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Abstract

This study introduces the STU-User model, an001
innovative approach to detecting misinforma-002
tion on social media, combining user behav-003
iors with spatial-temporal analysis. The model004
incorporates an advanced neural network inte-005
grating spatial-temporal units (STU) with en-006
hanced long short-term memory (LSTM) struc-007
tures. Central to its design is the use of Bert-008
embeddings to analyze the patterns of users’009
historical interactions and connections in the010
network and incorporate them with a similar-011
ity measure to enhance accuracy. This analy-012
sis is then combined with the spatial-temporal013
aspects of the message propagation structure.014
We found that the STU-User model surpasses015
the performances of existing methods based on016
tests using public Twitter datasets. Theoretical017
and practical implications for policy-making018
and regulating social media in the misinforma-019
tion era are discussed.020

1 Introduction021

With the advent and growing popularity of social022

media platforms and mobile devices, the ease of023

disseminating misinformation on these digital chan-024

nels has increased considerably. The widespread025

circulation of this misinformation can cause public026

distress and lead to adverse effects on individu-027

als, underscoring the urgency for automated de-028

tection mechanisms (Allcott and Gentzkow, 2017;029

Jin et al., 2017). Historically, the majority n of030

research in this domain has concentrated on text031

mining methodologies, employing supervised mod-032

els grounded in feature engineering or leveraging033

advanced deep learning frameworks (Castillo et al.,034

2011; Ma et al., 2017; Song et al., 2019). In recent035

years, an emerging line of research has focused036

its focus on the spatial structure of message propa-037

gation, offering a novel and promising avenue for038

tackling misinformation (Liu and Wu, 2018; Yuan039

et al., 2019).040

However, these innovative methods predomi- 041

nantly focus on spatial aspects, frequently ne- 042

glecting crucial temporal dimensions intertwined 043

with the spatial dynamics in message propagation 044

(Zhang et al., 2021). This oversight presents a gap 045

in fully understanding and countering the spread 046

of misinformation. Furthermore, the role of indi- 047

vidual users in the propagation of misinformation, 048

often inadvertently, cannot be overlooked (Castillo 049

et al., 2011; Yang et al., 2012). The absence of im- 050

mediate fact-checking or corroborative information 051

makes users prone to be guided by their preexisting 052

beliefs and opinions (Lewandowsky et al., 2017; 053

Vosoughi et al., 2018). In this paper, we assume 054

that people’s predispositions can be inferred from 055

their historical social media activities. For example, 056

users and their connected friends who typically en- 057

gage in conservative content would be more likely 058

to share misinformation that supports conservative 059

views than liberal information (Anspach and Carl- 060

son, 2020). 061

Our study aims to develop a comprehensive and 062

integrated model for misinformation detection. By 063

incorporating features that encapsulate the spatial- 064

temporal propagation and the content of historical 065

user behaviors on social media platforms, we pro- 066

posed the STU-User model. This model aims to 067

improve proficiency in identifying and curtailing 068

the proliferation of misinformation across social 069

media networks. This investigation enriches the 070

theoretical framework surrounding misinformation 071

detection and delivers actionable strategies for its 072

pragmatic deployment in diverse contexts. 073

2 Related work 074

Misinformation detection has become an imper- 075

ative task in maintaining the integrity of online 076

discourse. Current research in this field indicates 077

a dichotomy in the methodologies used to iden- 078

tify and curtail the spread of misinformation. One 079
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approach emphasizes the analysis of the propaga-080

