode sequences, and an assigned Barcode Index Number (BIN). In
the following sections, we describe the resources available within the dataset.

A1.1 RGB images

To facilitate different levels of visual processing we created 6 packages of color images of varying
sizes. These packages are as follows:

Original full size RGB images.The original images are converted to JPEG image format. These
images each have a resolution of 2880×2160, and they are typically around 5 MB in size, however
some images are smaller at 600–800 kB. The package is structured as 113 zip files, each of which
contains 10,000 images except the last (zip file 113 contains 8,131 original full size images). The
total size of this package is 2.5 TB. All 113 zip files are stored within the BIOSCAN project space in
GoogleDrive as described in Section A2 inside a folder named BIOSCAN_original_images and the
zip files named as bioscan_images_original_full_part<n> where n is the partition ID and is in the
range of 1 to 113.

Cropped RGB images.The images in this package are cropped by our cropping tool as described in
the main body of the paper and available in the accompanying BIOSCAN-1M code repository.
The package is structured into six zip files where each file contains 20 partitions (20×10,000
files), except the last zip file which contains 13 partitions. The total size of this package is
151 GB. All six zip files are stored within the BIOSCAN project space in GoogleDrive as de-
scribed in Section A2 inside a folder named BIOSCAN_cropped_images and the zip files named
as bioscan_images_cropped_part<m-n> where m-n indicate the start and end partition ID, in the
range of 1–113.

Resized original RGB images.This package is available in two archive formats (zip and HDF5).
The package contains downscaled versions of the original images, requiring reduced storage space.
The resizing was done such as to reduce the smaller dimension of image to 256 pixels (and the longer
side scaled to preserve the aspect ratio of the original image) and then saved in JPEG format. The
total size of these packages are approximately 27 GB, and they are named as original_256.zip and
original_256.hdf5.

Resized cropped RGB images.This package is also available in two archive formats (zip and HDF5).
The package contains resized versions of the cropped images. The resizing was done such as to
reduce the smaller dimension of image to 256 pixels (and the longer side scaled to preserve the aspect
ratio of the cropped image) and then saved in JPEG format. The total size of these packages are
approximately 7 GB, and they are named as cropped_256.zip and cropped_256.hdf5.

A1.2 Metadata file

To enhance the metadata of our published dataset, we incorporated structured metadata following
Web standards. The metadata file for our dataset is named BIOSCAN_Insect_Dataset_metadata.
We created two versions of this file: one data frame in TSV format (.tsv) and the other in JSON-LD
format (.jsonld). The JSON-LD file was validated using the Google Inspection Tool.

The metadata file is a table with 22 columns, which contain content as described below. Note that
if a sample was not labelled by taxonomist, for each taxonomy ranking group (columns 4–13) the
corresponding annotation is listed as not_classified instead. Similarly, if a sample has no association
with an experiment shown by columns 16–21, then the sample’s role is shown as no_split.

1. sampleid: An identifier given by the collector.
2. processid: A unique number assigned by BOLD to each record.
3. uri: Barcode Index Number (BIN).
4. name: Taxonomy ranking classification label.
5. phylum: Taxonomy ranking classification label.
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6. class: Taxonomy ranking classification label.
7. order: Taxonomy ranking classification label.
8. family: Taxonomy ranking classification label.
9. subfamily: Taxonomy ranking classification label.

10. tribe: Taxonomy ranking classification label.
11. genus: Taxonomy ranking classification label.
12. species: Taxonomy ranking classification label.
13. subspecies: Taxonomy ranking classification label.
14. nucraw: Nucleotide barcode sequence.
15. image_file: Image file name stored in structured packages.
16. large_diptera_family: Image association with the training, validation, and test split of

experiment-1.
17. medium_diptera_family: Image association with the training, validation, and test split of

experiment-2.
18. small_diptera_family: Image association with the training, validation, and test split of

experiment-3.
19. large_insect_order: Image association with the training, validation, and test split of

experiment-4.
20. medium_insect_order: Image association with the training, validation, and test split of

experiment-5.
21. small_insect_order: Image association with the training, validation, and test split of

experiment-6.
22. chunk_number: A unique ID to locate the corresponding images within the dataset pack-

ages.

