Speculate Deep and Accurate:
Lossless and Training-Free Acceleration for
Offloaded LLMs via Substitute Speculative Decoding

Pei-Shuo Wang', Jian-Jia Chen*!, Chun-Che Yang*!, Chi-Chih Chang?, Ning-Chi Huang',
Mohamed S. Abdelfattah?, and Kai-Chiang Wu!

'National Yang Ming Chiao Tung University
2Cornell University

Abstract

The immense model sizes of large language models (LLMs) challenge deployment
on memory-limited consumer GPUs. Although model compression and parameter
offloading are common strategies to address memory limitations, compression
can degrade quality, and offloading maintains quality but suffers from slow infer-
ence. Speculative decoding presents a promising avenue to accelerate parameter
offloading, utilizing a fast draft model to propose multiple draft tokens, which
are then verified by the target LLM in parallel with a single forward pass. This
method reduces the time-consuming data transfers in forward passes that involve
offloaded weight transfers. Existing methods often rely on pretrained weights
of the same family, but require additional training to align with custom-trained
models. Moreover, approaches that involve draft model training usually yield only
modest speedups. This limitation arises from insufficient alignment with the target
model, preventing higher token acceptance lengths. To address these challenges
and achieve greater speedups, we propose SUBSPEC, a plug-and-play method to ac-
celerate parameter offloading that is lossless and training-free. SubSpec constructs
a highly aligned draft model by generating low-bit quantized substitute layers from
offloaded target LLM portions. Additionally, our method shares the remaining
GPU-resident layers and the KV-Cache, further reducing memory overhead and
enhance alignment. SubSpec achieves a high average acceptance length, delivering
9.1x speedup for Qwen2.5 7B on MT-Bench (§GB VRAM limit) and an average of
12.5 x speedup for Qwen2.5 32B on popular generation benchmarks (24GB VRAM
limit). The code is available athttps://github.com/NYCU-EDgeAi/subspec.

1 Introduction

Large language models (LLMs) [} 4, [37]] have achieved widespread popularity in tasks ranging from
chat models to code generation. Local deployment of these models on consumer hardware offers
compelling advantages: data privacy, potential cost reductions compared to API access, freedom for
model customization, and direct control over the inference process [47].

The substantial memory requirement is the primary barrier to such local deployment. Popular open
source model families like Llama [[15} 39]], Qwen [42, 43], and DeepSeek [26] often exceed the
memory constraint in common consumer-level GPUs (typically ranging from 8GB to 24GB). For

“These authors contributed equally to this work

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NYCU-EDgeAi/subspec

Qwen2.5 7B with Offloading (§GB VRAM Limit)

—— EAGLE-2 Qwen2.5 1.5B —— SubSpec

400
[Memory Transfer
81 9.10x = 3501 [Target Compute
% 3001 [Draft Compute
=
_g' 6l ~ 2501
9 £ 200
& >150
44 c
2.83X% 9 100
©
- 50+
o " %l ‘ m=—
0 16 32 48 64 Vanilla EAGLE-2 Qwen2.5 1.5B SubSpec
Draft Depth (no SD)

Figure 1: Impact of draft model characteristics on speculative decoding performance, tested under
the MT-Bench [46] benchmark. Left: Maximal speedup achieved by different draft models varies
with draft depth in tree-based speculative decoding. Right: Average inference latency per token
for Qwen2.5 7B (8GB GPU memory constraint) of different methods with optimal draft depths.
SubSpec utilizes a higher draft model computation to minimize costly memory transfers of target
model parameters.

instance, Llama3.1 8B requires 16GB VRAM, surpassing the capacity of a consumer card such as an
RTX 3060 (12GB).

A common strategy to accommodate LLMs within limited memory is model compression, primarily
via techniques like quantization [13} 25]]. Quantization reduces model memory demands by encoding
weights in low-precision formats (e.g., INT8, INT4); however, this lossy compression inevitably
alters model outputs and impairs model quality.

Parameter offloading presents a lossless alternative, storing inactive layers in host memory and
streaming them to the GPU when needed [20]. Unfortunately, frequent data transfers over the PCle
bus severely throttle throughput. This results in prohibitively long latencies for token generation,
often only one to two tokens per second on consumer cards like the RTX 4090 supporting PCle 4.0.
Such latency undermines practical usability and fails to satisfy demands for real-time interaction.

Speculative decoding (SD) has emerged as a promising acceleration technique to mitigate the
excessive latency due to parameter offloading. SD utilizes a smaller, faster draft model to rapidly
propose multiple tokens, which are then verified by the larger target model in parallel using a single
forward pass. Potentially accepting multiple tokens, SD can substantially reduce the number of
expensive forward passes involving target model weight transfers. However, some existing SD
approaches [10, [35] achieve notable speedups by relying on smaller pretrained models from the
same family that align well with the target LLM. These strategies cannot be directly applied to
custom-trained models and require additional training for alignment. Other techniques involving draft
model training [24} 45]] often yield relatively modest speedups when applied on offloading scenarios.
This limitation stems from insufficient alignment, leading to average acceptance lengths generally
below seven tokens.

Hence, we introduce Substitute Speculative Decoding (SUBSPEC), a plug-and-play and training-free
approach designed to maximize inference throughput for offloaded LLMs on consumer-grade devices.
SubSpec constructs a highly aligned draft model by sharing GPU-resident weights and KV-Cache
with the target model, while maintaining low-bit substitute weights for the offloaded layers. This
innovative design ensures exceptionally close alignment between the draft and target models and
enables deployment of large models locally with competitive inference speeds. The effectiveness of
this approach in reducing data transfer latency is demonstrated in Figure[l]

In this work, our key contributions are as follows:

* Our analysis identifies the predominance of the alignment and draft depth of the draft model
under parameter offloading scenarios, compared to its speed.

* We propose a plug-and-play and training-free method that constructs highly aligned draft
models using shared components and low-bit substitutes, minimizing VRAM overhead.

* We introduce refinements to draft tree construction, such as probability sharpening, to
effectively leverage deeper trees and boost acceptance length.

» We developed an efficient system to accelerate offloading. Using this system, popular models
like Qwen2.5 7B achieve 25 tokens per second on a single consumer GPU across diverse
benchmarks (within an 8GB VRAM limit), demonstrating over 10x speedups compared to
baseline offloading inference.

