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Abstract

This study introduces the STU-User model, an
innovative approach to detecting misinforma-
tion on social media, combining user behav-
iors with spatial-temporal analysis. The model
incorporates an advanced neural network inte-
grating spatial-temporal units (STU) with en-
hanced long short-term memory (LSTM) struc-
tures. Central to its design is the use of Bert-
embeddings to analyze the patterns of users’
historical interactions and connections in the
network and incorporate them with a similar-
ity measure to enhance accuracy. This analy-
sis is then combined with the spatial-temporal
aspects of the message propagation structure.
We found that the STU-User model surpasses
the performances of existing methods based on
tests using public Twitter datasets. Theoretical
and practical implications for policy-making
and regulating social media in the misinforma-
tion era are discussed.

1 Introduction

With the advent and growing popularity of social
media platforms and mobile devices, the ease of
disseminating misinformation on these digital chan-
nels has increased considerably. The widespread
circulation of this misinformation can cause public
distress and lead to adverse effects on individu-
als, underscoring the urgency for automated de-
tection mechanisms (Allcott and Gentzkow, 2017;
Jin et al., 2017). Historically, the majority n of
research in this domain has concentrated on text
mining methodologies, employing supervised mod-
els grounded in feature engineering or leveraging
advanced deep learning frameworks (Castillo et al.,
2011; Ma et al., 2017; Song et al., 2019). In recent
years, an emerging line of research has focused
its focus on the spatial structure of message propa-
gation, offering a novel and promising avenue for
tackling misinformation (Liu and Wu, 2018; Yuan
etal., 2019).

However, these innovative methods predomi-
nantly focus on spatial aspects, frequently ne-
glecting crucial temporal dimensions intertwined
with the spatial dynamics in message propagation
(Zhang et al., 2021). This oversight presents a gap
in fully understanding and countering the spread
of misinformation. Furthermore, the role of indi-
vidual users in the propagation of misinformation,
often inadvertently, cannot be overlooked (Castillo
et al., 2011; Yang et al., 2012). The absence of im-
mediate fact-checking or corroborative information
makes users prone to be guided by their preexisting
beliefs and opinions (Lewandowsky et al., 2017;
Vosoughi et al., 2018). In this paper, we assume
that people’s predispositions can be inferred from
their historical social media activities. For example,
users and their connected friends who typically en-
gage in conservative content would be more likely
to share misinformation that supports conservative
views than liberal information (Anspach and Carl-
son, 2020).

Our study aims to develop a comprehensive and
integrated model for misinformation detection. By
incorporating features that encapsulate the spatial-
temporal propagation and the content of historical
user behaviors on social media platforms, we pro-
posed the STU-User model. This model aims to
improve proficiency in identifying and curtailing
the proliferation of misinformation across social
media networks. This investigation enriches the
theoretical framework surrounding misinformation
detection and delivers actionable strategies for its
pragmatic deployment in diverse contexts.

2 Related work

Misinformation detection has become an imper-
ative task in maintaining the integrity of online
discourse. Current research in this field indicates
a dichotomy in the methodologies used to iden-
tify and curtail the spread of misinformation. One



approach emphasizes the analysis of the propaga-
tion structure of the information (Jin et al., 2013;
Sampson et al., 2016), while the other focuses on
examining user behavior and the content of the
information itself (Qazvinian et al., 2011; Popat,
2017). These methodologies gain heightened im-
portance in early detection scenarios, especially
due to the absence of fact-checkers or experts.

2.1 Propagation Structure in Misinformation
Detection

Research on propagation structures aims to under-
stand how information spreads within networks,
with a focus on distinguishing the patterns of mis-
information from factual content (Shu et al., 2017,
Lazer et al., 2018). Vosoughi et al. (2018) found
that false information propagates more widely and
deeply than true information, especially in politi-
cal contexts. Zhou and Zafarani (2020) identified
unique spatial propagation patterns for rumors, in-
dicating misinformation. Wu et al. (2019) devel-
oped a model using propagation paths to differenti-
ate true from false news, outperforming traditional
content-based methods through machine learning
on propagation features.

