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ABSTRACT

Regulators seek to curb the societal risks of machine learning; a common aim is
to protect the public from excessive privacy violations or bias in models. In the
status quo, regulators and companies independently evaluate societal risk. We find
that discrepancies in these evaluations can be either a detriment or an advantage
for companies. To abide by regulation, a company needs to conservatively eval-
uate risk: it should train its model such that risk remains below the acceptable
threshold—even if the regulator’s evaluation returns higher risk measurements.
This decreases model utility (up to 8%, in our experiments). Conversely, when the
regulator’s measurements are consistently lower than theirs, we find that a company
can behave strategically and game regulation to train more accurate models. We call
this Lossgate, an allusion to Dieselgate in environmental regulation: Volkswagen
produced cars that limited their emissions when being subjected to a regulator’s
emissions measurement. To model incomplete information and the misaligned
incentives that explain Lossgate, we leverage game theory. We obtain SPECGAME,
a model for regulator-company interactions which allows us to estimate the exces-
sive risk that results from the strategic behavior observed in Lossgate. We show
Lossgate costs 70–96% higher compared to collaborative regulation in the sum
cost for all players.

1 INTRODUCTION

The societal risks of deploying machine learning (ML) are well documented. To contain these risks,
companies are increasingly expected to deploy ML algorithms that have been adapted to support
algorithmic fairness (Pedreshi et al., 2008; Calders & Verwer, 2010), privacy (Blum et al., 2005;
Abadi et al., 2016), robustness (Szegedy et al., 2013), or interpretability (Linardatos et al., 2020), to
name a few. Meanwhile, regulators around the world seek to enforce new legislation that captures the
public’s expectation of how strongly an ML application should contain the associated societal risks.
For instance, a regulator may enforce a maximum limit on privacy and fairness violations.

Regulators and companies currently evaluate societal risk independently from one another. This is
because the regulator is a separate entity from the company. Two key issues arise from this separation:
misaligned incentives and imperfect information. Recall our running example of a regulator that
wishes to enforce a maximum limit on privacy and fairness violations. In this example, the company
instead wishes to maximize model accuracy—which can be interpreted as a proxy for financial profit.
If we visualize the trade-offs between model accuracy and societal risks (i.e., privacy and fairness
violations) realized by a given training algorithm, we obtain the Pareto frontier in Figure 1:

• Misaligned incentives lead the regulator and company to prefer two very different points
on this Pareto frontier. The regulator prefers point A with minimal privacy and fairness
violation. Instead, the company prefers point B which maximizes model accuracy.

• Imperfect information implies that the regulator and company work with slightly different
Pareto frontiers. This is due to differences in their respective estimations of societal risks.
The less transparent a company is towards the regulator, the more imperfect information is.
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Figure 1: Companies can behave strategi-
cally to (temporarily) achieve B but over
multiple interactions {at} with the regula-
tor, this strategy, compared to collabora-
tion C , will lead to worse outcomes for
all parties due to repeated release of un-
trustworthy models and the resulting fines.

One of our key contributions is showing how imperfect
information, when combined with misaligned incentives,
can be either a detriment or an advantage for companies. If
a company genuinely aims to abide by legislation, it will
account for possible differences between the regulator’s
and the company’s estimations of societal risks. This is
detrimental to the company; it will train a model that is over-
conservative by picking a point on the Pareto frontier that
is strongly in favor of reducing the societal risks, at the cost
of producing lower-accuracy models. Instead, if a company
‘bends the law,’ it can behave strategically and leverage
any difference between the regulator’s and the company’s
estimations of societal risks to train models whose accuracy
is higher—hence increasing financial profit. Put another
way, the company is adopting an anti-conservative trade-
off: the point it picks on the Pareto frontier is strongly in
favor of producing the most useful model at a larger societal
risk. We refer to this failure mode as Lossgate, alluding to
Dieselgate in environmental regulation (see abstract).

These two issues, imperfect information and misaligned incentives, would not exist if the regulator
and company were a single entity. This is of course not possible. Hence, we cast ML regulation
as a principal-agent problem (PAP), the canonical framework in agency theory (Eisenhardt, 1989),
commonly employed in risk analysis to formalize industrial regulation like environmental (Bier &
Lin, 2013) and financial regulation (Alexander, 2006). The PAP formulation of regulator-company
interactions defines a game, SPECGAME, where the regulator and company take turn in assigning
penalties and releasing models, respectively.

We can then use game theory to analyze SPECGAME and design effective regulation; that is, avoid
unnecessary societal risks and unnecessary economic expenditure (i.e., loss of model accuracy).
To do so, effective regulation guides the regulator and company towards behavior that is closest to
collaboration, as if they were making decisions as a joint committee (i.e., virtually becoming a single
entity). We call this ideal setting COLLABREG and use it as a frame of reference for SPECGAME.

In the illustrative Figure 1, the outcome of COLLABREG is for the committee to choose C , while
that of SPECGAME is closer to the sequence {at} of interactions between the regulator and the
company. Note that, although the final outcome of both is adoption of C , in SPECGAME both
agents fared worse: each release of an untrustworthy model harmed the public and each penalty
costed the company money. In other words, strategic behavior is inherently inefficient. We quantify
this inefficiency by the ratio of the sum cost of regulators and the companies in SPECGAME vs.
COLLABREG. We empirically find that strategic behavior collectively cost all entities involved up to
96% higher than collaboration using models trained on 6 tabular and vision datasets.

Simulating the outcomes of SPECGAME benefits both regulators and companies. For companies, we
show that even in the absence of strategic behavior, imperfect information leads to excessive utility
loss—by up to 8%. This is the result of uncertainty in privacy risk estimations. Hence, increased
transparency from the company can in fact benefit the company itself. For regulators, our work stresses
the need for regulation that is not only data-driven (Hildebrandt, 2018) and task-adapted (Coglianese,
2023) but also cognizant of the socioeconomic context of ML models. SPECGAME enables this
because regulators can simulate the outcome of their policies in a virtual regulatory sandbox (Jeník
& Duff, 2020) before deploying them. As a concrete example, we demonstrate that for a gender
classification application, regulators can enforce a privacy budget ε that is on average 6 lower if they
initiated SPECGAME by specifying their desired guarantee first. This comes at negligible expense for
the company in terms of accuracy. In summary,

• We formulate, for the first time (to the best of our knowledge), regulation of trustworthy
ML as a Principle-Agent problem (PAP), the canonical framework to formalize industrial
regulation. We highlight the separation between the regulator and the company and the
imperfect information and misaligned incentives that ensues.

• We demonstrate that uncertainty in trustworthy auditing causes utility loss—up to 8% in the
UTKFace dataset—due to incomplete information between the regulator and the company.
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• To capture the risk of misaligned incentives and strategic behavior, we introduce SPECGAME
which models the interactions between the regulator and builder as a Stackelberg game.

• We present a novel algorithm, PARETOPLAY, to simulate SPECGAME, proving it recovers
equilibria. Simulations show the cost of strategic behavior can be 70–96% higher compared
to collaborative regulation, based on evaluations over six tabular and vision datasets.

2 RELATED WORK AND BACKGROUND

Related Work. It has been shown that there exist tensions between model accuracy, privacy, and
fairness (Tramer & Boneh, 2020; Suriyakumar et al., 2021; Farrand et al., 2020). Attempts to improve
the resulting trade-offs have involved adapting the training procedure (Xu et al., 2019; Mozannar et al.,
2020; Franco et al., 2021; Tran et al., 2021), a form of hyperparameter search (Avent et al., 2019),
or calculating Pareto frontiers (Jagielski et al., 2019; Yaghini et al., 2023). Note that, in contrast to
our work, all prior frameworks do not consider the inherent multi-agent nature of the problem: they
characterize trade-offs without modeling the regulator (who is enforcing trustworthiness) and the
company (who is implementing trustworthiness) as separate entities. While it integrates some of the
techniques from prior work, our work innovates by developing the SPECGAME framework to model
the interactions between the regulator and company.

For brevity, our paper considers two societal risks: algorithmic bias and leakage of private information.
Our framework is more general and extensible to other risks (see Appendix A.1). We now formalize
the corresponding definitions of fairness Γ(.) and privacy E(.).
Fairness. The choice of fairness measure is largely task-dependent and at the behest of the
regulators (Barocas et al., 2018). Hence, our framework abstracts this choice and does not make any
assumptions on the applied metric. The fairness evaluation process takes as input a fairness metric
Γfair(ω,D) :W ×X 7→ R+ chosen by the regulator, the model ω ∈ W , and an adequate evaluation
dataset Deval ∈ X , Deval ∼ D, where D is the task’s data distribution. The evaluation process then
outputs γ̂ω as an empirical estimate of the model’s fairness violation. In Section 4, we instantiate
concrete ML algorithms with their stated fairness measures which we discuss in detail in Appendix G.

Privacy. In the context of ML, Differential Privacy (DP) (Dwork et al., 2006) adds controlled
noise to the ML algorithm to protect contributions individuals make to the training set—while still
yielding useful models. Our work considers the (ε, δ)-differential privacy setup. LetM : X → R be
a randomized algorithm. In our case,M is either the training algorithm or the inference procedure.
M satisfies (ε, δ)-DP with ε ∈ R+ and δ ∈ [0, 1] if for all neighboring datasets D ∼ D′, i.e., datasets
that differ in only one data point, and for all possible subsets R ⊆ R of the output space it must hold
that P [M(D) ∈ R] ≤ eεP [M(D′) ∈ R] + δ.

In our formulations, similar to fairness, we consider a privacy-parameter evaluation function E(ω,D) :
W ×X 7→ R+. The evaluation process produces ε̂ω as an estimation of the (true) privacy parameter
of the model εω . Auditing DP learning is a non-trivial problem due to the worst-case nature of privacy
failures (which are intrinsically rare events (Nasr et al., 2021; Chadha et al., 2024)). While our work
does not directly contribute to privacy auditing, it benefits from ongoing progress in this area.

