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ABSTRACT

Diffusion models have been popular for point cloud generation tasks. Existing
works utilize the forward diffusion process as a discrete Markov Chain to convert
the original point distribution into a noise distribution (e.g., standard Gaussian
distribution) and learn the reverse diffusion process to recover the target point dis-
tribution from the noise distribution. However, the diffusion process can produce
samples with non-uniform points on the surface without consideration of the point
cloud geometric feature. To alleviate the problem, we propose a novel diffusion-
based framework for point cloud generation and incorporate the local smoothness
constraint into the generation process. Experiments demonstrate that the proposed
model is not only capable of generating realistic shapes but also generating more
uniform point clouds, outperforming multiple state-of-the-art methods.

1 INTRODUCTION

As a widely-used 3D representation, point clouds have attracted widespread attention in recent years
due to their compactness, flexibility, and the nature of closing to raw sensory data. (Yue et al., 2018;
Guo et al., 2020) As a result, a number of sophisticated algorithms have been proposed for analyzing
point clouds in applications such as robotics, autonomous driving, and AR/VR. (Pomerleau et al.,
2015) However, the raw data acquired in real applications require expensive labor effort and time
cost, not to mention that the acquired point clouds are often imperfect: they may be sparse and partial
due to the distances, occlusions, reflections, and the limits of devices’ resolution and angles (Zhao
et al., 2019). Recently, diffusion-based generative models are effective in generating 2D images and
also pose a promising direction for generating 3D point clouds. However, there are clear differences
between point cloud data and image data: points in a point cloud have no order and are arranged
irregularly. These characteristics of point clouds make it non-trivial to leverage diffusion-based
methods in generation tasks of point clouds. In addition, finding a way to ensure the uniformity on
the surface of the point cloud is also a challenging problem.

Several algorithms have been proposed for point cloud generation. For example, probabilistic meth-
ods (Yang et al., 2019; Luo & Hu, 2021) treat the generation of point clouds as a probability problem.
Based on the structure of VAE, to learn the distribution of distribution, first learn the distribution of
a shape, and then learn the conditional distribution of points generated based on this shape. But the
Pointflow (Yang et al., 2019) needs to normalize the learned distribution, which is time-consuming.
ShapeGF (Cai et al., 2020) must require two stages of training. There are also some methods based
on autoregressive model (Sun et al., 2020), but they need to specify an order of points during train-
ing. Li et al. (2018) proposes to combine WGAN (Arjovsky et al., 2017) loss with EMD, and other
GAN-based methods like (Shu et al., 2019; Valsesia et al., 2018; Achlioptas et al., 2018) are difficult
to train and not very stable due to the optimization of the adversarial loss function during the training
process.

There are also several diffusion-based generative models (Luo & Hu, 2021; Zhou et al., 2021), which
treat points as particles in a thermodynamic system that diffuse from the original distribution to the
noise distribution. The generation process can move the noisy point locations towards the original
point cloud surface. The training process aims to learn a score model to approximate the gradient of
log-likelihood of the point cloud distribution, which is equivalent to learning the moving direction of
the particles (points) during diffusion. However, both algorithms are the discrete generative process
and thus cannot take into account the shape geometric information when learning point moving di-
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Figure 1: Visualization of the diffusion process from noise to point distribution for airplane category

rections. Compared with diffusion-based models for image data that learn the data distribution in the
feature space, these models face a critical challenge of learning the 3D point location distribution. In
this paper, we aim to incorporate the local geometrical constraints into diffusion-based point cloud
generation process to enforce the surface smoothness. Our approach views the diffusion probabilis-
tic model from Bayesian perspective to take the prior constraint of point cloud into consideration.
Experiments demonstrate that our method is not only capable of generating realistic shapes but also
generating more uniform point clouds, outperforming multiple state-of-the-art methods.

2 RELATED WORK

2.1 SCORE-BASED GENERATIVE MODELS

Recently, there has been appearing many deep generative models. For example, the variational
auto-encoder(VAE) model(Kingma & Welling, 2013) can approximate the likelihood of the data by
maximizing the Evidence lower bound(ELBO). The autoregressive(Van den Oord et al., 2016; Van
Den Oord et al., 2016) is a time-series model predicting the future values based on the pase values
The generative adversarial neural(GAN) model(Goodfellow et al., 2020) consists of two parts, one
is the generator to generate samples, and the other is the discriminator to evaluate the authenticity of
the samples, and then generate more realistic samples through adversarial learning. The flow based
model(Rezende & Mohamed, 2015; Grathwohl et al., 2018; Chen et al., 2018) can obtain exact
likelihood calculations. Diffusion model(Song et al., 2020; Ho et al., 2020) is another popular model
leveraging the approximate inference similar to VAE to optimize the model’s goal, and similarly,
score-based models can learn through denosing score matching, or add continuous noise through
sde(Song et al., 2020).

