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ABSTRACT

Covariance Neural Networks (VNNs) perform graph convolutions on the covariance
matrix of tabular data and achieve success in a variety of applications. However,
the empirical covariance matrix on which the VNNs operate may contain many
spurious correlations, making VNNs’ performance inconsistent due to these noisy
estimates and decreasing their computational efficiency. To tackle this issue, we
put forth Sparse coVariance Neural Networks (S-VNNs), a framework that applies
sparsification techniques on the sample covariance matrix before convolution.
When the true covariance matrix is sparse, we propose hard and soft thresholding
to improve covariance estimation and reduce computational cost. Instead, when
the true covariance is dense, we propose stochastic sparsification where data
correlations are dropped in probability according to principled strategies. We
show that S-VNNs are more stable than nominal VNNs as well as sparse principal
component analysis. By analyzing the impact of sparsification on their behavior,
we provide novel connections between S-VNN stability and data distribution. We
support our theoretical findings with experimental results on various application
scenarios, ranging from brain data to human action recognition, and show an
improved task performance, stability, and computational efficiency of S-VNNs
compared with nominal VNNs.

1 INTRODUCTION

Covariance-based data processing is key to machine learning pipelines due to its ability to whiten data
distributions, identify principal directions, and estimate the interdependencies among features. Such
advantages have been shown in several applications including brain connectivity estimation (Bessadok
et al., 2022; Qiao et al., 2016), financial data (de Miranda Cardoso et al., 2020; Wang & Aste, 2022)
and human action recognition through motion sensors measurements (Liao et al., 2022; Wang et al.,
2023). One prominent approach is Principal Component Analysis (PCA), which maximizes the
variance of data points by projecting them onto the eigenvectors of their covariance matrix (Jolliffe &
Cadima, 2016). However, PCA-based approaches are unstable to errors in the covariance estimation,
i.e., a poor estimate of the covariance matrix and its eigenvectors may lead to unpredictably bad results,
especially in high-dimensional and low-data regimes or when the covariance matrix eigenvalues are
close to each other, and these limitations also appear in more advanced PCA variants such as kernel
PCA (Jolliffe, 2002; Paul, 2007; Baik et al., 2005; Schölkopf et al., 1997). To overcome this issue,
coVariance Neural Networks (VNNs) have been proposed (Sihag et al., 2022). VNNs apply graph
convolutions to the covariance matrix, an operation that, similarly to PCA, learns the importance
of the principal directions of the data. Due to their graph convolution operation, they inherit the
stability property of GNNs (Gama et al., 2020b) and extend it to errors in covariance estimation,
which guarantees more reliable performance even in the presence of poor covariance estimates
since their output difference when operating on the sample and true covariance is bounded (Sihag
et al., 2022; 2024; 2023). Nevertheless, VNNs operate on the sample covariance matrix, which
results in two limitations. First, VNNs are sensitive to settings in which covariance estimation is
problematic, especially in high-dimensional and low-data regimes (Paul, 2007; Baik et al., 2005;
Féral & Péché, 2007). Second, VNNs are computationally expensive and memory inefficient as the
sample covariance matrix is typically dense no matter whether the true covariance matrix is dense or
sparse due to sample estimation errors, which is especially problematic on high-dimensional datasets.

To overcome these limitations, we propose sparsification-based covariance regularizers for VNNs to
improve the covariance matrix estimation. We perform stability analysis for sparse VNNs (S-VNNs)
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to investigate the effects of covariance sparsification techniques on the performance of VNNs. When
true covariance matrices are sparse, we propose hard and soft thresholding strategies and show that
S-VNNs are more robust to both the finite-data estimation error and the covariance sparsification
thresholding. For generic scenarios where true covariance matrices are not necessarily sparse, we
propose a stochastic sparsification approach and prove the stability of S-VNNs in this setting. Our
findings quantify a trade-off between stability and sparsification (i.e., efficiency). That is, dropping
covariances according to their absolute values leads to higher stability but, in some cases, low
sparsification, whereas dropping a fixed percentage of covariance values improves sparsification
at the expense of stability. We corroborate our findings with experiments on synthetic and real
datasets highlighting the benefits of sparsity on covariance-based neural processing both in terms of
performance and computation. Our specific contributions are as follows.

(C1) Sparse covariance neural networks. We propose covariance sparsification techniques for
VNNs to improve performance and reduce computation. When the true covariance is sparse, we
perform hard and soft covariance thresholding. When the true covariance is dense, we propose a
stochastic sparsification that allows controlling the sparsification level and the desired stability.

(C2) Stability to covariance sparsification. We characterize the effects of covariance sparsification
on the VNN through stability analysis. We show that S-VNNs can not only reduce computation but
also improve stability under appropriate settings, compared to the nominal VNN and the sparse PCA.

(C3) Empirical validation. We validate our theoretical findings with experiments on real and syn-
thetic datasets, demonstrating the importance of sparsification in low-data settings and the improved
efficiency of S-VNNs on brain data and human action recognition use cases.

2 PROBLEM FORMULATION

Consider t samples {xi}ti=1 of a random vector x ∈ RN with mean µ = E[x], covariance C =

E[(x−µ)(x−µ)T] and respective estimates µ̂ =
∑t

i=1 xi/t, Ĉ =
∑t

i=1(xi− µ̂)(xi− µ̂)T/t. The
estimated covariance Ĉ captures the data interdependencies and its eigendecomposition Ĉ = V̂Λ̂V̂T

with eigenvectors V̂ = [v̂0, . . . , v̂N−1] ∈ RN×N and eigenvalues Λ̂ = diag(λ̂0, . . . , λ̂N−1) is used
in principal component analysis (PCA), which performs the projection x̃ = V̂Tx. However, PCA
is unstable as the estimated eigenvectors V̂ may differ significantly from the true ones V (where
C = VΛVT) especially if the true eigenvalues are close to each other (Jolliffe, 2002).

To overcome this, Sihag et al. (2022) proposed covariance filters as an extension of PCA that is stable
to finite-sample estimation uncertainties even with close eigenvalues. Each data point is seen as a
node of a graph and the data sample x as a graph signal, where the covariance C represents the graph
structure. Covariance filters build on the standard graph convolutional filters, which shift a signal x
over a graph represented by the shift operator S (e.g., adjacency matrix or Laplacian) according to
the equation

∑K
k=0 hkS

kx, where K is the order of the filter and hk are learnable parameters (Gama
et al., 2020c; Ortega et al., 2018; Isufi et al., 2024). Several popular GNNs, such as GCN (Kipf &
Welling, 2016), are special instances of the generic graph convolutional filter. Building on this, the
covariance filter of order K and the l-th VNN layer, which assembles a filter bank of Fl−1 × Fl

covariance filters and a non-linear activation function σ(·), are defined as, respectively,

Hl
fg(Ĉ) =

K∑
k=0

hklfgĈ
k and ul

f = σ

Fl−1∑
g=1

Hl
fg(Ĉ)ul−1

g

 f = 1, . . . , Fl, l = 1, . . . , L (1)

where {ul
f ∈ RN}Fl

f=1 are the outputs of the l-th VNN layer, each produced by the f -th covariance
filter bank, which contains Fl−1 covariance filters processing each of the signals at the previous layer
{ul−1

g ∈ RN}Fl−1

g=1 separately. At the first layer, we have {u0
g = xg}F0

g=1 where F0 is the node feature
size. This operation is related to PCA as it processes the eigenvectors of the covariance matrix (see
Appendix A for details). We denote the VNN architecture as Φ(x, Ĉ,H), where H = {hklfg}klfg
contains all network parameters for each order k, layer l, input signal g and output signal f . The
output of the last layer uL = Φ(x, Ĉ,H) contains the final representations generated by VNN and
can be directly used for a downstream task (e.g., classification or regression) or further processed by
a readout layer. The model parameters H are optimized to minimize a task-specific loss (e.g., cross-
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entropy for classification or mean squared error for regression tasks) over a training set. Inheriting
the stability to perturbations of neural network structures (Gama et al., 2020a; Bruna & Mallat, 2013),
VNNs have been shown stable to errors in covariance estimation, as stated in the following theorem.
Theorem 1 ((Sihag et al., 2022)). Consider a VNN Φ(x,C,H) of L layers with Fl = F ∀l and
nonlinearities σ(·) such that |σ(a)− σ(b)| ≤ |a− b|. Let H(C) denote a generic covariance filter in
the VNN and let each filter be Lipschitz with constant P (cf. Def. 1). Consider a generic data sample
x with covariance C and ∥x∥ ≤ 1 w.l.o.g.. Then, with probability 1− o(1) it holds that

∥H(Ĉ)−H(C)∥≤ P√
t
O
(
√
N+

∥C∥
√
log(Nt)

νt

)
=β and ∥Φ(x,C,H)−Φ(x, Ĉ,H)∥≤LFL−1β

for some ν > 0 capturing the data distribution, and ∥ · ∥ denoting the 2− or the spectral norm.

We refer to (Sihag et al., 2022) for details on the probability which tends to 1 as t increases and on
ν which is not part of our following analysis. This notion of stability follows an extensive line of
research on stability of GNNs to generic graph perturbations (Gama et al., 2020b; Cerviño et al.,
2022; Arghal et al., 2022; Parada-Mayorga & Ribeiro, 2021; Keriven et al., 2020; Ruiz et al., 2020),
but it specifically considers covariance estimation errors, which is fundamental for VNNs. Indeed,
since in practical applications the true covariance is not available and VNNs operate on an estimate of
it, this notion of stability acts as a certificate of performance guarantee w.r.t. the ideal scenario when
working with the true covariance matrix and characterizes the impact of data and model characteristics
on the performance. More in detail, the output difference of VNN caused by the sample estimation
error is bounded proportionally by the square root of the number of samples t. When t increases, the
bound approaches zero, ultimately, showing convergence to the true data distribution. This result is
specific to covariance estimation errors, whereas generic GNN stability bounds do not decrease with
the number of samples. This improves the stability w.r.t. PCA, which we provide in the following
lemma.
Lemma 1. Consider a true covariance matrix C and a sample covariance estimate Ĉ with respective
eigendecompositions C = VΛVT and Ĉ = V̂Λ̂V̂T. Then, for any signal x with ∥x∥ ≤ 1, it holds
with probability 1− o(1) that ∥VTx− V̂Tx∥ ≤ O(t−1/2(mini,j ̸=i |λi − λj |)−1).