Additionally, Gupta et al. (2022) explored how
bots manipulate propagation structures to amplify
misinformation, a phenomenon also noted by Ad-
dawood et al. (2019) in their study on bot behavior.
Current research mainly focuses on spatial aspects,
often neglecting temporal dimensions. Future re-
search should integrate both spatial and temporal
elements for a more comprehensive analysis.

2.2 User Behavior and Information Content
in Misinformation Detection

The second crucial approach to detect misinfor-
mation involves a detailed examination of user be-
havior and the intrinsic content of the information.
Tacchini et al. (2017) found that user engagement
metrics like likes and shares can indicate content
authenticity, as interaction patterns differ between
true and false information. Similarly, Castelo et
al. (2019) identified linguistic elements such as
sentiment and complexity as critical indicators of
misinformation.

Ciampaglia et al. (2018) developed a hybrid
model combining user-centric features (e.g., ac-
count age and activity level) with textual features
(e.g., subjectivity and evidence usage) to improve
misinformation detection. Conroy et al. (2015) sup-
ported a multifaceted approach incorporating user

credibility, content style, and emotional resonance.

Shu et al. (2018) and Ghosh et al. (2023) high-
lighted the importance of user profile data, noting
that habitual misinformation spreaders often lack
verifiable details and engage with similar accounts.
Analyzing user behavior and historical messages
within their information-sharing network is thus
crucial for assessing content authenticity on social
media platforms.

2.3 Comparative Analysis and Integrative
Approaches

Researchers have recently explored integrating the
structural dynamics of misinformation propagation
with user behavior to address rampant misinforma-
tion on social media (Monti et al., 2019). Hangloo
and Arora (2021) compared these two prevalent
methods, suggesting that while each has strengths,
a unified approach merging propagation structure
analysis with user behavior and content scrutiny
could be more effective. Zhou et al. (2020) sup-
ported this hypothesis, demonstrating that a mul-
timodal methodology combining propagation and
content attributes outperforms approaches using
singular data types. Huang et al. (2023) also pro-
posed integrating spatial and temporal information
of message propagation to improve rumor detection
accuracy, emphasizing the importance of including
user behavior information.

In summary, misinformation detection research
employs diverse methods. Propagation structure
studies provide an overview of information spread,
while examining user behavior and content focuses
on personal interactions and text features. The
trend is moving toward holistic models that com-
bine these perspectives, indicating a shift toward
more sophisticated and accurate misinformation
detection methods (Yuan et al., 2019; Hu et al.,
2022).

In this study, we present an innovative deep
learning-based model STU-User, for misinforma-
tion detection that eliminates the necessity for exter-
nal expert validation or fact-checking. This model
merges the spatio-temporal aspects of misinforma-
tion spread with a novel embedding of users’ his-
torical interactions and behaviors within the infor-
mation network. This integrative approach signif-
icantly improves the model’s proficiency in pre-
cisely detecting misinformation, demonstrating the
effectiveness of combining various methodologies
in the evolution of misinformation detection.



Figure 1: Three propagations share the same spatial structure,: s =+ a — b, s = a — d, s — ¢, but in temporal
structure, they are different: (a) s >a b —>c—d,b)s >a—c—b—d,(c)s—>a—b—>d—c

3 Problem Statement

Let P = {P,P,...,Pp} denotes a collec-
tion of message propagation instances, where
each propagation instance P; is defined as P; :=
{si, 71,7 2,... ,ri,|pi‘_1}. Here, s; represents
the initial user who posted the source message,
and each r; refers to corresponding users who en-
gaged with the post (through retweets or replies).
For every user r; ; responding to a post, their friend
networks and historical post data are extracted for
analysis. It is posited that these responsive mes-
sages are ordered chronologically, implying that
the post time of message r; ;- precedes that of r;
if 7/ < j”, with the source message s; being the
earliest in the sequence for P;. Although repre-
sented sequentially, these messages are intercon-
nected through their retweet or reply relationships.