2.2 POINT CLOUD GENERATION

With the rise of deep networks, there have been many works that use neural networks to generate
point clouds or complete point clouds.

Early work is to directly optimize distance, for example, Chamfer distance(CD) or earth mover’s
distance(EMD) to improve the effect. (Achlioptas et al., 2018) But there are some problems with
these methods. CD has been shown to falsely favor over-concentrated point cloud in the mode of
the marginal point distributions, and accurate EMD computation can be slow.

Some work also study probability-based methods to generate point clouds. For example, point
flow(Yang et al., 2019) proposes to use the VAE architecture to generate point clouds. The paper
proposes to use normalizing flow to parameterize the model. ShapeGF(Cai et al., 2020) directly
learns the shape distribution of latent space. When sampling, first use gan to generate a shape code
z, and then use Langevin Sampling to get the final point cloud. DPM(Luo & Hu, 2021) proposes to
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use conditional ddpm to generate point clouds. The point voxel model(Zhou et al., 2021) does not
learn the laten distribution, but directly samples the point cloud from the noise, and cites the voxel
as additional information.

Recently there are several works caring about the uniformity of the generated samples. For example,
Lyu et al. (2021) proposes to firstly use the diffusion model to generate coarse results, then training
another diffusion model in the second stage to refine the completion point cloud. Tang et al. (2022)
proposes to incorporate various uniform priors during Generative adversarial networks(GAN) train-
ing to produce more uniform point cloud.

In this paper, we propose one simple but efficient constraint to help generating more uniform surface.

2.3 SCORE-BASED POINT CLOUD GENERATION

Due to the rise of diffusion models in recent years, it has shown good results on more and more
tasks. It is no exception on point clouds. For example, ShapeGF(Cai et al., 2020) uses annealing
Langevin for sampling, DPM(Luo & Hu, 2021) proposes that conditional discrete DDPM(Ho et al.,
2020) is also effective, and point voxel(Zhou et al., 2021) uses the representation of points and voxel
to learn to generate point clouds via a discrete DDPM.

However, discrete diffusion model will generate non-uniform surface and there will be some noise on
the surface, based on these observations we propose continuous-time diffusion model and introduce
smooth constraint to achieve more uniform surface.

3 BACKGROUND

3.1 DIFFUSION PROCESS

We consider the diffusion process over x indexed with time t ∈ [0, 1], {xt}1t=0. Here x0 ∼ p0(x) =
pdata, x1 ∼ p1(x) , where p1(x) approximates the Gaussian distribution N (0, I). The diffusion
process can be modeled by Itô SDE:

dXt = ft(X, t)dt+ gtdw, (1)

where ft is a drift coefficient, g is a diffusion coefficient. The forward diffusion process smoothly
transform x by adding infinitesimal noise dw at each infinitesimal step dt.

In order to generate samples following the data distribution, we start from the prior distribution and
follow the reverse diffusion process, which is defined by:

dXt = [ft(Xt)− g2t∇Xt log pt(Xt)]dt+ gtdw̄, (2)

The goal of the diffusion model training process is to learn the time-dependent score model sθ(x, t)
to minimize the least square loss between the score function and the model output

min

∫ 1

0

Ept(x)[∥sθ(x, t)−∇x log pt(x)∥2]dt (3)

3.2 TWEEDIDE’S FORMULA

Suppose we haveN samples [x1, x2, x3, ..., xN ] sampled fromN (µ, σ2), where µ is unknown. And
suppose µ is sampled from some prior distribution, µ ∼ g(·) then x|µ ∼ N (µ, σ2). The goal is to
estimate the parameter µ.