2 Background

2.1 Parameter Offloading

Parameter offloading is a technique commonly employed by inference frameworks [[14, (18, 21] to
manage models whose memory requirements exceed GPU capacity. This strategy primarily stores
model parameters in CPU memory, transferring them to the GPU only when required for computation.
After the GPU completes computations for a specific layer, its parameters may be either discarded or
overwritten by those required for subsequent layers. Typically, frameworks aim to retain as many
model layers as possible directly within GPU memory, offloading only the remainder to minimize
data transfer overhead.

However, these frequent parameter transfers between CPU and GPU memory introduce considerable
latency, as GPU operations often stall while awaiting data. This latency significantly impacts the total
inference time, making performance highly sensitive to PCle bandwidth limitations.

While techniques like Deepspeed-inference [3]] and FlexGen [34] improve throughput via large
batches, such approaches are not suitable for latency-critical online inference, where small batch
processing is standard. Each forward pass remains constrained by the PCle bus data transfer bottleneck
in such scenarios.

2.2 Speculative Decoding

Speculative decoding [7, [22] accelerates the target autoregressive LLM by generating multiple tokens
per iteration, rather than just one. In each iteration, a smaller, faster draft model quickly produces
a set of draft tokens. These draft tokens are then evaluated in parallel by the target model (the
original LLM being accelerated) with a single forward pass. Tokens confirmed by the target model
are then accepted, reducing the total forward passes required to generate the full context. The average
acceptance length (7) is the mean number of accepted draft tokens per iteration.

Miao et al.|further advanced this approach with tree decoding. This method improves the number of
tokens accepted per iteration while conserving computational efficiency. Tree decoding maintains a
hierarchical token structure instead of parallel beams. Multiple branching token paths are flattened
and evaluated in one forward pass. Positional encodings and attention masks are modified to preserve
tree structure dependency. Subsequent works [6, [10, 23| 24] have built on this foundation. These
works developed advanced tree-based speculative decoding strategies, reporting 2 X to 4 x faster than
standard autoregressive decoding when no offloading is required.

Recent methods illustrate the benefits of using SD to accelerate offloading scenarios. SD significantly
reduces data transfer overhead by reducing the total number of forward passes required by the
target model, without losing quality. For example, SpecExec [35] demonstrates that speculating
and verifying with a larger budget (from 128 to 2048 draft tokens) per iteration can achieve higher
average acceptance length and additional speedup. In contrast, Dovetail [45]] focuses on accelerating
smaller LLMs on heterogeneous setups, running Llama-2 7B by offloading partial computation to the
CPU. The authors of Dovetail also trained a draft model larger than EAGLE [23] to achieve better
alignment. These techniques have showcased notable speedups. Such speedups result from choosing
mid-sized, accurate draft models and speculating deeper token trees. These approaches either assume
access to a compatible smaller model in the same family or require fine-tuning to align draft and
target distributions.

3 Analysis of Speculative Decoding Speedup in Offloading Scenarios

3.1 Theoretical Speedup Analysis

This subsection derives the theoretical speedup of speculative decoding (SD) over autoregressive
decoding (AR). The goal is to clarify the factors governing SD performance and highlight the distinct
optimization challenges posed by standard (model fully GPU-resident) versus parameter-offloading
inference scenarios.

First, we establish the original time required for the token generation of the AR-based target LLM. The
total time TQ/R required to generate N tokens using autoregressive decoding is directly proportional
to the number of tokens, as each token necessitates one forward pass of the target model:

TﬁfR =N tTa'r’geta (1)
where t74,4c¢ TEpresents the latency of a single forward pass of the target model.

In contrast, the total time Tg\l/) to generate N tokens using speculative decoding (SD) is given by:

N . D- tDTaft + v tTaTget

TL, =
SD T

, 1<7<D+1,)
tprayt 18 the latency of a single draft model forward pass, and D is the draft depth. For each iteration,
the draft model runs D forward passes to generate a draft token sequence or tree of depth D (as to
"speculate"). The target model then performs a single forward pass over all draft tokens, checking
their correctness (as to "verify"). The factor ~y reflects the relative cost of this parallel verification
compared to a normal AR forward pass t74,4e; (typically ranging from 1 < « < 2). The term 7,
known as the average acceptance length, denotes the mean number of tokens accepted per iteration
(potentially including a bonus token derived from the final accepted token, thus 1 < 7 <D + 1).

The theoretical speedup is then the ratio Tﬁf =/ Té\fD. Combining Equations (1)) and (2)) yields:

T,quR _ T - tTarget _ T L <r<Dal .
T% D- tDraft +- tTarget W + ,Y’ - =
arge

Equation (3) reveals a key trade-off when selecting the draft model and its draft depth (D). In
standard settings, both the target latency ¢74,4c¢ and the speculation overhead D - ¢ p,.q ¢ impact the
denominator. Increasing draft depth (D) to improve 7 potentially must therefore be balanced against
this linear rise in speculation overhead. This balance typically favors smaller, faster draft models
(tDraft < tTarger) With moderate D, though such models often offer lower alignment with the target,
potentially capping the achievable 7.

Conversely, this optimization landscape changes dramatically in parameter offloading scenarios
where data transfers significantly increase t74, 4. Here, the relative impact of the speculation latency
(D - tprayst) diminishes against the target verification cost (7 - t7grget). Maximizing the average
acceptance length (7) thus becomes crucial to minimize the frequency of expensive target model
forward passes. This priority favors draft models with superior target alignment and contextual
quality, even if their ¢ p,q ¢ is larger, as reducing calls to the costly target model results in greater
overall speedup.

3.2 Empirical Validation and Motivation for Efficient Draft Model Generation

To empirically demonstrate these contrasting dynamics of speculative decoding (SD) in standard
versus parameter-offloading scenarios, we present an illustrative evaluation with Qwen2.5 7B as
the target model. Figure [2] showcases the performance of two representative existing draft model
types: EAGLE—Qwen2. [23]], a smaller, generally faster draft model, and Qwen2.5 1.5B [43], a
moderately-sized model from the same family that might offer better intrinsic alignment. Figure 2]
also provides an early glimpse of SubSpec, our proposed method, which will be detailed in the next
section.

*The draft model weights for Qwen?2.5 were obtained from https://huggingface.co/leptonai/EAGLE-Qwen2.5-
7B-Instruct.