tion structure of the information (Jin et al., 2013;081

Sampson et al., 2016), while the other focuses on082

examining user behavior and the content of the083

information itself (Qazvinian et al., 2011; Popat,084

2017). These methodologies gain heightened im-085

portance in early detection scenarios, especially086

due to the absence of fact-checkers or experts.087

2.1 Propagation Structure in Misinformation088

Detection089

Research on propagation structures aims to under-090

stand how information spreads within networks,091

with a focus on distinguishing the patterns of mis-092

information from factual content (Shu et al., 2017;093

Lazer et al., 2018). Vosoughi et al. (2018) found094

that false information propagates more widely and095

deeply than true information, especially in politi-096

cal contexts. Zhou and Zafarani (2020) identified097

unique spatial propagation patterns for rumors, in-098

dicating misinformation. Wu et al. (2019) devel-099

oped a model using propagation paths to differenti-100

ate true from false news, outperforming traditional101

content-based methods through machine learning102

on propagation features.103

Additionally, Gupta et al. (2022) explored how104

bots manipulate propagation structures to amplify105

misinformation, a phenomenon also noted by Ad-106

dawood et al. (2019) in their study on bot behavior.107

Current research mainly focuses on spatial aspects,108

often neglecting temporal dimensions. Future re-109

search should integrate both spatial and temporal110

elements for a more comprehensive analysis.111

2.2 User Behavior and Information Content112

in Misinformation Detection113

The second crucial approach to detect misinfor-114

mation involves a detailed examination of user be-115

havior and the intrinsic content of the information.116

Tacchini et al. (2017) found that user engagement117

metrics like likes and shares can indicate content118

authenticity, as interaction patterns differ between119

true and false information. Similarly, Castelo et120

al. (2019) identified linguistic elements such as121

sentiment and complexity as critical indicators of122

misinformation.123

Ciampaglia et al. (2018) developed a hybrid124

model combining user-centric features (e.g., ac-125

count age and activity level) with textual features126

(e.g., subjectivity and evidence usage) to improve127

misinformation detection. Conroy et al. (2015) sup-128

ported a multifaceted approach incorporating user129

credibility, content style, and emotional resonance. 130

Shu et al. (2018) and Ghosh et al. (2023) high- 131

lighted the importance of user profile data, noting 132

that habitual misinformation spreaders often lack 133

verifiable details and engage with similar accounts. 134

Analyzing user behavior and historical messages 135

within their information-sharing network is thus 136

crucial for assessing content authenticity on social 137

media platforms. 138

2.3 Comparative Analysis and Integrative 139

Approaches 140

Researchers have recently explored integrating the 141

structural dynamics of misinformation propagation 142

with user behavior to address rampant misinforma- 143

tion on social media (Monti et al., 2019). Hangloo 144

and Arora (2021) compared these two prevalent 145

methods, suggesting that while each has strengths, 146

a unified approach merging propagation structure 147

analysis with user behavior and content scrutiny 148

could be more effective. Zhou et al. (2020) sup- 149

ported this hypothesis, demonstrating that a mul- 150

timodal methodology combining propagation and 151

content attributes outperforms approaches using 152

singular data types. Huang et al. (2023) also pro- 153

posed integrating spatial and temporal information 154

of message propagation to improve rumor detection 155

accuracy, emphasizing the importance of including 156

user behavior information. 157

In summary, misinformation detection research 158

employs diverse methods. Propagation structure 159

studies provide an overview of information spread, 160

while examining user behavior and content focuses 161

on personal interactions and text features. The 162

trend is moving toward holistic models that com- 163

bine these perspectives, indicating a shift toward 164

more sophisticated and accurate misinformation 165

detection methods (Yuan et al., 2019; Hu et al., 166

2022). 167

In this study, we present an innovative deep 168

learning-based model STU-User, for misinforma- 169

tion detection that eliminates the necessity for exter- 170

nal expert validation or fact-checking. This model 171

merges the spatio-temporal aspects of misinforma- 172

tion spread with a novel embedding of users’ his- 173

torical interactions and behaviors within the infor- 174

mation network. This integrative approach signif- 175

icantly improves the model’s proficiency in pre- 176

cisely detecting misinformation, demonstrating the 177

effectiveness of combining various methodologies 178

in the evolution of misinformation detection. 179
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Figure 1: Three propagations share the same spatial structure,: s → a → b, s → a → d, s → c, but in temporal
structure, they are different: (a) s → a → b → c → d, (b) s → a → c → b → d, (c) s → a → b → d → c