Problem Formulation: Collaborative ML Regulation

Before we introduce our model for the company to interact with a regulator, possibly strategically,
we first need to understand the baseline of voluntary collaboration. In this baseline, which we called
COLLABREG in Section 1, the regulator and company form a committee that jointly produces a model
that balances accuracy and societal risks, i.e., is trustworthy.

Formally, the committee wishes to train a model ω ∈ W on dataset D ∼ D where D is the data-
generating distribution. W := Θ× Φ is the space of models with dim(Θ) parameters and dim(Φ)
hyper-parameters. Model ω may have many hyper-parameters, only a subset S ⊂ Φ of which impacts
the trustworthy metrics that interests the committee due to their impact on societal risk. We call S
the set of trustworthy hyper-parameters. For instance, a convolutional network trained with DP has
dim(Φ \ S) hyper-parameters like filter-size, and dim(S) = 2 trustworthy hyper-parameters, namely
the privacy parameters (ε, δ) used to train the model (see Section 2). Training such a model is a
bi-level optimization problem. The committee first needs to pick trustworthy hyper-parameters s; this
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is the outer problem. Then, given these trustworthy hyper-parameters s, training proceeds as usual to
optimize the model parameters and any remaining hyper-parameter; this is the inner problem.

Our focus is on the outer optimization problem. In our running example of a committee training a
model that is accurate, fair, and private, the outer problem combines 3 penalties each corresponding to
the solution to the inner problem for one of the 3 properties (i.e., accuracy, fairness, or privacy). This
loss can be written in vector form as ℓ(s) = [ℓcomp(s) ℓfair(s) ℓpriv(s)]

⊤. Note that computing
each of these components involves solving the inner problem, i.e., finding model parameters θ∗ and
remaining hyper-parameters ϕ∗ by training the model. To scalarize ℓ(s), we introduce a weighting
vector λ = [1 λfair λpriv]

⊤. We obtain the outer problem minimizes∈S λ⊤ℓ(s). We note that the
weight vector λ is a free parameter and by varying it we obtain different Pareto optimal solutions to
problem (1). From an algorithmic point of view, all such solutions are valid and none is strictly better
than the other. However, this is not the case from a socioeconomic perspective. We thus need to
introduce constraints to the outer problem to indicate socioeconomic requirements of the committee:

minimizes∈S λ⊤ℓ(s)
subject to ℓcomp(s) ≤ α, ℓfair(s) ≤ γ, ℓpriv(s) ≤ ε.

(1)

The constraint on ℓcomp(s) := err(s) represents company’s concern regarding the accuracy of their
model. A model with error larger than α is not profitable to bring to the market. Since regulation
applies only to released models, we implicitly limit our search to those meeting this condition and
henceforth omit the explicit constraint. The two other constraints model regulators concerns about
societal risk. The fairness regulator measures violations using a fairness metric ℓfair(s) := Γ(s). A
model with violation Γ(s) > γ is deemed unacceptable. Similarly, the regulator measures privacy
cost with ℓpriv(s) := E(s) and mandates that E(s) ≤ ε.

The optimization problem in Equation (1) encapsulates many prior work in trustworthy ML (e.g.,
(Zafar et al., 2017)) where a single agent is tasked with optimizing for all objectives. Our main
contribution is to consider solutions to the above in a distributed multi-agent setting.

3 ML REGULATION AS A PRINCIPAL-AGENT PROBLEM

We consider ML regulation under the more realistic Principal-Agent setting, where unlike COL-
LABREG, there is a separation between the Principal (regulator) and the Agent (company). This
separation means that the regulators and the company can have separate i) goals, ii) knowledge,
and iii) actions. We can formally consider the consequences of this separation in the context
of Equation (1). Using its regularized version, we have:

min
s∈S
L(s) = min

s∈S
λ⊤ℓ(s) + (c⊙ 1[ℓ(s)⪰b])

⊤(ℓ(s)− b), (2)

where c = [0 Cfair Cpriv] are penalty scalars for constraint violations and b = [1 γ ε] the
trustworthy specification bounds. The Principal-Agent formulation introduces two changes to this
objective:

• The possibility of misaligned incentives introduced by the separation between the regulators
and the company means that they each have their own weighting vectors λreg and λcomp,
respectively. These vectors can be misaligned ∠(λcomp,λreg) ̸= 0.

• Incomplete information can manifest in two ways: hidden information and hidden action1.

Hidden information may occur as a result of differences in model architecture and hyper-parameters,
but favoring brevity, we focus on data inequality as a prototypical example: since two different
entities are evaluating Equation (2), the vector objective ℓ(s) is evaluated on separate datasets
Dreg, Dcomp ∼ D. Hidden action signals the uncertainty of an entity regarding the other entity’s
actions: in optimizing Equation (2), the company may loosen (or eliminate) the regularization term
(c⊙1[ℓ(s)⪰b])

⊤(ℓ(s)−b). This shows strategic behavior is possible. Thus, the regulator cannot trust
the company to apply the regularization term. Consequently, after announcing constraints b = (γ, ε)
as its trustworthy specification, the regulator chooses to enforce the penalty externally, for instance,
as a monetary fine (see Appendix A.2 for real-world examples).

1In agency theory, these are known as adverse selection and moral hazard, respectively (Alexander, 2006).
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Put altogether, the company is forced to solve:

min
s∈S
Lcomp(s) = min

s∈S

by the company︷ ︸︸ ︷
λ⊤

compℓ(s) +

by the regulators︷ ︸︸ ︷
(c⊙ 1[ℓ̂(s)⪰b])

⊤(ℓ̂(s)− b), (3)

where the second term is the penalty evaluated by the regulator according to its estimation of the
violations of ℓ̂(s) from the specification bounds b. Note that due to the uncertainty in regulators’
estimations, even a non-strategic company may get penalized by this hidden information. We will
differ formally studying strategic behavior that results from hidden action to Section 3.1. Next, we
show that, even in the absence of strategic behavior, hidden information leads to degraded utility.

Hidden information leads to loss of utility for the company. If we take the company’s perspective,
hidden information translates into ℓ(s) being an incorrect estimation of the regulator’s ℓ̂(s). Recall
our running example of a regulator enforcing fairness and privacy. The values of both corresponding
penalties can be mis-estimated by the company.

For privacy, estimation uncertainty arises from the fact that the DP parameter ε is a theoretical
upperbound on the true privacy leakage of the model ω: ε− < εω < ε. The true privacy leakage of
the model εω depends on training data, and the capabilities of the regulator auditing privacy. Thus,
companies estimate a lower bound ε− which, together with the theoretical upperbound, provides an
estimate on εω , as well as an uncertainty measure for the privacy leakage of their model ∆ε := ε−ε−.
Research has shown that ∆ε can be large relative to ε (Nasr et al., 2021; Chadha et al., 2024).

Similarly, a large body of work have documented the “instability” of fair classification (Friedler et al.,
2018; Huang & Vishnoi, 2020; Cooper et al., 2024) with respect to variations in the training dataset.
As a result, black-box audits of fair classifiers can over- and under-estimate the true fairness violations
of the model as well. Given the uncertainty regarding fairness and privacy risks of the model, the
threat of penalties can lead to over-conservatism by the company. For brevity, we will show this
formally for the privacy risk (a similar argument holds for fairness). We can re-write Equation (3) as:

min
s
L̃comp(s) = min

s
err(s) + λpriv(E(s)± |∆ε|) + Cpriv1[E(s)±|∆ε|≥ε](E(s)± |∆ε| − ε), (4)

where we have replaced the estimated privacy leakage of the model ℓ̂priv(s) = Ê(s) with E(s)±|∆ε|.
E(s) is the true privacy leakage of the model and |∆ε| represents the uncertainty of the company
both of its own estimation (second term) as well as regulator’s estimation (third term). Recall that ε
is the specification mandated by the regulator.

To understand why the company would become over-conservative, consider the following situation.
The company is deciding between releasing two models, model 1 is more accurate err(s1) < err(s2)
but has a higher privacy budget than model 2, E(s1) > E(s2). The decision to release one model or
the other is based on the total loss L̃comp(s1) and L̃comp(s2). We seek to find condition under which
it is more economically viable to release the less-accurate model 2, i.e., L̃comp(s2) ≤ L̃comp(s1).

Seeking worst-case conditions, we consider the case where the company underestimates its own
privacy parameter (i.e., second term is λpriv(E(s)− |∆ε|)) and regulator underestimates Ê(s2) and
overestimates Ê(s1) such that the third term appears with negative and positive |∆ε|, respectively.
Furthermore, both values exceed the specification (indicators are 1), therefore: err(s2)− err(s1) ≤
− (E(s2)− E(s1)) (Cpriv + λpriv) + 2Cpriv|∆ε|. We define UtilityLoss := err(s2) − err(s1) ≥ 0
and PrivacyGain := −(E(s2)− E(s1)) ≥ 0 for using model 2 instead of model 1. The condition to
incentivize the company to produce a more private but less accurate model is:

|∆ε| ≥ 1

2

(
UtilityLoss

Cpriv
− PrivacyGain

(
1 +

λpriv

Cpriv

))
. (5)

In the presence of great uncertainty |∆ε| ≫ 0, Equation (5) holds regardless of the company’s efforts
in producing a more private model even at great cost to utility. Similarly, for a large enough Cpriv
chosen by the privacy regulator, the right hand side can be zero (or negative) regardless of utility loss
ensuring the inequality holds trivially and forcing the company to always release the less accurate
model. In practice, however, as we discussed in see Section 2, the company has an upper bound on
the acceptable error of any model they release which means they will not produce a model at all.