= 301 — EAGLE-2 / = - 251
~ Qwen2.5 1.5B - ~
£ 251 SubSpec 2 £ 201
o V) (]
S 20 S S
(V] Jhur} =
o = 159
< 4
2104 5 510
o 5] < g -
3 = F | Baseline: 2.77 tokens/s ____
0 16 32 48 64 0 16 32 48 64 0 16 32 48 64
Draft Depth # Draft Depth # Draft Depth
(a) Average acceptance length (1) (b) Standard (w/o offloading) (c¢) With offloading (8GB limit)

vs. draft depth (D)

Figure 2: Comparative performance of Qwen2.5 7B using SD with different draft approaches across
varying draft depths, tested under the MT-Bench benchmark.

The results presented in Figure 2] confirm our theoretical speedup analysis (Equation [3)): the faster
EAGLE-Qwen2.5 draft model performed best in standard settings due to its low overhead, while
the better-aligned Qwen2.5 1.5B model achieved superior speedup in the offloading setting, where
large t74rge¢ dominates due to obtaining a higher average acceptance length (7). These empirical
findings highlight a critical challenge: maximizing SD benefits in offloading scenarios demands
highly aligned draft models. This then raises a practical question for us: How can we efficiently
obtain such highly aligned draft models, particularly for custom or fine-tuned LL.Ms?

While some open-source model families offer pretrained models of various sizes, allowing smaller
versions to serve as potentially efficient and aligned draft models, this option is often unavailable
for custom-trained or fine-tuned LLMs. Creating a sufficiently aligned draft model for such custom
models typically necessitates additional training or distillation. These processes introduce further
costs (computation, memory, data, and time), preventing widespread SD adoption in many real-world
deployments.

To bridge this gap, we propose a practical and efficient alternative: utilizing a low-bit quantized
version of the target LLM itself as the draft model, which remains fully GPU-resident. This approach
capitalizes on efficient data-free quantization techniques, eliminating the need for training datasets
and resource-intensive training runs. Detailed later in Section [our method also incorporates
weight and KV-Cache sharing, significantly reducing VRAM overhead while enhancing draft model
alignment.

4 Substitute Speculative Decoding (SubSpec)

We introduce Substitute Speculative Decoding (SubSpec), a novel method enabling efficient LLM
inference on consumer-grade GPUs, particularly when model weights exceed available GPU memory.
SubSpec achieves this by constructing highly aligned, fully GPU-resident draft models and performing
tree-based speculative decoding, constructing deep draft trees with optimizations.

SubSpec constructs the draft model with quantized ‘substitute’ layers for the offloaded portions of
the target model, while GPU-resident layers and the KV-Cache are shared between the draft and
target. This design creates a draft model that is highly aligned with the target model. By constructing
deep draft token trees with such a model, it obtains extremely high average acceptance lengths
(1), significantly reducing the expensive data transfers, boosting overall inference throughput. The
subsequent sections detail the draft model construction (Section [A.1]), adaptations for draft tree
construction (Section[4.2), and complementary performance optimizations (Section[4.3).

4.1 Draft Model Construction

SubSpec employs three synergistic strategies to ensure that the draft model remains entirely on the
GPU. These strategies involve using substitute weights, sharing GPU-resident layers, and employing
a shared KV-Cache, as illustrated in Figure

Target Model (w/ Offloading) (_:_;r::fil:) [T Tk [my |

[Layer1HLayerZHLayeriihuu*[LayerN] I I | left | my |keys|
))

|
|
[1 [t [my [keys [at] |
|
|

i T 2. Speculate
% (Draft xD) I I | left | my |keys| at | the |
Low-bit
Shared % Substitute I 1 | left | my |keys| at | the |ofﬁce|

Welons 3. Verify
[Layer 1 H Layer 2 H Layer 3 H cee *{ Layer N] (Target x1) i left | my | key aty,| homg | office
Draft Model (GPU-Resident) 4.Update KV | T | lef | my [keys | at | home
Weight ¢ Already Weight {» CPU-GPU Generated by Generated by
EH on GPU — > on GPU EH on CPU "™ > Transfer I:I Target Model I:I Draft Model

Figure 3: Left: Draft model architecture of SubSpec. SubSpec maintains additional low-bit substitute
weights to keep the full draft model on the GPU. Right: Shared KV-Cache generation pipeline of
SubSpec. The draft model reuses the KV-Cache of the target model to achieve better alignment and
memory efficiency. This illustration serves as a simple sequential demonstration, while in practice,
we maintain a flattened token tree for tree decoding.

Quantized Substitute Weights for Offloaded Layers. A core principle of SubSpec involves
replacing the offloaded layers of the target model with lightweight, low-bit ‘substitute’ layers within
the draft model. These substitutes reside entirely on the GPU and approximate the functionality of
their corresponding target layers. For example, layers 2 and 3 on the left side of Figure[3|of the target
model are offloaded and the corresponding low-bit substitutes of the target layers are utilized for the
GPU-resident draft model. We generate these substitutes using fast, data-free quantization methods
(e.g., HQQ [5], HIGGS [28])), which require minimal processing time (under minutes for 7B to 70B
parameter models on a single consumer GPU). During inference, these quantized layers enable rapid
execution through highly optimized low-bit GEMM kernels [5, [16].

GPU-Resident Layer Sharing. The draft model reuses target model layers that remain in GPU
memory. For example, the weight of layer one on the left side of Figure [3]is GPU-resident and
shared by both the target model and our draft model. This sharing strategy maximizes GPU resource
utilization and inherently improves the alignment between the draft and target models, given that
identical weights are employed for these shared layers.

Shared KV-Cache. The structural similarity between the draft model of SubSpec and the target
model allows for a unified KV-Cache. This sharing approach yields significant advantages: it halves
the KV-Cache memory footprint compared to using separate caches and enhances alignment by
ensuring that both models operate on an identical contextual history. Furthermore, sharing the
KV-Cache eliminates the need for a distinct prefilling phase for the draft model, directly contributing
to faster overall inference. The demonstration of this pipeline is illustrated on the right side of
Figure[3] The draft model extends new KV-Cache values on speculation, which the target model then
overwrites during verification to ensure identical results.

4.2 Optimized Draft Tree Construction

Constructing Deep Context-Aware Dynamic Draft Tree. The high alignment of the SubSpec
draft model (detailed in Section enables the exploration of deeper draft trees to achieve higher
average acceptance lengths (7). Our sampling approach thus extends established context-aware
dynamic draft tree methods like EAGLE-2 [24] and SpecExec [35] to support these greater depths.

A context-aware dynamic draft tree is built by iteratively generating draft tokens with the draft model
over D future time steps. In each of these D forward passes, all leaf nodes are input to the draft model,
each yielding probability distributions for the potential next tokens. The score for each potential
next token is the cumulative product of its conditional generation probability (from the draft model)
and its parent path score. The top-k tokens with the highest scores are selected to form the new &
leaf nodes for the subsequent time step. This iterative procedure produces a draft tree of depth D,
presenting k x D draft tokens for target model validation (not including the root token).

