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ABSTRACT

Distributionally robust optimization (DRO) provides a framework for training ma-
chine learning models that are able to perform well on a collection of related data
distributions (the “uncertainty set”). This is done by solving a min-max game: the
model is trained to minimize its maximum expected loss among all distributions
in the uncertainty set. While careful design of the uncertainty set is critical to
the success of the DRO procedure, previous work has been limited to relatively
simple alternatives that keep the min-max optimization problem exactly tractable,
such as f -divergence balls. In this paper, we argue instead for the use of neural
generative models to characterize the worst-case distribution, allowing for more
flexible and problem-specific selection of the uncertainty set. However, while
simple conceptually, this approach poses a number of implementation and opti-
mization challenges. To circumvent these issues, we propose a relaxation of the
KL-constrained inner maximization objective that makes the DRO problem more
amenable to gradient-based optimization of large scale generative models, and
develop model selection heuristics to guide hyper-parameter search. On both toy
settings and realistic NLP tasks, we find that the proposed approach yields models
that are more robust than comparable baselines1.

1 INTRODUCTION

Machine learning models trained with empirical risk minimization (ERM) are able to achieve high
aggregate performance on data sampled from their training distribution. However, they often exhibit
drops in accuracy when confronted with data from domains that are under-represented in their train-
ing data, such as those of different topic (Gururangan et al., 2020), sociolect (Blodgett et al., 2016),
accent (Amodei et al., 2016) or writer age (Hovy & Søgaard, 2015) in language processing tasks,
or skin color (Grother et al., 2019) or lighting (Georghiades et al., 2001) in image processing tasks.
This is a particularly egregious issue in applications where higher error rates can have far reach-
ing negative implications, such as the silencing of underrepresented minorities in toxicity detection
systems (Dixon et al., 2018) or disparity amplifying feedback loops in credit rating models (Fuster
et al., 2018).

This behaviour often arises from the objective function of ERM, where the parameters θ of the
model are learned by minimizing the expectation of a loss function ` under a data distribution p (or,
specifically in practice, an associated empirical data distribution p̂)

LERM(θ) = E(x,y)∼p̂`(x, y, θ). (1)

When the model encounters data sampled from a different distribution qtest 6= p, performance can
suffer significantly. Distributionally robust optimization (DRO) (Ben-Tal et al., 2013b) provides a
natural solution to this issue by replacing the expected risk under a single distribution p with the
worst expected risk over a pre-determined family of distributions Q (the “uncertainty set”)

LDRO(θ) = max
q∈Q

E(x,y)∼q `(x, y, θ). (2)

1Code to reproduce our experiments can be found at https://github.com/pmichel31415/P-DRO
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If Q contains qtest, the DRO objective upper bounds the expected risk under qtest. However, a priori
knowledge of possible test distributions is not always available or easy to acquire. For example,
training a model to be robust to some demographic attributes (Q = {qdemographic 1, qdemographic 2, . . .})
requires collecting and annotating data with the necessary information, an expensive and ethically
fraught endeavour. In the absence of such information, one has to resort to defining the uncertainty
set analytically, drawing on one’s intuition of what constitutes a possible test distribution given the
observed training distribution, such as using moment constraints (Delage & Ye, 2010; Nguyen et al.,
2020), f -divergence (Ben-Tal et al., 2013a; Hu & Hong, 2013; Faury et al., 2020), Wasserstein/IPM
(Sinha et al., 2018; Husain, 2020) balls, or coarse-grained mixture models (Oren et al., 2019; Hu
et al., 2018). However, the need for keeping the inner supremum in Eq. (2) tractable limits the
possible choices.

In this paper, we propose that the uncertainty set be instead defined as a family of parametric gen-
erative models. The resulting DRO objective (§2) is a differentiable game with two players: the
original model `(x, y; θ) and a model of its worst-case distribution qψ(x, y), the titular “second
player” which we hereafter refer to as the adversary. Using this formulation — which we call Para-
metric DRO (P-DRO) — allows for more flexibility in the choice of the adversary’s architecture
(and so the uncertainty set). Unfortunately, finding a solution of this game via direct application of
simultaneous gradient descent (Singh et al., 2000) is difficult (Balduzzi et al., 2018). In particular,
direct gradient descent on the uncertainty set suffers from instability due to the large variance of the
gradients (Greensmith et al., 2004), and hyper-parameter selection is not straightforward.

To address these challenges, we make two main contributions (§3): first, we propose a new relaxation
of the DRO game’s inner maximization problem (with KL constraints). The resulting objective is
more amenable to simultaneous gradient update than the original zero-sum game and significantly
improves training stability, while still yielding useful adversaries. Second, we develop a principled
approach for selecting hyper-parameters: we leverage the learned adversaries to decide which of any
two given models trained with P-DRO is more robust than the other.

We do an in-depth set of experiments analyzing the effect of our proposed changes on both a toy
task as well as a more realistic, yet still synthetic sentiment classification task (§4). Finally, we show
that in the more realistic setting of toxicity detection, P-DRO yields models that are more robust to
changes in demographic groups, even though these groups are unknown at training time, opening up
applications in combatting dataset bias (§5).