A2 Informational content
The link to access the dataset and its metadata is https://biodiversitygenomics.net/1M_
insects/.

A3 Ethics and responsible use
The BIOSCAN project started by the International Barcode of Life (iBOL) Consortium, has collected
a large dataset of hand-labelled images of insects. Each record is taxonomically classified by human
experts, and accompanied by genetic information.

The publication of BIOSCAN-1M Insect dataset is a common effort made by researchers from the
University of Waterloo, Simon Fraser University, Aalborg University, Dalhousie University and
the University of Guelph with support from the Vector Institute for Artificial Intelligence, Alberta
Machine Intelligence Institute, Pioneer Centre for AI, and the Centre for Biodiversity Genomics.

The availability of the BIOSCAN-1M Insect dataset presents an immense opportunity for scientific
advancement and understand in of insect biodiversity. However, it is important to emphasize the
ethical and responsible use of this data.

First and foremost, researchers and institutions must prioritize the protection of individuals’ privacy
and adhere to data protection regulations and guidelines. To our knowledge, there is no personal or
identifiable information in the dataset. However, any such information associated with the dataset
should be treated with utmost care and reported to the authors.

Furthermore, the researchers and organizations who utilize the BIOSCAN-1M Insect dataset should
ensure transparency in their methodologies and practices. This includes clearly stating the purpose
of their research, obtaining informed consent when applicable, and maintaining integrity in the
interpretation and reporting of the results.

The responsible use of the BIOSCAN-1M Insect dataset entails promoting open collaboration and
sharing of knowledge within the scientific community. Researchers should foster an environment
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that encourages exchange of ideas, methodologies, and findings, while giving credit to the original
dataset creators. It is essential to acknowledge and respect the contributions of the human experts who
hand-labelled the images by taxonomically classifying specimens. Proper attribution and recognition
should be given to these individuals, as their expertise and efforts are instrumental in the creation and
accuracy of the dataset.

A4 Dataset availability and maintenance
The BIOSCAN-1M Insect dataset and all its content described in the previous sections are available on
a GoogleDrive folder named 1M_Image_project. To access the BIOSCAN-1M Insect dataset, please
visit https://biodiversitygenomics.net/1M_insects/. We’ve published a code repository
for dataset manipulation, including tasks like downloading dataset packages, image and metadata
reading, image cropping, dataset subsampling, partitioning into train, validation, and test sets, and
running the classification experiments presented in the BIOSCAN-1M Insect paper.To access the
BIOSCAN-1M code repository, please visit https://github.com/zahrag/BIOSCAN-1M.

A5 Licensing
Table A1 shows the copyright associations related to the BIOSCAN-1M Insect dataset with the
corresponding names and contact information.

Table A1: Copyright associations related to the BIOSCAN-1M Insect dataset

Copyright Associations Name & Contact
Image Photographer CBG Robotic Imager
Copyright Holder CBG Photography Group
Copyright Institution Centre for Biodiversity Genomics (email:CBGImaging@gmail.com)
Copyright License Creative Commons-Attribution Non-Commercial Share-Alike (CC BY-NC-SA 4.0)
Copyright Contact collectionsBIO@gmail.com
Copyright Year 2021

A6 Experiment details and results
A6.1 Backbone models

We utilized two distinct pretrained backbone models for our experiments with the BIOSCAN-1M-
Insect dataset. A comprehensive comparison between these models is presented in this section and in
Table A2.

ResNet-50 [21] is a deep convolutional neural network, which includes residual blocks that allow for
the training of very deep networks without falling into the vanishing gradient problem. ViT-Base-
Patch16-224 [61, 17] signifies that the ViT model is designed to process images with a resolution of
224x224 pixels. Each image is divided into smaller patches of size 16x16 pixels, which are then fed
into the transformer layers. Each transformer layer includes multi-head self-attention mechanisms
and feed-forward neural networks.

Table A2: A comparison between the two pretrained backbone models used in our experiments:
ResNet-50 and the ViT-Base-Path16-224. CNN and FC denote Convolutional Neural Network, and
Fully Connected layers, respectively.