Golden: "They are a subset of text data ..."

Draft tree with Draft tree with

(Original) (Draft Sharpening)

draft temperature = 1 draft temperature = 0.2

i
1
1
1
1
They 0'7. are 0'2.4 a 0'3. subset '9;’ of \| 1 They 0'99.9 are 0'9.8 a 0'8.3 subset | %2 of
(1.0) (0.7) (0.188) (0.041) -_(9 0_3(_5)_1. 1 (1.0) (0.999) (0.98) (0.813) (0.804)
- 1
: 1
1
1
1
1
'

0.19 0.2 0.0001 0.017 0.12 0.0001
Correct re] Traineal] "2 on Correct re trained key from
tokens = 4 (01 (014) (0112) tokens = 5+ (00000 (0.017) (0117) (0.0001)

Correct path stopped growing
due to low cumulative probability.

massive
(0.04)

Figure 4: Demonstration of the false positive path issue (with k = 2 for simplification). Correct draft
tokens may be dropped due to a lower cumulative probability score. The number in the parentheses
in each token denotes the cumulative probability score.

Addressing Cumulative Probability Divergence. While exploring substantially deeper draft trees
than typically used in prior work (often D < 7) showed promise for increasing 7, construction
for greedy decoding (target temperature = 0) revealed a subtle issue. We observed that paths
initiated by less probable tokens could accumulate an erroneously high overall likelihood through
high-probability subsequent selections. This phenomenon can lead to ‘false-positive’ paths that
achieve a higher cumulative probability than the genuinely optimal path (illustrated in Figure @)).
Such divergence is problematic in greedy decoding, as it can misguide path selection, potentially
causing early termination of the correct sequence and thereby limiting the achievable 7.

Draft Probability Sharpening. To counteract this divergence under greedy decoding, we employ
draft probability sharpening. This technique involves applying a low temperature (= 0.2) to the output
distribution of the draft model before calculating cumulative probabilities for tree sampling. Such
sharpening makes the probability distribution more peaked, reducing the probability mass allocated
to tokens with lower initial probabilities. Further analysis is shown in Appendix [D}

4.3 Complementary Performance Optimizations

Beyond the core SubSpec framework for draft construction and sampling, two complementary
techniques are integrated to further enhance performance and efficiency:

Asynchronous Data Transfer. We mitigate the computation cost of the target layers by overlapping
computation with data movement. While the GPU processes the current layer, the parameters for the
next required offloaded layer are concurrently prefetched from CPU memory. Unlike some prefetching
strategies limited to adjacent layers within the same decoder block, our implementation operates
across decoder layers, maximizing potential computation hiding. Furthermore, these prefetched
layers are loaded into the same reused memory regions to avoid increasing peak memory usage. This
asynchronous data transfer technique effectively conceals the computation time of the SD verification
step during forward passes of large draft trees.

Chunked Prefill for Long Contexts. Prefilling long input prompts can lead to substantial peak
GPU memory usage because intermediate activation sizes scale with context length, restricting the
number of target model layers that can remain GPU-resident. To address this, we employ chunked
prefill, where the input is segmented into fixed-length chunks (e.g., 256 tokens), and the KV-Cache
is built incrementally. This method significantly reduces peak memory during the prefilling phase.
While Sarathi-Serve [2] introduced this approach primarily to minimize pipeline bubbles in token
serving, our adaptation specifically focuses on curtailing peak memory of the prefilling phase for long
contexts to maximize the GPU residency of target model layers, further enhancing overall inference
efficiency.

Table 1: Throughputs and average acceptance lengths 7 by using different draft models. L31
represents Llama-3.1-Instruct, L32 represents Llama-3.2-Instruct, Q represents Qwen-2.5-Instruct.
None represents vanilla autoregressive decoding is used. The number in each parentheses below the
target model name denotes the restricted VRAM limit.

MT-Bench HumanEval GSM8K Alpaca CNN/DM Mean

Target Draft tokens/s T tokens/s T tokens/s T tokens/s T tokens/s T tokens/s T

Temperature = 0

None 2.40 1 2.39 1 2.40 1 2.40 1 2.34 1 2.39 (1.00x) 1
L3188 EAGLE-2 7.56 3.90 8.58 4.43 8.05 4.15 7.59 3.90 6.45 3.34 7.65 (3.20x) 3.95
(8GB) L32 1B 15.14 11.91 2579 2023 20.17 15.71 14.98 11.54 10.05 8.66 17.23(7.22x) 13.61
SubSpec 2429 2835 28.09 31.63 2778 3155 2213 2538 22.60 31.39 24.98(10.47x) 29.66

None 2.77 1 2.77 1 2.77 1 2.77 1 2.34 1 2.68 (1.00x) 1
Q7B EAGLE-2 8.00 3.73 8.76 4.08 8.28 3.85 7.47 3.47 6.47 3.02 7.80 (2.91x) 3.63
(8GB) Q1.5B 15.78 12.27 2829 2183 2286 17.59 12.37 9.47 9.34 7.88 17.73 (6.61x) 13.82
SubSpec 2535 27.08 3348 3477 33.04 3418 2230 2319 21.28 26.33 27.09 (10.10x) 29.11

None 1.22 1 1.22 1 1.22 1 1.22 1 1.17 1 1.20 (1.00x) 1

Q4B 5B 817 1081 1620 2145 1258 1654 646 843 440 640 9.56(7.92x) 1273
(I12GB) subSpec 12.05 2636 1570 33.76 1544 3294 1034 2179 927 24.08 12.56 (10.4x) 27.79

None 0.52 1 0.52 1 0.52 1 0.52 1 0.50 1 0.52 (1.00x) 1
Q32B Q7B 3.68 12.55 6.09 20.73 5.30 17.91 3.20 10.74 2.15 8.32 4.08 (7.86%) 14.05
(24GB) Q1.5B 4.49 10.87 8.22 19.90 6.74 16.17 3.61 8.62 2.39 6.46 5.09 (9.80x) 12.40
SubSpec 6.33 27.53 7.58 32.70 7.96 33.66 5.80 24.50 4.80 2648 6.50 (12.50x) 28.97