2 PARAMETERIZING THE UNCERTAINTY SET

Consider a model parameterized by θ ∈ Rdmodel . Minimizing the DRO objective described in Eq. (2)
over the uncertainty set Q turns the optimization problem into the min-max (or zero-sum) game

min
θ∈Rd

max
q∈Q

E(x,y)∼q `(x, y, θ). (3)

The first player controls the parameters θ, whilst the second player controls the worst-case distribu-
tion q. In the absence of explicit information on groups of interest (such as demographics, domain,
etc.), an adequate choice of the uncertainty set Q is critical to the success of DRO. This is in fact
very much an active area of research (Sinha et al. (2018); Duchi & Namkoong (2018); Oren et al.
(2019), see Rahimian & Mehrotra (2019) for a survey). Q must be sufficiently large to contain test
distributions of interest, but if it is too large it may contain “adversarial” distributions on which no
model can perform well. Moreover, the design of Q is also circumscribed by the necessity of keep-
ing the min-max problem tractable, particularly in the context of stochastic optimization. In Hu &
Hong (2013) and Duchi et al. (2016) for example, the choice of f -divergence balls allows the use of
duality arguments to reformulate (3) as a more manageable min-min problem. Others, like Hu et al.
(2018) or Oren et al. (2019), propose using mixture models, the simplicity of which enables them to
solve the inner maximization problem efficiently.

Instead, we propose to explicitly model the second player in the DRO game as a parametric model
qψ of the data. Of course, not all parameterizations ψ ∈ Rdadv of a given generative model represent
useful distributions, and we require that the adversary stay “close” to the underlying true data distri-
bution p. As a measure of distance between qψ and p, we choose the KL (Kullback & Leibler, 1951)
divergence due to its wide acceptance in the machine learning community, as well as its appealing
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Figure 1: Summary of P-DRO: At every step of training, (x, y) pairs are sampled from the data
distribution p and fed to both the model θ and the adversary ψ. For every sample, the model produces
loss values `(x, y; θ) and the adversary produces densities qψ(x, y). Both are combined into Lmodel
and Ladv, which are used to update the θ and ψ respectively, via simultaneous gradient updates.

properties in the context of DRO.2 The KL upper bound, κ, is left as a parameter to be decided by
the experimenter. We refer to the resulting DRO formulation as Parametric DRO

min
θ

max
ψ

KL(qψ‖p)≤κ

E(x,y)∼qψ`(x, y, θ)︸ ︷︷ ︸
LP-DRO(θ,ψ)

. (4)

3 OPTIMIZING P-DRO

The min-max problem in Eq. (4) belongs to a class of games called “differentiable games” (another
famous representative being generative adversarial networks (Goodfellow et al., 2014)). We can
search for a solution of this game with simultaneous gradient descent (Singh et al., 2000), i.e. by
simultaneously updating θ and ψ with −∇θ LP-DRO and ∇ψ LP-DRO respectively. Unfortunately, in
general, there is no theoretical guarantee that simultaneous gradient descent will converge to a Nash
equilibrium3 (Balduzzi et al., 2018), nor that any such equilibrium even exists if the objective is non-
convex in θ (or non-concave in ψ). The success of GANs and the follow-up literature (Wang et al.,
2019) serves as an encouraging example that gradient based methods can yield useful solutions
despite the pessimistic theoretical results. In this section, we discuss difficulties that arise when
optimizing θ and ψ jointly, and propose modifications of the objective to address them.

3.1 TRAINING THE MODEL θ

We could train the model θ by taking negative gradient steps on E(x,y)∼qψ `(x, y; θ). This gra-
dient can be estimated by sampling examples from qψ and averaging the gradient of their losses.
Unfortunately, this objective requires that qψ is well-behaved at all iterations, as it is the only
source of supervision for θ. If qψ is initialized incorrectly or begins producing unrealistic (x, y),
the quality of θ degrades as it begins to learn a predictor on invalid training examples from qψ.
As an alternative, we opt to compute the gradients for θ with importance sampling, i.e. rewriting
L P-DRO as E(x,y)∼p

qψ(x,y)
p(x,y) `(x, y; θ), which ensures that all (x, y) samples will be derived from the

training set itself. Unfortunately, the true density p is unknown to us. As an approximation, we
replace qψ(x,y)

p(x,y) with the likelihood ratio between qψ and the maximum likelihood estimate of p,
qψ0

:= argmaxqψ E(x,y)∼p log qψ(x, y). This changes the min-max problem to

min
θ

max
ψ

KL(qψ‖p)≤κ

E(x,y)∼p
qψ(x, y)

qψ0(x, y)
`(x, y, θ)︸ ︷︷ ︸

Lmodel

. (5)

2For instance: KL(q‖p) < +∞ implies that q stays within the support of p
3Nash equilibria (Osborne & Rubinstein, 1994) can be thought of the game theoretic analog of global minima
in optimization.
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This becomes a simple expected loss objective, which we can estimate by sampling from the empir-
ical distribution p̂. In experiments, we find that with this formulation we are able to train robust θ
even when qψ is only a mediocre generative model (see Appendix C.2). To further stabilize training
at the beginning of the optimization process, we initialize ψ with ψ0, making the objective exactly
the same as ERM for the first gradient step.

3.2 TRAINING THE ADVERSARY ψ

According to Eq. (5) the adversary ψ must maximize E(x,y)∼qψ
p(x,y)
qψ0

(x,y)`(x, y, θ) within a KL ball
of fixed radius. This is challenging for several reasons: first, enforcing the bound is intractable for
complex families of adversaries where e.g. projecting onto the KL ball is another difficult optimiza-
tion problem of its own. Second, maximizing the expectation with respect to the parameters of the
distribution qψ is prone to instability due to large gradient variance (Greensmith et al., 2004).