Tweedie’s formula(Robbins, 1992; Kim & Ye, 2021) gives the posterior mean of µ as:

E[µ|x] = µ+ σ2∇x log f(x) (4)

where f(x) =
∫
g(µ)f(x|µ)dµ is the marginal distribution of x. We will use this formula to estimate

the clean point clouds in Section4.2.2.
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Figure 2: The overall structure of our model

4 APPROACH

A point cloud consists of a set of points in 3D space, which can be denoted by Xi = {xij}Ni=1 ∈ R3,
where N is the number of points, and each xi is the 3D coordinates. In the following, we use x
to represent the point cloud X for algebraic convenience. The dataset consists of M different point
clouds D = {x(1), ...x(M)}. The goal is to develop a model that generate accurate point cloud that
is faithful to the ground-truth’s shape geometry and variability. The points in one point cloud are
discrete positions in 3D space, and can be regarded as the particles’ location in a non-equilibrium
thermodynamic system. Therefore we consider the point cloud generation as a particle continuous
diffusion process, and model it as an Itô diffusion process.

However, the problem poses several unique challenges for diffusion-based point cloud generation.
First, the dataset contains diverse shapes even for a single object, but learning the marginal distribu-
tion across different shape is not useful. Thus, this requires to model the dataset’s shape distribution
and individual point cloud distribution separately. Second, diffusion probabilistic model learns the
intermediate movement of the points and is not capable to consider the point cloud local geometric
information, which may generate non-smooth shape during sampling. Third, to generate a diverse
and faithful point cloud, it requires learning the global shape distribution accurately.

To overcome the above challenge, we propose a diffusion probabilistic model with smoothness
constraint to capture both the global and the local geometric features of point clouds. The overall
structure is shown in Figure2. . The model consists of an encoder, a diffusion decoder and a latent
diffusion model. The encoder qϕ(Z|X) learns a low dimensional latent variable distribution for
the given point cloud input to encode its global geometric shape distribution, Given a global shape
encoding, the diffusion decoder aims to reconstruct the original shape geometry through a reverse
diffusion process. Furthermore, to model the distribution of the latent shape Z accurately, we use a
latent diffusion model to transform a standard normal distribution to the aggregated posterior of the
encoder.

4.1 PROPOSED OVERALL MODEL

The goal of our model is to learn the point cloud distribution over a diverse shape. As indicated
by Li et al. (2018), for point cloud generation, it is not useful to learn the marginal distribution
p(X) across the shapes. Thereby we model the distribution into factorized format and incorporate
the global geometry into consideration: pθ,ψ(X, z) = pψ(X|z)pθ(z), where z ∈ Rd is a latent
d-dimensional variable that represents the global geometry feature of point cloud, pθ(z) represent
the global geometry prior distribution. pψ(X|z) is a conditional generative model given a spe-
cific global geometry condition. The global geometry posterior is approximated through variational
posterior model qϕ(z|X). To optimize the generative model, we maximize the Evidence Lower
Bound(ELBO) on the data log-likelihood as Equation5. In the following section, we will introduce
the conditional generative model and the prior model in detail.
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max
ϕ,ψ,θ

L(ϕ, ψ, θ) = Eqϕ(Z|X)

[
log pψ(X|Z)

]
− KL (qϕ(z|x) ∥ pθ(z)) (5)

= Eqϕ(Z|X)

[
log pψ(X|Z)

]
+ Eqϕ(Z|X)

[
log pθ(Z)

]
+H

[
qϕ(Z|X)

]
.

4.1.1 DIFFUSION BASED PRIOR MODEL

The prior model aims to capture the distribution of the global geometry of all point cloud shapes. A
common choice is to use a fixed prior (e.g., p(z) ∼ N (0, I)) in variational auto-encoder, but it can
produce holes, then there exist mismatch between the aggregated posterior

∑
i qϕ(z|X(i)) and the

prior p(z). Then this can lead to some regions in the latent space that cannot be decoded to data-like
samples.

In our proposed model, we use a learnable prior model pθ(z), the prior is flexible, such that it can
catch up with the aggregated posterior, then they can match each other better, thus alleviating the
problem of prior holes. Here we propose to use the diffusion process to learn the prior over the
shape distribution. Specifically, given a global geometry encoding z0 ∼ qϕ(z0|X), we diffused z0
through a SDE defined in Eq. 1 to the standard Normal distribution p(z1) = N (0, I), and we train
a time-dependent score model sθ(zt, t) to approximate the true score∇zt

pθ(zt). For the generation
process, the reversed SDE based on Eq. 2 is employed to generate samples that following the prior
distribution pθ(z0). For the score model, we use several layers of 1D convolution with residual
connection. The details are in the experiment section.