We refer to (Vershynin, 2018) for details on the probability, which gets closer to 1 as t increases.
Lemma 1 shows that PCA stability is inversely proportional to the smallest gap between covariance
eigenvalues, leading to unstable behaviors when the eigenvalues are close. VNNs do not suffer from
this as the covariance filter can exhibit a stable response to close eigenvalues at the expense of lower
discriminability (Sihag et al., 2022), which is modeled by their frequency response and Lipschitz
constant P . Because of this advantage in finite-data settings, VNNs have been shown effective in
covariance-based learning tasks, both on static and temporal data (Sihag et al., 2024; 2023; Cavallo
et al., 2024b;a). However, they have two major limitations. First, when the true covariance matrix
is sparse, the finite-sample estimate contains spurious correlations (Baik et al., 2005; Paul, 2007),
affecting the performance of the VNN significantly. Second, when the true covariance is dense, a
VNN on the finite-sample estimate is limited by its high quadratic computational complexity in the
data dimension, restricting its applicability to low-dimensional settings only.

Paper objective. Our goal is to overcome the above limitations by sparsifying the sample covariance
matrix for the VNN. While PCA-based processing sparsification has been studied (Bickel & Levina,
2008b; Deshpande & Montanari, 2016), its extension to the VNN is challenging because it is unclear:
(i) how to perform sparsification depending on whether the true covariance matrix is sparse or dense;
(ii) what are the effects of sparsification on VNN stability. When the true covariance matrix is sparse,
we apply thresholding-based sparsification strategies for the sample covariance matrix, and prove
that they result in stability improvements (Thms. 2-3). When the true covariance matrix is dense, we
put forth a stochastic sparsification framework in a form akin to dropout (Def. 4), characterize its
impact on the VNN stability (Thm. 4), and propose principled sparsification strategies based on these
findings (Sec. 4.3). All proofs are collected in the appendix.

3 SPARSE TRUE COVARIANCE

In applications involving brain and spectroscopic imaging, weather forecasting, and finance, the
correlations between data points are generally sparse (e.g., only some brain regions activate simulta-
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neously, only some stock prices are affected by similar factors, etc.). However, the sample covariance
matrix is notoriously prone to spurious correlations due to limited sample size (Bickel & Levina,
2008a; Jobson & Korkie, 1980; Ledoit & Wolf, 2003), and sparsity-based covariance regularizers
have been proposed as a backup (Bickel & Levina, 2008b). In this section, we consider sparse true
covariance matrices, propose two sparsification strategies, hard and soft thresholding, and analyze
their effects on the VNN embeddings. The choice of hard and soft thresholding instead of other
regularized covariance estimations (Ledoit & Wolf, 2003; Bickel & Levina, 2008a; Bien & Tibshirani,
2011; Friedman et al., 2007) lies in their computational efficiency and theoretical tractability.

We now define the frequency response of a covariance filter, which will be instrumental for our
analysis. By computing the graph Fourier transform of input and output signal of the covariance filter
(cf. equation 1) we get ũ = V̂Tu = V̂T

∑K
k=0 hk[V̂Λ̂V̂T]kx =

∑K
k=0 hkΛ̂

kV̂Tx, which, for the
i-th entry, leads to ũi =

∑K
k=0 hkλ̂

k
i x̃i = h(λ̂i)x̃i. That is, the frequency response of the covariance

filter is a polynomial h(λ) =
∑K

k=0 hkλ
k with frequency variable λ specified on the eigenvalues λ̂i.

Definition 1 (Lipschitz covariance filter). The covariance filter is Lipschitz with constant P if, for
every pair of eigenvalues λi, λj ∈ [0, λmax], λi ̸= λj , its frequency response satisfies: |h(λi) −
h(λj)| ≤ P |λi − λj |, where λmax ∈ [0,∞) identifies a suitable range for the covariance eigenvalues.

Lipschitz covariance filters control the variability of the frequency response through the constant
P . Higher P allows the frequency response to generate different outputs at close eigenvalues and
improves the filter’s discriminability, but may degrade its stability as shown in the following.

3.1 HARD THRESHOLDING

Hard thresholding removes the covariance entries below a given value and it has been shown to
improve covariance estimation in high-dimensional low-data settings (Bickel & Levina, 2008b).

Definition 2 (Hard thresholding). Given the sample covariance matrix Ĉ and a coefficient τ > 0,
the hard thresholding function is η(Ĉ)ij = ĉij if |ĉij | ≥ τ/

√
t, 0 otherwise.

The hard threshold is inversely dependent on the number of samples as 1/
√
t. This follows the

intuition that the non-thresholded estimator approaches the true covariance as t increases, hence, the
sparsification is less needed and disappears in the limit of t → ∞. Hard thresholding provides a
more reliable covariance estimate because it removes small spurious finite-sample errors and, thus,
improves the performance of VNNs when the true covariance is sparse. We analyze the impact of
hard thresholding on the VNN stability in the following theorem.

Theorem 2. Let the true covariance C belong to the sparse class C = {C : cii ≤ M,
∑N

j=1 1[cij ̸=
0] ≤ c0,∀i} where M > 0 is a constant, 1(·) is the indicator function and c0 is the maximum number
of non-zero elements in each row of C. Consider a hard-thresholded sample covariance matrix C̄
following Def. 2 with τ = M ′√logN and M ′ large enough. With probability 1− o(1), it holds that

∥H(C̄)x−H(C)x∥ ≤ t−1/2Pc0
√

N logN(1 +
√
2N) +O

(
t−1
)
.

We refer to (Bickel & Levina, 2008b) for details on the probability, which gets closer to 1 as the number
of samples increases. Thm. 2 shows that hard-thresholded covariance filters –and consequently VNN
from the results in Thm. 1– are stable to covariance estimation errors and that they converge to the
respective filter and VNN operating with the true covariance as 1/

√
t in the number of data samples.

Importantly, hard thresholding provides a tighter stability bound than dense VNNs (Sihag et al., 2022)
and sparse PCA (Bickel & Levina, 2008b).

Comparison with dense VNN. Contrasting the results of Thm. 2 and Thm. 1, we see that both bounds
decrease with the same order O(t−1/2). However, the hard-thresholded VNN bound depends linearly
on the number of non-zero elements in a row c0, whereas that of the dense VNN depends on the
spectral norm ∥C∥. For sparse covariance, c0 ≪ ∥C∥ and the stability bound is tighter.

Comparison with sparse PCA. To provide further insights on the stability of sparse covariance filters,
we contrast it also with the stability of sparse PCA.
Proposition 1. Consider a true covariance matrix C and the thresholded sample covariance estimate
C̄ with respective eigendecompositions C = VΛVT and C̄ = V̄Λ̄V̄T. Then, for any signal x with

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

∥x∥ ≤ 1, it holds with probability 1− o(1) that

∥VTx− V̄Tx∥ ≤ t−1/2(min
i

|λi − λi+1|)−1c0N
√
2 logN (2)

That is, the stability of sparse PCA is inversely proportional to the minimum eigenvalue gap. This
term is not present in the stability of S-VNN, i.e., Thm. 2, as it is absorbed by the filter Lipschitz
constant P : indeed, the covariance filter can exhibit a stable frequency behavior for close eigenvalues
at the expense of lower discriminability, but the latter is compensated in the subsequent VNN layers
that use cascades of filterbanks and non-linearities. Thus, hard-thresholded VNNs attain improved
stability w.r.t. sparse PCA in sparse covariance setting.

3.2 SOFT THRESHOLDING

When the data follows the spiked covariance model, such as in electrocardiogram or brain image
data (Johnstone & Lu, 2009), soft thresholding has been studied as a better alternative to achieve
more reliable covariance estimates (Deshpande & Montanari, 2016). In this model, data points
follow xi =

∑r
q=1

√
βquq,ivq + zi, where v1, . . . ,vr ∈ RN are orthonormal vectors with exactly

c0 non-zero entries of magnitudes lower-bounded by θ/
√
c0 for some constant θ > 0, uq,i ∼ N (0, 1)

and zi ∼ N (0, I) are i.i.d., and βq ∈ R+ is a measure of the signal-to-noise ratio. In this case, we
sparsify the covariance estimate with soft thresholding.

Definition 3 (Soft thresholding). Given the sample covariance matrix Ĉ and a coefficient τ > 0, we
define the soft thresholding function as η(Ĉ)ij = ĉij − sign(ĉij)τ/

√
t if |ĉij | > τ/

√
t, 0 otherwise.

Unlike hard thresholding which only removes small noisy values, soft thresholding subtracts a value
from all entries to remove noise also from non-zeroed coefficients. Again, we set the threshold
to decrease with the number of samples analogously to (Deshpande & Montanari, 2016) as more
accurate covariance estimates reduce the need for sparsification. The following theorem links soft
thresholding to the VNN stability.
Theorem 3. Consider a soft-thresholded estimate of the covariance matrix C̄ as per Def. 3 with
τ = M ′

√
log(N/c20) and M ′, C two large enough constants. Let the eigenvalues of the true

covariance {λi}N−1
i=0 be all distinct. Then, the following holds with probability 1− o(1):

∥H(C̄)x−H(C)x∥≤ t−1/2P
√
NCc0 max(1,λmax)

√
max (log(N/c20), 1)(1 +

√
2N)+O

(
t−1
)
.

We refer to (Deshpande & Montanari, 2016) for details on the probability, which gets closer to 1 as t
increases. Thm. 3 shows that VNNs are stable also when the covariance estimate is soft thresholded
and the stability bound decreases with the number of samples as t−1/2. The main takeaways for hard
thresholding w.r.t. dense VNNs and sparse PCA hold also for soft-thresholded VNNs. Furthermore,
soft thresholding provides better stability than hard thresholding in low-data settings under spiked
covariance, as the bound in Thm. 3 contains

√
log(N/c20) which is smaller than

√
logN in Thm. 2.

Computational complexity. A sparse VNN layer has a computational complexity of order
O(∥C̄∥0KFinFout), where ∥C̄∥0 is the number of non-zero values of the thresholded sample co-
variance. This is significantly better than a VNN with dense covariance matrix, which is of order
O(N2KFinFout), since ∥C̄∥0 is generally much smaller than N2.

4 GENERIC TRUE COVARIANCE

Often, the true covariance matrix and its estimate are both dense which makes the VNN computa-
tionally heavy. While we can use hard or soft thresholding or any graph sparsification approach, the
resulting sparse VNN may be significantly different from the VNN operating on the true covariance,
ultimately, leading to divergent outputs and degraded performance. To reduce the computational cost
in a tractable manner, we propose a stochastic sparsification framework in a form akin to dropout.
Such an approach is general and does not have any structure assumption on the covariance matrix.
Definition 4 (Stochastic sparsification). Let ∆ be a matrix of the same support as the sample
covariance Ĉ with entries δij = δji = 1 with probability pij and 0 otherwise (i.e., Bernoulli(pij))
and δii = 1. A sparsified covariance matrix is C̃ = ∆⊙ Ĉ, where ⊙ is the elementwise product.
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Stochastic sparsification generates random sparsified matrices C̃ of the sample covariance matrix
via element-wise independent sampling in a way that C̃ preserves: (i) the symmetric property in
consistency with the covariance principle; and (ii) the variance of the data points on the main diagonal.
The sparsification can be controlled by the probabilities pij depending on application requirements.