Figure 1. shows that although some propaga-
tions share the identical spatial structure in dissem-
ination, they may still differ in temporal structure.
In this task, each message propagation F; is as-
sociated with a categorical label from the set C,
which comprises four classifications: true informa-
tion, misinformation, debunking information, and
unverified information. The primary objective of
this paper is to frame the task of misinformation
detection as a supervised classification problem, en-
deavoring to develop a classifier f that maps from
PtoC.

4 Methodology

4.1 User content features

4.1.1 Internal and external impact

In the realm of misinformation detection, distin-
guishing between internal and external impacts is
essential for a comprehensive analytical framework
(Zhou et al., 2022). Internal impact refers to the in-
dividual and psychological aspects of information
processing, influenced by personal beliefs, prior

knowledge, and emotional engagement with con-
tent. These internal factors significantly affect an
individual’s tendency to accept and spread misin-
formation and serve as critical indicators for identi-
fying vulnerability to deceptive narratives (Lazer
et al., 2018). On the contrary, the external im-
pact is anchored in the social and relational di-
mensions of information dissemination. It encom-
passes the effects of communal norms, the struc-
ture of social networks, and the frequency and na-
ture of user interactions. The influence of these
external elements is pivotal in developing infor-
mation cascades, where perceived credibility and
content dissemination are often more shaped by
social dynamics than by factual accuracy. Grasping
the nuances of these external dynamics is vital for
a deeper insight into the mechanisms of misinfor-
mation spread across networks (Lazer et al., 2018;
Zhou and Zafarani, 2020).

A holistic approach to misinformation detection,
which incorporates both internal and external im-
pacts, allows for a more nuanced understanding of
the intrinsic qualities of content and the wider con-
text of its spread. This dual analysis is instrumental
in developing sophisticated detection algorithms
capable of differentiating between inadvertent shar-
ing of misinformation and intentional disinforma-
tion efforts. In addition, plain embeddings of user
historical text content with language models would
introduce irrelevant dimensions to the misinforma-
tion detection task, while a solid comparison analy-
sis between the content and the source message is
more efficient. Therefore, this section focuses on
formulating a method to craft user content features
for our deep learning model, aimed at the similarity
measure between the user content and the source
message.

4.1.2 Feature modeling

Suppose we identify a user v within a propagation
chain where the veracity of the source information



s is yet to be confirmed. Given a source informa-
tion content s created at time ¢, the user « has 7
historical posts (p1,p2,ps3, .- -,D;), an associated
attitude vector (a1, as,as,...,a;), and a posting
time vector (t1,ta, ..., t;). The internal impact can
be quantified as

Linternal = Z S(E(S), azE(pz)) X Tt—t;

where F(s) represents the embedding feature vec-
tors of the source message s, extractable via deep
learning models employing transformer architec-
tures, renowned for their proficiency in text se-
mantics and various NLP (Natural Language Pro-
cessing) tasks, such as machine translation and
sentiment analysis. S(E(s), E(n)) is a similar-
ity measure of the embedding features between
m and n, typically employing cosine similar-
ity. 7;—¢, is a function that quantifies the tempo-
ral decay in impact from historical posts to cur-
rent misinformation. The associated attitude vec-
tor (a1, as, as, ..., a;), indicative of user behavior
such as commenting, likes, or dislikes on the his-
torical posts (p1,p2,p3,.-.,pi), is scaled within
[—1, 1]. If the user did not interact with the histori-
cal post 7, a; will be set to 0.