Temperature = 0.6

None 2.40 1 2.39 1 2.40 1 2.40 1 2.34 1 2.39 (1.00x) 1
L318B EAGLE-2 7.38 3.81 8.30 4.29 7.60 3.92 7.49 3.86 6.19 3.21 7.39 (3.10x) 9.96
(8GB) L32 1B 12.30 9.69 21.37 16.82 1588 1242 12.80 9.83 8.16 6.93 14.10(5.91x) 11.14
SubSpec 14.62 17.58 2259 2604 1651 1954 13.17 1546 11.61 1537 15.70(6.58x) 18.80

None 2.77 1 2.77 1 2.77 1 2.77 1 2.34 1 2.68 (1.00x) 1
Q7B EAGLE-2 7.42 3.45 8.49 3.96 8.07 3.76 6.47 3.01 5.69 2.66 7.23 (2.69x) 3.37
(8GB) Q15B 13.19 1043 2296 18.06 19.19 15.02 10.59 8.21 7.63 6.44 1471 (5.48x) 11.63
SubSpec 1592 17.09 29.13 30.57 23.89 2532 1443 1498 1015 12.07 18.70(6.97x) 20.00

None 1.22 1 1.22 1 1.22 1 1.22 1 1.17 1 1.20 (1.00%) 1
Ql4B (158 653 862 1190 1573 987 1299 543 709 377 542 750(621x) 997
(12GB) subSpec 690 1522 1217 2674 956 21.02 614 13.05 440 1090 7.83(6.49x) 17.39

None 0.52 1 0.52 1 0.52 1 0.52 1 0.50 1 0.52 (1.00x) 1
Q3B Q7B 264 908 48 1667 390 1324 249 837 176 661 3.13(6.03x) 10.79

(24GB) Q1.5B 3.71 9.03 5.72 13.93 4.80 11.61 2.94 7.06 1.94 5.26 3.82(7.35%) 9.38
SubSpec 3.74 16.40 6.15 26.54 4.41 19.32 3.37 14.16 2.65 13.33 4.06(7.82x) 17.95

5 Performance Evaluation

5.1 Evaluation Setup

Evaluation Benchmarks. We evaluated performance across five diverse generative tasks, consistent
with the benchmarks from EAGLE [23]] and Spec-Bench [41]. These tasks included multi-turn conver-
sation (MT-Bench [46]), code generation (HumanEval [9]), mathematical reasoning (GSMS8K [11])),
instruction following (Alpaca [36l]), and summarization (CNN/Daily Mail [31]]).

Hardware and Simulated Environments. All experiments were run on a system with an RTX
4090 GPU, an Intel i7-13700K CPU, a PCIe-4.0 x16 bus, and 128GB of DDR5 RAM. GPU memory
utilization during evaluations was programmatically restricted to 8GB, 12GB, and 24GB VRAM
capacities to simulate diverse consumer device environments.

Comparative Methodology and Parameters. We compared the end-to-end speedup of SubSpec
against EAGLE—ZE]and chat models from the Qwen2.5 (7B, 14B, 32B) and Llama3.1 (8B) families.
Evaluations used a batch size of 1 under both greedy (target temperature = 0) and stochastic (target
temperature = 0.6) generation. For fair comparison, all methods used an identical context-aware
dynamic draft tree algorithm without additional tree pruning techniques. A portion of the target
model decoder layers was kept resident on the GPU within the VRAM limits. All SD methods were
evaluated on 20 identical samples, randomly selected from each dataset. The baseline (offloading
with no SD) used the initial five samples due to its significantly longer runtime.

The key parameters were configured as follows: The low-bit substitute layers in SubSpec were
quantized to 4 bits with a group size 64 using HQQ. EAGLE-2 used its default published parameters

"The draft model weights for Llama3.1 were obtained from their official repository.

(k = 10, D = 6). For SubSpec and the smaller pretrained draft models, the top-k value of tree
construction was set to k = 6. Their optimal draft depths (D), identified through the grid search
reported in Section (results shown in Figure [2), were D = 48 for SubSpec and D = 32 for
the pretrained models. While further parameter tuning might yield additional improvements, such
exhaustive optimization was beyond the scope of this research. Chunked prefill was also applied to
prevent out-of-memory (OOM) errors and maximize the number of decoder layers on the GPU.

To better reflect typical real-world usage, all draft models were executed using torch.compile
with the max-autotune configuration. A static KV-Cache with a context length of 2048 tokens was
applied consistently across all methods. The comparative results are summarized in Table

5.2 End-to-end Performance

The results in Table 1| demonstrate the effectiveness and robustness of SubSpec. SubSpec consis-
tently achieved average acceptance lengths (7) near 30 across tasks, delivering the highest average
throughput. This performance translates to a speedup of 10x to 12.5x between different model sizes,
underscoring the broad applicability and significant performance gains offered by SubSpec. We also
evaluated the performance of the reasoning models on additional reasoning benchmarks listed in the

Appendix [G|

Further highlighting its efficiency, SubSpec achieves an additional 30% to 50% speedup compared to
smaller draft models from the same family as the target model, without any additional training. This
advantage underscores the critical role of the enhanced draft alignment of SubSpec in accelerating
offload scenarios. All SD methods showed reduced performance in stochastic settings (target
temperature = 0.6). For SubSpec, this meant a decrease in speedup of approximately 60%. Despite
this, SubSpec maintained a considerable speedup of 5.8 x to 7.8, showcasing its resilience and
sustained effectiveness even under less favorable generation conditions. We achieved a low standard
deviation of 0.101 tokens/sec on five independent runs of SubSpec on MT-Bench benchmark.

5.3 Ablation Study Table 2: Ablation study of SubSpec component
contributions for accelerating Qwen2.5 7B target
Finally, we performed an ablation study on MT- model on MT-Bench under greedy decoding
Bench under an 8GB VRAM constraint to assess (8GB VRAM limit). Performance is shown as the
the impact of individual SubSpec components. components were added cumulatively. The final
The results are detailed in Table A base- row represents the complete SubSpec system.
line configuration of only implementing the core
concept of SubSpec (a quantized, GPU-resident
draft model using only ‘substitute’ layers for of- ~ Substitute and layer sharing 19.54 (7.05x) 23.07

Method tokens/s T

floaded portions and shared GPU-resident target S S?arede\ﬁcaCh? 3;22 ggixi %g(‘)g
. + Draft prob. sharpening . 54x .
{gigrells/l;y ers), achieved a 7.05x speedup (19.54 + Async data transfer 25.35(9.15x) 27.08

Sequentially integrating additional enhancements of shared KV-Cache, draft probability sharpening,
and asynchronous data transfer yielded further performance gains. Each of these components
contributed an approximate 7% to 13% increase in throughput. The complete SubSpec system,
incorporating all optimizations, ultimately delivered a 9.15x speedup and a throughput of 25.35
tokens/s. These results affirm the individual and collective efficacy of the components of SubSpec.