4.1 VNNS WITH STOCHASTIC COVARIANCE SPARSIFICATION

λ11
λ21λ12λ22

h
(λ

1,
λ

2)

Figure 1: Two-dimensional generalized
frequency response h(λ) of stochastic
sparsified covariance filter. h(λ) is deter-
mined by the coefficients {hk}Kk=0 and
is independent of the covariance realiza-
tions. For specific covariance realiza-
tions, h(λ) is instantiated on the corre-
sponding multivariate frequencies (e.g.,
λ11, λ12 and λ21, λ22 for two different
realizations C̃1C̃2 and C̃′

1C̃
′
2).

We now investigate the effects of stochastic sparsification
on VNNs’ stability by framing the stochastic sparsification
as a stochastic perturbation problem following (Gao et al.,
2021a) and defining stochastic sparsified covariance filters.

Definition 5 (Stochastic covariance filter). Given a se-
quence of i.i.d. realizations C̃k, . . . , C̃1 of the stochas-
tic sparsified covariance C̃ independent on data dis-
tribution, a covariance filter H(C̃) performs convo-
lution of a generic signal x as ũ = H(C̃)x =∑K

k=0 hkC̃k . . . C̃1C̃0x with C̃0 = I.

Stochastic filters shift the signal x over K different random
realizations {C̃k}Kk=1 of C̃ rather than shifting over a fixed
Ĉ. This leads to a generalized frequency interpretation.

Definition 6 (Generalized covariance filter frequency
response). The generalized frequency response of the
stochastic covariance filter is a multivariate function of the
form h(λ) =

∑K
k=0 hk

∏k
κ=0 λκ where λ = [λ1, . . . , λK ]T with λ0 = 1 is a generic vector variable

and each frequency variable λk corresponds to the covariance realization C̃k for k = 1, . . . ,K.

The derivations of such a frequency response are reported in Appendix E. Fig. 1 illustrates an
example of K = 2. This extends the deterministic case, in which all realizations and corresponding
eigenvalues are equal with

∏k
κ=0 λκ = λk. Given the generalized frequency response, we generalize

the integral Lipschitz property for stability analysis.

Definition 7 (Lipschitz gradient). Consider the analytic generalized frequency response h(λ) and
two instantiations λ1 = [λ11, . . . , λ1K ]T and λ2 = [λ21, . . . , λ2K ]T of vector variable λ. Consider
also the auxiliary vector that concatenates the first k entries of λ2 and the last K − k entries of λ1,
i.e., λ(k)=[λ21, . . . , λ2k, λ1(k+1), . . . , λ1K ]T. The Lipschitz gradient of h(λ) between λ1 and λ2 is

∇Lh(λ1,λ2) =
[
∂h(λ(1))/∂λ1, . . . , ∂h(λ

(K))/∂λK

]T
where ∂h(λ(k))/∂λk is the partial derivative w.r.t. λk at λ(k).

Definition 8 (Generalized integral Lipschitz filter). A covariance filter is generalized integral
Lipschitz if there exists a constant P s.t. ∥∇Lh(λ1,λ2)∥2 ≤ P and ∥λ1 ⊙∇Lh(λ1,λ2)∥2 ≤ P.

The Lipschitz gradient characterizes the variability of h(λ) since, for two multivariate frequency
vectors λ1,λ2, we have h(λ2)−h(λ1) = ∇T

Lh(λ1,λ2)(λ2−λ1). The generalized integral Lipschitz
filter limits this variability to be at most linear in the multidimensional space and to decrease as the
frequency λ is specified at large values, which extends the standard integral Lipschitz property to the
multivariate frequency domain.

4.2 STABILITY OF VNNS WITH STOCHASTIC COVARIANCE SPARSIFICATION

These preliminaries allow us to analyze the stability of VNNs to stochastic covariance sparsification.

Theorem 4. Consider a randomly sparsified covariance filter H(C̃) [cf. Def. 5] that is generalized
integral Lipschitz with constant P [cf. Def. 8]. Let also H(C) denote the same filter (fixed parameters)
operating on the true covariance matrix. Then, for a generic signal ∥x∥ ≤ 1, the expected squared

6
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difference between the two filters can be upper-bounded as

E[∥H(C)x−H(C̃)x∥2] ≤ NP 2Q+O((1− p1)(1− p2))︸ ︷︷ ︸
sparsification error

+
P 2

t
O
(
N +

∥C∥2 log(Nt)

ν2t2

)
︸ ︷︷ ︸

covariance uncertainty

where Q =
∑N

i=1

∑N
n=1 ĉ

2
in(1−pin), p1, p2 are generic probabilities such that O((1−p1)(1−p2))

is dominated by the linear terms in the probability value in Q and ν is defined in Thm. 1.

Thm. 4 identifies two main factors that affect the stability of stochastic sparsified covariance filters:
the covariance uncertainty and the sparsification error.

Covariance uncertainty. This term is analogous to the dense case in Thm. 1. It decreases with the
number of samples as O(1/t) and is dominated by the sparsification error for sufficiently large t.
Note that a large t does not necessarily correspond to a small covariance estimation error here because
the stochastic sparsification may still remove large covariance values; ultimately, making our analysis
principally different from (Sihag et al., 2022) which assumes small covariance perturbations.

Sparsification error. This term decreases as the sampling probabilities pij → 1, corresponding to
an improved stability but a lower sparsification. This indicates a trade-off between the perturbation
effect caused by the covariance sparsification error and the computational cost saved by the stochastic
sparsification. The stability constant depends on the filter Lipschitz constant P , the data dimension
N , and the coupling between the covariance values ĉij and the sampling probabilities pij , i.e., Q.
A larger P allows for a higher filter discriminability as the frequency response can change more
quickly but leads to worse stability. Data with high dimensionality N results in a larger graph
and increases the effect of sparsification on the VNN stability. More importantly, Q represents the
interplay between sample covariance values ĉij and their corresponding sampling probabilities pij ,
which can be used as a design choice to develop different stochastic sparsification strategies in a
principled manner as we shall discuss in the next section. Finally, note that the results in Thm. 4
and its proof generalize and differ substantially from the results in (Gao et al., 2021a, Theorem 1) as
we consider here edge-specific probabilities pij rather than an identical probability pij = p and we
identify a connection between VNN stability and the data distribution through their covariances ĉij ,
which is not present in (Gao et al., 2021a).

4.3 STOCHASTIC SPARSIFICATION STRATEGIES

Following our theoretical analysis, we propose two strategies to assign the sparsification probabilities
to covariance values and assess their impact on the stability of VNN.

Absolute covariance values (ACV). Despite being dense, the covariance matrix may contain some
values of lower magnitude due to spurious correlations. We want to drop these small values with a
high probability to save computational cost while keeping large covariance values to maintain the
useful dependencies. Thus, we define the probability as pij = |ĉij |/ĉmax, where ĉmax = maxi,j |ĉij |.
Fig. 2 (left) shows that the stability term qin within Q [cf. Thm. 4] is small when the covariance
value ĉin approaches zero or the maximal value ĉmax. This is because small covariance values have
little impact on the VNN stability even if they are more likely to be dropped, and large covariance
values (close to ĉmax) are less likely to be dropped though their removal would affect stability more.

Ranked covariance values (RCV). While ACV improves efficiency by preserving stronger correla-
tions, it does not allow any control over the amount of sparsification (e.g., if all covariance values
are high, very few are dropped). To overcome this, we define a set of probability values with a
desired mean p and assign them to covariance values based on their positions in this absolute ranking.
Formally, consider an ordered set of probabilities P = {p′1, . . . , p′N ′}, where p′i ≤ p′i+1, and each
p′i is sampled from N (p, σ) with σ = min((1− p)/3, p/3)) (such that the number of values not in
[0, 1], which we clip to the interval, is negligible) and N ′ is the number of probability values for
assignment. We set pij = p′k where k = |{clm : |clm| < |cij |; l,m = 1, . . . , N}| is the position
of cij in the ordered ranking of absolute covariances. Consequently, the expected percentage of
dropped covariances is 1− p, which allows controlling the sparsification level at the risk of removing
useful covariances. In practice, the value of p can be treated as a hyperparameter and tuned through
cross-validation or on a validation set based on the desired accuracy and stability.
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Figure 2: Insights into stability for stochastic sparsification. (Left) Stability bound elements qin =

ĉ2in(1− |ĉin|/ĉmax) with Q =
∑N

i=1

∑N
n=1 qin for ACV [cf. Thm. 4]. (Right) Stability term Q [cf.

Thm. 4] for covariance values distributions with different means and stochastic sparsifications.

Fig. 2 (right) shows how the term Q changes for ACV and RCV with different means of covariance
value distribution. RCV with a smaller p corresponds to lower stability especially when the covariance
values are high, because they are dropped regardless of their value. ACV, instead, maintains a
consistent level of stability since it balances the covariance magnitudes and the dropping probabilities.

Computational complexity. The expected computational complexity of a VNN layer with stochastic
sparsification is of the order O(E[∥C̃∥0]KFinFout), where E[∥C̃∥0] is the expected number of non-
zero elements of the sparsified covariance. For ACV, we have that E[∥C̃∥0] = ĉmean(∥Ĉ∥0−N)+N ,
where ĉmean = 1/N2

∑
i,j=1,...,N,i̸=j |ĉij |, so the complexity depends on the data. Instead, for the

RCV we have E[∥C̃∥0] = p(∥Ĉ∥0 −N) +N , so the complexity can be controlled through p.
Remark 1. The stochastic sparsification with RCV generalizes the hard thresholding approach in
Sec. 3, which can be recovered by setting probabilities as pij = 1 if |cij | > τ/

√
t, 0 otherwise.

Remark 2. Both thresholding and stochastic sparsification provide symmetric covariance esti-
mates but do not necessarily preserve positive semidefiniteness (PSD), which is common in related
works (Bickel & Levina, 2008b; Deshpande & Montanari, 2016; Li et al., 2021; Liao et al., 2022)
and places our techniques within the scope of the literature. Bickel & Levina (2008b) also provide a
sufficient condition for PSD under hard-thresholding, which we report in Appendix G.

5 NUMERICAL RESULTS

We corroborate the proposed methods with experiments on real and synthetic datasets, targeting the
following objectives: validate our theoretical results on (O1) thresholding when the true covariance
matrix is sparse and (O2) stochastic sparsification for a generic true covariance; (O3) compare
S-VNNs and VNNs on real datasets. We provide details and additional results in Appendix I.