Lagrangian Relaxation To address the first difficulty, we loosen the strict KL constraint and
instead consider the Lagrangian relaxation L

L(ψ, τ) = E(x,y)∼qψ
p(x, y)

qψ0(x, y)
`(x, y, θ)− τ (KL(qψ‖p)− κ) . (6)

We fix the Lagrangian multiplier τ > 0 as treat it as a “temperature” hyper-parameter. With some
reorganization (which we develop in Appendix A.1), we can show that

L(ψ, τ) = −τKL(qψ‖q∗τ,θ) + C. (7)

Where q∗τ,θ ∝ p(x, y)e
p(x,y)
qψ0

(x,y)
`(x,y;θ)

τ and C is a constant in ψ. In other words, maximizing L in ψ is
equivalent to minimizing the KL divergence between qψ and q∗τ,θ. One difficulty with this objective
is that q∗τ,θ depends upon the unknown probability density p(x, y). We avoid this problem by treating

the density ratio p(x,y)
qψ0

(x,y) as a constant, which is closely related to assumptions that have been used
successfully in past formulations of DRO (Oren et al., 2019). Empirically, we find that incorporating
qψ0

as a surrogate for p is a serviceable approximation, as demonstrated in Section 4.

Reversing the KL Minimizing the KL divergence in this direction is difficult for several reasons.
First, it entails optimizing an expectation in qψ over ψ, which is difficult due to the large variance
of the gradients (Greensmith et al., 2004). Second, computing this KL necessitates access to the
true theoretical density p(x, y) in order to compute q∗τ,θ(x, y) in the argument of the expectation,
but this quantity is unknown in practice.4 To sidestep these issues, we elect to minimize the reverse
direction KL(q∗τ,θ‖qψ) instead. Due to the KL divergence being non-symmetric, this is a rather
crude approximation5, the implications of which are discussed in Norouzi et al. (2016). However,
we find that this approach dramatically stabilizes the gradient dynamics while still yielding good
adversaries, as observed empirically in Section 4.4. Discarding the entropy term (constant in ψ), the
resulting problem is equivalent to minimizing

Ladv(ψ, τ) := −
1

Zτ,θ
Ep e

`(x,y;θ)
τ log qψ(x, y) (8)

in ψ, where Zτ,θ = Ep e
`(x,y;θ)

τ is the normalizer of q∗. In this case, we can estimate this expectation
by substituting the empirical distribution p̂ for p in the expectation.

Computing the Normalizer Approximating the inverse normalizer 1
Zτ,θ

in a minibatch yields a
biased estimator. On the other hand, computing Zτ,θ over the entire training data at each step is
prohibitive since it requires computing the loss of every single example. As a middle ground, we
keep a running normalizer Z̃k computed from the average of the normalizers over a fixed number

4Note that substituting the empirical distribution p̂ for p poses issues here, because qψ is not absolutely contin-
uous with respect to p̂.

5For instance, the optimum of the reverse KL doesn’t necessarily match that of the forward KL within the
parametric confusion set Q
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k of consecutive minibatches. In other words, if Bi and θi denote the minibatch and adversary
parameters at step i respectively, the normalizer at step t will be

Z̃k =
1∑t

i=t−k |Bi|

t∑
i=t−k

∑
x,y∈Bi

e
`(x,y;θi)

τ . (9)

If k is too low, there is a risk of under-estimating the normalizer, especially if the distribution of
weights contains infrequent high weight samples. On the other hand, if k is too high there is a risk
of using “stale” weights in the normalizer. In experiments, we treat k as a hyper-parameter.

3.3 OPTIMAL STOPPING

When should one stop training a model with P-DRO? In ERM it is customary to stop training after
the empirical risk — periodically evaluated on a held out validation dataset — stops decreasing. This
is particularly important to prevent over-fitting to the training data. However, it is not an appropriate
criterion for P-DRO, since the model is not trained to minimize empirical risk in the first place. A
more pertinent choice is to compare the robust validation losses

Lrobust,valid(θ) = max
qψ∈Q

1

|Dvalid|
∑

x,y∈Dvalid

qψ(x, y)

qψ0(x, y)
`(x, y; θ)︸ ︷︷ ︸

:=Lvalid(θ,ψ)

. (10)

However, finding the inner supremum for each of the T evaluation checkpoints θ1 . . . θT is expensive
as it requires solving T independent optimization problems. Instead, we leverage the existence
of adversaries ψt associated with each model θt, as well as the initial adversary ψ0 and take the
maximum over the T + 1 adversaries {ψ0, . . . , ψT }. Since our relaxation of the P-DRO objective
loosens the KL constraint, we need weed out adversaries which might violate it. Specifically, we
estimate the KL(qψ‖p) = Ep qψ/p log qψ/p on the validation set, using qψ/qψ0 as a stand-in for
qψ/p, and reject all adversaries for which the result is greater than a threshold, which we set to log 10
based on preliminary experiments detailed in Appendix C.1.6 We refer to this stopping criterion as
Minmax.

Computing the full min-max necessitates keeping track of T models and T +1 adversaries, which is
ponderous when the model is large. As a solution, we propose an approximation, Greedy-Minmax,
in which we only keep one best model θ∗. At each evaluation step T , we compare θT to θ∗, and
update θ∗ to whichever achieves lower robust validation loss over the T +1 adversaries ψ0, . . . , ψT .

By keeping track of only one additional model, and using the weights qψt (xi,yi)

qψ0
(xi,yi)

of individual exam-
ples in Dvalid as sufficient statistics for computing the loss against each adversary, Greedy-Minmax
can be achieved with space complexity 2dmodel + T |Dvalid|, which is much more efficient than the
T (dmodel + dadv) of Minmax.