6 Conclusion

This paper addressed the challenge of efficiently performing the inference of large language models
on memory-constrained consumer GPUs using parameter offloading. Our analysis confirmed that
a highly aligned draft model is crucial for speculative decoding to accelerate parameter offloading
effectively. We introduced SubSpec, a novel lossless and training-free technique based on this
insight. SubSpec constructs an aligned draft model by utilizing low-bit substitute layers for offloaded
portions of the target LLM while sharing GPU-resident components. Evaluations demonstrate
that SubSpec is robust across various model sizes and benchmarks under realistic memory limits,
achieving substantial average speedups of 10x to 12.5x compared to baseline offloading inference.
These results significantly advance the feasibility of deploying large, high-quality LLMs locally on
widely available consumer hardware.

Acknowledgments

The authors would like to thank ASUS for their generous support in providing the computing
resources necessary for this work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, [lge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gula-
vani, Alexey Tumanov, and Ramachandran Ramjee. Taming throughput-latency tradeoff in llm
inference with sarathi-serve. In /8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pages 117-134, 2024.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng Li, Du Li,
Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff Rasley, et al. Deepspeed-
inference: enabling efficient inference of transformer models at unprecedented scale. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1-15. IEEE, 2022.

Anthropic. Claude: A conversational ai assistant, 2023. URL https://www.anthropic.com/
claude. Large Language Model. Version 1.0. Accessed: 2025-03-13.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads.
arXiv preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

Longze Chen, Renke Shan, Huiming Wang, Lu Wang, Zigiang Liu, Run Luo, Jiawei Wang,
Hamid Alinejad-Rokny, and Min Yang. Clasp: In-context layer skip for self-speculative
decoding. arXiv preprint arXiv:2505.24196, 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yu-Hsun Huang, Max Ryabinin, Zhihao
Jia, and Beidi Chen. Sequoia: Scalable and robust speculative decoding. Advances in Neural
Information Processing Systems, 37:129531-129563, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Georgi Gerganov. ggerganov/llama.cpp: Port of facebook’s llama model in c¢/c++. https:
//github.com/ggerganov/1lama. cpp, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

10

https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/2501.12948
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Han Guo, William Brandon, Radostin Cholakov, Jonathan Ragan-Kelley, Eric Xing, and Yoon
Kim. Fast matrix multiplications for lookup table-quantized llms. In Findings of the Association

for Computational Linguistics: EMNLP 2024, pages 12419—-12433, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021. URL https://arxiv.org/abs/2103.03874.

HuggingFace. Hugging face accelerate. https://huggingface.co/docs/accelerate/
index, 2022.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and Minlan Yu. Neo: Saving gpu memory
crisis with cpu offloading for online llm inference. arXiv preprint arXiv:2411.01142, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274—19286.
PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling
requires rethinking feature uncertainty. In International Conference on Machine Learning,
2024.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference
of language models with dynamic draft trees. In Empirical Methods in Natural Language
Processing, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87-100, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Duyu Tang, Kai Han, and Yunhe Wang.
Kangaroo: Lossless self-speculative decoding for accelerating llms via double early exiting.

Advances in Neural Information Processing Systems, 37:11946-11965, 2024.

Vladimir Malinovskii, Andrei Panferov, Ivan Ilin, Han Guo, Peter Richtarik, and Dan Alistarh.
Pushing the limits of large language model quantization via the linearity theorem. arXiv preprint
arXiv:2411.17525, 2024.

Michael R Metel, Peng Lu, Boxing Chen, Mehdi Rezagholizadeh, and Ivan Kobyzev. Draft
on the fly: Adaptive self-speculative decoding using cosine similarity. arXiv preprint
arXiv:2410.01028, 2024.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating
generative large language model serving with tree-based speculative inference and verification.
arXiv preprint arXiv:2305.09781, 2023.

11

https://arxiv.org/abs/2103.03874
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text sum-
marization using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023,
2016.

Mathematical Association of America. Aime, February 2024. URL https://
artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022,

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In International Conference on Machine
Learning, pages 31094-31116. PMLR, 2023.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive 1lm inference on consumer
devices. Advances in Neural Information Processing Systems, 37:16342-16368, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. https://crfm. stanford.
edu/2023/03/13/alpaca. html, 3(6):7, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. Swift: On-the-fly self-
speculative decoding for 1lm inference acceleration. arXiv preprint arXiv:2410.06916, 2024.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li,
and Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive
survey of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei
Li, Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei
Qiu, Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. Qwen2.5-1m
technical report, 2025. URL https://arxiv.org/abs/2501.15383.

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xiaotian Yu, and Rong Xiao. Generation
meets verification: Accelerating large language model inference with smart parallel auto-correct
decoding. arXiv preprint arXiv:2402.11809, 2024.

Libo Zhang, Zhaoning Zhang, Baizhou Xu, Songzhu Mei, and Dongsheng Li. Dovetail: A
cpu/gpu heterogeneous speculative decoding for llm inference. arXiv preprint arXiv:2412.18934,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-Bench and chatbot Arena. arXiv preprint arXiv:2306.05685,
2023.

12

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://arxiv.org/abs/2311.12022
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2501.15383

[47] Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review
on edge large language models: Design, execution, and applications, 2025. URL https:
//arxiv.org/abs/2410.11845,

13

https://arxiv.org/abs/2410.11845
https://arxiv.org/abs/2410.11845

A Limitations

Minimum GPU Memory Requirement. SubSpec has a higher minimum GPU memory require-
ment. A general prerequisite for speculative decoding to work effectively is that the entire draft
model must be GPU-resident. SubSpec architecture necessitates maintaining low-bit substitutes
for offloaded target model layers. An approximate 7.1GB minimum GPU memory is required for
Qwen2.5 7B, thus fewer layers of the target model can remain GPU-resident compared to some
alternative speculative decoding methods. Despite this, SubSpec demonstrates superior throughput in
all benchmarks.

Quantization Granularity. Our research only experimented with 4-bit quantization for substitute
layers. Although this might affect draft model alignment, more aggressive methods (e.g., 2-bit or
3-bit quantization) could further reduce VRAM demands. Such VRAM savings could permit strategic
memory reallocation, for instance, retaining critical draft or target model layers at full GPU precision.
A thorough exploration of these trade-offs between draft quality, VRAM usage, and performance
represents an important direction for future research.