Note. From Section 2 remember that λpriv and λfair form a company’s own weighting vector
for privacy and fairness losses relative to its error term. Positive λs indicate that the company is
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Figure 2: Repeated SPECGAME be-
tween Company, and Privacy and
Fairness regulators—regulators-led
(top) or company-led (bottom).

Agent Cost Function Strategy

Fairness
Regulator costfair(s) =

{
Γ̂(s) − γ Γ̂(s) ≥ γ

err(s) Γ̂(s) < γ

Penalize Lfair(s) =

Cfair1[Γ̂(s)≥γ](Γ̂(s) − γ)

Privacy
Regulator costpriv(s) =

{
Ê(s) − ε Ê(s) ≥ ε

err(s) Ê(s) < ε

Penalize Lpriv(s) =

Cpriv1[Ê(s)≥ε](Ê(s) − ε)

Company costcomp(s) = err(s) + Lpriv(s) + Lfair(s)
Release model with trustworthy
hyper-parameters s

Table 1: SPECGAME Gb. Company releases model with trustworthy
hyper-parameters s ∈ S, regulators issue penalties Lfair, Lpriv ∈ R+.

interested in producing trustworthy models even in the absence of regulatory pressure. In the rest
of the paper, we will focus on strategic behavior which means that regulators have to assume the
worst-case behavior of λpriv = λfair = 0, i.e., the company is only concerned with its model error.
With λfair, λpriv > 0, our theoretical results remain unaffected because Cpriv, Cfair can be adjusted
accordingly to produce the same effect. Appendix F provides guidance to estimate λs in practice.

3.1 ML REGULATION UNDER STRATEGIC BEHAVIOR

Despite the absence of strategic behavior, incomplete information leads to excessive loss of utility for
the company. Conversely, it is possible for the company to take advantage of the uncertainty inherent
in risk estimation strategically to produce a more accurate but less trustworthy model. The regulator
has to account for this possibility and interact with the company accordingly. To study the outcome
of these interactions, we formalize them using a novel game called SPECGAME. We refer the reader
to Appendix C for a background on game theory.

We introduce SPECGAME, a game theoretic model of ML regulation that captures the interactions
between three agents involved in the life-cycle of an ML model (Tomsett et al., 2018): a company
who is in charge of producing the model, and two regulators who are in charge of fairness and privacy
of the resulting model, respectively. We note that our framework is general and can accommodate
other objectives, as long as they are measurable with a loss function. For instance, In Appendix A.1,
we show how to use robustness to adversarial examples as an objective. Based on historical precedent
and future regulatory plans (see Appendix A.2), we assume regulators are able to give penalties for
violations of their respective objectives.

Depending on whether regulators announce trustworthy specifications b (see Section 2) first, or if the
company produces a model first with fairness and privacy guarantees of its choosing, we would have
a game that is either regulator-led, or company-led (see Figure 2). In Section 4, we will compare
the two setting but since analysis of both are similar, without loss of generality (W.L.O.G), unless
otherwise stated, we will assume a regulator-led SPECGAME. This sequential order of interactions
lends itself naturally to a Stackelberg competition (Fudenberg & Tirole, 1991). In either case, if
the company abides by the specification b, the game concludes (i.e. the game has a single stage).
However, if the regulator is not convinced of the company’s compliance, the company is penalized
and forced to release a new model until the regulator is assured of its compliance2.

Formally the SPECGAME G is a repeated Stackelberg game. Its stage game Gstage = (A,S, C)
is repeated T times as shown in Figure 2. Each stage is marked with dotted windows.
A = {comp, fair, priv} is the set of agents. The strategy space of the stage game is S =
{(sfair, spriv, scomp)} and C = {(costfair, costpriv, costcomp)} represent agent costs. The complete
game is defined as the Cartesian product of the stage game repeated T times: G = GTstage. To analyze

G we are interested in the overall discounted cost of agent i ∈ A defined as costi =
∑∞

t=0 c
tcost

(t)
i .

c is known as the discounting factor and represents the fact that agents care about their cost in
the near-term more than in the long run (Shoham & Leyton-Brown, 2009). Table 1 summarizes
SPECGAME’s agents, their cost functions and strategies which we will elaborate on next:

2Note this setting also captures other more general settings such as periodic audits, or audits upon release of
a new version of the model.
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Regulator cost. We take the regulator’s cost to be of the form fs∗(ω) =

{
ŝω − b ŝω ≥ b

err(s) ŝω < b
, where

b ∈ {γ, ε} is the regulator’s specification for the fairness (or privacy) parameter, ŝω is the regulator’s
estimation of model’s parameter. If the specification is violated (ŝω > b), the regulator’s loss is the
excessive risk ŝω − b that the model poses compared to the specification.

Regulator strategy is to follow the proportionality principle. Following the proportionality
principle (Lacey, 2016), which has abundant precedents in regulatory affairs (Allegrezza & Lasagni,
2024), an appropriate strategy for the regulator is to penalize the company proportionally to the
excessive risk ŝω − b. Thus, the penalty is of the general form h(s) = Creg1[ŝω≥b](ŝω − b),
where Creg, reg ∈ {fair, priv} are regulators penalty scalars. We saw in Section 3 that large Creg
disincentives companies from producing a model at all by posing unnecessarily strict penalties for
small violations.The regulator does not seek such an outcome, and in fact prefer to have an accurate
model once the specification is met (ŝω < b case). The reason for this is that prior work has shown
that inaccurate models have, for instance, worse privacy characteristics (Shokri et al., 2017).

Company strategy. The company’s cost is a function of its strategy to release a model with
trustworthy hyper-parameters s:

costcomp(s) = err(s) + Cfair1[Γ̂(s)≥γ](Γ̂(s)− γ) + Cpriv1[Ê(s)≥ε](Ê(s)− ε). (6)

The optimal strategy s∗ (aka, the best response) of the company is the minimizer of Equation (6).
Furthermore, comparing the two equations (3) and (6) reveals that they are indeed the same, hence
From an optimization perspective, simulating SPECGAME is equivalent to distributed (i.e., multi-
party) optimization of COLLABREG. This new interpretation not only validates our choice of
proportional penalties earlier, but also provides a systematic way to estimate penalty scalars Creg
using simulated values from a COLLABREG setting. See Appendix B for more details.

Solving SPECGAME

A single-stage SPECGAME is a Stackelberg competition analyzing which involves solving a bi-level
min-max optimization problem where the follower’s feasible strategies are limited by the leader’s
chosen strategy. The solutions to this problem produce Stackelberg equilibria. In the repeated setting,
visualized as a tree (akin to a decision-tree) in Figure 2, the appropriate equilibrium concept is a
subgame-perfect equilibrium (SPE) which requires that the solution produces an equilibrium at every
sub-game associated with a sub-tree. Both Stackelberg and subgame-perfect equilibria are extensions
of Nash equilibria (see Appendix C) to extensive-form games.

However, although Nash equilibria are optimal w.r.t. single-agent deviations, they are often not
Pareto efficient. For instance, seeking NEs can provide ‘solutions’ where both the company and a
regulator’s losses can be improved simultaneously which is not a desirable outcome for ML regulation.
Furthermore, the SPECGAME described in Section 3.1 cannot be simulated directly due to challenges
in forming the agents’ loss functions, notably, because privacy violations of a trained model is difficult
to estimate without access to its training procedure (Gilbert & McMillan, 2018). In Section 3.2
we introduce PARETOPLAY to address these problems by taking advantage of the fact that agents
estimate losses using different datasets sampled from the same distribution (see Appendix A.3).

3.2 PARETOPLAY: BEST-RESPONSE PLAY ON THE PARETO FRONTIER

In PARETOPLAY, each agent has access to their own Pareto frontier. Companies can easily calculate
Pareto frontier from their training checkpoints, but regulators must obtain theirs through a third
party (e.g., public data) or the company. In the latter case, cryptographic methods like homomorphic
encryption can ensure data privacy during this process. The specifics of regulatory data access
are beyond this work’s scope but it is a crucial issue that is relevant beyond ML. For instance, in
environmental regulation, companies often voluntarily (Bier & Lin, 2013) provide data to reduce
detrimental effects of regulator’s uncertainty in risk estimation (see Section 3).

The game starts by distributing an initial Pareto frontier between all agents. The Pareto frontier
is formed by training multiple instances of the chosen ML models in R = {(err(s),Γ(s), E(s)) |
s ∈ S} before the game using different guarantee levels s := (γ, ε) and then calculating the Pareto
frontier PFi : S 7→ [0, 1]× [0, 1]× R+ a map from trustworthy parameters to a tuple of achieved
error, fairness and privacy losses.
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Algorithm 1 PARETOPLAY: Regulator-led
Input: Trustworthy specification b, Initial Pareto frontier inputs

R
(0)
i , i ∈ N = {comp, fair, priv}, total number of game rounds

T , Regulator penalty scalars Cfair, Cpriv, step size η
1: for t ∈ {0, 1, . . . , T} do
2: Pi ← PF(R

(t)
i ∪ {R̃}) ▷ Agents estimate Pareto frontiers

3: if t = 0 then ▷ First round of the game
4: s(0) ← b
5: else if t mod 2 = 0 then ▷ Regulators move

6:
s(t+1) ← s(t) − η

(
efair ⊙∇sLfair(s

(t), Cfair;Pfair)

+epriv ⊙∇sLpriv(s
(t), Cpriv;Ppriv)

)
7: else ▷ Company move
8: s(t+1) ← s(t) − η∇serr(s(t);Pcomp)

9: R̃← CALIBRATE(s(t+1))
10: η ← c · η ▷ Agent discounts its payoff by c

11: Output s(T )

Assuming regulators lead, they se-
lect a point on the Pareto frontier.
That is, their initial strategy is to play
the specification s(0) = b = (γ, ε)
which decides the trade-off between
fairness and privacy that the regu-
lators seek. In the next round, the
company takes a gradient step to im-
prove its error (Line 8). If the up-
dated parameters violate the specifi-
cation, they penalize the company by
taking a gradient step to reduce trust-
worthy violations (Line 6). Since
these updates take the s(t) in op-
posing directions, PARETOPLAY is
a variant of Gradient Ascent-Descent
(GDA) algorithm commonly used to
solve such bi-level optimization prob-
lems (Goktas & Greenwald, 2022).