3 Problem Statement180

Let P = {P1, P2, . . . , P|P |} denotes a collec-181

tion of message propagation instances, where182

each propagation instance Pi is defined as Pi :=183

{si, ri,1, ri,2, . . . , ri,|Pi|−1}. Here, si represents184

the initial user who posted the source message,185

and each ri refers to corresponding users who en-186

gaged with the post (through retweets or replies).187

For every user ri,j responding to a post, their friend188

networks and historical post data are extracted for189

analysis. It is posited that these responsive mes-190

sages are ordered chronologically, implying that191

the post time of message ri,j′ precedes that of ri,j′′192

if j′ < j′′, with the source message si being the193

earliest in the sequence for Pi. Although repre-194

sented sequentially, these messages are intercon-195

nected through their retweet or reply relationships.196

Figure 1. shows that although some propaga-197

tions share the identical spatial structure in dissem-198

ination, they may still differ in temporal structure.199

In this task, each message propagation Pi is as-200

sociated with a categorical label from the set C,201

which comprises four classifications: true informa-202

tion, misinformation, debunking information, and203

unverified information. The primary objective of204

this paper is to frame the task of misinformation205

detection as a supervised classification problem, en-206

deavoring to develop a classifier f that maps from207

P to C.208

4 Methodology209

4.1 User content features210

4.1.1 Internal and external impact211

In the realm of misinformation detection, distin-212

guishing between internal and external impacts is213

essential for a comprehensive analytical framework214

(Zhou et al., 2022). Internal impact refers to the in-215

dividual and psychological aspects of information216

processing, influenced by personal beliefs, prior217

knowledge, and emotional engagement with con- 218

tent. These internal factors significantly affect an 219

individual’s tendency to accept and spread misin- 220

formation and serve as critical indicators for identi- 221

fying vulnerability to deceptive narratives (Lazer 222

et al., 2018). On the contrary, the external im- 223

pact is anchored in the social and relational di- 224

mensions of information dissemination. It encom- 225

passes the effects of communal norms, the struc- 226

ture of social networks, and the frequency and na- 227

ture of user interactions. The influence of these 228

external elements is pivotal in developing infor- 229

mation cascades, where perceived credibility and 230

content dissemination are often more shaped by 231

social dynamics than by factual accuracy. Grasping 232

the nuances of these external dynamics is vital for 233

a deeper insight into the mechanisms of misinfor- 234

mation spread across networks (Lazer et al., 2018; 235

Zhou and Zafarani, 2020). 236

A holistic approach to misinformation detection, 237

which incorporates both internal and external im- 238

pacts, allows for a more nuanced understanding of 239

the intrinsic qualities of content and the wider con- 240

text of its spread. This dual analysis is instrumental 241

in developing sophisticated detection algorithms 242

capable of differentiating between inadvertent shar- 243

ing of misinformation and intentional disinforma- 244

tion efforts. In addition, plain embeddings of user 245

historical text content with language models would 246

introduce irrelevant dimensions to the misinforma- 247

tion detection task, while a solid comparison analy- 248

sis between the content and the source message is 249

more efficient. Therefore, this section focuses on 250

formulating a method to craft user content features 251

for our deep learning model, aimed at the similarity 252

measure between the user content and the source 253

message. 254

4.1.2 Feature modeling 255

Suppose we identify a user u within a propagation 256

chain where the veracity of the source information 257
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s is yet to be confirmed. Given a source informa-258