5.1 STABILITY OF SPARSE VNN

Experimental setup – (O1)-(O2). We generate synthetic data with a controlled covariance by
sampling data points xi ∼ N (0,C). Then, we create regression targets as yi = wTxi + u, where w
is a vector with elements wj ∼ Uniform(0, 1) and u ∼ N (0, 3) is a noise term. We generate 1000
samples of size N = 100 and divide the data into train/validation/test splits of size 80%/10%/10%.

Sparse true covariance – (O1). We evaluate the stability of S-VNN on a synthetic dataset with
sparse covariance (SparseCov). We train a VNN with the true covariance and test it with different
covariance estimates obtained with a varying number of samples. We compare the original sample
covariance, hard thresholding (Hthr), and soft thresholding (Sthr). We use PCA-SVM as baseline, i.e.,
we transform data with PCA followed by an RBF-SVM for regression. Fig. 3 (left) reports the MAE
w.r.t. the number of samples for covariance estimation. Overall, hard and soft thresholding provide
better covariance estimates, ultimately, improving the performance (i.e., lower MAE) and increasing
the stability compared to the nominal VNN. VNNs are more stable than PCA-based models, because
their performance is less affected by covariance perturbations as analyzed in (Sihag et al., 2022).
These results support our theoretical discussion in Sec. 3, i.e., thresholding allows VNNs to maintain
stability in sparse covariance settings.

Generic true covariance – (O2). We assess the stochastic sparsification using synthetic datasets with
large covariance values (LargeCov) and with small covariance values (the synthetic linear regression

8
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Figure 3: Stability of VNN. (Left) MAE with hard and soft thresholding on SparseCov (standard
deviations are of order at most 10−2 for VNNs and 10−1 for PCA). (Center) MAE for stochastic
sparsification on LargeCov. (Right) MAE for stochastic sparsification on SmallCov.
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Figure 4: Accuracy and time for a forward pass for sparse and dense VNNs. From left to right, the
results are for Epilepsy, CNI, MHEALTH and Realdisp. RCV results are for p = 0.75, 0.5, 0.25 from
top to bottom, and for Hthr and Sthr we report results for 3 different thresholds to achieve analogous
sparsification. Legend is shared.

dataset in (Sihag et al., 2022, Appendix E.4) with tail=0.2, here called SmallCov); see Appendix I.1
for the distributions of the covariance values. We train a VNN with the true covariance matrix and test
it with the stochastically sparsified versions. Fig. 3 (center) and (right) compare the ACV and RCV
with different values of p. For LargeCov, we see that a high sparsification leads to greater instability
(RCV for small p) as large covariance values are dropped which hinders performance. For SmallCov,
instead, all sparsification approaches affect stability only lightly as removing small covariance values
does not lead to performance changes. ACV remains stable because it sparsifies little even when the
covariance values are large. In turn, this corroborates our theoretical observations in Sec. 4.1.

5.2 SPARSE VNN ON REAL DATA

Experimental setup – (O3). We consider four real datasets of brain measurements and human
action recognition data. Epilepsy (Kramer et al., 2008) consists of an electrocardiography time series
equally split before and after an epileptic seizure event. We perform binary classification to predict
whether a time sample was recorded before or after the seizure. CNI (Schirmer et al., 2021) contains
resting-state fMRI time series of patients with attention deficit hyperactivity disorder (ADHD) and
neurotypical controls (NC), which we use as labels for binary classification. MHEALTH (Banos
et al., 2014a) and Realdisp (Banos et al., 2014b) contain measurements of wearable devices placed
on subjects performing different actions. The goal is to classify the action performed by each subject.
Additional details are reported in Appendix I.1. We compare various sparsification approaches
(thresholding, RCV, ACV) against the dense VNN. For completeness, we report additional results
for various PCA-based classifiers and GraphSAGE in Appendix I.3, although our objective is not to
achieve state-of-the-art performance on these datasets but to reduce the impact of spurious correlations
while improving computational efficiency of VNNs. For Hthr and Sthr, we set the threshold to achieve
a level of sparsification comparable to RCV with p = 0.75, 0.5, 0.25 to ease the comparison.

Results – (O3). From Fig. 4, we see that the S-VNNs improve substantially on the computation
time and increase the accuracy w.r.t. the nominal VNN. This is particularly emphasized for Epilepsy,
CNI, and MHEALTH, where most S-VNNs perform better than dense VNN, likely because the
sample covariance matrices in these datasets contain spurious correlations. On Realdisp, the accuracy
improvement is smaller, indicating that in this dataset most correlations carry useful information to
solve the task. Both for thresholding and RCV, changing the value of the threshold or p does not
lead to large changes in accuracy, meaning that the majority of covariance values are not relevant for
performance, while it affects the time efficiency of the model by increasing sparsity. Finally, on 3 out
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of 4 datasets, stochastic sparsification achieves a slightly superior performance than deterministic
thresholding, likely due to the regularization effect of different realizations of a sparsified covariance
over different runs in a form akin to dropout-like techniques (Papp et al., 2021; Rong et al., 2020).

6 RELATED WORKS

Sparse PCA. The instability of the finite-sample covariance matrix is widely studied for PCA (Jolliffe,
2002; Paul, 2007; Baik et al., 2005) and various regularized estimators have been proposed including
covariance shrinkage (Ledoit & Wolf, 2003; 2012), lasso penalties (Bien & Tibshirani, 2011; Han Liu
& Zhao, 2014), and thresholding (Bickel & Levina, 2008b; Deshpande & Montanari, 2016). We
leverage here hard and soft thresholding given their benefits in PCA in low-data sparse-covariance
settings and study their impact on VNN stability.

Stability of GNNs-VNNs. VNNs can be seen as graph convolutional neural networks operating on
the covariance graph (Sihag et al., 2022), which draws analogies with PCA, but have been shown
to be more stable extending the small perturbation analysis of GNNs (Gama et al., 2020b; Kenlay
et al., 2021b;a; Levie et al., 2021; Maskey et al., 2023; Gao et al., 2023) to covariances. Due to their
robustness, they have proved successful in brain data processing (Sihag et al., 2024), transferability
to large-dimension data (Sihag et al., 2023), temporal settings (Cavallo et al., 2024b) and biased
datasets (Cavallo et al., 2024a). All these results, however, hold for the dense covariance matrix which
is suboptimal in low-data regimes and computationally heavy. Here, we propose S-VNNs and study
their stability when the true covariance matrix is sparse and dense. This merits a different treatment
than the perturbation assumption studied in (Sihag et al., 2022) and overcomes the limitations of
dense VNNs. Our stochastically sparsified VNN draws analogies with the stability of GNNs to
random link drops (Gao et al., 2021a;b) but we generalize those findings to the more challenging case
where all sparsified probabilities differ rather than being identical. We also propose design strategies
for the sparsified probabilities based on our theoretical analysis.

Graph sparsification in GNNs. Graph sparsification techniques have been used for multiple purposes
in GNNs but predominantly to improve: (i) scalability in large and dense graphs (Hamilton et al.,
2018; Zhang et al., 2019; Zeng et al., 2021; Peng et al., 2022; Srinivasa et al., 2020; Ye & Ji, 2021);
(ii) GNN expressiveness in graph classification tasks and alleviate oversmoothing (Papp et al., 2021;
Rong et al., 2020; Fang et al., 2023; Zheng et al., 2020; Morris et al., 2021); and (iii) enhance
interpretability (Rathee et al., 2021; Li et al., 2023; Naber et al., 2024). Our S-VNNs aim on the
one hand to improve scalability and on the other to preserve the tractability and theoretical links
with covariance-based data processing. While our sparsification approaches can be applied also to
weighted graphs (see Appendix H), in this work we focus on covariance sparsification to characterize
theoretically how this affects stability w.r.t. covariance estimation errors and spurious correlations.

7 CONCLUSION

In this work, we develop sparse covariance neural networks (S-VNNs) and study the effects of
sparsification techniques on covariance neural networks. We show that S-VNNs are more stable
to the finite-data sample effect and more computationally efficient. In particular, when the true
covariance is sparse, we propose S-VNNs with hard/soft thresholding and show that they transfer
to the nominal VNN with a rate inversely proportional to the square root of the number of data
points. When the true covariance is dense, we put forth a stochastic sparsified approach to reduce the
computational complexity while maintaining mathematical tractability and stability. In the framework
of stochastic sparsification, we propose principled strategies, i.e., ACV and RCV, that align with
the theoretical observations to tune sparsification impact and computation efficiency. Experimental
results on four real datasets show that the proposed S-VNNs improve substantially on the computation
time and achieve competitive or better performance compared with nominal VNNs, thus validating
that spurious correlations are present and damaging in real datasets. Although VNNs can be applied to
several other regularized covariance estimators (Ledoit & Wolf, 2003; Bickel & Levina, 2008a; Bien
& Tibshirani, 2011; Friedman et al., 2007) to reduce the impact of spurious correlations, we here focus
on thresholding since, unlike other estimators, it allows to control the sparsity of the covariance matrix
(fundamental for time and memory efficiency), and allows for theoretical tractability. Future work
will investigate other covariance estimators and characterize the regularization effect of stochastic
sparsification, which allows the model to observe multiple instances of the same covariance with
potential benefits for robustness, expressiveness and reduced oversmoothing.
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Reproducibility statement. The proofs of all theoretical results are collected in the appendix. For
experimental results, we make the code available with the submission and we provide references to
all the datasets in the following. The preprocessing functions for all datasets are made available in
the code.

• The synthetic datasets SparseCov, LargeCov and SmallCov are available in the code attached
to the submission.

• Realdisp can be downloaded at https://archive.ics.uci.edu/dataset/305/
realdisp+activity+recognition+dataset.

• MHEALTH can be downloaded at https://archive.ics.uci.edu/dataset/
319/mhealth+dataset.

• CNI can be downloaded at http://www.brainconnectivity.net/challenge.
html.

• Epilepsy can be downloaded at https://math.bu.edu/people/kolaczyk/
datasets.html and we provide the preprocessed version in the additional material.