3.4 HYPER-PARAMETER SELECTION

Our proposed P-DRO method relies on 3 different hyper-parameters (in addition to the model’s
hyper-parameters): the adversary learning rate λ, the temperature τ and the size of the re-
normalizing window k. As a consequence, we need a reliable criterion for deciding which of two
configurations is better. This model comparison bears many similarities with the stopping prob-
lem described above. Therefore, we resort to a similar solution: given two models θ1, θ2 trained
with P-DRO, and their respective adversaries {ψ1

0 , . . . , ψ
1
T }, {ψ2

0 , . . . , ψ
2
T } (for instance, the adver-

saries associated with θ1 and θ2 at periodic checkpoints during training), we select the best model
following

θ∗ = argmin
θ∈{θ1,θ2}

max
ψ∈{ψ1

0 ,...,ψ
1
T ,ψ

2
0 ,...,ψ

2
T }
Lvalid(θ, ψ). (11)

6To simplify notation, this additional constraint is implicit in the rest of this section.
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4 EXPERIMENTAL ANALYSIS OF P-DRO

Before moving on to a real world scenario in Section 5, we first demonstrate that P-DRO is able to
learn robust models in a synthetic Natural Language Processing (NLP) task, and perform ablation
studies to examine the importance of the various modifications described in Section 3.

4.1 EXPERIMENTAL SETTING

For analysis purposes, we design a simple NLP task amenable to DRO. We specifically choose
NLP as a domain due to the striking success of language models as generative models of textual
data (Sundermeyer et al., 2012; Radford et al., 2018), which can be used to model the uncertainty
set. We base our task off of the binary version of the Stanford Sentiment Treebank dataset (SST-2;
Socher et al. (2013)), which we modify to introduce spurious correlation. Specifically, we introduce
a distractor token to some sentences. The distractor we use consists of prepending “so , ” to the
sentence (“i hated this movie” −→ “so , I hated this movie”), which doesn’t change the underlying
sentiment. The resulting samples can be categorized in 4 “groups” depending on their label (positive
or negative) and the presence or absence of the distractor. In particular, we add this distractor to
95% of the negative reviews and 5% of the positive reviews in the training and validation set, so that
the presence of the distractor strongly correlates with negative sentiment (a similar construction is
proposed in (Utama et al., 2020)). In the test data, we modify 50% of all sentences for each class
equitably to ensure that there is enough data in each group, but we report “average” test accuracy
by re-weighting the group accuracies to mimick the training distribution. We call this modified task
BiasedSST.

For the classifier, we train a simple one layer BiLSTM model with embedding/hidden dimension
300. For the adversary, we adopt an auto-regressive transformer model based on the successful
GPT-2 language model architecture but with 6 layers, a dimension of 512 and 8 attention heads
(we experiment with a smaller, LSTM based adversary in Appendix C.2). In order to model the
input output pair (x, y), we pre-pend a special label-specific token to sentences before running them
through the language model. We train the model with Adam (Kingma & Ba, 2014) and the adversary
with vanilla stochastic gradient descent (which we found more stable in experiments). We refer to
Appendix B for specific details of the experimental setting.

4.2 P-DRO CAN LEARN ROBUST MODELS

Table 1: Average and robust accura-
cies on BiasedSST. Underlining indi-
cates statistically significant difference
compared to ERM (p < 0.05)

Robust Average

ERM 2.15 ± 0.97 95.09 ± 0.16

Topic CVaR 5.18 ± 1.46 95.00 ± 0.10

NonParam 28.11 ± 2.16 92.45 ± 1.55

P-DRO 34.98 ± 9.39 84.21 ± 2.11

Oracle DRO 67.71 ± 3.03 77.91 ± 4.49

We train 7 models with P-DRO on BiasedSST using dif-
ferent hyper-parameters for the adversary. We start from
configuration λ = 10−4, τ = 0.01, k = 5, and for
each hyper-parameter we run a configuration with a smaller
and a higher value, keeping all other hyper-parameters the
same. We train for 50 epochs and select the best model
using the strategies described in Section 3.

We also compare three other approaches. First, to appreci-
ate how well the model could perform if the groups were
known at training time, we train with Group-DRO on the
oracle groups using an exponentiated-gradients based on-
line algorithm (Oracle DRO; Sagawa et al. (2020)). Sec-
ond, we implement Topic CVaR (Oren et al., 2019), a
method for DRO on NLP where the uncertainty set is determined by mixtures of a topic model.
Finally, we compare to non-parametric DRO with a Kullback-Leibler (KL) constrained uncertainty
set (Hu & Hong, 2013; Hu et al., 2018), which we adapt to fit our online mini-batch training setting
(NonParam). We refer to Appendix B.3 for details and hyper-parameters of the baselines.

We report the worst-case (“robust”) accuracy over all groups on the test set, as well the average
accuracy in Table 1 (we report the mean and standard deviation over 5 runs). We find that both Topic-
CVaR, NonParam and P-DRO are more robust than ERM, but the latter outperforms the former two
close to 30 and 7 points respectively, achieving 52% of Oracle DRO’s robust accuracy, while not
leveraging any information on the oracle groups.
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Table 2: Effect of different optimal stopping and hyper-parameter selection strategies on robust
validation accuracy.

(a) Optimal stopping

Criterion Robust accuracy

Average 0.00 ± 0.00

Minmax 25.22 ± 13.01

+KL constraint 31.30 ± 10.07

+Greedy-Minmax 32.17 ± ± 11.20

Oracle 50.95 ± 5.01

(b) Hyper-parameter selection

Criterion Robust accuracy

Average 31.03 ± 12.16

Minmax 28.62 ± 12.37

+KL constraint 35.65 ± 11.47

Oracle 38.26 ± 13.01

4.3 OPTIMAL STOPPING AND HYPER-PARAMETER SELECTION ABLATION

To understand the importance of the optimal stopping and hyper-parameter selection strategy de-
scribed in Section 3.3, we perform an ablation on the BiasedSST dataset comparing 4 strategies:

• Average: models are selected based on their average zero-one loss (i.e. error rate) on the
unmodified validation set. This is the baseline stopping criterion.