tion content s created at time t, the user u has i259

historical posts (p1, p2, p3, . . . , pi), an associated260

attitude vector (a1, a2, a3, . . . , ai), and a posting261

time vector (t1, t2, . . . , ti). The internal impact can262

be quantified as263

Iinternal =
∑
i

S(E(s), aiE(pi))× τt−ti264

where E(s) represents the embedding feature vec-265

tors of the source message s, extractable via deep266

learning models employing transformer architec-267

tures, renowned for their proficiency in text se-268

mantics and various NLP (Natural Language Pro-269

cessing) tasks, such as machine translation and270

sentiment analysis. S(E(s), E(n)) is a similar-271

ity measure of the embedding features between272

m and n, typically employing cosine similar-273

ity. τt−ti is a function that quantifies the tempo-274

ral decay in impact from historical posts to cur-275

rent misinformation. The associated attitude vec-276

tor (a1, a2, a3, . . . , ai), indicative of user behavior277

such as commenting, likes, or dislikes on the his-278

torical posts (p1, p2, p3, . . . , pi), is scaled within279

[−1, 1]. If the user did not interact with the histori-280

cal post i, aj will be set to 0.281

Given misinformation content m created at282

time t, and a user u with a friends list of283

j: (f1, f2, f3, . . . , fj), each friend has i histor-284

ical posts (pj1 , pj2 , pj3 , . . . , pji) and an associ-285

ated attitude vector (aj1 , aj2 , aj3 , . . . , aji), ema-286

nating from user u, with a posting time vector287

(tj1 , tj2 , tj3 , . . . , tji). Filtering out the posts older288

than 7 weeks from the time of the misinformation289

occurrence 1, the external impact can be measured290

as291

Iexternal =
∑
j

∑
i

(S(E(s), ajiE(pji))× τt−tji
292

Hence, the vector representing all impact fea-293

tures Iall will be294

Iall = Iinternal + Iexternal295

which will characterize the user content features296

inputted into deep learning networks.297

4.2 Propagation features298

4.2.1 spatial-temporal unit (STU)299

The Spatial-Temporal Unit (STU) is developed to300

model message propagation from a comprehensive301

1we choose 7 weeks because among the dataset we used, 7
weeks would involve 80% of the historical data of all users

spatial-temporal perspective. Unlike approaches 302

that treat spatial and temporal structures separately, 303

the STU integrates these aspects to form a cohe- 304

sive model. In alignment with the principles of 305

recurrent neural networks, the STU conceptualizes 306

message propagation as a chronologically ordered 307

sequence, applying an STU to each individual mes- 308

sage within this sequence. Each STU, sharing pa- 309

rameters across the model, comprises three distinct 310

components: a spatial capturer, a temporal capturer, 311

and an integrator. These components collectively 312

function to assimilate spatial-temporal information 313

for each message. 314

In the context of a specific message propaga- 315

tion chain P : Pi := {si, ri,1, ri,2, . . . , ri,|Pi|−1}, 316

where s represents the originating message and 317

each r denotes a responsive message (either a 318

retweet or reply), it is postulated that all mes- 319

sages within P adhere to a chronological sequence, 320

thereby defining the temporal framework. For an- 321

alytical simplicity, s is subsequently referred to 322

as r0. During data preprocessing, each message 323

rt within the range {0, 1, . . . , |P | − 1} is repre- 324

sented by a summative embedding of its constituent 325

words, denoted as xt. These embeddings are de- 326

rived from the vector of all impact features Iall 327

sourced from user content characteristics. The spa- 328

tial configuration of P is theoretically modeled as 329

a tree structure Ti = ⟨Pi,Ei⟩, in which E symbol- 330

izes a set of directed edges, indicative of retweet 331

or reply connections between messages. For in- 332

stance, if message rt is a response to message rt′ , 333

a directed edge (rt, rt′) is established, provided 334

0 < t < t < |P | − 1. 335

As depicted in Figure 2, the STU architecture 336

encompasses hrt , the hidden representation of the 337

message propagation P up to the appearance of 338

message rt; hrt′ , a temporary hidden state repre- 339

senting the propagation up to message rt; and ot, 340

the outcome of classification based on hrt . 341

Adhering to the temporal order, messages within 342

P sequentially enter the STU, constituting a chain 343

of |P | units. To ensure uniformity in all STUs, both 344

the antecedent message and the progenitor of the 345

source message r0 are assigned a null message ∅; 346

that is, r−1 := ∅ and p(r0) := ∅. The term p(rt) is 347

used to denote the progenitor of message rt. Corre- 348

sponding hidden states for these null messages are 349

initialized as 0, implying hr−1 = hp(r0) = 0. 350
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Figure 2: The architecture of an STU, which consists of three components, including spatial capturer, temporal
capturer and integrator.