We report additional experimental details for reproducibility in Appendix I.2.
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A BACKGROUND ON PCA AND CONNECTION WITH VNNS

PCA is a change of basis that aims at minimizing the redundancy of the transformed data while
maintaining their statistical properties of interest (Shlens, 2014; Jolliffe, 2002). PCA achieves
this by projecting the data onto a space where the covariance matrix of the transformed data is
diagonal, i.e., the off-diagonal elements, which characterize the redundancy of the data, are all zeros.
More formally, given a dataset X ∈ RN×t, where each column is a data sample x ∈ RN , PCA
applies a transformation X̃ = TTX with T ∈ RN×N such that the covariance of the transformed
data X̃X̃T is diagonal. This goal is achieved by setting T = V̂, where Ĉ = XXT = V̂Λ̂V̂T

is the eigendecomposition of the covariance matrix of the data, since X̃X̃T = V̂TXXTV̂ =

V̂T(V̂Λ̂V̂T)V̂ = Λ̂ due to the orthonormality of the covariance eigenvectors. PCA is also commonly
used for dimensionality reduction by selecting only some of the eigenvectors of the covariance matrix
to define the new basis, and several techniques exist to select the number of components, such as
looking at the eigenvalues of the covariance and selecting the number corresponding to the largest
eigenvalue drop. PCA is equivalent to the graph Fourier transform (GFT) for a graph defined by the
covariance Ĉ (Gama et al., 2020c; Isufi et al., 2024). Indeed, the GFT projects data on the space
defined by the eigenvectors of the graph shift operator S ∈ RN×N (a matrix describing the graph
structure, e.g., adjacency or Laplacian), i.e., X̃ = UTX given the eigendecomposition S = UWUT.
If we consider the graph described by the sample covariance matrix, i.e., S = Ĉ, then PCA and GFT
perform the same operation.

The connection between PCA and VNNs emerges by looking at the action of the covariance filter in
the spectral domain. For a data sample x, taking the GFT of the covariance filter leads to ũ = V̂Tu =

V̂T
∑K

k=0 hk[V̂Λ̂V̂T]kx =
∑K

k=0 hkΛ̂
kV̂Tx, equivalent to

∑K
k=0 hkλ̂

k
i x̃i = h(λ̂i)x̃i for the i-th

entry; that is, the filter is a polynomial in the covariance eigenvalues that modulates each component
of the GFT (i.e., PCA) of the signal x separately (cf. Sec. 3). This shows that the covariance filter
processes the principal components of the data, and there exists a set of coefficients hk such that a
covariance filter performs the same operation as PCA (Sihag et al., 2022, Theorem 1).

B PROOF OF LEMMA 1

We provide a bound for the stability of PCA, i.e., ∥VTx− V̂Tx∥. We have that∥∥∥VTx− V̂Tx
∥∥∥ =

∥∥∥∥∥
N∑
i=1

(vi − v̂i)
Txi

∥∥∥∥∥ ≤
N∑
i=1

∥vi − v̂i∥|xi|

≤
N∑
i=1

∥vi − v̂i∥ ≤ N max
i

∥vi − v̂i∥ .
(3)

where we used triangle inequality, the fact that ∥x∥ ≤ 1 and the fact that ∥(vi − v̂i)
T∥ = ∥vi − v̂i∥.

Using the sin-theta theorem (Stewart & guang Sun, 1990, Theorem V.3.6) (cf. equation 18), we have
that

max
i

∥vi − v̂i∥ ≤
√
2∥E∥

mini |λi − λi+1|
(4)

where ∥E∥ = ∥C− Ĉ∥. We now leverage the result from (Vershynin, 2018, Theorem 5.6.1) which
shows that ∥E∥ ≤ O(t−1/2) with probability 1− o(1), and this concludes the proof.

C PROOF OF THMS. 2 AND 3

C.1 PRELIMINARIES

We begin by providing a Lemma that will be used in the following.
Lemma 2. Consider the true and the thresholded sample covariance matrices and their respective
eigendecompositions C = VΛVT and C̄ = V̄Λ̄V̄T. The following holds:

1√
2
|vT

j v̄i| ≤
√
1− |vT

j v̄j | ∀i ̸= j. (5)
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Proof. We first observe that, due to the orthonormality of V and V̄, we have

1

2
∥vj − v̄j∥2 =

1

2
(vj − v̄j)

T(vj − v̄j) = (6)

1

2
(vT

j vj − 2vT
j v̄j + v̄T

j v̄j) = 1− |vT
j v̄j | (7)

where we assumed vT
j v̄j ≥ 0. Note that this assumption does not lose generality because eigenvectors

are invariant to change of sign, i.e., if vj is an eigenvector of C, −vj is equivalently an eigenvector.
Now, we write vj − v̄j = δvj as the sum of two components, δvj = δvj∥ + δvj⊥, that are
respectively parallel and perpendicular to vj . Due to triangle inequality, we have that ∥δvj⊥∥ +
∥δvj∥∥ ≤ ∥δvj⊥∥ ≤ ∥δvj∥. Since the columns of V form an orthonormal basis of RN , the
perpendicular component of δvj is the sum of the projections of v̄j on all columns of V except vj ,

i.e., δvj⊥ =
∑N

i=1,i̸=j(v̄
T
j vi)vi and the norm becomes ∥δvj⊥∥ =

√∑N
i=1,i̸=j(v̄

T
j vi)2. Due to

triangle inequality and orthonormality of V, for any i ̸= j, we have

1√
2
|v̄T

j vi| ≤
1√
2
∥δvj⊥∥ ≤ 1√

2
∥vj − v̄j∥ =

√
1− |vT

j v̄j |. (8)

We now provide a general result on VNN stability that will be the starting point to prove Thms. 2
and 3.

Proposition 2 (Stability of VNNs). Consider a Lipschitz covariance filter H(C) with constant P .
Let C̄ be an estimated covariance matrix of C. Then, for any generic signal x where ∥x∥ ≤ 1 and
estimation error E = C− C̄ where ∥E∥ ≪ 1, it holds that

∥H(C̄)x−H(C)x∥ ≤ P
√
N∥E∥(1 +

√
2N) +O(∥E∥2). (9)

Proof. We will make use of the eigendecompositions C = VΛVT and C̄ = V̄Λ̄V̄T, where V and
V̄ contain in their columns the eigenvectors of C and C̄, respectively, and Λ and Λ̄ contain their
eigenvalues on the diagonal. Following (Sihag et al., 2022, eq. (32)-(39)), under the assumption of
small perturbation, i.e., ∥E∥ ≪ 1, the stability bound is the sum of three terms:

H(C̄)x−H(C)x ≈
N∑
i=0

x̃i

K∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i (λ̄i − λi)vi︸ ︷︷ ︸

term 1

(10)

+

N∑
i=0

x̃i

K∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i (λiIN −C)(v̄i − vi)︸ ︷︷ ︸
term 2

(11)

+

N∑
i=0

x̃i

K∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i ((λ̄i − λi)IN −E)(v̄i − vi)︸ ︷︷ ︸

term 3

(12)

where x̃i is the i-th component of the Covariance Fourier Transform of a generic graph signal x, i.e.,
x̃ = VTx, and we inverted term 1 and 2 compared to (Sihag et al., 2022) for ease of explanation in
the following. We now analyze the three terms separately.

Term 1. Leveraging (Sihag et al., 2022, eq. (59)-(61)), we have that

N∑
i=0

x̃i

K∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i (λ̄i − λi)vi =

N∑
i=0

x̃ih
′(λi)(λ̄i − λi)vi (13)

where h′(λi) is the derivative of the frequency response of the filter and is bounded in absolute value
by P . Using Weyl’s theorem (Golub & van Loan, 2013, Theorem 8.1.6), we have that |λ̄i−λi| ≤ ∥E∥.
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Therefore, by taking the norm and using the fact that
∑N

i=1 |x̃i| ≤
√
N∥x̃∥ =

√
N∥x∥ ≤

√
N , we

get ∥∥∥∥∥
N∑
i=0

x̃ih
′(λi)(λ̄i − λi)vi

∥∥∥∥∥ ≤
N∑
i=0

|x̃i||h′(λi)|∥E∥∥vi∥ ≤ (14)

N∑
i=0

|x̃i|P∥E∥ ≤ (15)

P
√
N∥E∥. (16)

Term 2. Following (Sihag et al., 2022, eq. (40)-(54)), the norm of term 2 is bounded by∥∥∥∥∥
N∑
i=0

x̃i

K∑
k=0

hk

k−1∑
r=0

Crλk−r−1
i (λiIN −C)(v̄i − vi)

∥∥∥∥∥ ≤
√
N

N∑
i=1

|x̃i|max
j

|h(λi)− h(λj)||vT
j v̄i|

(17)

where h(λ) is the frequency response of the covariance filter. Note that in equation 17 we have a term√
N that does not appear in (Sihag et al., 2022, eq. (54)) because we consider operator norm instead

of uniform norm. We now leverage the sin-theta theorem (Stewart & guang Sun, 1990, Theorem
V.3.6): for j = 1, . . . , N , we have that

1

2
∥vj − v̄j∥2 = 1− |vT

j v̄j | ≤
∥E∥2

mini |λi − λi+1|2
. (18)

By using Lemma 2, we obtain:

|vT
j v̄i| ≤

√
2
√
1− |vT

j v̄j | ≤
√
2∥E∥

mini |λi − λi+1|
∀i ̸= j. (19)

By plugging equation 19 into equation 17, we have

√
N

N∑
i=1

|x̃i|max
j ̸=i

|h(λi)− h(λj)||vT
j v̄i| ≤ (20)

√
2N∥E∥

N∑
i=1

|x̃i|max
j ̸=i

|h(λi)− h(λj)|
mini |λi − λi+1|

≤ (21)

√
2N∥E∥

N∑
i=1

|x̃i|max
j ̸=i

|h(λi)− h(λj)|
|λi − λj |

≤ (22)

√
2N∥E∥

N∑
i=1

|x̃i|P ≤ (23)

√
2N∥E∥P (24)

where we used the Lipschitz property of the filter and the fact that
∑N

i=1 |x̃i| ≤
√
N∥x∥.

Term 3. This term depends on the second-order error ((λ̄i − λi)IN − E)(v̄i − vi). From Weyl’s
theorem (Golub & van Loan, 2013, Theorem 8.1.6), we have that ∥(λ̄i − λi)IN − E∥ ≤ 2∥E∥.
From equation 18, we have that ∥v̄i − vi∥ = O(∥E∥). Therefore, the product of the two is
∥(λ̄i−λi)IN −E∥∥v̄i−vi∥ ≈ O(∥E∥2), which is dominated by the other two terms in equation 10
and equation 11 under small perturbation assumption.

We complete the proof by merging the terms in equation 24 and equation 16.
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C.2 PROOF OF THM. 2

From (Bickel & Levina, 2008b, Theorem 1), given a true covariance C and a hard-thresholded sample
covariance C̄, it holds with probability 1− o(1) that

∥C̄−C∥ = ∥E∥ ≤ c0

√
logN

t
. (25)

By replacing ∥E∥ in equation 9, the claim follows.