• Minmax: selection based on the adversaries (as described in Section 3.3), with and without
the KL constraint, as well as its variant Greedy-Minmax for stopping.

• Oracle: in this setting the groups are known (in the validation set), and models are selected
based on their error rate on the worst performing group. This is the optimal criterion for
the group-DRO setting we are considering.

To compare stopping criterions experiments, we only consider one set of hyper-parameters: λ =
10−4, k = 5 and τ = 0.01. From the robust validation accuracies reported in Table 2a, we first
observe that Average stopping results in a robust accuracy of 0, highlighting the necessity for a
suitable stopping criterion. We find that Minmax, especially with a KL constraint, is a much bet-
ter strategy, recovering ≈ 60% of the performance achievable with Oracle stopping. Notably, the
Greedy-Minmax variant which we use in practice reaches very close results (< 1 point difference)
despite its requiring to keep track of only 2 out of the 50 model checkpoints at any time.

To understand the effectiveness of the Minmax strategy for selecting hyper-parameters. We take
the models trained in Section 4.1, but select the best hyper-parameters using the different strategies
described above. Results, shown in Table 2b, confirm that Minmax (with the KL constraint) is a
better choice than Average for selecting hyper-parameters, even though the improvement is not as
striking as for stopping.

4.4 IMPORTANCE OF LADV

Figure 2: A toy classifi-
cation task.

Finally, we investigate the importance of modifying the adversary’s ob-
jective as described in Section 3.2. For this experiment, we devise a sim-
pler toy task on which directly training the constrained DRO objective
is possible. Specifically, we consider the two-dimensional binary clas-
sification problem pictured in Figure 2. The training data consists of
10,000 points partitioned in two normally distributed “domains” with a
1:50 sampling ratio and different classification boundaries. We train a
logistic regression model, which cannot perfectly fit the training data and
must trade-off between accuracy on each domain. For the sake of simplic-
ity, we only model the input variables x7 as isotropic normal distributions
with fixed variance: the adversaries’ parameter ψ ∈ R2 represents the
location of the Gaussian (we fix the variance to the empirical variance of the data).

7In other words, we set qψ(x, y) = p(y | x)qψ(x), where p(y | x), is the true conditional which will be
canceled out in the ratio qψ(x,y)

qψ0
(x,y)

.
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Table 3: Ablation of P-DRO to train the
linear model on the toy task. We report
accuracy on both domains, as well as
robust accuracy.

Average Robust

ERM 84.66 ± 0.10 49.75 ± 0.05

bare P-DRO 49.97 ± 0.10 49.85 ± 0.10

+kl constraint 76.63 ± 9.93 58.41 ± 9.25

+Ladv 76.97 ± 0.43 64.32 ± 1.31

We compare 3 different versions of P-DRO: first, naive si-
multaneous gradient descent on the zero-sum game, with-
out any constraint on the adversary (bare P-DRO), then
the same, but with an approximation of the explicit KL
constraint between qψ and qψ0

(+KL constraint; see Ap-
pendix A.2 for more details). Finally we report results us-
ing our relaxation and the KL reversal described in Section
3.2 (+Ladv). For each setting, we report the average and
robust accuracy with mean and standard deviation over 10
runs. For the KL constraint and the relaxation, we report
the best results among 4 values of the KL bound κ and the temperature τ respectively.

In Table 3, we observe that bare P-DRO is too unstable and systematically diverges. The addition of
a KL constraint mitigates this behaviour, but the zero-sum objective is still unstable, as evidenced by
the high standard deviations. Finally, we find that the addition of Lrev stabilizes the training process
greatly, leading to consistently high robust accuracy.

5 P-DRO IN PRACTICE: CASE STUDY OF TOXICITY DETECTION

In this section, we demonstrate the effectiveness of P-DRO in the more realistic setting of toxicity
detection, the task of recognizing various forms of toxic language (eg. hate speech or offensive
language). Identifying online abuse on the internet is a crucial challenge, and has garnered much
interest in the NLP community (Schmidt & Wiegand, 2017; Fortuna & Nunes, 2018). However,
recent work (Sap et al., 2019) has shown that there is strong correlation between toxic labels and the
presence of certain markers of dialects of English spoken by minority groups. This correlation is in
turn amplified by hate speech classifiers trained on such data, leading to biased prediction.

Our results on BiasedSST suggest that P-DRO can provide one solution to preventing models from
absorbing spurious correlations present in their training data, even in the absence of protected at-
tributes (such as language variety here).

5.1 EXPERIMENTAL SETTING

Following Sap et al. (2019) and Xia et al. (2020), we perform experiments on two datasets:
DWMW17 (Davidson et al., 2017), a corpus of 25K tweets classified in three categories: hate
speech (6%), offensive (76%) and neither (18%), and FDCL18 (Founta et al., 2018), a 100k sized
dataset, also collected from Twitter and annotated with an additional spam label, with the following
breakdown by categories: hateful (5%), abusive (27%), normal (54%) and spam (14%).