4.1.2 DIFFUSION BASED CONDITIONAL DECODER

In this section, we introduce the framework of conditional diffusion model in the decoder part. Here
we consider the point cloud generation as a conditional diffusion process, where the condition is
the global geometry encoding z ∼ qϕ(z|X). Similarly, we diffuse the points of the point cloud
(particles) to the standard Normal distribution and learn a conditional score model sϕ(Xt, z, t) to
approximate the reverse moving direction of the points during the forward diffusion process (equiv-
alent to the score ∇Xtpψ(Xt|z)). For sampling, given a global geometry condition z, we can use
the score model sϕ(Xt, z, t) through the reverse SDE to move the noisy point cloud to the original
point cloud distribution.

Specifically, the input of this network is the perturbed point cloud with Gaussian noise sampled from
Xt ∼ pt(Xt|X) and the Fourier positional encoding of the time vector tpe = pe(t) . We also concat
the latent code z as the condition to the input of the each layer.

4.1.3 TRAINING ALGORITHM

In the training objective of Eq.??, we estimate the entropy term H
[
qϕ(z|x)

]
via Monte Carlo sam-

ples. And our decoder is a continuous diffusion based conditional decoder, then the reconstruction
term Eqϕ(z|x)

[
log pψ(x|z)

]
is approximated by mean square loss of the score function

Eqϕ(z|x)
[
log pψ(x|z)

]
= Et,pt(x)

[g(t)2
2
∥sψ(x|z, t)−∇x log pt(x|z)∥22

]]
(6)

, and we optimize the cross-entropy term through score matching following :

Eqϕ(z|x)
[
log pθ(z)

]
= Et,qϕ(z0,zt|x)

[g(t)2
2
∥sθ(zt, t)−∇z log pt(z)∥22

]
(7)

where t ∼ U [0, 1].

4.2 SMOOTHNESS CONSTRAINT

In the subsection4.1.2, we introduced the diffusion-based decoder model to generate point cloud
condition on some global geometry encoding. The diffusion process is similar to those models for
image data. However, compared with diffusion-based models for image data that learn the data
distribution in the feature space, there is a critical challenge of learning the 3D point location dis-
tribution, which should obey the geometrical constraint on the 3D object. In this section, we aim to
incorporate the local geometrical constraints into diffusion-based point cloud generation process to
enforce the surface smoothness.
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Algorithm 1 Training Procedure

Input: point cloud training data x
for epoch = 0 to n do

Sample x0 ∼ pdata(x), t, t′ ∼ Uniform(0, 1)
Encoder: z0 = qϕ(z|x0), zt′ ∼ pt(z′t|z0)
Latent diffusion loss: Ltz ←

g(t)2

2 ∥sθ(z
t, t)−∇z log pt(z)∥22 // Equation (6)

Sample xt ∼ pt(xt|x0)
Reconstruction loss function Ltx ←

g(t)2

2 ∥sψ(x|z, t)−∇x log pt(x|z)∥22 // Equation (7)
Apply stochastic gradient on the neural network parameters with∇θ(Ltz +Ltx +H

[
qϕ(Z|x)

]
)

end for

4.2.1 CONSTRUCTING GRAPH ON POINT CLOUD

We construct a discrete graph G = {V, E} on the point cloud, whose vertex set V is the points of
the point cloud x = {xi}ni=1. The edge set E is constructed according to the thresholded Gaussian
function

eij = exp (−
d2ij
2σ2

) if dij < r, 0 otherwise. (8)

where dij = ||xi − xj ||2 is the Euclidean distance between two points xi and xj , σ is the hyperpa-
rameter that controls the magnitude of edge weight. Then we can construct the adjacency matrixA
with each entry Aij = eij , the diagonal degree matrix D, and the Laplacian matrix L = D−A.

4.2.2 GRAPH LAPLACIAN SMOOTHNESS CONSTRAINT

In order to incorporate the 3D point cloud geometry constraint into the generation process, we
consider the gradient of the posterior distribution instead of the likelihood. Given a sample x,
suppose the constraint H on the sample takes the form p(H|x) then we have the log posterior as:

log p(x|H) = log p(H|x) + log p(x)− logp(H) (9)
then we can get the score by taking the gradient on log posterior:

∇x log p(x|H) = ∇x log p(x) +∇ log p(H|x) (10)
For point cloud generation, we aim to enforce the information that x is smooth with respect to the
underlying graph, so that it can generate smoother surface, we add the constraint over the one-step
estimation of the clean point clout. xt can be sampled from p(xt|x0), then after learning the score
model sθ∗(xt, t)) = ∇ log p(xt|x), the clean point cloud x̂ is estimated through the Tweedie’s
formula from any noisy one xt .

x̂ = (xt + b2t sθ(xt, t))/at (11)
Where bt, at are the specific parameters for different diffusion process.