Features ResNet-50 ViT-B/16
Layers 50 12
Based Networks CNN, Pooling and FC Transformer
Number of parameters 25.6 M 86 M

Overall ResNet-50 has a deeper architecture with more layers than ViT-B/16. This depth can enable it
to learn hierarchical features in the data, while ViT’s strength lies in capturing relationships between
patches by applying self-attention mechanisms, which enables it to capture long-range dependencies
in images thus making it suitable for both local and global context understanding. Moreover, due to
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its transformer architecture, ViT can parallelize training more effectively, which can result in faster
convergence times despite its higher number of parameters.

A6.2 Validation results

Table A3 shows the performance of all 24 experiments conducted with 3 different seeds using the
validation set. According to the validation results, ViT-B/16 with the Cross-Entropy loss function
consistently outperforms other models.

Comparing Focal loss to Cross-Entropy, we found that Cross-Entropy produced slightly better results.
This could be due to insufficient fine-tuning of Focal loss hyperparameters (alpha and gamma).
Furthermore, addressing class imbalance could involve selectively oversampling the less frequent
classes during training. This strategy boosts their representation in the training process. For Focal
loss, limited exposure to rarer classes might hinder the effectiveness of the re-weighting mechanism.

The presented results of table A3 depict the mean accuracy across various seeds, accompanied by the
standard deviation from the average values of each model. The outcomes reveal a notable consistency
in the performance of almost all models.

The six models highlighted in bold in Table A3 are used for inference in the test experiments and to
report the final results. Pretrained classification checkpoints of these six models, which achieved the
best validation accuracy, are available in the GoogleDrive project folder under the directory named
BIOSCAN_1M_Insect_checkpoints.

Table A3: The table displays Micro-Average-Top-1 and Macro-Average-Top-1 validation accuracy
across 24 experiments conducted using 3 distinct seeds. These experiments encompass varying
data sizes (Small, Medium, Large), loss functions (Cross-Entropy, Focal), and pretrained backbone
models (ResNet-50, ViT-B/16). The experiments utilize consistent hyperparameters and extend to
both Insect-Order and Diptera-Family classification levels.

Micro-Top-1 Macro-Top-1
Dataset Backbone Loss Fn Insect-Order Diptera-Family Insect-Order Diptera-Family
Large ResNet-50 CE 99.65±0.10 97.30±0.02 86.26±0.30 89.98±0.27

Focal 99.62±0.06 97.15±0.00 84.66±0.21 89.42±0.58
ViT-B/16 CE 99.58±0.21 97.67±0.01 87.36±1.20 91.47±0.31

Focal 99.52±0.27 97.58±0.02 85.80±1.75 91.54±0.21

Medium ResNet-50 CE 98.98±0.04 96.24±0.05 87.30±1.29 91.24±0.33
Focal 98.85±0.04 95.92±0.04 86.61±0.51 90.64±0.22

ViT-B/16 CE 99.14±0.04 96.74±0.06 88.40±1.17 92.83±0.16
Focal 99.11±0.04 96.55±0.02 86.75±1.46 92.23±0.35

Small ResNet-50 CE 97.79±0.08 93.23±0.24 87.37±0.56 91.43±0.36
Focal 97.62±0.09 92.57±0.07 86.55±0.60 90.68±0.20

ViT-B/16 CE 98.34±0.10 94.46±0.15 88.74±1.16 92.93±0.33
Focal 98.26±0.03 94.42±0.04 88.61±0.09 92.92±0.16

A6.3 Confusion Matrix

For an in-depth analysis of the performance of models trained under various configurations, we
provide detailed Confusion Matrices for the classification experiments conducted at the order and
family levels. These experiments were carried out using the model employing ViT-B/16 and the
Cross-Entropy loss function. The evaluation was performed on the test set of the Large dataset. You
can refer to Figures A1 and A2 for a visual representation of the respective Confusion Matrices.

A6.4 Qualitative analysis

In this section, we provide a qualitative analysis of the performance results from the order classification
experiment on the Small dataset. We aim to shed light on the misclassifications made by our model
by visually examining some of the misclassified images.

Surprisingly, roughly 57% of the misclassifications in order-level classification experiments on the
Small dataset, using 10,000 test samples, can be traced back to low-quality insect images. This is
evident when examining the examples shown in Figure A3, where image quality hampers accurate
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Table A4: The table presents the Micro-F1-Score and Macro-F1-Score of our trained models,
evaluated on the validation set, and then averaged across different seeds.