The released version of these datasets does not contain information on the dialect of each user. In
order to be able to evaluate our models, and to train an Oracle DRO baseline, we follow Sap et al.
(2019) and use annotations provided by the dialect classifier described in Blodgett et al. (2016) to
label each example as one of four English varieties: White-aligned, African American, Hispanic, and
Other. Note that, as these are automatically obtained labels, the groups may not exactly correspond
to the actual racial sociolects, however Sap et al. (2019) does report that they correlate highly with
self-reported race, and they serve as a useful proxy in the absence of manual annotation.

We formulate the group-DRO problem by separating each dataset into independent groups identified
by both language variety and label, for a total of 12 and 16 groups for DWMW17 and FDCL18 re-
spectively. Some of these groups are severely under-represented in the test set. In order to make our
robust accuracy results reliable yet still representative of the under-represented groups, we combine
groups that contain less than 100 samples into a single group to compute robust test accuracies.

On DWMW17, we train the same BiLSTM model as described in Section 4.3. To illustrate the ap-
plicability of P-DRO to other model architectures, we pick BERT (Devlin et al., 2018), a large scale
pre-trained model as a classifier on FDCL18. In both cases, we adopt the Transformer architecture
described in Section 4.3 as the adversary. We train the adversary with a temperature of τ = 0.01
and a normalizing window k = 10. To demonstrate the efficacy of automatic hyper-parameter selec-
tion in the P-DRO setting, we delegate the choice of the adversary’s learning rate λ to grid-search,
training 3 models with λ ∈ {10−5, 10−4, 10−3} and selecting the best using the Minmax criterion
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Table 4: Robust test accuracy on the DWMW17 and FDCL18 toxicity detection tasks.

(a) No group information.

DWMW17 FDCL18
Robust Average Robust Average

ERM 53.19 ± 1.70 69.44 ± 0.53 19.57 ± 7.00 81.56 ± 0.26

Topic CVaR 45.26 ± 3.47 61.68 ± 5.02 16.48 ± 5.46 80.49 ± 0.49

NonParam 54.13 ± 1.14 70.54 ± 0.64 17.54 ± 6.41 81.20 ± 0.11

P-DRO 69.06 ± 1.70 69.69 ± 2.50 30.25 ± 10.13 79.91 ± 1.41

Oracle DRO 74.50 ± 1.74 65.79 ± 0.76 55.23 ± 3.97 72.43 ± 2.61

(b) With group information on the validation set.

Robust Average Robust Average

ERM 53.15 ± 0.87 69.64 ± 1.01 34.07 ± 3.20 78.78 ± 0.38

Topic CVaR 52.02 ± 1.26 69.11 ± 0.49 34.82 ± 3.73 79.59 ± 0.85

NonParam 49.41 ± 5.60 58.53 ± 5.71 43.13 ± 6.97 69.51 ± 3.07

P-DRO 63.05 ± 4.25 63.07 ± 3.92 47.61 ± 4.53 74.82 ± 1.90

Oracle DRO 74.50 ± 1.74 65.79 ± 0.76 55.23 ± 3.97 72.43 ± 2.61

described in Section 3.4. We also report numbers for Oracle DRO and Topic CVaR. Results are
averaged over 5 runs, each with a different random seed.

5.2 CAN P-DRO PRODUCE MORE ROBUST MODELS?

Table 4a reports the robust test accuracies of all models on both tasks. Importantly, except for Oracle
DRO, none of the methods compared here necessitate any knowledge of the groups, neither in the
training nor validation data. We observe that in both settings P-DRO is able to achieve higher robust
accuracy than ERM, Topic-CVaR and NonParam.

This suggests P-DRO as a useful option in case no group information whatsoever is available.
However, in practice, it may be feasible to annotate at least a small amount of data with group
information. To emulate this scenario, we perform the same experiment, but assume that group
annotations are available on the validation data, which we use to determine optimal stopping and
hyper-parameters. Results for this setting are reported in Table 4b. We find that, while the use of ro-
bust validation accuracy yields more robust models even for ERM (especially on FDCL18), P-DRO
is still the best alternative that doesn’t require group annotation on the training data.

6 IMPLICATIONS AND OUTLOOK

We have shown that there is promise in using parametric families of neural generative models for
defining the uncertainty set in distributionally robust optimization. While we only perform experi-
ments on NLP tasks, this approach can, in theory, be applied in any modality and in future work we
hope to pursue this direction. In such cases where good quality generative models are unavailable, or
such model cannot produce densities efficiently, an interesting direction would be to model the like-
lihood ratio qψ/p directly. This alternative formulation poses different implementation challenges,
and we leave it as a promising avenue for future research.
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Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language model-
ing. In Proceedings of the 13th Annual Conference of the International Speech Communication
Association (InterSpeech), 2012.

Prasetya Ajie Utama, N. Moosavi, and Iryna Gurevych. Towards debiasing nlu models from un-
known biases. arXiv preprint arXiv:2009.12303, 2020.

Zhengwei Wang, Qi She, and Tomas E Ward. Generative adversarial networks in computer vision:
A survey and taxonomy. arXiv preprint arXiv:1906.01529, 2019.

12

https://www.aclweb.org/anthology/D19-1432
https://www.aclweb.org/anthology/D19-1432
https://arxiv.org/pdf/1911.08731.pdf
https://www.aclweb.org/anthology/P19-1163
https://www.aclweb.org/anthology/P19-1163
https://www.aclweb.org/anthology/W17-1101
https://www.aclweb.org/anthology/W17-1101


Published as a conference paper at ICLR 2021

Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. Demoting racial bias in hate speech detection. In
Proceedings of the 9th International Workshop on Natural Language Processing for Social Me-
dia (SocialNLP), pp. 7–14, 2020. URL https://www.aclweb.org/anthology/2020.
socialnlp-1.2.