In PARETOPLAY, we estimate all agent losses on their Pareto frontier Pi. Our estimation involves a
linear interpolation on Pi. Interpolation may lead to estimation errors, as the estimated next parameters
s(t+1) may, in fact, not be on the Pareto frontier. We avoid this by including a calibration step at the
end of each round. CALIBRATE(:)S 7→ [0, 1]× [0, 1]× R+ is a function that takes input trustworthy
parameters s(t+1) ∈ S where S is the space of trustworthy hyper-parameters, trains a model using
s(t+1) on the agent’s dataset, and measures its achieved error err(.) in [0, 1], fairness violations Γ(.) in
[0, 1] and privacy parameter E(.) in R+ and returns the tuple R̃ = (err(s(t+1)),Γ(s(t+1)), E(s(t+1))).
The next player will recalculate a potentially improved Pareto frontier with the new result R̃ (line 2).
Next, we introduce the equilibrium concept that simulating SPECGAME using PARETOPLAY induces.

Game Theoretic Analysis of SPECGAME under PARETOPLAY. Playing on the Pareto frontiers
has important implications for the equilibrium search: the Pareto frontier gives a signal to every
player what to play (similar to how a stop-light allows drivers to coordinate when to pass an
intersection). This is known as a correlation device. If playing according to the signal is a best
response for every player, we recover a correlated equilibrium (see Appendix C). Since SPECGAME
is potentially repeated we require an extension to this concept. An extensive-form correlation device
sends separately and confidentially message Mi to each players i ∈ N = {comp, fair, priv} at the
beginning of each stage (i.e., each player samples their own dataset and train their own models).

Formally, the extensive-form correlation device Q consists of messages in the form of Pareto
frontiers Mi = PFi over the objectives, and a probability distribution µ on the Cartesian product
of these message sets M = ×

i∈N
Mi = ×

i∈N
PFi where the randomization is over the datasets

Di = (Xi, Yi) ∼ D used to hyper-parameter tune each model. D is the data-generating distribution
of input features Xi ∈ X and labels Yi ∈ Y . Using Q in Appendix D we prove:

Theorem 1. PARETOPLAY recovers the Subgame Perfect Correlated Equilibria (SPCEs) of
SPECGAME.

While SPECGAME models ML Regulation as a PAP, it also subsumes COLLABREG as a special case.
Indeed, if the company released a model that satisfies the specification b the game converges in one
step and no penalty is issued. However, if the game goes on for several stages, both players sustain
accumulating losses in the form of penalties (for the company) and untrustworthy models released to
the public (for the regulator). Thus, compared to COLLABREG, SPECGAME is inherently inefficient.

Price of Anarchy (PoA) (Koutsoupias & Papadimitriou, 1999) is the canonical measure for quantifying
the inefficiency caused by strategic self-interested behavior. Given a game (SPECGAME), a notion of
equilibrium (SPCE) and a non-negative group-cost function (e.g., sum of all agents’ costs), the PoA of
the game is defined as the ratio between the largest group-cost of an equilibrium and the group-cost
of an optimal outcome—which in our case is a COLLABREG outcome. We differ a formal definition
of our PoA to Appendix E and leave upper-bounding PoA for SPECGAME to future work. In the
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next section, we empirically estimate PoA through repeated simulations of the game, offering a lower
bound on PoA that remains a useful measure of inefficiency.

4 EMPIRICAL EVALUATIONS
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Figure 3: Pareto frontier ex-
ample for UTKFace using Fair-
PATE. Akin to Figure 1.

Summary. We empirically verify our claims in Section 2 regarding
excessive loss of utility due to imperfect information (up to 8% in
Figure 4). We report the empirical price of anarchy in Table 2 suggest-
ing strategic behavior in SPECGAME results in 70–96% higher group
cost compared to COLLABREG. Next, we evaluate the usefulness of
SPECGAME simulated via PARETOPLAY as a virtual sandbox for ML
regulators. Notably, we show it benefits regulators to take initiative
in specifying regulations (reducing privacy parameter ε by up to 6
in Table 3). Given the universal impact of incomplete information, we
verify that regulators can enforce compliance with their specification
even when they estimate their Pareto frontier on different datasets
(Figure 5). We share additional results in Appendix H.
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Figure 4: Uncertainty in privacy estima-
tion causes up to a 8% reduction in util-
ity for vision data, and 4% for tabular
data. Uncertainty in estimation of fairness
has a negligible impact.

Algorithm. We instantiate PARETOPLAY with Fair-
PATE (Yaghini et al., 2023), which trains fair and private clas-
sification models. It uses demographic parity as its fairness
notion requiring equalized prediction rates between different
subgroups. As is customary in DP training, we set δ = 10−6

according to the dataset size. We define sFairPATE = (γ, ε),
where γ is the maximum tolerable demographic disparity be-
tween any two subgroups, and ε is the differential privacy
budget. Furthermore, FairPATE produces classifiers with a re-
ject option (Cortes et al., 2016) which means that the classifier
can reject answering queries (instead of producing inaccurate,
or in this case, unfair) decisions. We measure “coverage” as
another utility metric in addition to accuracy: coverage is the
percentage of queries answered by the model at inference.
Higher coverage is better as rejection can also come at a
cost (of invoking another model or deferring prediction to a
human). Figure 3 depicts FairPATE’s Pareto frontier on UTK-
Face. We run each experiment with 5 different specification
b and aggregate the results. All results are plotted with 95%
confidence intervals (CI). We defer details to Appendix F.1.

Datasets. We adopt the experimental setup of Yaghini et al. (2023) for FairPATE. We perform gender
classification on UTKFace (Zhang et al., 2017) and Fairface (Karkkainen & Joo, 2021) datasets where
“race” is the sensitive attribute. On CelebA (Liu et al., 2015) the classification task is “whether the
person is smiling” and “gender” is the sensitive attribute used for evaluating the fairness constraint.
We also report results on 3 tabular datasets where “gender” is the sensitive attribute. In Taiwan Credit
Card (Yeh, 2009) and Chit Defaults (Rao, 2018) we predict “whether the person will default on their
payment in the next month.” In Adult (Becker & Kohavi, 1996), we predict “whether the individual
will make more than $50K.”

Dataset Price of Anarchy

UTKFace 1.96 ± 0.10
CelebA 1.80 ± 0.40
FairFace 1.71 ± 0.34
Adult 1.75 ± 0.02
CreditCard 1.70 ± 0.06
Chit Defaults 1.83 ± 0.08

Table 2: PoA in SPECGAME.
Strategic behavior causes group
cost (sum loss of all players) 70–
96% higher w.r.t. COLLABREG.

SPECGAME and PARETOPLAY Settings. All games are regulator-
led unless otherwise specified. As noted in Section 3, we set
λpriv = λfair = 0. We systematically estimate Cpriv and Creg for
each dataset using the procedure detailed in Appendix B.2 and report
values in Appendix I. We use the discounting factor c = 0.67.

Excessive Utility Loss and Price of Anarchy. We estimate com-
pany’s utility loss in terms of accuracy and coverage due to hidden
information using pre-computed Pareto frontiers on tabular and vi-
sion data (Figure 4). To avoid penalties, the company needs to take
uncertainty into account and thus produces models that follow stricter
constraints. Note that in this experiment we are not considering
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Metric (company-led−
regulator-led) UTKFace CelebA FairFace Adult CreditCard Chit Defaults

Privacy Budget ε (↓) 3.97 ± 2.40 3.47 ± 1.40 5.95 ± 1.95 0.54 ± 0.21 -0.06 ± 0.25 -0.06 ± 0.39
Disparity γ (↓) 0.01 ± 0.03 0.0 ± 0.04 0.05 ± 0.03 0.01 ± 0.01 0.0006 ± 0.0007 0.01 ± 0.02
Accuracy (↑) 4.37 ± 3.39 2.01 ± 1.48 5.77 ± 8.64 0.05 ± 0.09 0.09 ± 0.08 0.01 ± 0.15
Coverage (↑) 4.10 ± 6.03 -3.01 ± 3.79 4.70 ± 7.06 0.73 ± 1.29 0.04 ± 0.03 0.72 ± 1.27

Table 3: First-mover has an advantage in SPECGAME. We compare a company-led game to a regulator-led
one and show the differences in objective values. The 95% CIs are taken over 5 different initial specifications.

strategic behavior and the loss of utility is purely due to estimation
uncertainty (see Section 3). We observe that uncertainty in privacy estimation has a large impact on
accuracy while the effect is much more subdued for fairness. Uncertainty of ∆ε = 1.5 can cause
up to 8% drop in utility. We also measure price of anarchy when company instead takes advantage
of the uncertainty to produce models that violate constraints but have higher utility (Table 2). We
calculate group cost using formulation from Section 3.1. We report averaged PoAb over 5 different
initial specifications b as well as 95% confidence intervals. On all six datasets, strategic behaviour
leads to group costs that are 70–96% higher compared to that in collaborative regulation.
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Figure 5: Agents can have separate datasets in
PARETOPLAY. We simulate a regulator-led game
where regulators have access to FairFace and the
company has access to UTKFace. The resulting
company’s model has on average 2% higher ac-
curacy compared to the regulator’s. Despite these
differences, SPECGAME converges and follows
a similar trajectory for both agents in terms of pri-
vacy and fairness violations.