Given misinformation content m created at
time ¢, and a user u with a friends list of
g (f1, f2, f3,..., f;), each friend has ¢ histor-
ical posts (pj,,PjssPjss---,Pj;) and an associ-
ated attitude vector (aj,,aj,,ajs, ... ,a; ), ema-
nating from user u, with a posting time vector
(tj1,tjs,tjs, - - -, t;). Filtering out the posts older
than 7 weeks from the time of the misinformation
occurrence !, the external impact can be measured
as

Texternal = Z Z(S(E(S), ajiE(pji)) x Tt—t;,
J 7

Hence, the vector representing all impact fea-
tures I,;; will be
Iall = Iintemal + Iextema]
which will characterize the user content features
inputted into deep learning networks.
4.2 Propagation features

4.2.1

The Spatial-Temporal Unit (STU) is developed to
model message propagation from a comprehensive

spatial-temporal unit (STU)

'we choose 7 weeks because among the dataset we used, 7
weeks would involve 80% of the historical data of all users

spatial-temporal perspective. Unlike approaches
that treat spatial and temporal structures separately,
the STU integrates these aspects to form a cohe-
sive model. In alignment with the principles of
recurrent neural networks, the STU conceptualizes
message propagation as a chronologically ordered
sequence, applying an STU to each individual mes-
sage within this sequence. Each STU, sharing pa-
rameters across the model, comprises three distinct
components: a spatial capturer, a temporal capturer,
and an integrator. These components collectively
function to assimilate spatial-temporal information
for each message.

In the context of a specific message propaga-
tion chain P : P; := {3i7 731,732y - 7Ti7|Pi‘*1}’
where s represents the originating message and
each r denotes a responsive message (either a
retweet or reply), it is postulated that all mes-
sages within P adhere to a chronological sequence,
thereby defining the temporal framework. For an-
alytical simplicity, s is subsequently referred to
as ro. During data preprocessing, each message
r; within the range {0,1,...,|P| — 1} is repre-
sented by a summative embedding of its constituent
words, denoted as z;. These embeddings are de-
rived from the vector of all impact features I,
sourced from user content characteristics. The spa-
tial configuration of P is theoretically modeled as
a tree structure 7; = (P4, E;), in which E symbol-
izes a set of directed edges, indicative of retweet
or reply connections between messages. For in-
stance, if message 7; is a response to message 7,
a directed edge (7, ry) is established, provided
O<t<t<|P|l—-1

As depicted in Figure 2, the STU architecture
encompasses h,,, the hidden representation of the
message propagation P up to the appearance of
message 7¢; Iy, , a temporary hidden state repre-
senting the propagation up to message r;; and o,
the outcome of classification based on h,.,.

Adhering to the temporal order, messages within
P sequentially enter the STU, constituting a chain
of | P| units. To ensure uniformity in all STUs, both
the antecedent message and the progenitor of the
source message 7 are assigned a null message (J;
that is, r_1 := 0 and p(ro) := 0. The term p(r;) is
used to denote the progenitor of message ;. Corre-
sponding hidden states for these null messages are

initialized as 0, implying i, _, = hy,.0) = 0.
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Figure 2: The architecture of an STU, which consists of three components, including spatial capturer, temporal

capturer and integrator.

4.2.2 Spatial capturer

In the context of the current message r;, where
0 <t < |P| — 1, the function of the spatial cap-
turer is to aggregate the hidden representation h,,(,.)
from the parent message p(r). This aggregation is
crucial for encapsulating the spatial characteristics
inherent in message propagation. For instance, as
depicted in Fig. 1a, during the computation of hid-
den representations for messages a and ¢ within the
Spatial-Temporal Unit (STU), the spatial capturer
retrieves the hidden representation of message s,
denoted as rg. Similarly, the computation of hidden
representations for messages b and d involves the
spatial capturer that obtains the hidden representa-
tion from message a. It is pertinent to note that the
hidden representation h,,(,.,) for any given message
in the sequence is pre-computed, attributable to the
antecedent positioning of p(r;) relative to r; in the
message propagation chain P.