Micro-F1-Score Macro-F1-Score
Dataset Backbone Loss Fn Insect-Order Diptera-Family Insect-Order Diptera-Family
Large ResNet-50 CE 99.67±0.07 97.44±0.03 87.50±0.04 90.73±0.23

Focal 99.63±0.06 97.28±0.01 84.66±0.87 90.22±0.26
ViT-B/16 CE 99.68±0.06 97.68±0.01 87.94±1.59 92.01±0.12

Focal 99.62±0.14 97.58±0.01 86.98±2.06 91.91±0.22

Medium ResNet-50 CE 99.00±0.04 96.26±0.06 87.43±1.02 92.61±0.03
Focal 98.88±0.05 95.98±0.05 86.77±1.21 91.77±0.5

ViT-B/16 CE 99.14±0.04 96.75±0.04 89.33±1.21 93.58±0.08
Focal 99.12±0.03 96.56±0.01 87.52±1.01 93.20±0.21

Small ResNet-50 CE 97.84±0.11 93.27±0.35 87.89±0.77 92.10±0.51
Focal 97.63±0.04 92.78±0.06 87.52±0.62 91.37±0.12

ViT-B/16 CE 98.31±0.10 94.54±0.16 88.92±0.74 93.56±0.23
Focal 98.28±0.03 94.42±0.06 88.36±0.28 93.48±0.05

Figure A1: The Confusion Matrix displays the per-class predictions of the order level classification
using the Large dataset of the BIOSCAN-1M Insect dataset. The test evaluation is performed on the
best model achieved from validation performance results presented in Table A3.

classification. A similar analysis revealed that approximately 45% of the misclassifications in
order-level experiments with the Large dataset, using 225,660 test samples, were also attributed to
low-quality insect images.
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Figure A2: The Confusion Matrix displays the per-class predictions of the family level classification
using the Large dataset of the BIOSCAN-1M Insect dataset. The test evaluation is performed on the
best model achieved from validation performance results presented in Table A3.

Another observation shows that large proportion of misclassifications are the insects belonging to
different orders that are all incorrectly classified as one of the dominant classes of our Small dataset.
As an example there are 16.2% of the misclassifications in order-level classification experiments
on the Small dataset were insects belonging to different orders are all incorrectly classified as
Diptera (flies or mosquitoes), which is the dominant class. This observation, illustrated in Figure A4,
highlights specific instances where the model struggles to differentiate between various orders and
tends to favour Diptera as the predicted classification.

By examining these qualitative analyses, we gain insights into the challenges faced by our model in
correctly classifying insect orders, especially when dealing with low-quality images and distinguishing
between similar orders when these orders have low number of training samples.

Our classification experiments have an important application in data cleaning. By identifying low-
quality images that have been misclassified, we can effectively detect and remove them from the
dataset. This process plays a crucial role in enhancing the overall quality and reliability of the data,
as it ensures that only high-quality images of insects are retained.

Furthermore, our classification experiments also enable us to validate the taxonomic classifications
performed by human experts. By examining instances of false predictions, we can investigate
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whether a sample has been incorrectly annotated, providing valuable insights into the accuracy of the
taxonomic classification process.

A6.5 Discussion

A6.5.1 Dataset: Generation, Curation and Growth

The BIOSCAN project is currently in its initial stages, with its primary goal being the facilitation of a
global biodiversity assessment. In this section we clarify certain aspects and procedures accomplished
in the generation of the BIOSCAN-1M Insect dataset.

All samples of the BIOSCAN-1M Insect dataset were processed at one facility using the same
workflows and imaging equipment. This should exclude all potential biases with respect to data
collection.

Regarding dataset labeling procedure, the order-level classification is conducted by taxonomists
and entomologists primarily relying on morphology rather than barcode matching. For family and
finer-grained classifications, a combination of approaches may be employed, often supported by BIN
assignment.