SPECGAME leader has a first-mover advantage.
Recall that in each game, the first-mover chooses the
point on the Pareto surface that minimizes their loss.
All other parameters in both games, including regula-
tors’ fairness and privacy constraints, remain the same
throughout the game run. In Table 3, we show the dif-
ference in achieved objective values changing from a
regulator-led game to an company-led one. On vision
datasets, when the company leads, it produces models
that are on-average 5 percentage points more accurate
(a) and answer 5 percentage points more queries (b)
compared to when the regulator leads; however, this
comes at the cost of a minor 0.02 increase in dispar-
ities (c) and a large privacy budget increase of 4 (d).
Therefore, regulators should take initiative in making
their specifications. We note that we observe a much
weaker first-mover advantage on tabular data.

Information equality is not necessary for PARE-
TOPLAY. In Figure 5, regulators have access to
FairFace, whereas the company has access to UTK-
Face. The agents then use their respective dataset
to form their loss functions. Each trains and cali-
brates their own model on their own datasets. The
company’s model has on average 2% higher accuracy
compared to the regulator’s. However, SPECGAME
converges and follows a very similar trajectory for
both agents in terms of privacy and fairness violations—ensuring that regulator specifications are
generally satisfied. We observe similar trends for tabular data (see Figure 9 in Appendix H).

5 DISCUSSION & FUTURE WORK

Our approach recognizes the diverse nature of agents involved in deploying and auditing ML models.
This allows us to make suggestions for guarantee levels that are more likely to be realizable in practice;
given that the gains and benefits of different parties have been taken into account. That said, we made
assumptions regarding the economic model under which we operate. While these assumptions follow
established principles in economics and in ML, both are contested in their respective literature. We
discuss other limitations of our approach in further details in Appendix J.
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Furthermore, we centered our consideration around calculating fines proportional to the privacy and
fairness violations of chosen guarantee levels (γ, ε); as well as ensuring they are effective in changing
company behavior. SPECGAME instantiates the idea of a virtual sandbox, which we mentioned when
opening our manuscript. Deploying this idea in the real world is of course a natural next step. Finally,
the converse problem is also important: assuming a bound C on the penalty, what are the maximal
γ, ε guarantees that we can expect to be able to enforce?
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A MODELING DECISIONS AND JUSTIFICATIONS

A.1 SOCIETAL RISKS BEYOND FAIRNESS AND PRIVACY

SPECGAME is extensible to include other trustworthy objectives. For example, consider robustness
to adversarial examples as an objective. The regulator can produced perturbed examples that
successfully fool a model to change its prediction. Given the transferability of adversarial examples,
the regulator can then audit the company’s model and produce an attack success rate aϵ(ω) ∈ [0, 1]
given a maximum perturbation of size ϵ. There is a large body of work that produces certifications
for robustness to adversarial examples (see Cohen et al. (2019)). These are typically of the form
∥aϵ(ω)∥ ≤ c. In the new SPECGAME, the regulator can produce a specification ∥aϵ(ω)∥ ≤ c∗ for a
given ϵ = ϵreg . The regulator then audits the company model ωcomp, and estimates âϵreg (ωcomp). The
penalty assigned by the regulator is of the form C · 1[âϵreg (ωcomp) > c∗](âϵreg (ωcomp)− c∗).
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A.2 REGULATORY PENALTIES IN THE REAL-WORLD

In the past, regulators often issue penalties for fairness and privacy violations. Concretely, for data
privacy GDPR Enforcement Tracker) tracks the violations and fines issued for GDPR non-compliance.
Similarly, the Federal Housing Administration (FHA) has frequently issued penalties for violations
of Fair Housing Act — a key application scenario in algorithmic fairness research:

Respondents who have violated the Fair Housing Act in the previous 5 years can
be fined a maximum of $54,157.00. Respondents who have violated the Act two or
more times in the previous 7 years can be fined a maximum of $108,315.00.

Furthermore, Article 99: Penalties of the newly established EU AI Act clearly establishes penalties
for non-compliance with “(e) obligations of deployers pursuant to Article 26;” for the “deployers of
high-risk AI systems.” Therefore, we base our assumption that “regulators are able to give penalties”
on both historical precedent and future regulatory plans.

A.3 ON THE SIMILARITY OF THE PARETO FRONTIERS

We show that it is not necessary to assume that the Pareto frontiers of the company and the regulators
are the same. Rather, it is enough to assume that the datasets they are calculated on are from the same
data-generating distribution. Concretely, we show that, the problem of finding the Pareto frontier for
each agent can be written as a multi-objective optimization problem, the solution to which reduces to
empirical risk minimization in ML. We conclude that the assumption of the shared Pareto frontier
between agents is akin to the standard assumption of IID-ness (independent and identically-distributed
data) in ML.

Deriving the Pareto frontier via scalarization. There exist standard techniques to recover the Pareto
frontier of a multi-objective optimization problem—which always exists for any feasible problem.
Scalarization (Boyd & Vandenberghe, 2004, Section 4.7.4) is such a technique that, provided each
objective is convex, can recover all of the Pareto frontier; and if not, at least a part of it. For our
problem, the objective loss of the scalarized problem is mins α1ℓcomp(s) + α2ℓfair(s) + α3ℓpriv(s),
where α1, α2, α3 ≥ 0 are free parameters, different choices for which will give us various points on
the Pareto frontier. Implicit in the scalarized objective loss are two assumptions: a) the dataset used
to optimize the loss, and b) dependency on model weights ω. Making these assumptions explicit
allows us to write the Pareto frontier PFi calculated by agent i:

PFi = {argmin
s

min
ω

α1ℓcomp(s, ω;Di) + α2ℓfair(s, ω;Di)

+ α3ℓpriv(s, ω;Di) | α1, α2, α3 ∈ R+}, (7)
where PFi is calculated over dataset Di by agent i. Seen through an ML lens, Equation (7) closely
resembles an empirical risk minimization (ERM) problem. We optimize model parameters ω in the
inner sub-problem and tune the hyper-parameters s in the outer one.

Coming back to question of whether Pareto frontiers are similar for different agents, we argue that
since the problem of finding in the Pareto frontier reduces to an ERM problem, despite Di not being
the same, we expect that the Pareto frontiers would be similar provided that Di ∼ D where D is
the data-generating distribution, and that each Di have enough samples. In other words, the true
correlation device in PARETOPLAY is not so much the Pareto frontier, but the real-world phenomenon
whose data is sampled by each agent.

We conclude this section by noting that prior works supports our assumption as well. Yaghini et al.
(2023, Section 5.1.4) empirically showed that the Pareto frontiers calculated on separate datasets but
for the same task are quite similar. In Section 4, we empirically evaluate the shared Pareto frontier
assumption. We simulate a SPECGAME using PARETOPLAY where regulators and companies use
different datasets but for modeling the same task (gender estimation). PARETOPLAY converges
because all agents are modeling the same data-generating phenomenon (gendered humans).

B INCENTIVE DESIGN: CHOOSING PENALTY SCALARS

Choosing appropriate penalty scalars Creg is crucial for effective regulation. Small values can make
the regulation ineffective by turning the monetary penalty into a cost of business and having no
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effect on the trustworthiness of the models the company releases, while overly large values of
Creg can disincentives releasing a model at all as we saw in Section 3. Since each choice of Creg
produces a game with a particular equilibrium, our focus here is to help the regulator design Creg to
induce a desirable equilibrium. In the algorithmic game theory literature, this is known as incentive
(mechanism) design.

Intuitively, penalty scalars Creg are chosen to be large enough to offset economical gains from
producing an untrustworthy model. This is easy using a similar calculation that led to Equation (5).
Here we seek to find under what conditions the company would prefer to release the more accurate
err(s1) < err(s2) model 1 instead of the more private model 2 E(s2) < E(s1). As discussed
in Section 3, the company makes that decision based on its total loss L̃comp(s1) ≤ L̃comp(s2).
Defining UtilityGain := −(err(s1)− err(s2)) ≥ 0 and PrivacyLoss := (E(s1)− E(s2)) ≥ 0 from
using model 1 instead of model 2, and setting λpriv = 0 (for a worst-case analysis) we have:

Cpriv ≥
UtilityGain

PrivacyLoss− 2|∆ε| (8)

Note how uncertainty |∆ε| > 0 bloats the penalty scalar; which leads to over-conservative regulation
(see Section 1).

In the rest of this section, we present more systematic ways to estimate effective penalty scalars.
In Appendix B.1 we find optimal values for Creg using Lagrangian multipliers. In Appendix B.2
we use the connection we established between simulating SPECGAME and solving COLLABREG to
estimate appropriate values for Creg using a similar method to Appendix B.1.

B.1 OPTIMAL PENALTY SCALARS UNDER COLLABREG ARE LAGRANGIAN MULTIPLIERS

Figure 6: COLLABREG. Unconstrained sur-
face in red and regularized surface in blue.
The shared surface is the feasible set where
trustworthy constraints (blue box) are met.
The optimum ℓ∗ occurs at the boundary of
overlap.

The joint committee of regulator-company can solve Equa-
tion (1) using Lagrangian optimization because we are
in the collaborative setting COLLABREG. Defining b =
[γ ε] and Lagrangian multipliers ν = [νfair νpriv] and
adopting ⪰ for comparing vectors element-wise, the La-
grangian is L(s,ν) = λ⊤ℓ(s) + (ν ⊙ 1[ℓ(s)⪰b])

⊤(ℓ(s)−
b). The KKT conditions Karush (1939); Kuhn & Tucker
(1951) for optimal primal s∗ and dual ν∗ to the problem are:
i) primal feasibility ℓ(s∗) ⪯ b , ii) dual feasibility ν∗ ⪰ 0
, and iii) first-order optimality condition∇sL(s∗,ν∗) = 0.
Note that by including the indicator in the Lagrangian, we
have also ensured complementarity Boyd & Vandenberghe
(2004). In practice, we can use trust region methods to
calculate primal dual optimal s∗,ν∗ Conn et al. (2000).