C.3 PROOF OF THM. 3

From (Deshpande & Montanari, 2016, Theorem 1), given a true covariance C and a soft-thresholded
sample covariance C̄, it holds with probability 1− o(1) that

∥C̄−C∥ = ∥E∥ ≤ 1√
t
Cc0 max(1, λ0)

√
max

(
log

N

c20
, 1

)
(26)

for a generic constant C. By replacing ∥E∥ in equation 9, the claim follows.

D PROOF OF PROPOSITION 1

We have that

∥∥VTx− V̄Tx
∥∥ =

∥∥∥∥∥
N∑
i=1

(vi − v̄i)
Txi

∥∥∥∥∥ ≤
N∑
i=1

∥vi − v̄i∥|xi|

≤
N∑
i=1

∥vi − v̄i∥ ≤ N max
i

∥vi − v̄i∥ .
(27)

where we used triangle inequality, the fact that ∥x∥ ≤ 1 and the fact that ∥(vi − v̄i)
T∥ = ∥vi − v̄i∥.

Using the sin-theta theorem (Stewart & guang Sun, 1990, Theorem V.3.6) (cf. equation 18), we
have that maxi ∥vi − v̄i∥ ≤

√
2∥E∥/mini |λi − λi+1| where ∥E∥ = ∥C− C̄∥. Now, we use the

expression for ∥E∥ with hard thresholding in (Bickel & Levina, 2008b, Theorem 1), i.e.,

∥E∥ ≤ c0

√
logN

t
, (28)

and the claim follows.

E GENERALIZED COVARIANCE FILTER FREQUENCY RESPONSE

We provide here additional details related to the derivation of the generalized covariance filter
frequency response in Def. 6 following (Gao et al., 2021a). Consider a covariance filter operating
on a sequence of K sparsified covariances C̃1 . . . C̃K with eigendecomposition C̃k = ṼkΛ̃kṼ

T
k

(where Ṽk = [ṽk1, . . . , ṽkN ] and Λ̃k = diag(λ̃k1, . . . , λ̃kN )) according to Def. 5. For matrix C̃1,
we can express a signal x as x =

∑N
i1=1 x̂1i1 ṽ1i1 , where x̂1 = [x̂11, . . . , x̂1N ]T is the covariance

Fourier transform of x w.r.t. C̃1. By performing a graph signal shift, we obtain

x(1) = C̃1x = C̃1

N∑
i1=1

x̂1i1 ṽ1i1 =

N∑
i1=1

x̂1i1 λ̃1i1 ṽ1i1 . (29)

When performing a second shift, i.e., x(2) = C̃2C̃1x, we decompose each eigenvector ṽ1i1 by
taking its covariance Fourier transform w.r.t. C̃2, i.e., we get ṽ1i1 =

∑N
i2=1 x̂2i1i2 ṽ2i2 where
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x̃2i1 = [x̂2i11, . . . , x̂2i1N ] is the covariance Fourier transform of v̂1i1 over C̃2. Performing this
operation on all eigenvectors ṽ11, . . . , ṽ1N and using equation 29, we can write

x(2) = C̃2

N∑
i1=1

x̂1i1 λ̃1i1 ṽ1i1 =

N∑
i2=1

N∑
i1=1

x̂2i1i2 x̂1i1 λ̃2i2 λ̃1i1 ṽ1i1 . (30)

Generalizing this to k shifts, we get

x(k) =

N∑
ik=1

· · ·
N∑

i1=1

x̂kik−1ik . . . x̂2i1i2 x̂1i1

k∏
j=1

λ̃jij ṽkik (31)

and by aggregating the K + 1 shifted signals according to Def. 5 we obtain

ũ =

N∑
iK=1

· · ·
N∑

i1=1

x̂KiK−1iK . . . x̂2i1i2 x̂1i1

K∑
k=1

hk

k∏
j=1

λ̃jij ṽkik . (32)

From equation 32 we see that this representation involves all eigenvalues Λ̃K , . . . , Λ̃1 and eigen-
vectors ṼK , . . . , Ṽ1 of the sequence of covariance realizations. Therefore, we can consider the
coefficients {x̂1i1}Ni1=1 and {x̂2ijij+1

}K−1
j=1 as the generalized covariance Fourier transform of signal

x on the sequence of sparsified covariances ṼK , . . . , Ṽ1. This supports the definition of a generalized
frequency response for a covariance filter over random sparsified covariances in Def. 6.

F PROOF OF THM. 4

Consider a covariance filter H(C̃)x operating on the matrix C̃ = E+Ĉ, which represents a sparsified
random matrix that is a copy of Ĉ whose elements cij are dropped with probability (1− pij), where
Ĉ is the sample covariance matrix and C is the true covariance matrix. Then, the stability of the
covariance filter depends on two sources of error. Indeed, by adding and subtracting H(Ĉ)x and
leveraging the triangle inequality, we obtain

∥H(C)x−H(C̃)x∥2 = ∥H(C)x−H(Ĉ)x+H(Ĉ)x−H(C̃)x∥2 ≤ (33)

∥H(C)x−H(Ĉ)x∥2 + ∥H(Ĉ)x−H(C̃)x∥2 = α+ β (34)
where α is an instability error due to the uncertainties in the covariance matrix estimate and β
depends on the stochastic sparsification of the sample covariance matrix. We analyze and provide an
expression for these two terms in the remainder of the proof.

F.1 COVARIANCE UNCERTAINTY ERROR

The effect of covariance estimation errors on the stability of VNN is deterministic and, consequently,
can be bounded by the square of the bound in Thm. 1:

∥H(C)x−H(Ĉ)x∥2 ≤ β2 =
P 2

t
O
(
N +

∥C∥2 log(Nt)

ν2t2

)
(35)

where t is the number of data samples used to estimate the covariance matrix.

F.2 COVARIANCE SPARSIFICATION ERROR

To analyze the stability of VNN to the stochastic sparsification of the covariance matrix, we leverage
and extend previous results on the stability of GNNs to stochastic graph perturbations. We begin by
providing some lemmas that will be used in the main statement.
Lemma 3. Consider a random covariance matrix C̃r = Ĉ+Er, where C̃r is a copy of the sample
covariance matrix Ĉ whose elements ĉij are dropped independently with probability 1− pij and Er

is its distance from Ĉ. Under the conditions of Def. 4, i.e., edge perturbations are undirected (i.e.,
Er is symmetric) and no perturbations occur on the diagonal (i.e., Er has zeros on the diagonal), it
holds that

trace(E[E2
r]) =

N∑
i=1

N∑
n=1

ĉ2in(1− pin) = Q. (36)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. Each entry of the random error matrix Er can be represented as [Er]ij = −δijcij , where
δij is a Bernoulli variable that is one with probability 1 − pij and zero with probability pij . By
performing the matrix multiplication, we can express each element of E2

r and, consequently, its
expectation, as

[E2
r]ij =

N∑
n=1

ĉinĉnjδinδnj , [E[E2
r]]ij =

N∑
n=1

ĉinĉnjE[δinδnj ]. (37)

The Bernoulli variables δij are independent except for δij = δji given the symmetry of Er. Therefore,
we have

E[δinδnj ] =
{
(1− pin)(1− pnj) if i ̸= j

(1− pin) if i = j
(38)

We can now compute the trace by summing the elements on the diagonal and using the fact that Er is
symmetric, i.e.,

trace(E[E2
r]) =

N∑
i=1

N∑
n=1

ĉinĉniE[δinδni] = ĉ2in(1− pin). (39)

Lemma 4. Consider a covariance filter H(C) with coefficients {hk}Kk=0 and generalized integral
Lipschitz frequency response with constant P . Given some realizations of a random matrix C̃r =
Er + Ĉ, for any signal x, it holds that

E

[
K∑
r=1

trace

(
K∑

k=r

K∑
l=r

hkhlErĈ
k+l−2rErĈ

r−1xxTĈr−1

)]
≤ NP 2∥x∥2Q (40)

with Q defined in equation 36.

Proof. Following (Gao et al., 2021a, eq. (B.13)-(B.15)), we rewrite the term in equation 40 as
N∑
i=1

x̂2
i

K∑
r=1

trace

(
K∑

k=r

K∑
l=r

hkhlλ̂
2r−2
i Ĉk+l−2rE[E2

r]

)
(41)

where x̂i is the i-th component of the Covariance Fourier Transform of the signal x̂ = V̂Tx and
Ĉ = V̂Λ̂V̂T is the eigendecomposition of Ĉ with eigenvectors V̂ = [v̂1, . . . , v̂N ]T and eigenvalues
Λ̂ = diag(λ̂1, . . . , λ̂N ). Now, we leverage the property

trace(AB) ≤ ∥A+AT∥
2

trace(B) ≤ ∥A∥trace(B) (42)

which holds for any square matrix A and positive semi-definite matrix B (Wang et al., 1986). We
note that E[E2

r] is positive semi-definite since E2
r is the square of a symmetric matrix. Therefore, we

use equation 42 to write
N∑
i=1

x̂2
i

K∑
r=1

trace

(
K∑

k=r

K∑
l=r

hkhlλ̂
2r−2
i Ĉk+l−2rE[E2

r]

)
≤ (43)

N∑
i=1

x̂2
i

∥∥∥∥∥
K∑
r=1

K∑
k=r

K∑
l=r

hkhlλ̂
2r−2
i Ĉk+l−2r

∥∥∥∥∥ trace(E[E2
r]) (44)

where we also used the linearity of the trace operator to move the summation term.

From (Gao et al., 2021a, eq. (B.24)), we have that the term within the norm is bounded by the
generalized Lipschitz coefficient of the filter, i.e.,∥∥∥∥∥

K∑
r=1

K∑
k=r

K∑
l=r

hkhlλ̂
2r−2
i Ĉk+l−2r

∥∥∥∥∥ ≤ P 2. (45)
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Then, using Lemma 3, we have that

trace(E[E2
r]) =

N∑
i=1

N∑
n=1

ĉ2in(1− pin) = Q. (46)

Substituting these two terms in equation 44 leads to

N∑
i=1

x̂2
iP

2Q ≤ NP 2Q

N∑
i=1

x̂2
i = NP 2Q∥x∥2, (47)

where we used the fact that
∑N

i=1 x̂
2
i = ∥x̂∥2 = ∥VTx∥2 = ∥x∥2, i.e., the covariance Fourier

transform does not modify the norm of the signal.