The annotators responsible for labeling the data were personnel affiliated with the Centre for Biodi-
versity Genomics, including technicians and research scientists, all engaged in full-time roles at the
institute and receiving equitable compensation. A diverse team of approximately 15 to 20 individuals
participated in providing labels for the dataset. These labels were derived from the images, forming
the foundation for establishing higher-level taxonomies such as order and family. Additionally, the
annotators conducted visual examinations of specimens for finer-grained taxonomic ranks, utilizing
primary literature as a reference where feasible. Taxonomic experts (human professionals) engaged in
the barcoding process have varying level of involvement, which tends to increase when the placement
of a specimen is more contentious. Additionally, these experts are responsible for describing species,
a task not handled by the machine. They also supply the reference ID that enables us to establish
matches.

Several factors contribute to why most samples of the dataset are classified only to the family and
finer-grained classes are not provided, with the primary one being the time constraints associated
with completing the assignment. The complexity of the task arises from the fact that relying solely
on a barcode is often insufficient due to potential ambiguities, as discussed earlier. Each sample’s
labeling requires verification through visual inspection (images), or in some cases, examination of the
original specimen, before proceeding with further classification. This process is not easily scalable,
prompting the adoption of BINs as a species proxy.

However, the process utilized to expand the dataset remains consistent with the methodology em-
ployed for the BIOSCAN-1M Insect dataset. The Dataset will be retrained at regular intervals and
older versions archive stored on Zenodo and date stamped. Similarly we will use GitHub’s releases
mechanism to version the accompanying code.

A6.5.2 Application: Model and Tasks

In this article the baseline problems and methods we explored were chosen to be simple and accessible
and as a result, limited. They are not the focus of the paper as our primary focus is to release the
dataset and showcase its inherent potential. We expect future works will use the dataset for interesting
problems such as hierarchical classification, zero-shot classification, set-valued classification and
methods that improve performance in the fine-grained and long-tailed label regime.

We believe that the most promising methods will be hierarchical classifiers that yield uncertainty
estimates over multiple taxonomic levels. Improving performance on minority classes and reliably
delineating novel operational taxonomic units is also important. To get there, we believe the most
promising areas of investigation from the ML side will be semi-parametric methods that use reference
libraries at test time, set-valued classification as a natural means of expressing uncertainty, and
zero-shot classification.

The utilization of the BIOSCAN-1M Insect dataset in conjunction with other large biological datasets
from variuos domains becomes feasible by harnessing the preprocessing module proposed in this
paper. By employing tools like our cropping tool and applying machine learning techniques for
domain adaptation/generalization, one can capitalize on the capabilities of a pre-trained model on
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(1) Original (2) Original (3) Original (4) Original

(1) Cropped (2) Cropped (3) Cropped (4) Cropped

(5) Original (6) Original (7) Original (8) Original

(5) Cropped (6) Cropped (7) Cropped (8) Cropped

(9) Original (10) Original (11) Original (12) Original

(9) Cropped (10) Cropped (11) Cropped (12) Cropped

Figure A3: Examples of misclassifications caused by low quality images photographed from insects.
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(original)
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(original)

Psocodea
(original)

Hemiptera
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Hemiptera
(original)

Diptera
(cropped)

Diptera
(cropped)

Diptera
(cropped)

Diptera
(cropped)

Diptera
(cropped)

Figure A4: Examples misclassified as the dominant class Diptera (flies).

BIOSCAN-1M Insect images to effectively tackle classification challenges in out-of-distribution
scenarios.

Overall, we believe that the unique annotation and metadata including the DNA barcodes will prompt
interesting multimodal strategies. We intend to enhance our approach by incorporating DNA barcode
sequences and utilizing Barcode Index Numbers (BINs). This strategic direction aims to effectively
tackle the limitations associated with the current taxonomic labels of the images. Notably, the
utilization of BINs holds promise as each image is inherently associated with a distinct and unique
BIN.

A7 Preprocessing: Cropping tool
Our observations showed significant improvement in processing time when we used cropped images
rather than original ones. However, cropping is a challenging problem since insect images have
varying shapes, sizes, colors which is also shown in Figure A5. The illumination and background
color and surface are not the same across the original images.

Furthermore, there are cases in the original images that the insect is photographed in pieces and
in such cases the cropping is quite challenging especially when the insect is small, and its less
discriminative body parts like legs are distant from the main body so these pieces could be cropped
instead.