We consider the constraint given on the one-step estimated clean point cloud x is proportional to the
graph Laplacian regularizer(GLR) on the coordinates:

log p(H|x) ∝ −x̂TLx̂ (12)

where x is the graph signal, and L is the graph Laplacian matrix. Accordingly, the reverse diffusion
under the additional smoothness constraint can be represented by

xti−1
= xti + [ft(Xt)− g2t s(θ)]δt− α∇x{xTLx}+ g(xi)z, z ∼ N (0, 1) (13)

where α is the weight controlling the relative weight of the smootheness constraint.

5 EXPERIMENT

In this section, we describe the experimental results on the point cloud generation task. The goal of
the experiment is to quantitatively compare our proposed framework with several SOTA point cloud
generative models on the generation quality. Section 5.3.1 describes the metrics we used to evaluate
the performance. Section 5.4 compares the model with six state-of-the-art point cloud generation
frameworks. Section 5.5 analyzes the model performance via the uniform loss.
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Algorithm 2 Sampling Procedure

Input: score model sθ
Sample ϵ,xinit ∼ N (ϵ;0, I)

latent sampling: ϵ diffusion−−−−→ z
xtn = xinit
for i = n to 1 do

sampling time ti = ∆(i)
s = sθ(x, z, t)
xti−1

= xti + [ft(Xt)− g2t s(θ)]δt− α∇x{xTLx}+ g(xi)z, z ∼ N (0, 1)
end for
return xt0

5.1 EXPERIMENT SETUP

5.2 BASELINE METHODS

We compare our proposed model against several SOTA models for point cloud generation. Those
model can be divided into two categories: diffusion-based models and non-diffusion-based mod-
els. The non-diffusion-based models include r-GAN(Achlioptas et al., 2018), GCN-GAN(Valsesia
et al., 2018), TreeGAN(Shu et al., 2019), PointFlow(Yang et al., 2019), The diffusion-based models
include ShapeGF(Cai et al., 2020), DPM(Luo & Hu, 2021).

5.2.1 DATASET

We conduct all the experiments on the ShapeNet dataset(Chang et al., 2015). ShapeNet dataset
contains 51,127 shapes from 55 categories. We followed the Yang et al. (2019); Cai et al. (2020) to
split the dataset. Each point cloud contains 2048 points uniformly sampled on the surfaces. Here we
compare the performance on the airplane and chair category.

5.3 IMPLEMENTATION DETAIL

Hyperparameters: We set the latent code dimension is 256. We sample point clouds with N = 2048
points. For the decoder score modle, We utilized Adam with learning rate r = 2×10−3 for encoder,
and learning rate r = 2 × 10−4 for decoder score model, 1 × 10−4 for the prior score model. We
used β1 = 0.9, β2 = 0.999 for the adam optimization. The learning rate was kept constant for the
first 1000 epoches, and decreased linearly from 1000 to 2000 epoches. The batch size is 32. For the
score model inference, we set time step to 1000 steps, we utilized VPSDE model, and βmin = 0.01,
βmax = 8.

Model architecture: For the encoder model, our model takes point clouds as input, we use the
PointNet (Qi et al., 2017) architecture to map it into a 512-dimension latent feature code z. For the
decoder and the prior score model, we chose the OccNet (Mescheder et al., 2019). We stacked 6
ResNet-blocks with 256 dimensions for every hidden layer.

5.3.1 EVALUATION METRICS

For point cloud generation task, suppose Pr is the set of reference point clouds, Pg is the set of
generated point clouds, we adopt the following metrics:

1. Minimum Matching Distance(MMD)

MMD(Pr, Pg) =
1

|Pr|
∑
P∈Pr

min
Q∈Pg

D(P,Q) (14)

MMD calculates the average of the closest distances to each reference point cloud so that
it measures the quality of the generated samples.