4.2.2 Spatial capturer351

In the context of the current message rt, where352

0 ≤ t ≤ |P | − 1, the function of the spatial cap-353

turer is to aggregate the hidden representation hp(rt)354

from the parent message p(rt). This aggregation is355

crucial for encapsulating the spatial characteristics356

inherent in message propagation. For instance, as357

depicted in Fig. 1a, during the computation of hid-358

den representations for messages a and c within the359

Spatial-Temporal Unit (STU), the spatial capturer360

retrieves the hidden representation of message s,361

denoted as r0. Similarly, the computation of hidden362

representations for messages b and d involves the363

spatial capturer that obtains the hidden representa-364

tion from message a. It is pertinent to note that the365

hidden representation hp(rt) for any given message366

in the sequence is pre-computed, attributable to the367

antecedent positioning of p(rt) relative to rt in the368

message propagation chain P .369

4.2.3 Temporal capturer370

In the context of the given message rt, the tem-371

poral capturer is specifically designed to extract372

the temporal characteristics inherent in message373

propagation P . Given that the temporal aspect of374

the propagation is conceptualized as a sequential375

arrangement of messages, our temporal capturer376

employs a long-short-term memory (LSTM) model377

to effectively interpret this sequence, thereby ac-378

quiring the temporal attributes pertinent to the mes-379

sage propagation. In this model, Crt symbolizes380

the cell state at the specific time step t. The input to381

the temporal capturer comprises the message repre-382

sentation xt of the current node rt along with the383

hidden representation hrt−1 of the preceding mes-384

sage rt−1. The resultant output of this process is a385

temporary hidden representation h′rt , which is sub-386

sequently integrated with the hidden representation 387

hp(rt) of the parent message rt, thus encapsulating 388

both spatial and temporal dynamics in the message 389

propagation process. 390

4.2.4 Integrator 391

In our STU-User model, the outputs derived from 392

both the spatial and temporal capturers are inte- 393

grated using the softmax function to facilitate the 394

prediction of the final output. This process leads 395

to the acquisition of the temporary hidden repre- 396

sentation h′rt and the hidden representation hp(rt), 397

which encapsulate the spatial-temporal dynamics 398

of message propagation P up to the appearance 399

of the current message rt. To effectively amalga- 400

mate these distinct representations, we introduce 401

an integrator that employs a self-attention mecha- 402

nism, thus generating a unified hidden representa- 403

tion hrt .This self-attention mechanism is structured 404

as a two-layer perceptron. It computes the atten- 405

tion coefficients for h′rt and hp(rt) according to the 406

subsequent formula: 407

αh = softmax

(
a× tanh(Wh)∑

h′∈{h′
rt
,hp(rt)

} a× tanh(Wh′)

)
408

4.2.5 Output and model learning 409

In our model, the softmax function is utilized to 410

ascertain the classification of message propagation 411

P as an output: 412

ot(P ) = softmax(V hrt + b) 413

where V and b represent the learnable weights and 414

bias in the output layer, respectively. The imple- 415

mentation of ot(P ) allows the Spatial-Temporal 416

Unit (STU) to discern the classification results 417

based on a subset of the information from mes- 418

sage propagation P , specifically up to the juncture 419
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of the current message rt. This approach does not420