To address these issues more effectively, we have developed a tool based on the DETR model for
automatic identification and cropping of the main insects in images. The primary objective of this tool
is to facilitate data storage and subsequent research, such as neural network training. The tool uses
the DETR model to accurately locate the main insects in images and crop accordingly. By removing
irrelevant background information, the tool optimizes storage space and reduces the time spent on
data management. Additionally, the cropped images can be effectively used for tasks such as image
classification through neural network training, leading to improved performance in the following
image classification task. Our crop tool checkpoint is available in the GoogleDrive project folder
under the directory named BIOSCAN_1M_Insect_checkpoints.

A7.1 Approach

The cropping tool consists of first detecting a tight bounding box for the insect in the image using an
object detector and then cropping the image by extending the bounding box. We show an overview of
the cropping tool in Figure A6. To accurately locate the insect in the image, we chose the DETR [9]
model which has excellent performance in the task of object detection and the corresponding pre-
trained ResNet-50 [21] as the feature extractor. At the beginning, the CNN-based feature extractor
extracts a set of image features that are fed into a transformer-based encoder-detector. The detector
takes a set of learned positional embeddings as object queries and uses them to attend to the encoder
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Figure A5: Examples of images used to adapt our cropping tool. We include variations of insects’
size, color, position and shape.

Figure A6: Our DETR [9] based cropping tool takes an input image, extracts features using a
ResNet50 [21] backbone, and extracts a tight fitting bounding box for the insect (see red box). We
then extend the bounding box (see blue box) to obtain the final cropped image. We use a DETR
model pretrained on MSCOCO [35]. To fine-tune the DETR model, we annotate a small set of insect
images with their segmentation mask.

outputs. Each of the output decoder embeddings is then passed to a shared FFN which will predict
whether there is “no object” or a detected object with its class and bounding box. Each bounding box
is parameterized as (cx, cy, w, h) where (cx, cy) is the center of the bounding box, and (w, h) is the
width and height of the box, all normalized to 1.

The DETR network is trained by optimizing a bipartite set loss that matches detected boxes with the
ground-truth boxes using the Hungarian algorithm to minimize the overall matching loss between
the matched pairs. The pairwise matching loss is a combination of the classification loss and a box
regression loss (the bounding box loss is included only when the detected box matches a ground
truth box that corresponds to an object, and is a weighted combination of GIOU [48] and L1 loss
between the bounding box parameters). In our case, we have only one object class (“insect”) so the
classification reduces to a binary classification between “insect” and “no object”.

Note that other than the ground-truth bounding box, for training the DETR model of the cropping
tool, the pixel mask of the insect in the image is also required for the training. This pixel mask is not
needed during the inference phase.

Training details. We start with a DETR model pretrained on MSCOCO [35] and fine-tune it on our
dataset. We use the AdamW [38] optimizer with learning rate of 0.0001, weight decay of 0.0001
and a batch size of 8. We train for 10 epochs. On a RTX 2080 Ti with 4 workers, for 1,000 images,
training takes 1.5 minutes per epoch and a total of 15 minutes for 10 epochs.
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original

annotated

Figure A7: Typical instances of annotated IW (left two columns) and IP (right two columns) images.
To obtain an accurate bounding box in reasonable annotation time, we focused on drawing the external
outline of the main insect only excluding the small spaces between its legs. Small parts of the insect
that are far away from the main body (e.g. the small leg in the first image) are also not included.

The original DETR is trained with images resized to fit within an 800 ×1,333 tensor. We match that
and resize our image (preserving the aspect ratio) so that the shortest side is less than 800 and the
longest side is less than 1333. No data argumentation is applied during training.

Cropping. In the cropping phase, With the predicted bounding box (the red bounding box in Figure
A6), we can choose to enlarge it using a certain method to include more details or meet specific
image aspect ratio requirements. By default, we will choose 0.4 times the longest edge as the target
and extend this size in both height and width to produce the final cropping bounding box (the blue
bounding box in Figure A6).