To illustrate what such a Lagrangian solution would look
like, let us consider a particular scenario where we drop the
constraint ℓcomp(s) ≤ α on model error but requiring that
λ = [1 0 0]

⊤. This comes without loss of generality
because the corresponding penalties are still being enforced
through the constraints in Equation (1). Figure 6 depicts
the Pareto surface x = ℓfair(s), y = ℓpriv(s), and z =
ℓcomp(s). The red surface shows the unconstrained problem
minimizes∈S λ⊤ℓ(s).

The constraints from Equation (1) are visualized using the blue bounding box ℓ(s) ⪯ b, b = [0.1, 3].
The optimum occurs at the boundary of the constraints ℓ∗ = b. Intuitively, the joint committee picks
the points that maximally uses the tolerated violation of fairness and privacy to obtain the highest
possible accuracy. The blue surface shows the equivalent regularized problem mins L(s,ν∗) with
the optimal dual variables ν∗. The overlapping region highlights the feasibility set of the primal
problem. This is the region where the constraints are met (indicator is 1). In the rest of the region, the
constraints are active, explaining the gap between the two surfaces.
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Figure 7: Unconstrained and constrained surface on UTKFace. The red surface is unconstrained and the blue
is constrained. The corresponding constraints used are b = (0.1, 4).

We define penalty scalars c = [Cfair Cpriv] as the optimal Lagrangian multipliers: c = ν∗. We
were able to derive them in COLLABREG because ℓ(s) is known to every committee member with
certainty—conditions that do not hold in SPECGAME. We study the consequences of this next.

B.2 ESTIMATING PENALTY SCALARS Cfair, Cpriv DESPITE INCOMPLETE INFORMATION

Consider the Principal-Agent setting where the company and regulators are separate agents. This
is the setting SPECGAME adopts. In this setting, agents have access to incomplete information.
From the regulator’s perspective, they do not know the true value of ℓcomp(s), which makes selecting
appropriate penalty scalars more difficult. Nonetheless, we are still able calculate Cfair and Cpriv
according to method detailed in Appendix B.1 with estimations.

Algorithm 2 Estimating Cfair, Cpriv

Require: List of N input model specifications: s = [(γ, ε)]N , list of corresponding N model output
losses on the Pareto Frontier: ℓ = [(ℓfair, ℓpriv, ℓcomp)]

N , desired model specifications s = (γ, ε)
Step 1: Train a polynomial regression model to predict ℓcomp using ℓfair and ℓpriv.
f(ℓfair, ℓpriv)← RegressionModel(ℓ)

Cfair ← [ ] ▷ Initialize lists to store the C values
Cfair ← [ ]
Step 2: Calculate Lagrangian multipliers.
Grid(ℓfair, ℓpriv)← Meshgrid(ℓ) ▷ Create a grid of points in the range of input ℓfair, ℓpriv

for (ℓfair, ℓpriv) ∈ Grid do ▷ Iterate over all points in the grid.
Ci

fair, C
i
priv ← TrustConstrained(f, (ℓfair, ℓpriv)

i, bounds = [(0, γ), (0, ε)])

Cfair ← Cfair + [Ci
fair]

Cpriv ← Cpriv + [Ci
priv]

Cfinal
fair ← Average(Cfair)

Cfinal
priv ← Average(Cpriv)

Output Cfinal
fair , Cfinal

priv

As mentioned, unlike in collaborative regulation setting, regulators do not have access to exact
ℓcomp(s) in SPECGAME. However, they can approximate it by training models, obtaining a Pareto
frontier, and then estimating ℓcomp(s) on the Pareto frontier.

We show the implementation in Algorithm 2. We first train a second degree polynomial regression
model using points on pre-computed Pareto frontier to approximate ℓcomp(s). Cfair and Cpriv are
dependent on b, so we calculate them separately for each set of regulators’ constraints b. We create
a grid of points within the fairness and privacy range of the Pareto frontier surface. Then starting
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at each point, we use the trust-region constrained algorithm to calculate the Lagrangian multipliers
required to enforce the constraint b. We set Cfair and Cpriv to the average of calculated Lagrangian
multipliers.

Figure 7 shows an example of constrained surface on UTKFace with b = (0.1, 4). The red surface is
unconstrained and the blue is constrained. It is transformed by applying the penalties with calculated
optimal Cfair and Cpriv. We see that γ = 0.1 and ε = 4 is the lowest point on the blue surface.

C BACKGROUND ON GAME THEORY

We introduce the following background on game theory from Roth (2017):
Definition 1 (Mixed Nash Equilibrium). A mixed strategy Nash equilibrium is a tuple p =
(p1, . . . , pn) ∈ ∆A1 × . . .×∆An such that for all i, and for all ai ∈ Ai :

ui (p1, p−i) ≥ ui (ai, p−i) ,

where pi ∈ ∆Ai is a probability distribution over actions ai ∈ Ai: i.e., a set of numbers pi (ai)
such that, 1) pi (ai) ≥ 0 for all ai ∈ Ai, 2)

∑
ai∈Ai

pi (ai) = 1. For p = (p1, . . . , pn) ∈
∆A1 × . . .×∆An, we write: ui(p) = Eai∼pi

[ui(a)] .

Searching for Nash equilibria (NEs) is NP-hard (Daskalakis et al., 2006), which is why a super-set of
them, known as Correlated equilibria have seen increasing attention due to ease with which they can
be found (for instance, using polynomial weights algorithm) (Arora et al., 2012; Nisan et al., 2007).
Definition 2. Correlated Equilibrium A correlated equilibrium is a distributionD over action profiles
A such that for every player i, and every action a∗i :

Ea∼D [ui(a)] ≥ Ea∼D [ui (a
∗
i , a−i) | ai]

Intuitively, A correlated equilibrium is a distribution over action profiles a such that after a profile a
is drawn, playing ai is a best response for player i conditioned on seeing ai, given that everyone else
will play according to a.
Definition 3. The best-response to a set of actions a−i ∈ A−i for a player i is any action ai ∈ Ai

that maximizes ui (ai, a−i) :
ai ∈ argmax

a∈Ai

ui (a, a−i)

In multi-objective optimization, and games in particular, we are interested in the Pareto efficiency. A
tuple of objective values are Pareto efficient if we cannot improve one of the values without making
another worse off. More formally, given objectives parameterized by ML models, we have:
Definition 4 (Pareto Efficiency). A model ω ∈ W , whereW is the space of all models, is Pareto-
efficient if there exists no ω′ ∈ W such that (a) ∀i ∈ L we have ℓi (ω

′) ≤ ℓi(ω) where L is the set of
losses and ℓi ∈ L is the objective i’s loss; and that (b) for at least one loss j ∈ L the inequality is
strict ℓj (ω′) < ℓj(ω).

C.1 STACKELBERG COMPETITIONS

Stackelberg competitions model sequential interaction among strategic agents with distinct objec-
tives Fudenberg & Tirole (1991). They involve a leader and a follower. The leader is interested in
identifying the best action (BR) assuming rational behavior of the follower. The combination of the
leader’s action and the follower’s rational best reaction leads to a strong Stackelberg equilibrium
(SSE) Birmpas et al. (2020). This improves over work relying on zero-sum game formulation Yao
(1977) where the follower’s objective is assumed to be opposed to the leader’s objective. An important
example for the application of Stackelberg competition in trustworthy ML strategic classification.
Therein, strategic individuals can, after observing the model output, adapt their data features to obtain
better classification performance. Such changes in the data can cause distribution shifts that degrade
the model’s performance and trustworthiness on the new data, and thereby requires the companies
adapt their models. In our model governance game framework, the two regulators act as leaders
while the company acts as the follower. By following the Stackelberg competition, the company aims
at obtaining the best-performing ML model given the requirements specified by the regulators.
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D PROOFS

Theorem 1. PARETOPLAY recovers the Subgame Perfect Correlated Nash Equilibrium of
SPECGAME.

Proof via single-deviation principle from using Corollary 1 from Prokopovych & Smith (2004):
Corollary 1 (the one-shot deviation principle for infinitely repeated games extended with an extensive
form correlation device). A pair (Q, f) consisting of an extensive form correlation device Q =(
(Mi)i∈N , µ

)
and a strategy profile f = (f1, . . . , fn) , fi : H × Mi → ∆(Ai), is a subgame

perfect correlated equilibrium of G∞(δ) if and only if the one-shot deviation condition holds: no
player can gain by deviating from f in a single stage and conforming to f thereafter.

In the above, an extensive-form correlation device is a device that sends separately and confidentially
message Mi to each players i ∈ N = {comp, fair, priv} at the beginning of each stage. H is the
history of the actions played in the prior rounds of the repeated game G∞.

Proof. In the context of SPECGAME, the correlation device Q consists of messages in the form of
Pareto frontiers Mi = PFi where PFi : S 7→ [0, 1] × [0, 1] × R+ over the objectives. namely,
error err : S 7→ [0, 1], disparity Γ : S 7→ [0, 1] and privacy E : S 7→ R+ of a given si ∈ S where
S is the space of trustworthy hyper-parameters. µ is a probability distribution on the Cartesian
product of these message sets M = ×

i∈N
Mi = ×

i∈N
PFi and the randomization is over the datasets

Di = (Xi, Yi) ∼ S used to tune each model. D is the data-generating distribution of input features
Xi ∈ X and labels Yi ∈ Y .

The proof for one-shot deviation principle for SPECGAME simulated played via PARETOPLAY
follows: The PARETOPLAY strategy profile f = (fi)i∈N is to make gradients updates according to
PFi distributed to it via the correlation device Q (lines 8 and 6 in Algorithm 1).

We wish to show that no player (especially the company) can gain from deviation from f in a
single stage and conforming to f thereafter. Assume to contrary that a player (e.g. the company)
benefits from such a deviation. That is at some t, the company can report sr that is not on its PF (or
equivalently it performs a gradient update not following f ). By definition, then there exists some s∗

which Pareto dominates sr : it is at least as good in all objectives and better in at least one.