require the entirety of P ’s information, thus facili-421

tating the early detection of misinformation, as will422

be demonstrated in our experimental analysis.423

Let P = {P1;P2; . . . ;P|P |} denote a set of mes-424

sage propagations, each Pk being associated with425

a categorical label from set C, which is subdivided426

into three more detailed categories: true informa-427

tion, misinformation, and unverified information.428

We represent this class label for each Pk ∈ P using429

a 4-dimensional one-hot vector yk. The model’s430

learning is guided by the cross-entropy loss func-431

tion, augmented with an L2 regularization term:432

L = −
|P |∑
k=1

yTk ln o|Pk|−1(Pk) +
1

2
∥Θ∥22433

where Θ signifies the complete set of parameters434

within the deep learning framework.435

5 Experiment436

5.1 Data437

Our empirical investigation utilized two widely rec-438

ognized Twitter datasets, Twitter15 and Twitter16,439

which are widely used in the field of misinforma-440

tion detection research. The Twitter15 dataset en-441

compasses 1490 instances of tweet propagation,442

while Twitter16 comprises 818 such instances. For443

both datasets, we aggregated the historical posts of444

users and their connections from the week preced-445

ing the dissemination of the information. This data446

collection was facilitated through the Twitter API2.447

Each dataset is annotated with four distinct labels:448

’fake’, ’true’, ’unverified’, and ’debunking of fake’,449

where the latter denotes narratives that identify spe-450

cific news stories as falsified. In our analysis, these451

labels are reclassified as "misinformation", "true452

information", "unverified information", and "de-453

bunking information", respectively.454

5.2 Setup455

In the experimental setup, we allocated 10% of the456

instances randomly as the development set, and457

divided the remaining data into training and test-458

ing sets in a 3:1 ratio for both Twitter15 and Twit-459

ter16 datasets. The dimensionality of the word-460

embedding vector was established at 300, while the461

dimension for the hidden state h was set at 100. For462

the similarity function S, we opted for the cosine463

similarity measure. Considering that user posts on464

2https://dev.twitter.com/rest/public

Twitter often comprise fewer than 512 words, a 465

pre-trained Sentence-RoBERTa model, an adapta- 466

tion of RoBERTa through a Siamese network, was 467

utilized to extract the embedding vectors for these 468

posts. In instances where misinformation content 469

exceeded 512 words, the Longformer model was 470

employed to acquire the respective embedding vec- 471

tors. The time decay function was computed using 472

τt−ti = exp((1 − (t − ti)) which is inspired by 473

(Woźniak et al., 1995). 474

Regarding the attitude vector, if a user did not 475

engage (through comments, likes, or dislikes) with 476

a historical post i, the corresponding ai was set to 477

0. If a user expressed likes, ai was assigned a value 478

of 1, and it was set to -1 for dislikes. In all other 479

cases, ai was determined by the output of the Vader 480

algorithm (Hutto and Gilbert, 2014), inputting the 481

user’s comments. 482

For modeling propagation features, we adhered 483

to the optimization settings reported in the literature 484

for all comparative methods. Our methodology was 485

implemented using PyTorch, with parameter opti- 486

mization executed via the Adam algorithm. The 487

initial learning rate was set at 0.005, subject to 488

gradual reduction during the training phase with a 489

batch size of 64 for the training set. Optimal param- 490

eter settings were identified based on performance 491

metrics observed in the validation set, constituting 492

10% of the total dataset. The loss function L was 493

designated as the primary optimization objective. 494

Our comparative analysis included state-of-the- 495

art baseline models such as SVM-TK, GRU-RNN, 496

TD-RvNN, PPC, and GLAN. The performance 497

evaluation of all models was conducted based on 498

accuracy and F1 scores for each category. 499

• RFC: a random forest classifier that uti- 500

lizes user, linguistic and structure characteris- 501

tics(Zhao et al., 2015). 502

• SVM-TK: Support Vector Machine with Tree 503

Kernel integrates sophisticated tree-based ker- 504

nel functions into the traditional SVM frame- 505

work to classify misinformation, exploiting 506

structural similarities within data to enhance 507

detection accuracy(Ma et al., 2017). 508

• GRU-RNN: Gated Recurrent Unit - Recur- 509

rent Neural Network is designed for classifi- 510

cation of misinformation by capturing sequen- 511

tial dependencies in data through its memory- 512

based architecture, which allows for nuanced 513
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detection of patterns indicative of false infor-514

mation(Ma et al., 2016).515

• TD-RvNN: Top-Down Recursive Neural Net-516

work leverages a tree-structured approach517

to analyze the propagation patterns of infor-518

mation, enabling the discernment of authen-519

tic news from misinformation effectively(Ma520

et al., 2018).521

• PPC: Propagation Path Classification model522

strategically analyzes the paths of information523

dissemination across social networks, utiliz-524

ing structural and temporal features to distin-525

guish between authentic and misleading con-526

tent in misinformation detection tasks(Liu and527

Wu, 2018).528

• GLAN: Graph Learning-Attention Network529

model employs a novel graph-based learning530

mechanism combined with attention networks531

to effectively classify misinformation by cap-532

turing complex relational patterns and depen-533

dencies in data(Yuan et al., 2019).534

5.3 Ablation study535

In order to determine the relative importance of536

every module of the STU-User, we perform a series537

of ablation studies over the different parts of the538

model.539

• w/o User content feature: Replacing the em-540

beddings vector Iall by the SOTA word2vec541

method to represent xt.542

• w/o Spatial feature: Removing the spatial543

capturer component in STU, that is, set hrt =544

h′rt .545

• w/o Temporal feature: Removing the tem-546

poral capturer component in STU, that is, set547

hrt = hp(rt)548

6 Results549

Tables 1 and 2 present the comparative perfor-550

mance outcomes of our proposed STU-User model551

against baseline models in the domain of misinfor-552

mation detection on the Twitter15 and Twitter16553

datasets, respectively. In instances where the STU-554

User model demonstrates significantly superior nu-555

merical results compared to the baselines, these556

figures are highlighted in boldface for each respec-557

tive column. Notably, our model exhibits accuracy558

Table 1: misinformation classification results of differ-
ent classifiers in Twitter15
(“M”: Misinformation;“T”:True information; “D”: De-
bunking information; “U”: Unverified information;)