Applicability to Model Architectures. SubSpec mainly suits dense LLM architectures. Applying
SubSpec to alternative architectures, such as Mixture-of-Experts (MoE) models, requires further
adaptation and research.

B Extended Discussion

B.1 Comparison with Standalone Quantized Models)
Table 3: Throughput comparison

While a standalone 4-bit quantized model may fully fit on a GPU of various quantization methods
and eliminate the offloading bottleneck, this approach inevitably ~for the Llama3.1 8B model on the
alters outputs and degrades model quality. In contrast, SubSpec MT-Bench (8GB VRAM).]

avoids this accuracy trade-off entirely.

Model Configuration tokens/s

SubSpec makes parameter offloading practical. As shown in Original (fp16) 2 40

Table 3] this method accelerates naive offloading from an unus- GPTQ [13] (int4) 58.87
able 2.4 tokens/sec to an acceptable 24 tokens/sec for interactive AWQ [25] (int4) 32.32
use on consumer-grade hardware. We therefore position Sub- HQQ [3] (int4) 135.84
Spec as a simple, training-free solution for users who refuse to SubSpec 24.29

compromise on the model quality.

B.2 Why Tree-Based Speculative Decoding

This research focuses on tree-based speculative decoding (SD) because tree-based SD generally
achieves higher average acceptance lengths (7) than sequential or self-speculation methods [23} 130,
41]]. Besides, high 7 values are crucial to minimize expensive forward passes of the target model,
especially in offloading scenarios that involve significant data transfer overhead.

B.3 Future Outlook and Technological Advancements.

Forthcoming interconnect advancements (e.g., PCle 5.0 and 6.0), along with the continuous progress
on model compression methods and kernel optimizations, are anticipated to further enhance inference
performance. Each PCle generation roughly doubles raw bandwidth, halving expensive target model
data transfers. While faster PCle reduces target model latency, potentially increasing the relative
cost of speculation iterations, concurrent GPU computation and kernel efficiency improvements are
expected to accelerate speculation proportionally. Consequently, SubSpec is projected to retain its
relative speedup advantage over standard autoregressive decoding. These combined technological
trends promise a progressive reduction in the performance gap between offloaded and non-offloaded
LLM inference.

$For the GPTQ and AWQ methods, we loaded their corresponding pre-quantized weights directly from the
Hugging Face Hub.

14

C Related Works

SpecExec [35]. SpecExec is a speculative decoding
method that introduces a pruning strategy during tree
construction and an early-exit mechanism to reduce
speculation time. However, these features increase
computational complexity and hinder the application of

torch.compile due to dynamic shapes from pruning.

Table 4: Performance of SpecExec using
Llama3.1 8B as target model and Llama3.2
1B as draft model on MT-Bench (greedy
decoding). “Budget” denotes the number
of tokens concurrently verified, “VRAM”
denotes the peak GPU memory.

We performed a parameter sweep for SpecExec onthe ~ Budget VRAM (GB) tokens/s T
MT-Bench benchmark, with results in Table @] While 64 3.38 11.75 .64
SpecExec exceeds the 8GB VRAM constraint, SubSpec 128 8.43 12.21 9.42
achieves 76% speedup without requiring an additional 256 8.55 13.02 10.79
draft model. 512 8.79 13.77 12.40
1024 9.27 12.95 12.93

Dovetail [45]. Dovetail is a speculative decoding

method to accelerate LLM inference on consumer-grade devices by offloading portions of the
target computation to the CPU, with the draft model on the GPU. Unlike GPU processing, CPU
computation for verification scales linearly with the number of draft tokens. This trait typically
restricts the amount of verifiable draft tokens per iteration to maintain optimal speedup. For instance,
Dovetail used only 16 draft tokens for verification, whereas our proposed SubSpec verified 288 draft
tokens in parallel.

Self-Speculative Decoding. Self-speculative decoding builds a draft model by reusing layers from
a target model to reduce parameter overhead and improve alignment. While many approaches add
new parameters and require extra training [6} 24} 27, 44], recent works propose training-free layer
skipping methods [8, 29| [40]]. This distinction highlights an opportunity for hybrid solutions. Future
work could explore the combination of SubSpec with layer skipping to produce a draft model with a
lower VRAM requirement and faster inference.

D Analysis of Draft Probability Sharpening

Table[7] discusses the results of varying draft Table 5: Average acceptance length (7) for various

temperatures among draft model types. The
first result (denoted Self in the second row)
performs speculative decoding using the tar-
get model itself, i.e., Qwen2.5 7B, as the

draft models and temperatures with Qwen2.5 7B tar-
get model on MT-Bench (greedy decoding), where a
draft temperature of 1.0 represents the baseline with-
out draft probability sharpening.

draft model. Although this setup does not

Draft Temp. 02 04 06 08 10 12
make sense from both memory and speedup

; : Qwen257B (Self) 3450 33.03 3195 29.64 2779 26.57
perspectives, the experiment clearly demon- EAGLE-2 342 362 370 371 376 377

; ity di Qwen2.515B 11.86 1220 1248 1236 1242 1251
strates the cumulative probability divergence SubSpec o M S S

problem mentioned in Section {.2] which
shows that even the same model cannot correctly predict all the tokens when using the default
draft tree method.

By lowering the draft temperature, the average acceptance length (7) increases from 27.79 to 34.50,
showing that this aggressive sharpening effectively counters the “false positive” path issue. For
SubSpec, 7 also increases from 23.92 to 27.08. This method does not yield a better 7 due to the lower
alignment of the pretrained models and EAGLE-2.

15

E Verification Pipeline with Asynchronous Data Transfer

Figure [§]illustrates the execution timelines of the verification step in vanilla autoregressive decoding,
speculative decoding, and speculative decoding with asynchronous data transfer. The bottom diagram
(c) illustrates how asynchronous data transfer works. This method overlaps GPU computation (Q, K)
with the data transfer of the subsequent layer (Loading K, V weights to the GPU) to hide the higher
verification computation time for speculative decoding.