4.2.3 Temporal capturer

In the context of the given message r;, the tem-
poral capturer is specifically designed to extract
the temporal characteristics inherent in message
propagation P. Given that the temporal aspect of
the propagation is conceptualized as a sequential
arrangement of messages, our temporal capturer
employs a long-short-term memory (LSTM) model
to effectively interpret this sequence, thereby ac-
quiring the temporal attributes pertinent to the mes-
sage propagation. In this model, C),, symbolizes
the cell state at the specific time step ¢. The input to
the temporal capturer comprises the message repre-
sentation x; of the current node 7; along with the
hidden representation h,, , of the preceding mes-
sage r:_1. The resultant output of this process is a
temporary hidden representation A, , which is sub-

sequently integrated with the hidden representation
hy(ry) Of the parent message 7, thus encapsulating
both spatial and temporal dynamics in the message
propagation process.

4.2.4 Integrator

In our STU-User model, the outputs derived from
both the spatial and temporal capturers are inte-
grated using the softmax function to facilitate the
prediction of the final output. This process leads
to the acquisition of the temporary hidden repre-
sentation ;. and the hidden representation Pp(re)s
which encapsulate the spatial-temporal dynamics
of message propagation P up to the appearance
of the current message ;. To effectively amalga-
mate these distinct representations, we introduce
an integrator that employs a self-attention mecha-
nism, thus generating a unified hidden representa-
tion h,, . This self-attention mechanism is structured
as a two-layer perceptron. It computes the atten-
tion coefficients for h;. and h,,,) according to the
subsequent formula:

oy, = softmax ( a x tanh(Wh) >

Dwein ya x tanh(Wh')

reofp(ry)
4.2.5 Output and model learning

In our model, the softmax function is utilized to
ascertain the classification of message propagation
P as an output:

ot(P) = softmax(Vh,, + b)

where V' and b represent the learnable weights and
bias in the output layer, respectively. The imple-
mentation of o;(P) allows the Spatial-Temporal
Unit (STU) to discern the classification results
based on a subset of the information from mes-
sage propagation P, specifically up to the juncture



of the current message r;. This approach does not
require the entirety of P’s information, thus facili-
tating the early detection of misinformation, as will
be demonstrated in our experimental analysis.

Let P = {P1; P;...; P p } denote a set of mes-
sage propagations, each P being associated with
a categorical label from set C', which is subdivided
into three more detailed categories: true informa-
tion, misinformation, and unverified information.
We represent this class label for each P, € P using
a 4-dimensional one-hot vector y;. The model’s
learning is guided by the cross-entropy loss func-
tion, augmented with an L, regularization term:

|P|

1
L==> ylnop,—1(P) + §||9||%
=1

where O signifies the complete set of parameters
within the deep learning framework.

5 Experiment

5.1 Data

Our empirical investigation utilized two widely rec-
ognized Twitter datasets, Twitter15 and Twitter16,
which are widely used in the field of misinforma-
tion detection research. The Twitterl5 dataset en-
compasses 1490 instances of tweet propagation,
while Twitter16 comprises 818 such instances. For
both datasets, we aggregated the historical posts of
users and their connections from the week preced-
ing the dissemination of the information. This data
collection was facilitated through the Twitter API?.
Each dataset is annotated with four distinct labels:
“fake’, *true’, unverified’, and ’debunking of fake’,
where the latter denotes narratives that identify spe-
cific news stories as falsified. In our analysis, these
labels are reclassified as "misinformation", "true
information"”, "unverified information", and "de-
bunking information", respectively.

5.2 Setup

In the experimental setup, we allocated 10% of the
instances randomly as the development set, and
divided the remaining data into training and test-
ing sets in a 3:1 ratio for both Twitter15 and Twit-
ter16 datasets. The dimensionality of the word-
embedding vector was established at 300, while the
dimension for the hidden state i was set at 100. For
the similarity function S, we opted for the cosine
similarity measure. Considering that user posts on

*https://dev.twitter.com/rest/public

Twitter often comprise fewer than 512 words, a
pre-trained Sentence-RoBERTa model, an adapta-
tion of ROBERTa through a Siamese network, was
utilized to extract the embedding vectors for these
posts. In instances where misinformation content
exceeded 512 words, the Longformer model was
employed to acquire the respective embedding vec-
tors. The time decay function was computed using
Ti—t; = exp((1 — (¢ — t;)) which is inspired by
(Wozniak et al., 1995).