A DERIVATIONS

A.1 REORGANIZING THE LAGRANGIAN L(ψ, τ)

Let us write the Lagrangian L explicitly:

L(ψ, τ) = E(x,y)∼qψ
p(x, y)

qψ0
(x, y)

`(x, y, θ)− τ (KL(qψ‖p)− κ) (12)

= E(x,y)∼qψ
p(x, y)

qψ0
(x, y)

`(x, y, θ)− τ E(x,y)∼qψ log
qψ(x, y)

p(x, y)
+ τκ (13)

= τ E(x,y)∼qψ log

p(x, y)e p(x,y)
qψ0

(x,y)
`(x,y,θ)

τ

qψ(x, y)

+ τκ (14)

= τ(κ− KL(qψ‖q∗τ,θ)) + log

(
E(x,y)∼p e

p(x,y)
qψ0

(x,y)
`(x,y,θ)

τ

)
(15)

This last step requires that the log moment generating function of ` under p exist for τ . In most
scenarios we consider, ` is typically the negative log likelihood of a neural network model, which is
generally bounded. Therefore the moment generating function is defined everywhere.

Note that the KL term is the only one dependent on ψ, therefore maximizing L for ψ is equivalent
to maximizing −KL(qψ‖q∗τ,θ), in other words minimizing KL(qψ‖q∗τ,θ)

A.2 ENFORCING THE KL CONSTRAINT IN THE TOY SETTING

Even in this simplest setting, the exact KL between qψ (a gaussian) and p (a mixture of gaussians)
does not have an analytical expression (Hershey & Olsen, 2007). Instead, we fall back on enforcing
the KL constraint between qψ and qψ0 , both isotropic gaussians with the same standard deviation.
Let µ and µ0 ∈ R2 denote their respective mean, and σ > 0 their standard deviation. In this context,
their KL divergence reduces to:

KL(qψ‖qψ0) = KL(qψ0‖qψ) =
1

2σ2
‖µ− µ0‖2

In other words, the KL divergence is equivalent to the euclidean distance between the distributions’
means. We use this fact to project ψ (in the KL sense) onto Bκ = {ψ̂ | KL(qψ̂‖qψ0

) < κ}:

projBκ(ψ) := argmin
ψ̂∈Bκ

KL(qψ‖qψ̂)

= ψ0 +

√
2κσ

‖ψ − ψ0‖
(ψ − ψ0)

B EXPERIMENTAL DETAILS

We describe in more details some of the experimental settings for our NLP experiments. More
details can be found in our code release: https://github.com/pmichel31415/P-DRO.

B.1 MODEL SETTINGS

In all experiments, we split the text into sub-word tokens using the tokenizer described in (Devlin
et al., 2018). During training, we sample minibatches that contain at most 64 sentences or 2500
tokens, whichever is greater, in order to prevent GPU memory overflow in case of long sentences.
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We train all models with Adam (Kingma & Ba, 2014) with an initial learning rate of 2×10−5, which
we decay linearly at each step until the end of training. We validate the models every epoch. For
BERT, we start from the bert-base-uncased checkpoint.

B.2 ADVERSARY SETTINGS

In all experiments, we use a Transformer model based on the GPT-2 architecture (Radford et al.,
2019) to serve as the adversary. In order to initialize the adversary (to obtain ψ0), we first pre-train
the model on a generic, relatively large language modeling dataset, WikiText-103 (Merity et al.,
2017). We also use a batch size of 64 samples or 2500 tokens, and train with Adam for 10 epochs,
with a fixed learning rate of 3 × 10−4. Then, we fine-tune this model on each dataset, this time
minimizing the negative log-likelihood of the (x, y) pair (by introducing the special “[label]” token
as described in Section B), using the same hyper-parameters but a smaller learning rate (10−5). We
find that, due to the small to medium size of the datasets under consideration, this LM pretraining
step helped achieve lower error on the generative modeling task.

B.3 BASELINE SETTINGS

B.3.1 TOPIC CVAR

To train the topic model for Topic CVaR, we first pre-process the text by removing all punctuation,
urls and user mentions (for twitter data). Importantly, we remove stop-words for our toxicity exper-
iments but not for our BiasedSST experiment. This is because the distractor token we use (“so”)
belongs to most English stop words lists, and removing it would completely prevent the topic model
from picking up on the groups of interest. We then estimate the parameters of the model with Gen-
sim8 and use similar settings as Oren et al. (2019) (α = 0.1, β = 1.0), setting the number of topics
to 10.

For both Oracle-DRO and Topic-CVaR, we use the algorithm proposed in Sagawa et al. (2020) to es-
timate the worst-case group (either oracle group or topic in Topic-CVaR) online during training. We
perform grid-search over {1, 0.1, 0.01} to find the best learning rate for the group weights update.
For Oracle DRO, the best model is simply selected by robust validation accuracy. For Topic CVaR,
unless specified otherwise, we select the model with the lowest worst-case error over all topics.

B.3.2 NONPARAM

In the KL-constrained non-parametric setting, the min-max problem reads

min
θ

max
q s.t.

KL(qψ‖p)≤κ

E(x,y)∼q`(x, y, θ). (16)

Here, κ is the desired radius of the KL ball, and is treated as a hyper-parameter. The solution of the
inner maximum has an analytical solution of the form q∗θ = a

Zθ,τ∗
p(x, y)e

`(x,y;θ)
τ∗ (see Hu & Hong

(2013); Hu et al. (2018) for details) with Zθ,τ∗ = Epe
`(x,y;θ)
τ∗ and τ∗ such that

KL(q∗‖p) = Ep
e
`(x,y;θ)
τ∗

Zθ,τ∗

(
`(x, y; θ)

τ∗
− logZθ,τ∗

)
= κ.