(a) Vanilla Autoregressive Decoding

GPU [q] K]

CPU ... Load Q | | Load K | | Load V | time

(b) Speculative Decoding

GPU - [a] (]

CPU LoadQ | | Loadk | | LoadV | - time

v

(c) Speculative Decoding + Asynchronous Data Transfer

GPU - [a] [K]

CPU Load Q Load K Load V time

»
1

Figure 5: Execution timelines of the verification step for different decoding strategies

F Temporal Analysis: Speculation vs. Verification

For each iteration in speculative decoding, the draft model runs D forward passes to generate a draft
tree of depth D (speculate). The target model then performs a single forward pass over all draft
tokens, checking their correctness (verify). We compare the average execution time of these two
phases, along with the actual obtained throughput, as shown in Figure[§] The optimal throughput for
SubSpec occurs at D = 48, where the speculation and verification times are nearly equal.

100 30.0
90 27.0%
X 80 A——————2 5403
o 70 21.09
£ 60 rd 18.0?‘%
T 50 A 15.0 =
S 40 rd 1202
o 30 et 9.0 %
O (4 Speculation Time (%) 3
5 20 Verification Time (%) | ©-0 =

10 —8— Throughput (tokens/s) T 3.0

0 - - - - - - 0.0
4 8 16 32 48 64

Draft Tree Depth

Figure 6: Execution time breakdown (speculation vs. verification) and average acceptance lengths (7)
of SubSpec accelerating Qwen2.5 7B under an 8GB VRAM limit.

16

G Performance Evaluation on Reasoning Models

To further demonstrate the robustness of the lossless and training-free method, SubSpec, we also
evaluated its performance on reasoning models (DeepSeek-R1 distilled variants [12], QWQ [38]]).
This evaluation utilized benchmarks widely used in the field: AIME 2024 [32], MATH 500 [[17],
GPQA Diamond [33]], and LiveCodeBench [19]]. As shown in Table @ SubSpec demonstrated
promising results of over 10x speedup on all benchmarks.

Table 6: Speedup ratios and average acceptance lengths (7) for SubSpec compared to baseline (None)
on reasoning models under greedy decoding. DSL represents DeepSeek-R1-Distill-Llama, and DSQ
represents DeepSeek-R1-Distill-Qwen. The number in each parentheses below the target model name
denotes the restricted VRAM limit.

AIME 2024 Math 500 GPQA Diamond LiveCodeBench Mean

Target Draft tokens/s T tokens/s T tokens/s T tokens/s T tokens/s T

DSL 8B None 2.40 1 2.40 1 2.40 1 2.39 1 2.40 (1.00x) 1
(8GB) SubSpec 31.30 38.64 32.39 39.89 27.54 3418 2844 3569 29.92 (12.49x) 37.10

DSQ 7B None 2.71 1 2.71 1 2.71 1 2.76 1 2.77 (1.00x) 1
(8GB) SubSpec 3345 37.76 3525 3955 27.74 3141 2994 3445 31.60 (11.42x) 34.72

DSQ 14B None 1.22 1 1.22 1 1.21 1 1.21 1 1.21 (1.00x) 1
(12GB) SubSpec 17.38 40.57 17.60 4096 1493 3507 15.73 3742 16.41(13.51x) 3851

DSQ 32B None 0.52 1 0.52 1 0.52 1 0.52 1 0.52 (1.00x) 1
(24GB) SubSpec 9.56 43.59 9.70 44.00 8.57 39.45 8.47 39.70 9.07 (13.76x) 41.68

QWQ 32B None 0.52 1 0.52 1 0.52 1 0.52 1 0.52 (1.00x) 1

(24GB) SubSpec 7.95 36.29 8.11 36.93 6.86 31.54 5.89 27.47 7.20 (13.76x) 33.06

H Quantized Target Model Scenarios

We analyzed the practical trade-off between model preci- Table 7: Performance of Llama3.1
sion and performance for an 8-bit quantized target model. 8B across different SubSpec settings
As detailed in Table 7, this quantization nearly halves the on MT-Bench (greedy decoding, 8GB
memory footprint and offloading time relative to the 16-bit VRAM).

version. While the process introduces an acceptable loss in
accuracy, this configuration increases throughput by 36%
with all other configurations held constant. This outcome
demonstrates a compelling trade-off, where a minor reduc-
tion in precision yields a substantial performance gain.

Config (Target, Draft). tokens/s T

SubSpec (fp16, int4) 2429 29.66
SubSpec (int8, int4) 33.03 29.76

I Supplementary Evaluation Configurations

We retain as many target model layers as possible directly within GPU memory to reduce the
expensive data transfer overhead. The draft models and KV-Cache are default GPU-resident.

The following details the number of GPU-resident layers of the target model for various methods
within VRAM limits. Embedding and head layers are default to be GPU-resident:

* Vanilla (Baseline Offloading): 11 layers for 7B/8B target models, 15 layers for 14B target
models, and 20 layers for 32B target models.

* EAGLE-2: 7 layers for 7B/8B target models.

* SD with Mid-Size Pretrained Draft Model (1B/1.5B): 3 layers for 7B/8B target models, 7
layers for 14B target models, and 16 layers for 32B target models.

* SD with Large Pretrained Draft Model (7B): 3 layers for the 32B target model.

* SubSpec: All decoder layers of the target model were offloaded, with their 4-bit quantized
substitutes retained on the GPU.

17

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and Section [I] accurately reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

18

Justification: We include our theoretical analysis in Section 3]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We include the experimental hyper-parameters in Section[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: All evaluation codes are in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We include the experiment setup in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too time-consuming.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We include the compute resources in Section [5.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research is conducted with the NeurIPS Code of Ethics. conform.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The purpose of this paper is to accelerate the execution of full-precision large
language models running on consumer-level GPUs, without any negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models, benchmarks, and codebase used in our experiment comply with
open-source licenses and can be used for scientific research.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All pre-trained models were cited for their authors. We reference them in the
main text, supplement, and code

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Parameter Offloading
	Speculative Decoding

	Analysis of Speculative Decoding Speedup in Offloading Scenarios
	Theoretical Speedup Analysis
	Empirical Validation and Motivation for Efficient Draft Model Generation

	Substitute Speculative Decoding (SubSpec)
	Draft Model Construction
	Optimized Draft Tree Construction
	Complementary Performance Optimizations

	Performance Evaluation
	Evaluation Setup
	End-to-end Performance
	Ablation Study

	Conclusion
	Limitations
	Extended Discussion
	Comparison with Standalone Quantized Models
	Why Tree-Based Speculative Decoding
	Future Outlook and Technological Advancements.

	Related Works
	Analysis of Draft Probability Sharpening
	Verification Pipeline with Asynchronous Data Transfer
	Temporal Analysis: Speculation vs. Verification
	Performance Evaluation on Reasoning Models
	Quantized Target Model Scenarios
	Supplementary Evaluation Configurations