Regarding the attitude vector, if a user did not
engage (through comments, likes, or dislikes) with
a historical post ¢, the corresponding a; was set to
0. If a user expressed likes, a; was assigned a value
of 1, and it was set to -1 for dislikes. In all other
cases, a; was determined by the output of the Vader
algorithm (Hutto and Gilbert, 2014), inputting the
user’s comments.

For modeling propagation features, we adhered
to the optimization settings reported in the literature
for all comparative methods. Our methodology was
implemented using PyTorch, with parameter opti-
mization executed via the Adam algorithm. The
initial learning rate was set at 0.005, subject to
gradual reduction during the training phase with a
batch size of 64 for the training set. Optimal param-
eter settings were identified based on performance
metrics observed in the validation set, constituting
10% of the total dataset. The loss function L was
designated as the primary optimization objective.

Our comparative analysis included state-of-the-
art baseline models such as SVM-TK, GRU-RNN,
TD-RvNN, PPC, and GLAN. The performance
evaluation of all models was conducted based on
accuracy and F} scores for each category.

* RFC: a random forest classifier that uti-
lizes user, linguistic and structure characteris-
tics(Zhao et al., 2015).

* SVM-TK: Support Vector Machine with Tree
Kernel integrates sophisticated tree-based ker-
nel functions into the traditional SVM frame-
work to classify misinformation, exploiting
structural similarities within data to enhance
detection accuracy(Ma et al., 2017).

* GRU-RNN: Gated Recurrent Unit - Recur-
rent Neural Network is designed for classifi-
cation of misinformation by capturing sequen-
tial dependencies in data through its memory-
based architecture, which allows for nuanced



detection of patterns indicative of false infor-
mation(Ma et al., 2016).

* TD-RvNN: Top-Down Recursive Neural Net-
work leverages a tree-structured approach
to analyze the propagation patterns of infor-
mation, enabling the discernment of authen-
tic news from misinformation effectively(Ma
et al., 2018).

* PPC: Propagation Path Classification model
strategically analyzes the paths of information
dissemination across social networks, utiliz-
ing structural and temporal features to distin-
guish between authentic and misleading con-
tent in misinformation detection tasks(Liu and
Wu, 2018).

* GLAN: Graph Learning-Attention Network
model employs a novel graph-based learning
mechanism combined with attention networks
to effectively classify misinformation by cap-
turing complex relational patterns and depen-
dencies in data(Yuan et al., 2019).

5.3 Ablation study

In order to determine the relative importance of
every module of the STU-User, we perform a series
of ablation studies over the different parts of the
model.

* w/o User content feature: Replacing the em-
beddings vector I,;; by the SOTA word2vec
method to represent x;.

* w/o Spatial feature: Removing the spatial
capturer component in STU, that is, set h,, =
h!. .

t

* w/o Temporal feature: Removing the tem-
poral capturer component in STU, that is, set
h’/‘t = hp(rt)

6 Results

Tables 1 and 2 present the comparative perfor-
mance outcomes of our proposed STU-User model
against baseline models in the domain of misinfor-
mation detection on the Twitter15 and Twitter16
datasets, respectively. In instances where the STU-
User model demonstrates significantly superior nu-
merical results compared to the baselines, these
figures are highlighted in boldface for each respec-
tive column. Notably, our model exhibits accuracy

Table 1: misinformation classification results of differ-
ent classifiers in Twitterl5

(“M”: Misinformation;“T”:True information; “D”: De-
bunking information; “U”: Unverified information;)