To crop the image, we run our fine-tuned DETR model on the input image to identify the tight
bounding box around the insect. We assume that each image contains one insect of interest, and
during cropping, we take the predicted bounding box with the highest probability that is higher than
0.5. Before cropping, we extend the predicted bounding box by a fixed ratio R = 1.4 of the size of
the tight bounding box. We extend the height and width by the same number of pixels by computing
the extended size as: ExtendSize = (R− 1)×max(width, height).

If the bounding box is at the edge of the original image, we pad the image by adding pixels of
maximum intensity to match the white background. In this way, even if the predicted bounding box
does not encompass all the details of the insect, we can still include the entire insect in the cropped
image. Furthermore, this maintains a more square aspect ratio, which facilitates downstream tasks
such as image classification.

Runtime. The cropping tool can be run in CPU or GPU mode. On a Linux machine with 16 cores
and running 4 workers, using CPU only, 10 k images can be cropped in 2 hours and 40 minutes
(images loaded and written to local SSD). Using an RTX 2080 Ti GPU, 10K images can be cropped
in 30 minutes on the same machine.

A7.2 Data

We develop our tool on two sets of images of insects that are pinned (INSECTS-PINNED) and
insects in wells (INSECTS-WELL). Using the Toronto Annotation Suite (TORAS) [29], we annotate
each with their segmentation mask. For each set, we annotated a large (1,000 images) and a small
(100-150 images) training set and another small set for evaluation. The annotation was done by three
volunteers and took a total of 4 hours for 1,000 images. The two sets of images are described below
(see Figures A7 and A8 for example images and annotated masks):

INSECTS-PINNED (IP). The insect is pinned in these images (or has a pin near it) with a fairly
clean white background. The images are taken by a Digital SLR camera (Canon) mounted on a
motor-drive positioning system (OpenBuilds ACRO) equipped with stepper motors and a motion
control system. Pinned specimens are arrayed in sets of 96 (8 ×12 array) in a large enough distance
between them to avoid including parts of neighbouring specimens in the image frame. For this set,
we collected 1,000 images to form the large training set (IP-1000-train), 100 images for the small
training set (IP-100-train), and another 100 images for the validation set (IP-100-val).
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Figure A8: Examples of special annotation cases. Left: for an insect that is broken into multiple parts
with even size, we create a mask that covers all of the parts of the insect. The ideal mask should
contain minimal background, and keep the edge of the mask as close to the insect’s edge as possible
(left, right). Middle: for two insects where one is in the container and the other is not, we annotate
the insect that is not in the container. Right: for a split insect we annotate all parts.

Table A5: The Average Precision (AP) and Average Recall (AR) were computed on the IW-150 val
and IP-100-val datasets using the DETR model, which was pre-trained with different training splits.

INSECTS-PINNED-100-Val INSECTS-WELL-150-Val

Training data AP[0.75] AR[0.50:0.95] AP[0.75] AR[0.50:0.95]

IP-100 0.910 0.893 0.543 0.729
IP-1000 0.949 0.918 0.415 0.587
IW-150 0.415 0.587 0.801 0.802
IW-1000 0.665 0.695 0.872 0.835
IP-1000 + IW-1000 0.964 0.907 0.901 0.885

INSECTS-WELL (IW). In these images, the insects are placed in a well. Here the images tend to
have a less clean background due to the glass and uneven reflected light. The images are taken using
a Keyence VHX-7000 Digital Microscope system with a fully integrated head and automatic stage
that permits high-resolution (4 k) microphotography of individual specimens. Because its scanning
stage can hold a 96-well plate, the system automatically acquires a high-resolution image of each
specimen by controlling movements in the X-Y plane. As well, its capability to control the z-axis
position of the stage with a precision of 0.1 m allows it to photograph each specimen at multiple
heights before rapidly compiling these images into an in-focus image (depth stacking). For this set,
we collected 1,000 images to form the large training set (IW-1000-train), 150 images for the small
training set (IW-150-train), and another 150 images for the validation set (IW-150-val).

Note that the BIOSCAN-1M Insect Dataset consists only of insects in wells. We include the insects
with pins to extend the usefulness of the cropping tool for a broader spectrum backgrounds that may
appear in the process that specimens are acquired in the larger BIOSCAN project.