Note that both computing Zθ,τ∗ and KL(q∗‖p) require taking expectations over p. In our setting,
where `(x, y; θ) is the output of a large neural network, we cannot afford to take this expectation
over the entire training data at each step. Instead, we fall back to taking the average over each mini-
batch. We find τ∗ with binary search in log10 space within the [10−10, 1010] interval and clip to the
lowest or highest value should the result lie outside the search interval.

8https://radimrehurek.com/gensim/
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Figure 3: Evolution of the robust validation accuracy of the model selected by Greedy-Minmax as
a function of the KL threshold κvalid

In all experiments, we try 4 different values for κ: 0.01, 0.1, 1 and 10. Unless indicated otherwise,
we perform early stopping and hyper-parameter selection using our Minmax criterion using the
non-parametric weights as adversaries on the validation data.

C ADDITIONAL EXPERIMENTS

C.1 MINMAX VALIDATION KL THRESHOLD

The Monte-Carlo estimate of KL(qψ‖p) on the validation set is
1

|Dvalid|
∑
x,y∈Dvalid

qψ(x,y)
p(x,y) log

qψ(x,y)
p(x,y) . Similarly to Section 3, we approximate the (unknown)

likelihood ratio qψ(x,y)
p(x,y) with qψ(x,y)

qψ0
(x,y) .

We want to reject all adversaries where this approximated KL is greater than some threshold, κvalid,
but how do we choose a good value for κvalid? Consider an adversary which selects a fraction of
the validation data of size α|Dvalid| for some α ∈ (0, 1]. In such a case, the likelihood ratio is 1/α
on this subset and 0 everywhere else, and the resulting KL estimate will be logα. In other words,
choosing a threshold of κvalid means allowing the adversary to potentially select any subset of size
at least 1/eκvalid of the original data. Our heuristic choice, log 10, corresponds to allowing subsets of
size at least 10% of |Dvalid|.
Of course, this is only a heuristic because the adversary can reweight the validation set non-
uniformly. To assess the effect of κvalid on Greedy-Minmax, we compute the average robust val-
idation error of the selected model across 5 runs for 3 different values of the adversary’s learning
rate. Results on BiasedSST, depicted in Figure 3, show that adversaries with higher learning rate are
more sensitive to the choice of threshold, but all values of κvalid between log 5 and log 20 seem to
work for these settings.

C.2 P-DRO EXPERIMENTS WITH AN LSTM ADVERSARY

We replicate the experiments BiasedSST experiments in Section 4, but this time using a smaller
generative model, which is unlikely to generate good samples. Specifically, we use a one layer
LSTM model (Hochreiter & Schmidhuber, 1997) with embedding and hidden dimension 256. We
only perform grid-search over λ ∈ [10−5, 10−4, 10−3] and select the best with Minmax.

Once pre-trained on the BiasedSST dataset, this model achieves a perplexity of 227.0, more than 4
times worse than the transformer model we use in other experiments (49.8). However, as evidenced
by its robust accuracy displayed in Table 5, P-DRO is still able to learn a robust model. We take this
as evidence that the re-weighting introduced in Section 3 helps stabilize training even when qψ is
not a perfect model of the data.
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Table 5: Average and robust accuracies on BiasedSST when P-DRO is trained with an LSTM
adversary. Underlining indicates statistically significant difference compared to ERM (p < 0.05)

Robust Average

ERM 2.15 ± 0.97 95.09 ± 0.16

Topic CVaR 5.18 ± 1.46 95.00 ± 0.10

NonParam 28.11 ± 2.16 92.45 ± 1.55

P-DRO 43.68 ± 4.93 86.58 ± 1.77

Oracle DRO 67.71 ± 3.03 77.91 ± 4.49

Table 6: Effect of hyper-parameters on robust validation accuracy on BiasedSST

Robust accuracy
Minmax stopping Oracle stopping

λ = 10−5 28.62 ± 12.37 45.10 ± 4.50

λ = 10−4 44.74 ± 3.24 50.43 ± 5.05

λ = 10−3 25.57 ± 10.33 38.70 ± 2.97

τ = 0.1 39.72 ± 5.55 50.00 ± 4.98

τ = 0.01 44.74 ± 3.24 50.43 ± 5.05

τ = 0.001 44.74 ± 3.24 50.87 ± 5.09

k = 1 41.98 ± 4.48 49.60 ± 5.39

k = 5 44.74 ± 3.24 50.43 ± 5.05

k = 10 32.17 ± 11.20 50.95 ± 5.01

C.3 INFLUENCE OF HYPER-PARAMETERS ON P-DRO

We study the influence of the 3 hyper-parameters τ (temperature), k (size of the renormalization
window) and λ (learning rate of the adversary) on the performance of P-DRO. All experiments
are run on the BiasedSST dataset, and the analysis proceeds as follows: starting from configuration
τ = 0.01, k = 5 and λ = 10−4 and vary each of the hyper-parameters independently. We report two
numbers for each configuration: robust accuracy of the best model using Greedy-Minmax stopping
and using Oracle stopping. The latter is useful to disentangle the effect of the stopping criterion.

As seen in the results shown in Table 6, we find that τ has the least effect on robust accuracies.
While the renormalization window parameter k has some effect on optimal stopping, the best robust
accuracy achieved by the model (with oracle stopping) varies little. We observe the adversary’s
learning rate λ to be the most sensitive hyper-parameter, which is why we restrict our grid-search to
λ in Section 5.
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