CLASSIFIER Acc M T D U

Fy Fy Py Fy
RFC 0.565 0.422 0.810 0.401 0.543
SVM-TK 0.667 0.669 0.619 0.772 0.645
GRU-RNN 0.641 0.634 0.684 0.688 0.571
TD-RVNN 0.723 0.758 0.682 0.821 0.654
PPC 0.842 0.875 0.811 0.818 0.790
GLAN 0.905 0.917 0.924 0.852 0.927
STU-USER 0.914 0.923 0.918 0.881 0.929

Table 2: misinformation classification results of differ-
ent classifiers in Twitter16

CLASSIFIER  AcCC M T D U

F1 F1 F1 Fl
RFC 0.585 0.415 0.752 0.547 0.563
SVM-TK 0.662 0.623 0.643 0.783 0.655
GRU-RNN 0.633 0.715 0.617 0.577 0.527
TD-RVNN 0.737 0.743 0.662 0.835 0.708
PPC 0.863 0.898 0.820 0.843 0.837
GLAN 0.902 0.869 0.921 0.847 0.968
STU-USER  0.910 0.892 0.915 0.876 0.935

of 91.4% and 91.0% on the two Twitter datasets,
respectively, underscoring its adaptability to varied
tweet-based datasets. Furthermore, the exceptional
performance of the STU-User model, leveraging
both spatio-temporal and user content features, un-
derscores its efficacy in addressing the challenges
of misinformation detection on social media plat-
forms.

Table 3: Results of the ablation study

METHOD Acc M T D U
Fy Fy Fy Fy
TWITTER15
STU-USER 0.914 0.923 0.918 0.881 0.929
w/0 USER 0.836 0.812 0.823 0.811 0.792
W/O SPATIAL 0.883 0.894 0.837 0.866 0.824
W/0 TEMPORAL 0.867 0.836 0.834 0.864 0.825
TWITTER16
STU-USER 0.910 0.892 0.915 0.876 0.935
w/0 USER 0.836 0.815 0.842 0.812 0.806
W/0 SPATIAL 0.863 0.843 0.833 0.852 0.836
W/0 TEMPORAL 0.874 0.826 0.835 0.812 0.829

Table 3 delineates the results of our ablation
study. It is observed that any variant of the model,
when deprived of specific components, demon-
strates a reduction in both accuracy and F} scores



compared the complete STU-User model. This
finding shows evidences that the holistic amalgama-
tion of the three critical components—user content
features, spatial propagation structure, and tem-
poral propagation structure—is essential for the
enhanced efficacy of the STU-User model in de-
tecting misinformation.

7 Discussion

Traditional machine-learning approaches to mis-
information detection involve training supervised
models using statistical features derived from con-
tent, user characteristics, and message propaga-
tion. These methods require extensive preprocess-
ing and feature engineering, which can be time-
consuming and labor-intensive (Jin et al., 2013;
Ma et al., 2017). Moreover, some features may be
unavailable, inadequate, or impossible to extract.
As shown in Tables 1 and 2, models relying on
manually crafted features (e.g., RFC, SVM-TK)
perform poorly, highlighting their limitations in
generalizing relevant features.

Recent advancements in deep neural networks
offer a promising alternative, addressing the short-
comings of traditional methods (Song et al., 2019;
Huang et al., 2019). The GRU-RNN model, for
example, captures temporal dependencies crucial
for understanding misinformation spread. The PPC
model combines structural and temporal elements
to analyze content propagation across social net-
works. Tables 1 and 2 indicate that both GRU and
PPC models outperform traditional classifiers, with
PPC being more effective due to its integration of
CNN and RNN to capture user feature variations.
However, existing deep learning methods often
model user features and temporal/spatial structures
separately, lacking a unified approach.

The proposed STU-User model addresses this
gap, showing superior accuracy and Fj scores
for misinformation and debunking categories, as
demonstrated in Tables 1 and 2. GLAN also per-
forms well for True and Unverified information
categories, integrating graph-based learning with
attention mechanisms to analyze relational patterns.
The STU-User model’s focus on embedding user
content based on similarity with historical posts
is particularly effective for identifying misinfor-
mation related to specific themes like political or
health rumors (Zhou et al., 2020). Our analysis,
especially in Table 3, emphasizes the complemen-
tary role of user content, spatial propagation, and

temporal structure in misinformation detection. Re-
moving user content features significantly impacts
performance, underscoring the importance of en-
coding semantic similarity and the general context
of misinformation.