During annotation, we focus on masking the main insect and we exclude small broken pieces of
the insect that are far from its body (see Figure A7). There are also challenging cases where the
insect may be broken into pieces or there are multiple insects (see Figure A8). For insects that are
broken into multiple pieces of similar size, we create a mask that covers all the pieces. When there
are multiple insects, we mask only the central insect.

A7.3 Experiments

A7.3.1 Metrics

The metrics we used are the Average Precision (AP) and the Average Recall (AR) with the IOU of
the bounding box equal to [0.75] and [0.50:0.95], as they measure the precision and recall aspects
of detection performance. AP reflects the accuracy of detection by considering the overlap between
predicted and ground truth bounding boxes, while AR assesses how well the system captures all the
ground truth objects.
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original bounding boxes cropped

IP

IW

Figure A9: Cropping examples of images from INSECTS-PINNED (IP) and INSECTS-WELL (IW)
with the original image, image with detected bounding boxes in red, extended bounding boxes in
blue, and final cropped image.

IP

IW

Figure A10: Examples of imperfect insect detection (IOU < 0.85), with ground-truth bounding box in
green, detected bounding boxes in red, and extended in blue. In the second image of IP, note that we
extend the image with the white background to fit the bounding box that escapes the original image
boundaries.

A7.3.2 Cropping results

We show examples of cropped images in Figure A9. The images show the accurate identification
of the insect subject by the DETR model (red bounding box) and the extended bounding box (blue
bounding box) used for cropping. In Figure A10, we show cases where the predicted bounding boxes
have an intersection over union (IoU) with the ground truth bounding boxes (green bounding box)
less than 0.85. From these examples, we observe that the antennae of certain insects and the presence
of cluttered backgrounds sometimes can create disturbances to our fine-tuned DETR model. However,
by expanding the predicted bounding boxes, we are still able to capture all the desired information
within the cropped images.

To evaluate the performance of our cropping tool with different amount and type of data, we trained
the DETR model with 5 training splits (IP-100, IP-1000, IW-150, IW-1000 and IP-1000+IW-1000),
and evaluate these models on two validation splits(IP-100-val and IW-150-val). Overall, from
Table A5, we see that using the mixed training split with 1000 images from IP and 1000 images
from IW results in the highest accuracy. This is the model that we use for cropping the images in the
BIOSCAN-1M Insect Dataset.
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Table A6: Comparison of classification accuracy results on original images vs. cropped images. Both
are resized to 256 on the smaller dimension. Overall, we find the cropped images yield slightly higher
accuracy.

Order-level Family-level

Micro-average Macro-average Micro-average Macro-average

Image type Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

original 0.9626 0.9970 0.8218 0.9964 0.9248 0.9802 0.9109 0.9730
cropped 0.9786 0.9976 0.8757 0.9980 0.9314 0.9786 0.9154 0.9728

Figure A11: The training loss and Top-1 accuracy on the validation split during the training of
family-level classification of images of insects using cropped (blue) and original (orange) images.
Both are resized to 256 on the shorter side.

A7.3.3 Insect classification using cropped images

We further evaluate the effectiveness of our auto-cropping tool on a downstream task: insect image
classification at the order/family level. In Table A6 we compare the classification performance of
the original vs. cropped images on the BIOSCAN small dataset following the training setup we
described in the main paper. We use the ResNet-50 backbone with cross-entropy loss and train
with the AdamW optimizer with a learning-rate of 0.001 and momentum of 0.9 for 100 epochs for
order-level classification and 40 epochs for family-level classification. All images are resized such
that the shorter side has size 256. During training, we apply random horizontal flip with probability
of 0.5, and random crops of 224 × 224 are extracted and fed into the backbone to extract image
features. During inference, the center 224× 224 crop is extracted. We measure the micro and class
macro average top-K accuracy at K = 1 and K = 5.

From Table A6, we see that in most cases, using cropped images to perform training results in
higher classification accuracy. In the cases where original image type outperforms cropped type, the
difference is small.

To further compare the difference between using original images and cropped images for training, we
also compare the loss curve during training with original and cropped images.

By comparing the loss at epoch 10, 15 and 20, we see that using the cropped images can help the
model converge faster. Using the cropped images also yields higher top-1 accuracy on the validation
split.
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