We first note that reporting sr where err(sr) > err(s∗) is irrational (in the game theoretic sense that it
increases the agent’s cost instead of reducing it) and thus never a best response for C. So we can only
consider cases where it holds that either err(sr) < err(s∗) and Γ(sr) > Γ(s∗), or err(sr) < err(s∗)
and E(sr) > E(s∗), or both hold. But every agent in Pareto Play, re-calculates its Pareto frontier as a
first step (line 2 in Alg. 1). Assume, if at time t− 1, C adds sr to R(t) .

At time t, the regulator would re-calculate its PF; but since sr is not on the PF, either a) some
other s∗ already exists in R(t) which dominates sr, and therefore sr never appears in the rest of
the regulators round; or b) if no such s∗ exists, the regulator will assume sr to be a valid Pareto
efficient solutions, adopt it as its initialization, and take a step on the Pareto frontier to improve the
corresponding regulator loss. At this point, depending on which objective value was under-reported
by C the regulator would either be able to find an s∗ that Pareto dominates sr — at which point sr
is again effectively removed from the PF calculations — or the next regulator is going to make a
gradient step and find the appropriate s∗ that Pareto dominates the misreported sr. In the worst-case
where we lose gradient information (in a boundary condition, or near an inflection point), we note that
every agent trains a model in the Calibration phase (line 9). At this point, with a near 0 gradient step,
s∗ ≈ sr is re-evaluated by one of the regulators, which ensures that ε and/or γ values are corrected,
which again leads to exclusion of sr from the Pareto frontier. Therefore, the single deviation from f
(i.e. choosing sr over s∗ ) does not benefit the company; which is a contradiction that completes the
proof.

E FORMALIZING PRICE OF ANARCHY FOR SPECGAME

Price of Anarchy (PoA) is the canonical measure for quantifying this inefficiency Koutsoupias &
Papadimitriou (1999). It is defined in terms of a group cost function cost : ST × S 7→ R+ for an
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outcome strategy profile Πs ∈ ST and the initial specification b ∈ S. The group cost combines
the loss of all players into one3. Intuitively, PoA is the ratio of worst group cost of any equilibrium
outcome in SPECGAME to the best group cost possible (as in COLLABREG). Next, we define an
appropriate cost(.) function for SPECGAME under PARETOPLAY.

Given a Pareto frontier ℓ(s) = [err(s) Γ(s) E(s)] and specification b = (γ∗, ε∗), we define the
group cost of strategy s for the stage game as the sum of normalized player costs:

q(s; b) =
1

maxs̃
{err(s) + (λfair + Cfair1[Γ̂(s)≥γ∗])(Γ̂(s)− γ∗) + (λpriv + Cpriv1[Ê(s)≥ε∗])(Ê(s)− ε∗)}

+
1

maxs̃ Γ(s̃)
{err(s)1[Γ̂(s)<γ∗] + (Γ̂(s)− γ∗)1[Γ̂(s)≥γ∗]}

+
1

maxs̃ E(s̃)
{err(s)1[Ê(s)<ε∗] + (Ê(s)− ε∗)1[Ê(s)≥ε∗]},

where the denominators are the maximum achieved error, fairness violations and privacy budget on
the Pareto frontier ℓ(s). Since PoA is a ratio, any valid Pareto frontier ℓ(s) works for normalization
provided it is used for both numerator and denominator of the PoA. See Section 3.1 for a detailed
description of regulator losses.

The group cost for the entire Stackelberg competition under the complete strategy profile Πs =(
s(0), . . . , s(t), . . . , s(T−1)

)
is cost(Πs; b) =

∑T−1
t=0 ctq(s(t); b), where c is the discounting factor.

Given a set of equilibria Eq ⊂ ST , we define the price of anarchy (PoA) as:

PoAb =
maxΠs∈Eq cost(Πs; b)

mins̃ q(s̃; b)
. (9)

Bounding the PoA is challenging even for simple games Koutsoupias & Papadimitriou (1999);
Nisan et al. (2007). For SPECGAME, this is even more challenging given its data-dependent nature.
However, we can produce an empirical PoA as a measure of equilibrium inefficiency. To do so, we
estimate the Pareto frontier ℓ(s) and calculate cost(Πs; b) over the entire run of the game which
produces an correlated equilibrium (see Theorem 1).

F REGULATOR’S INCOMPLETE INFORMATION: ESTIMATING λfair AND λpriv

The penalty scalars λfair and λpriv are company parameters that regulators can have, at best, incomplete
information about (Fudenberg & Tirole, 1991). Regulators using PARETOPLAY would need to
estimate these parameters. In this section, we provide a systematic way to do so on a dataset they
have access to.

Consider two models ω1 and ω2 that achieve the same fairness guarantee: Lfair(s1) = Lfair(s2) (A).
We require that the two models achieve the same overall company loss: ℓcomp(s1) ≈ ℓcomp(s2) (R).

Using Equation (4):

err(s2)− err(s1) = (λpriv + Cpriv1[E(s1)≥ε∗])(E(s1)− ε∗)

− (λpriv + Cpriv1[E(s2)≥ε∗])(E(s2)− ε∗)

= λpriv(E(s1)− E(s2)) + Cpriv1[E(s1)≥ε∗](E(s1)− E(s2))
= (E(s1)− E(s2))(λpriv + Cpriv1[E(s1)≥ε∗]) (10)

Therefore, we have:

λpriv + Cpriv1[E(s1)≥ε∗] =
err(s2)− err(s1)
E(s1)− E(s2)

To calibrate λpriv, we want to ensure our requirement (R) is met under condition (A), so we find
models in Sγ = {s | Lfair(s) = γ} where Sγ are the set of models that achieve fairness gap γ ,

3Note that this combined measure of cost is better known as the social cost in the algorithmic game theory
literature. We use group cost to avoid any confusion with the societal (fairness and privacy) risks.
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clearly for two models s1 and s2 ∈ Sγ , our requirement is met. Thus, regulator’s estimate λ̂priv of
λpriv is:

λ̂priv = E
γ∈[0,1]

E
s1,s2∈Sγ

[
err(s2)− err(s1)
E(s1)− E(s2)

− Cpriv1[E(s1)≥ε∗]

]
; (11)

Similarly:

λ̂fair = E
ε∈[0,εmax]

E
s1,s2∈Sε

[
err(s2)− err(s1)
Γ(s1)− Γ(s2)

− Cfair1[Γ(s1)≥γ∗]

]
, (12)

where Sε = {s | Lpriv(s) = ε} is the set of models with achieved privacy budget of ε.

F.1 PARETOPLAY SETUPS

F.1.1 PARETOPLAY ON FAIRPATE

In FairPATE, we train teacher ensemble models on the training set. These teachers vote to label the
unlabeled public data. We then train student models on the now labeled public data. At inference
time, the student model does not answer all the queries in the test set. It refrains from answering a
query when answering it would violate the fairness constraint. Coverage measures the percentage of
queries that the student does answer.

We denote the student model for classification by ω, the features as (x, z) ∈ X × Z where X is the
domain of non-sensitive attributes, Z is the domain of the sensitive attribute (categorical variable).
The categorical class-label is denoted by y ∈ [1, . . . ,K]. We indicates the strategy vector space as
s = (γ, ε) where γ is the maximum tolerable fairness violation and ε is the privacy budget.

We train student models on a range of s = (γ, ε) and pre-compute Pareto frontier on these results.
We show Pareto frontier of UTKFace in Figure 3 and Pareto frontier of CelebA as well as FairFace in
Figure 8.

0.9

0.95

Coverage

(a) CelebA Pareto frontier Surface

0.85

0.9

0.95

1
Coverage

(b) FairFace Pareto frontier Surface

Figure 8: Pareto frontier Surface on CelebA and FairFace

The loss functions of all agents depend on both γ and ε. A gradient descent update of γ and ε is:

γt = γt−1 − ηfair
∂L

∂γ
, εt = εt−1 − ηpriv

∂L

∂ε
(13)

The company cares about both student model accuracy and coverage. It would want to provide
accurate classification and answer most queries. Its loss function uses a weighted average of the two:

ℓb(γ, ε) = − (λbacc(γ, ε) + (1− λb)cov(γ, ε)) (14)

where λb is a hyperparameter set by the company that controls how much it values accuracy and
coverage. The accuracy and coverage are multiplied with -1 to form the loss because we want to
maximize them. Both accuracy and coverage values used are between 0 and 1. At each turn, the
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Figure 9: Agents can have separate datasets in PARETOPLAY. We simulate a regulator-led game where
regulators have access to Adult and company has access to Chit Defaults. We observe similar trends for privacy
budget and coverage metrics between the two agents; but slight differences in terms of fairness and accuracy.
We attribute the differences to the feature mismatch between the two datasets (Adult and Chit Defaults) which is
more prominent in tabular data (with predefined data structure) than the vision datasets (which features that are
all in the pixel space) presented in the main paper.

company decides its response by calculating ∂ℓb
∂γ and ∂ℓb

∂ε at the current γ and ε. In our experiments,
we use λb = 0.7.

The loss function of the fairness and privacy regulators are ℓfair(γ, ε) = γach(γ, ε) and ℓpriv(γ, ε) =
εach(γ, ε) respectively.

G FAIRNESS

We provide more details on the fairness notions used in our empirical study in Section 4.

Demographic Parity Fairness. Yaghini et al. (2023) adopt the the fairness metric of multi-class
demographic parity which requires that ML models produce similar success rates (i.e., rate of
predicting a desirable outcome, such as getting a loan) for all subpopulations (Calders & Verwer,
2010).