Lemma 5. Consider two distinct random covariance realizations C̃r1 = Ĉ + Er1 and C̃r2 =

Ĉ+Er2 . Then, the following holds:

trace(E[Er1Er2 ]) =

N∑
i=1

N∑
n=1

ĉ2in(1− pin)
2 (48)

Proof. Similarly to Lemma 3, we can express each element of the expected value of the matrix
product Er1Er2 as

[E[Er1Er2 ]]ij =

N∑
n=1

ĉinĉnjE[δr1,inδr2,nj ] (49)

where δr,ij is a Bernoulli variable relative to realization Er that is one with probability 1− pij and
zero with probability pij . Since Er1 and Er2 are two different realizations, all variables δr,ij are
independent. Therefore, E[δr1,inδr2,nj ] = (1− pin)(1− pnj) and the trace becomes

trace(E[Er1Er2 ]) =

N∑
i=1

N∑
n=1

ĉ2in(1− pin)
2. (50)

Lemma 6. Consider two distinct random covariance realizations C̃r1 = Ĉ + Er1 and C̃r2 =

Ĉ+Er2 . Then, the following holds:

trace(E[E2
r1Er2 ]) = O((1− p1)(1− p2)). (51)

where p1, p2 are two generic probabilities.

Proof. From Lemma 3 we have that

[E[E2
r1 ]]ij =

N∑
n=1

ĉinĉnjE[δr1,inδr1,nj ]. (52)

Therefore, the elements of E2
r1Er2 are

[E[E2
r1Er2 ]]ij =

N∑
m=1

E[[E2
r1 ]imĉmjδr2,mj ] =

N∑
m=1

N∑
n=1

ĉinĉnmĉmjE[δr1,inδr1,nmδr2,mj ]. (53)

The three variables δr1,in, δr1,nm, δr2,mj are all independent with the exception of δr1,in = δr1,ni
due to matrix symmetry. Therefore,

E[δr1,inδr1,nmδr2,mj ] =

{
(1− pin)(1− pnm)(1− pmj) if i ̸= m

(1− pin)(1− pmj) if i = m
(54)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We can now compute the trace:

trace(E[E2
r1Er2 ]) =

N∑
i=1

N∑
m=1

N∑
n=1

ĉinĉnmĉmiE[δr1,inδr1,nmδr2,mi]. (55)

Therefore, the trace is a sum of terms of quadratic and cubic order in the probability value, i.e.,
O((1 − p1)(1 − p2)) or O((1 − p1)(1 − p2)(1 − p3)), where p1, p2, p3 are generic probabilities
values and the quadratic terms dominate the behavior since 1− p < 1. So,

trace(E[E2
r1Er2 ]) = O((1− p1)(1− p2)). (56)

Lemma 7. Consider the sample covariance matrix Ĉ and a random sparsified covariance C̃r =
Ĉ+Er as in Def. 4. We have that

trace(E[E3
r]) = O((1− p1)(1− p2)). (57)

where p1, p2 are two generic probabilities.

Proof. Similarly to Lemma 3, we can write the expected value of each element of E3
r as

[E[E3
r]]ij =

N∑
m=1

E[[E2
r]imĉmjδmj ] =

N∑
m=1

N∑
n=1

ĉinĉnmĉmjE[δinδnmδmj ] (58)

and, consequently, the trace

trace(E[E3
r]) =

N∑
i=1

N∑
m=1

N∑
n=1

ĉinĉnmĉmiE[δinδnmδmi] (59)

where the Bernoulli variables δin, δnm, δmi are all independent with the exception of δin = δni due
to matrix symmetry and the terms where i = n = m = j. Specifically, we have that

E[δinδnmδmi] =


(1− pin)(1− pnm)(1− pmi) if i ̸= m ∧ i ̸= n

(1− pin)(1− pmi) if i = m⊕ i = n

(1− pin) if i = m = n

(60)

where ⊕ denotes the xor operator. Now we note that, according to Def. 4, the matrix Er has zeros
on the diagonal or, equivalently, 1− pii = 0 ∀i. As a consequence, the terms where i = m = n
in equation 59 are all zeros and the trace only contains terms of quadratic and cubic order in the
probability value, i.e., O((1 − p1)(1 − p2)) or O((1 − p1)(1 − p2)(1 − p3)), where p1, p2, p3 are
generic probabilities values and the quadratic terms dominate the behavior since 1−p < 1. Therefore,

trace(E[E3
r]) = O((1− p1)(1− p2)). (61)

Main statement. Let u = H(Ĉ)x and ũ = H(C̃)x be the outputs of the deterministic and stochastic
filter, respectively. We are interested in the term

E[∥u− ũ∥2] = E[trace(uTu+ ũTũ− 2uTũ)] = (62)

E[trace(ũTũ− uTu)] + 2E[trace(uTu− uTũ)] (63)

where we added and subtracted uTu and used linearity of expectation and trace.

We represent a random covariance matrix as C̃r = Ĉ + Er, where Er is a random matrix that
contains the deviation from the true covariance. Following (Gao et al., 2021a, eq. (B.2)-(B.6)), we
express the first term in equation 63 as

E[trace(ũTũ− uTu)] = −2E[trace(uTu− uTũ)]+ (64)

K∑
k=1

K∑
l=1

hkhltrace

E

min(k,l)∑
r=1

Ĉk−rErĈ
r−1xxTĈr−1ErĈ

l−r

+ (65)

K∑
k=0

K∑
l=0

hkhltrace(E[Skl]) (66)
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where the term in equation 64 cancels out with the second term in equation 63, the term in equa-
tion 65 contains cross-products including two error matrices Er with the same index r, and Skl

aggregates the sum of quadratic forms with two error matrices with different indices (i.e., terms
of the form f1(Ĉ)Er1f2(Ĉ)Er1f3(Ĉ)Er2f4(Ĉ)Er2f5(Ĉ) or f1(Ĉ)Er1f2(Ĉ)Er1f3(Ĉ)Er2f4(Ĉ)
for two error matrices Er1 and Er2 , r1 ̸= r2). We now proceed to analyze the three terms in
equation 64,equation 65,equation 66.

First term. The term in equation 64 is the opposite of the second term in equation 63, so it cancels
out when substituted.

Second term. Analogously to (Gao et al., 2021a, eq. (B.8)), we rewrite the term in equation 65 lever-
aging the linearity of trace and expectation, the trace cyclic property trace(ABC) = trace(CAB) =
trace(BCA) and rearranging the terms to change the sum limits. Then we exploit Lemma 4 to upper
bound it as

E

[
K∑
r=1

trace

(
K∑

k=r

K∑
l=r

hkhlErĈ
k+l−2rErĈ

r−1xxTĈr−1

)]
≤ NP 2∥x∥22Q (67)

where Q is defined in Lemma 4 and is a sum of terms linear in the probability value.

Third term. The term in equation 66 can be bounded by an expression similar to equation 44, but
with at least two of the terms among {E[E2

r1 ],E[E
2
r2 ],E[Er1 ],E[Er2 ]} within the trace operator.

Using Lemmas 5 to 7, we know that these trace terms are of the order O((1 − p1)(1 − p2)) for
two generic probability values p1, p2. Since the frequency response of the covariance filter h(λ) is
bounded, and consequently the coefficients hk are also bounded, we have that

K∑
k=0

K∑
l=0

hkhltrace(E[Skl]) = O((1− p1)(1− p2)). (68)

By substituting the three bounds into equation 62, noticing that the terms of quadratic order O((1−
p1)(1− p2)) are dominated by the linear terms in Q and using the fact that ∥x∥ ≤ 1, we obtain the
final bound:

E[∥u− ũ∥2] ≤ NP 2Q+O((1− p1)(1− p2)). (69)

G SUFFICIENT CONDITION FOR PSD THRESHOLDED MATRIX

Consider a hard-thresholded sample covariance matrix C̄ as per Def. 2. Given the sample covariance
matrix Ĉ, the following is a sufficient condition for C̄ to be positive semidefinite (PSD) (Bickel &
Levina, 2008b, Section 2): C̄ is PSD if ∥C̄− Ĉ∥ ≤ ϵ and λmin(Ĉ) > ϵ for an ϵ > 0, where λmin(·)
computes the smallest eigenvalue. That is, if the true covariance matrix is sparse, then the term
∥C̄− Ĉ∥ decreases as the number of samples t increases and the sparse estimate is more likely to be
PSD.

H EXTENSION OF COVARIANCE SPARSIFICATION TECHNIQUES TO GRAPHS

The proposed sparsification techniques can also be applied to weighted graphs. Hard and soft
thresholding of a graph consists of removing all the edges whose absolute weight is below a given
threshold, and decreasing the weight of the others in case of soft thresholding. Stochastic sparsification
can also be performed on graphs, where each edge aij (where aij is the absolute weight of the edge
between nodes i, j or 0 if the edge does not exist) is removed with a probability 1− pij . In the case of
ACV, pij = |aij |/maxi,j |aij |. For RCV, instead, we can control the level of sparsification through a
parameter p by defining an ordered set of probabilities P = {p′1, . . . , p′N ′}, where p′i ≤ p′i+1, and
each p′i is sampled from N (p, σ) with σ = min((1 − p)/3, p/3) (such that the number of values
not in [0, 1], which we clip to the interval, is negligible) and N ′ is the number of probability values
for assignment. We then set pij = p′k where k = |{alm : |alm| < |aij |; l,m = 1, . . . , N}| is the
position of aij in the ordered ranking of absolute edge weights. This allows to increase the efficiency
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Table 1: Details on datasets.

Dataset Nodes Node features Classes Samples (train/valid/test)

Epilepsy 76 1 2 8000 (6400/800/800)
CNI 200 122 2 240 (160/40/40)

MHEALTH 24 128 12 5229 (3162/1003/1064)
Realdisp 117 128 10 5831 (2651/1296/1884)

of GNNs, which is a highly explored research direction (see, for example, Ye & Ji (2021); Peng et al.
(2022); Rong et al. (2020)).

However, we here explicitly and purposely focus on VNNs and on covariance sparsification in order
to, at the same time, improve VNN time efficiency and preserve the theoretical tractability of their
stability with respect to covariance estimation errors, which improves with our techniques under the
assumption of a sparse true covariance.

I EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

I.1 DATASETS

We provide additional details about the four real datasets we use in the experiments. Table 1
summarizes the main information about the datasets and Fig. 7 shows their empirical normalized
covariance values distribution.

• Epilepsy (Kramer et al., 2008) consists of an electrocorticography time series collected dur-
ing an epilepsy study at the University of California, San Francisco Epilepsy Center (Kramer
et al., 2008). The dataset contains 8000 time series samples recorded at 76 locations in
the brain, equally split before and after an epileptic seizure event. We use the same data
preprocessing technique in (Natali et al., 2022), and we further z-normalize the samples of
each class separately to prevent the classification task from being affected by trivial char-
acteristics such as signal amplitude. We interpret each time series sample as a signal on a
graph with 76 nodes, such that the covariance matrix represents brain functional connectivity.
We perform binary classification to predict whether the sample was recorded before or after
the seizure. We divide the datasets into train/validation/test splits of size 80%/10%/10%.