2. Coverage score(COV)

COV (Pr, Pg) =
|{argminP∈Pr

D(P,Q)|Q ∈ Pg}|
|Pr|

(15)
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Table 1: Comparison of shape generation on ShapeNet. MMD is multiplied by 102. Numbers in
bold indicate the best two methods

Category Model MMD(102, ↓) COV(%,↑) 1-NNA(%,↓)

Airplane

r-GAN 13.287 19.75 100.00
GCN 15.535 5.93 99.12
Tree 16.662 6.91 100.00
PF 7.576 41.98 82.22

ShapeGF 7.364 41.98 83.46
DPM 8.22 32.96 90.86
Ours 7.86 42.96 85.68

Ours+constraint 7.64 46.42 83.46

Chair

r-GAN 32.688 8.31 99.92
GCN 25.781 6.34 96.48
Tree 36.545 8.76 99.92
PF 19.190 44.41 72.28

ShapeGF 18.79 46.37 59.82
DPM 21.37 30.00 90.31
Ours 20.21 43.7 76.23

Ours+constraint 19.13 45.31 73.3

COV measures the variety of the generated samples so that it can detect mode collapse.

3. 1-NN classifier accuracy(1-NNA) to evaluate the performance. 1-NNA score classifies the
generated samples and the reference point could. If the quality of the generated samples is
better, the 1-NNA score should be close to 50%.

For the distance metrics D, we choose Earth Mover’s distance (EMD).

EMD(X,Y ) = min
ϕ:X→Y

∑
x∈X
||x− ϕ(x)||2

5.4 GENERATION ANALYSIS

For point cloud generation, we compare our model with the baseline models on the airplane and
chair category. We consider two settings of our proposed model. ”Ours” represents the model
without smoothness constraint and the other represents the model with smoothness constraint. To
prevent the metrics focus more on the scale rather than the quality, we follow ShapeGF, DPM(Luo
& Hu, 2021), to normalize the generated point cloud and reference point cloud into a bounding
box of [−1, 1]3. The evaluation results are summarized in Table 1. For the airplane category, we
can observe that our proposed model outperform the baseline models in COV metrics. For 1-NN
classifier accuracy, our model performs comparable with the ShapeGF. Our proposed model with
constraint achieve comparative performance with the baseline methods. It can be noted that our
model with smoothness constraint increase the performance compared with the model without the
constraint. Thus, it validates the effectiveness of the proposed constraint. We can observe the similar
trends on the chair dataset. We also visualize some generated sample in Fig. 3

5.5 UNIFORM ANALYSIS

Furthermore, to better demonstrate the performance of the constraint, we incorporate the uniform
loss(Li et al., 2019) to evaluate the model. This loss calculates the local and non-local uniformity via
chi-squared model. We evaluated the mean value on the normalized point clouds with the percentage
of {0.002, 0.006, 0.008, 0.012, 0.015}. The results are shown in Table 2

6 CONCLUSIONS

In this paper, we propose a new diffusion-based model for point cloud generation by incorporating
not only the global geometry distribution but the local smoothness constraint into the generation
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Figure 3: Visualization of some generated samples by our model

Table 2: Comparison of the uniform performance on ShapeNet

Category Model Uniform(↓)

Airplane

ShapeGF 0.005
DPM 0.008
Ours 0.007

Ours+constriant 0.006

Chair

ShapeGF 0.0128
DPM 0.0171
Ours 0.0152

Ours+constriant 0.013

process. Experiments show that the proposed framework can not only generate realistic samples but
also smoother point clouds. The limitation of our approach is that we only consider the smoothness
constraint on the point cloud. In the future, we may add more geometric or topology constraint into
the framework to improve the quality.
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Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747–1756. PMLR, 2016.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4541–4550, 2019.

Xiangyu Yue, Bichen Wu, Sanjit A Seshia, Kurt Keutzer, and Alberto L Sangiovanni-Vincentelli. A
lidar point cloud generator: from a virtual world to autonomous driving. In Proceedings of the
2018 ACM on International Conference on Multimedia Retrieval, pp. 458–464, 2018.

Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood
features for point cloud processing. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 5565–5573, 2019.

Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation and completion through point-voxel
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5826–5835, 2021.

11


	Introduction
	Related work
	Score-based Generative models
	point cloud generation
	Score-based point cloud Generation

	background
	Diffusion process
	Tweedide's formula

	Approach
	Proposed overall model
	diffusion based prior model
	diffusion based conditional decoder
	Training algorithm

	smoothness constraint
	Constructing Graph On point cloud
	Graph Laplacian Smoothness Constraint


	Experiment
	Experiment setup
	Baseline methods
	dataset

	Implementation detail
	Evaluation metrics

	Generation analysis
	Uniform analysis

	Conclusions