Future work aims to enhance the STU-User
model with additional data types, such as user pro-
files and geographic locations, and evaluate its ef-
fectiveness in early detection scenarios. We also
encourage integrating multimodal data to further
refine misinformation detection strategies.

8 Conclusion

In this study, we introduced the STU-User model
to tackle the issue of rampant misinformation on
social media. Unlike traditional detection meth-
ods, our approach integrates spatial-temporal and
content-based features within message propaga-
tion networks. The Spatial-Temporal Unit (STU)
in our neural network architecture, enhanced with
parameter-sharing, modified LSTM structures, and
a self-attention mechanism, has proven particu-
larly effective. Additionally, the use of Bert-
embedded similarity measures between user be-
liefs and source content offers a novel perspective
on misinformation detection by emphasizing the
importance of user and network interactions.

Empirical evaluations on publicly available Twit-
ter datasets show that our model significantly out-
performs existing benchmarks in misinformation
detection. These findings highlight the efficacy of
our integrated approach, which combines spatial-
temporal propagation and content similarity fea-
tures, thus enhancing the model’s performance.
This research not only enriches the academic dis-
course on misinformation detection methodologies
but also holds considerable practical potential. It
opens new avenues for algorithmic improvements
and fact-checking initiatives, providing valuable
tools for policymakers, social media platforms, and
the broader community engaged in combating mis-
information. Ultimately, this study provides both a
comprehensive theoretical framework and action-
able insights, paving the way for more effective
and timely interventions against misinformation in
the digital age.

9 Limitations

The STU-User model, while innovative, has several
limitations that point to gaps in current research
and areas for future improvement. One significant



research gap is the limited exploration of user be-
havior dynamics over extended periods. The model
primarily focuses on short-term interactions and
immediate user responses, overlooking how mis-
information might affect users’ long-term behav-
ior and beliefs. This approach potentially misses
deeper insights into the persistence and evolution of
misinformation in social networks. Future research
should aim to integrate longitudinal user data to
capture these long-term effects, providing a more
comprehensive understanding of misinformation
dynamics.

Additionally, the granularity and variety of user
profile data used in the current study are some-
what limited. The STU-User model employs basic
user interaction metrics and Bert-embedded simi-
larity measures, which may not fully capture the
complexity of user behavior and influence. Essen-
tial user profile details, such as demographic in-
formation, political affiliations, and past exposure
to misinformation, are not considered. Incorporat-
ing these details could significantly enhance the
model’s predictive power. Future research should
address this by including more detailed and diverse
user profile data, enabling a richer analysis of how
different user characteristics influence the spread
of misinformation.

Furthermore, the reliance on publicly available
Twitter datasets limits the model’s applicability to
other social media platforms with different user
demographics and interaction patterns. Propaga-
tion structures and user behaviors on platforms like
Facebook, Instagram, or TikTok may differ signifi-
cantly from those on Twitter, potentially affecting
the model’s performance and generalizability. Fu-
ture studies should test the STU-User model across
various social media platforms to validate its effec-
tiveness and adaptability. Additionally, expanding
the model to include multimodal data, such as im-
ages and videos, would provide a more holistic
approach to misinformation detection, reflecting
the diverse forms of content shared online.

In summary, while the STU-User model ad-
vances the field of misinformation detection by
integrating spatial-temporal and content-based fea-
tures, it has notable limitations. Addressing these
gaps through future research, such as incorporating
longitudinal user data, more detailed user profiles,
and testing across various social media platforms,
will be crucial. These improvements could enhance
the model’s comprehensiveness and effectiveness,

providing more robust tools for combating misin-
formation in the digital age.
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