• CNI (Schirmer et al., 2021) was released for the Connectomics in NeuroImaging challenge
and contains resting-state fMRI time series of patients with attention deficit hyperactivity
disorder (ADHD) and neurotypical controls (NC). Each time series consists of 122 graph
signals recorded in 200 brain locations (nodes) per patient. The available training set
contains 200 patients and the test set 40 patients. We therefore consider a VNN with input
feature size 122 over 200 nodes and we perform classification to predict whether the patient
is ADHD or NC.

• MHEALTH (Banos et al., 2014a) contains measurements of wearable devices placed in
the chest, right wrist and left ankle of 10 subjects performing 12 different actions. Since
random data splits introduce contaminations due to overlapping windows (Tello et al., 2023),
we use recordings from different subjects for train, validation and test. Specifically, we use
subjects 6,10 for validation, 2,9 for test and the rest for training. We do not use the ECG
measurements placed in the chest. The goal is to classify the action performed by the subject.
The sampling rate is 50 Hz.

• Realdisp (Banos et al., 2014b) contains data of 17 subjects performing 33 actions. We use
subjects 4, 6, 10 and 11 for validation; subjects 1, 7, 8, 9, 12 and 14 for test and the remaining
for training. We use the 10 most common activity labels: walking, jogging, running, cycling,
elliptic bike, trunk twist (arms outstretched), rowing, knees (alternatively) bend forward,
waist bends forward, trunk twist (elbows bended). We segment the data in MHEALTH and
Realdisp creating sliding windows of size 128 (2.56 seconds) for measurements relative to
the same activity with 50% overlap.
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Table 2: VNN hyperparameters on different datasets.

Dataset L F1{, . . . , FL} K Epochs Learning rate Batch size

Epilepsy 5 32,32,32,32,32 1 200 0.001 100
CNI 1 64 1 50 0.015 50

MHEALTH 2 32,32 1 200 0.015 3162
Realdisp 2 128,64 1 500 0.001 5831

SparseCov 2 13,13 1 50 0.015 800
LargeCov 2 32,32 1 50 0.015 800
SmallCov 2 32,32 1 50 0.015 800
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Figure 5: Stability of VNN and PCA-SVM with dense and sparse covariance on regression task
for a synthetic dataset with sparse true covariance. (Left) Regression performance in terms of
Mean Absolute Error. (Right) Embedding difference (i.e., ∥Φ(x, C̄,H) − Φ(x,C,H)∥) between
VNNs/PCA with true and estimated covariance. Standard deviations in our results are of order at
most 10−2 for VNNs and 10−1 for PCA. Legend is shared.

I.2 EXPERIMENTAL SETUP

Hyperparameters. Table 2 reports the hyperparameters of VNNs used for experiments on different
datasets, which we find through a hyperparameter search. For regression and classification, we
average the outputs of VNN over nodes and apply a 2-layer MLP for the final task. We use Adam
optimizer with weight decay 0.001. For GraphSAGE in Table 3, we use the covariance matrix as a
graph and we use the same hyperparameter configuration as VNN except for Realdisp, for which we
use 2 layers of size 32 and 100 epochs.

Implementation details. We repeat all experiments 5 times and, for stochastic experiments, we
sample 10 different sparsified covariance matrixes. We report average results and standard deviations.
Experiments are run on a 13th Gen Intel Core i7-1365U CPU. We implement models using Pytorch
and for GraphSAGE we use Pytorch Geometric (Fey & Lenssen, 2019). The sample covariance
matrix Ĉ is computed once over the complete training set and fixed during training, i.e., it is not
affected by batching. For stability experiments, we use different sparsified covariances during test,
whereas for the other experiments we keep the same matrix estimated on the training set.

I.3 ADDITIONAL RESULTS

Sparse true covariance. Fig. 5 shows the embedding difference for VNNs and PCA variants with
hard and soft thresholding. This confirms the observations in Sec. 5.1 relative to the increased stability
of VNNs with thresholding w.r.t. PCA in sparse covariance settings since VNNs’ outputs under
sparsification are closer to the embeddings with the true covariance compared to PCA.

Stochastic sparsification. Fig. 6 shows the stability of VNNs under stochastic sparsification with
different strategies on the 4 real-world datasets. On CNI, VNNs remain stable for all sparsification
strategies: ACV achieves very close performance to dense VNN on both datasets and RCV performs
closely for most values of p. This is consistent with the observations in Sec. 5.2, which suggest that
most values in these covariances are not useful. On Epilepsy, MHEALTH and Realdisp, however, the
sparsified VNNs appear less stable, despite most covariance values being small (cf. Fig. 7). This can
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Table 3: Accuracy (%) on real datasets.

Epilepsy CNI MHEALTH Realdisp

B
as

el
in

es
PCA + SVM 100.0±0.0 50.0±0.0 17.7±0.0 11.9±0.0
Kernel PCA + SVM 100.0±0.0 55.0±0.0 17.7±0.0 11.4±0.0
Sparse PCA + SVM 100.0±0.0 55.0±0.0 17.7±0.0 11.8±0.0
GraphSAGE (Hamilton et al., 2018) 57.9±0.7 55.0±0.7 77.0±1.9 67.3±1.2
Dense VNN (Sihag et al., 2022) 98.6±0.4 54.0±3.8 87.6±3.6 71.6±4.0

O
ur

s

Hard-thr (p = 0.75) 98.9±0.5 53.5±7.6 85.9±4.3 69.0±3.8
Hard-thr (p = 0.5) 98.8±0.6 54.0±2.9 88.6±1.9 70.6±3.0
Hard-thr (p = 0.25) 97.6±0.6 54.0±2.9 88.5±4.2 67.2±8.0
Soft-thr (p = 0.75) 99.2±0.3 55.0±4.0 89.3±0.9 61.9±4.7
Soft-thr (p = 0.5) 99.1±0.4 53.5±3.8 87.6±3.9 73.8±3.9
Soft-thr (p = 0.25) 98.2±0.8 55.0±1.8 88.5±4.0 65.8±7.0
RCV (p = 0.75) 98.0±1.2 56.0±6.5 90.4±5.3 72.3±2.8
RCV (p = 0.5) 99.1±0.3 55.5±4.8 91.0±2.2 69.1±4.6
RCV (p = 0.25) 99.4±0.3 55.0±1.8 88.1±3.1 71.6±1.0
ACV 98.8±1.0 57.5±1.8 92.0±1.8 65.0±4.3

Table 4: Time (sec) for a batch forward pass on real datasets.

Epilepsy CNI MHEALTH Realdisp

B
as

el
in

es

PCA + SVM 0.35±0.02 0.03±0.02 0.08±0.01 0.14±0.01
Kernel PCA + SVM 1.90±0.04 0.03±0.02 1.37±0.14 0.78±0.08
Sparse PCA + SVM 0.57±0.07 0.02±0.00 0.08±0.00 0.14±0.01
GraphSAGE (Hamilton et al., 2018) 4.47±0.18 0.65±0.18 0.70±0.08 60.6±9.7
Dense VNN (Sihag et al., 2022) 4.49±0.01 0.61±0.08 1.58±0.07 72.6±1.6

O
ur

s

Hard-thr (p = 0.75) 3.93±0.17 0.53±0.01 1.24±0.03 55.3±1.0
Hard-thr (p = 0.5) 3.26±0.31 0.39±0.03 0.86±0.02 37.0±0.8
Hard-thr (p = 0.25) 2.06±0.35 0.22±0.00 0.47±0.01 19.1±0.5
Soft-thr (p = 0.75) 3.91±0.27 0.56±0.05 1.22±0.05 56.0±1.6
Soft-thr (p = 0.5) 2.65±0.08 0.38±0.01 0.89±0.03 37.8±1.0
Soft-thr (p = 0.25) 1.56±0.02 0.22±0.00 0.52±0.02 19.6±0.6
RCV (p = 0.75) 3.90±0.15 0.54±0.01 1.29±0.06 60.1±0.5
RCV (p = 0.5) 2.68±0.04 0.40±0.03 1.01±0.10 38.9±0.8
RCV (p = 0.25) 1.73±0.01 0.23±0.01 0.64±0.04 21.6±1.0
ACV 1.27±0.16 0.25±0.02 0.55±0.04 12.8±0.4

be due to the fact that the VNN on Epilepsy has 5 layers, which lowers stability according to Thm. 1,
while the task for HAR datasets is more challenging compared to the task for brain datasets (in this
case, there are 10 or 12 classes instead of the 2 for brain datasets), which may lead to lower model
stability.

Comparison with PCA and GraphSAGE on real datasets. We report in Tables 3 and 4 the
performance and time efficiency of S-VNNs, dense VNN, three different PCA-based classifiers
(standard PCA, kernel PCA (Schölkopf et al., 1997) and PCA with hard-thresholded covariance
matrix, all followed by a kernel SVM classifier) and GraphSAGE (Hamilton et al., 2018) operating on
the covariance matrix as a graph as an example of sparsified GNN. For PCA-based classifiers, since
PCA does not handle multiple features per node, for CNI, MHEALTH and Realdisp, we average the
node features before classification. The results for S-VNNs and VNN are the same as Fig. 4.

PCA-based classifiers are fast, especially those with linear PCA, particularly on CNI, MHEALTH
and Realdisp since they operate on the average of all node features. However, their performance is
inconsistent. They perform comparably to S-VNNs on Epilepsy and CNI, but very poorly on the
HAR datasets, as not considering multiple node features hinders their representation capabilities.
This motivates the need for a more sophisticated and reliable approach such as VNNs. Furthermore,
both sparse and non-linear PCA provably suffer from stability issues, reiterating the advantages of
VNNs over them.
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Figure 6: VNN stability (in terms of average accuracy and standard deviation) on real datasets for
different stochastic covariance sparsification techniques.

GraphSAGE, instead, performs generally worse than S-VNNs (and especially poorly on Epilepsy)
and it improves only slightly the time efficiency compared to dense VNN, whereas S-VNNs achieve
a more consistent speed-up. This corroborates the effectiveness of our S-VNNs in both improving
performance due to the removal of spurious correlation and increasing time efficiency.
Remark 3. While the non-linear PCA and (sparse) VNNs may, at first sight, seem connected, they are
fundamentally different since kernel PCA computes the principal directions of the data projected into
a reproducing kernel Hilbert space, whereas VNNs manipulate the eigenvectors of the covariance
matrix of the samples in the original space. Therefore, we merely use kernel PCA here as a baseline
for additional comparison.
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Figure 7: Covariance values distributions for real and synthetic datasets.
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