In practice, they estimate multi-class demographic disparity for class k and subgroup z with:
Γ̂(z, k) := |{Ŷ=k,Z=z}|

|{Z=z}| − |{Ŷ=k,Z ̸=z}|
|{Z ̸=z}| , where Ŷ = ω(x, z). They define demographic parity

when the worst-case demographic disparity between members and non-members for any subgroup,
and for any class is bounded by γ:
Definition 5 (γ-DemParity). For predictions Y with corresponding sensitive attributes Z to satisfy
γ-bounded demographic parity (γ-DemParity), it must be that for all z in Z and for all k in K, the
demographic disparity is at most γ: Γ(z, k) ≤ γ.

H ADDITIONAL EMPIRICAL RESULTS

Information equality is not necessary for PARETOPLAY using tabular data. In Figure 5,
we demonstrated that information equality is not required for PARETOPLAY using FairFace and
UTKFace vision data. We repeat out experiment using tabular data in Figure 9. We simulate a
regulator-led game where regulators have access to Adult and company has access to Chit Defaults.
We observe similar trends for privacy budget and coverage metrics between the two agents; but slight
differences in terms of fairness and accuracy. We attribute the differences to the feature mismatch
between the two datasets (Adult and Chit Defaults) which is more prominent in tabular data (with
predefined data structure) than the vision datasets (which features that are all in the pixel space)
presented in the main paper.

Enforcing equilibria despite incomplete information. Exogenous factors aside, given the
uncertainty regarding the company’s dataset and its parameters λfair, λpriv it is possible that penalties
issued are not enough to avoid specification violations. If the game has converged to an undesirable
equilibrium, regulators can change their penalty scalars Cfair, Cpriv to enforce their specification
accordingly. We demonstrate this in Figure 10. The game has multiple phases in each of which we
run SPECGAME until convergence. We simulate the aforementioned uncertainty by assuming no
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Figure 10: Regulators can enforce desired equilibria despite incomplete information. A scenario where initial
penalties were ineffective in enforcing compliance with the specification (blue) due to incomplete information
about company’s loss. Regulators re-calculate their penalty scalars Cfair, Cpriv to progressively enforce stronger
penalties in two subsequent phases of the game (orange and green) to reduce the number of violations.

priors on C’s, and choosing Cfair = 0.5 and Cpriv = 0.5 in the first phase. As before, we simulate the
outcome for 5 different initial specifications sreg using which we draw the 95% confidence intervals.
In the first phase (blue), we observe that a large portion of the games violate disparity specifications
by 6% for a similar improvement in coverage. The constraint violations are due to inappropriate
penalties. In the second phase (orange) we recalculate Cfair = Cpriv = 1.5 which manages to reduce
fairness violations to 0. In this phase we get more consistent adherence with the fairness specification,
but larger violations of privacy. Finally, we are left with one violation of privacy specification,
increasing Cpriv to 2.25 allows us to enforce that specification as well (green).

Utility loss due to uncertainty measured in accuracy. Figure 4 shows uncertainty in risk
estimation’s impact on utility measured in both accuracy and coverage. Figure 11 shows the impact
on accuracy alone. We observe that privacy has large impact on accuracy. With ∆ε = 1.5, there is on
average 10% reduction in accuracy on CelebA. On the other hand, fairness has negligible impact on
accuracy, but more impact on coverage.
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Figure 11: Utility loss due to uncertainty in risk estimation measured in accuracy. Uncertainty in privacy
estimation has large impact on accuracy, with up to 10% reduction. Impact of uncertainty in estimation of the
fairness is very small.

Difference in Pareto frontier range can lead to constraint violation. In Section 4 Figure 5
we showed that agents can still run PARETOPLAY when they have access to different datasets and
regulators are able to enforce their constraints in most cases. However, there are scenarios where
the convergence point fails to satisfy the trust constraints. We show an example of such case here
in Figure 12. This example follows the same setup as in Figure 5, where regulators have access to
FairFace and company has access to UTKFace. The convergence point of this game does not satisfy
the fairness constraint on UTKFace but does on FairFace. This is because at the current privacy
budget, higher fairness disparity gap is not achievable on FairFace. Further relaxing the fairness
constraint input parameter does not lead to larger fairness gap anymore. Since regulators only have
access to FairFace, they observe that the fairness gap is always below the threshold and thus do not
assign any penalties. The company then continues to relax the fairness constraint input parameter
without any consequences. In general, if two datasets have different ranges of fairness disparity gaps
at each respective privacy budget and fairness regulators sets the fairness constraint close to the upper
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Dataset Cfair Cpriv

UTKFace 0.9 0.015 - 0.045
CelebA 1.5 0.1 - 0.15
FairFace 1.2 - 1.5 0.04 - 0.05
Adult 0.27 0.054
Credit Card 0.022 0.18
Chit Defaults 0.28 0.65

Table 4: Cfair and Cpriv values used in experiments.

limit of fairness disparity gap of their dataset, the convergence point of the game may not satisfy their
fairness constraint.
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Figure 12: Fairness regulator fails to enforce fairness constraint. We simulate a game where agents have
access to different datasets. Regulators observe that the fairness constraint is enforced on their dataset so do not
assign any penalty. However, the constraint is not enforced on company’s dataset and they continue to relax the
fairness parameter due to lack of penalty.

I ADDITIONAL EXPERIMENTAL SETUP

In all games, we set step size discount factor to c = 0.67. For FairPATE, we use step sizes ηfair = 0.1
and ηpriv = 10. We set company’s internal accuracy and coverage ratio weighting to λb = 0.7. See
Table 4 for a list of Cfair and Cpriv used in experiments for each dataset. We aim to use the lowest
possible Cfair and Cpriv that still enforce regulators’ constraints.

The model architecture and data we use in the experiments follow what is described in the original
works for FairPATE Yaghini et al. (2023). The datasets used for FairPATE and their information are
shown in Table 6. For all datasets in FairPATE for the calibration step, we train the student model
with Adam optimizer and binary cross entropy loss. We train for 30 epochs on UTKFace, 15 on
CelebA, and 25 on FairFace.

During the games, we put box constraints on the parameters s = (γ, ε) so that they would not be out
of range and produce undefined outputs. We use γ ∈ [0.01, 1] and ε ∈ [1, 10].

Computational Resources. Experiments were conducted on a mix of 2 types of machines: (i)
Machine Type I: CPU Intel Xeon Silver 4210 with 128GB RAM and GPU NVIDIA RTX 2080Ti
(11GB VRAM); or (ii) Machine Type II: CPU AMD EPYC 7643 with 512GB RAM and GPU
NVIDIA A100 (80GB VRAM). Game simulations without calibration run on CPU, and calibration
step runs on GPU. Individual game experiments lasted 30 to 60 minutes each on vision datasets, and
less than 10 minutes each on tabular dataset.

J LIMITATIONS

With the increasing importance of machine learning in sensitive domains, it is crucial to ensure that
the machine learning models are trustworthy. However, previous research has primarily focused on
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Layer Description

Conv2D (3, 64, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (64, 128, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (128, 256, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (256, 512, 3, 1)
Max Pooling (2, 2)
ReLUS
Fully Connected 1 (14 * 14 * 512, 1024)
Fully Connected 2 (1024, 256)
Fully Connected 2 (256, 2)

Table 5: Convolutional network architecture used in CelebA experiments.

Dataset Prediction Task C Sens. Attr. SG Total U Model Number of Teachers T σ1 σ2

CelebA Smiling 2 Gender 2 202 599 9 000 Convolutional Network (Table 5) 150 130 110 10
FairFace Gender 2 Race 7 97 698 5 000 Pretrained ResNet50 50 30 30 10
UTKFace Gender 2 Race 5 23 705 1 500 Pretrained ResNet50 100 50 40 15

Table 6: Datasets used for FairPATE. Abbreviations: C: number of classes in the main task; SG: number of
sensitive groups; U: number of unlabeled samples for the student training . Summary of parameters used
in training and querying the teacher models for each dataset. The pre-trained models are all pre-trained on
ImageNet. We use the most recent versions from PyTorch.

addressing a single trust objective at the time or, when considering multiple objectives, assumed
the existence of a central entity responsible for implementing all objectives. We highlight the
limitations of this assumption for realistic scenarios with multiple agents and introduce an approach
for optimization over multiple agents with multiple objectives to overcome this limitation.

Our approach recognizes the diverse nature of agents involved in deploying and auditing machine
learning models. This allows us to make suggestions for guarantee levels that are more likely to
be realizable in practice; given that the gains and benefits of different parties have been taken into
account. We, however, acknowledge that agents may in fact have a more diverse set of requirements
and objectives; and that as a result our models may not be sophisticated-enough to incorporate all
such factors. Additionally, we made several assumptions regarding the economic model under which
we operate as well as common knowledge of the Pareto frontier between various objectives. While
these assumptions follow established principles in economics (expected utility hypothesis for the
former) and in machine learning (the existence of a data-generating distribution for the latter), both
are contested in their respective literature.

We acknowledge that providing “metrics” for human and society values such as fairness and privacy
is imperfect at best and fraught with philosophical and ethical issues. Nevertheless, the metrics
we used in our study are commonplace in trustworthy ML circles and the search for better, more
inclusive, metrics is underway. Our research, therefore, aims to provide systematic guidance on best
practices in regulating trustworthy ML practices, and can be adopted for future development in these
areas.

From our empirical results, we observe that different ML tasks exhibit different Pareto frontiers. As
such, an SPECGAME played for one task cannot necessarily provide regulation recommendation for
other tasks. It remains to be seen how much such recommendations can transfer between tasks even
within the same domain (for instance, vision). For instance, recommendation made on the basis of
age classification may be ineffective (or too restrictive) for gender estimation.

Finally, we centered our consideration around calculating fines proportional to the privacy and
fairness violations of chosen guarantee levels (γ, ε); as well as ensuring they are effective in changing
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company behavior. The converse problem is also important: assuming a bound C on the penalty,
what are the maximal γ, ε guarantees that we can expect to be able to enforce?
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