CLASSIFIER ACC M T D U
F1 F1 F1 F1

RFC 0.565 0.422 0.810 0.401 0.543
SVM-TK 0.667 0.669 0.619 0.772 0.645
GRU-RNN 0.641 0.634 0.684 0.688 0.571
TD-RVNN 0.723 0.758 0.682 0.821 0.654
PPC 0.842 0.875 0.811 0.818 0.790
GLAN 0.905 0.917 0.924 0.852 0.927
STU-USER 0.914 0.923 0.918 0.881 0.929

Table 2: misinformation classification results of differ-
ent classifiers in Twitter16

CLASSIFIER ACC M T D U
F1 F1 F1 F1

RFC 0.585 0.415 0.752 0.547 0.563
SVM-TK 0.662 0.623 0.643 0.783 0.655
GRU-RNN 0.633 0.715 0.617 0.577 0.527
TD-RVNN 0.737 0.743 0.662 0.835 0.708
PPC 0.863 0.898 0.820 0.843 0.837
GLAN 0.902 0.869 0.921 0.847 0.968
STU-USER 0.910 0.892 0.915 0.876 0.935

of 91.4% and 91.0% on the two Twitter datasets, 559

respectively, underscoring its adaptability to varied 560

tweet-based datasets. Furthermore, the exceptional 561

performance of the STU-User model, leveraging 562

both spatio-temporal and user content features, un- 563

derscores its efficacy in addressing the challenges 564

of misinformation detection on social media plat- 565

forms. 566

Table 3: Results of the ablation study

METHOD ACC M T D U
F1 F1 F1 F1

TWITTER15
STU-USER 0.914 0.923 0.918 0.881 0.929
W/O USER 0.836 0.812 0.823 0.811 0.792
W/O SPATIAL 0.883 0.894 0.837 0.866 0.824
W/O TEMPORAL 0.867 0.836 0.834 0.864 0.825
TWITTER16
STU-USER 0.910 0.892 0.915 0.876 0.935
W/O USER 0.836 0.815 0.842 0.812 0.806
W/O SPATIAL 0.863 0.843 0.833 0.852 0.836
W/O TEMPORAL 0.874 0.826 0.835 0.812 0.829

Table 3 delineates the results of our ablation 567

study. It is observed that any variant of the model, 568

when deprived of specific components, demon- 569

strates a reduction in both accuracy and F1 scores 570
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compared the complete STU-User model. This571

finding shows evidences that the holistic amalgama-572

tion of the three critical components—user content573

features, spatial propagation structure, and tem-574

poral propagation structure—is essential for the575

enhanced efficacy of the STU-User model in de-576

tecting misinformation.577

7 Discussion578

Traditional machine-learning approaches to mis-579

information detection involve training supervised580

models using statistical features derived from con-581

tent, user characteristics, and message propaga-582

tion. These methods require extensive preprocess-583

ing and feature engineering, which can be time-584

consuming and labor-intensive (Jin et al., 2013;585

Ma et al., 2017). Moreover, some features may be586

unavailable, inadequate, or impossible to extract.587

As shown in Tables 1 and 2, models relying on588

manually crafted features (e.g., RFC, SVM-TK)589

perform poorly, highlighting their limitations in590

generalizing relevant features.591

Recent advancements in deep neural networks592

offer a promising alternative, addressing the short-593

comings of traditional methods (Song et al., 2019;594

Huang et al., 2019). The GRU-RNN model, for595

example, captures temporal dependencies crucial596

for understanding misinformation spread. The PPC597

model combines structural and temporal elements598

to analyze content propagation across social net-599

works. Tables 1 and 2 indicate that both GRU and600

PPC models outperform traditional classifiers, with601

PPC being more effective due to its integration of602

CNN and RNN to capture user feature variations.603

However, existing deep learning methods often604

model user features and temporal/spatial structures605

separately, lacking a unified approach.606

The proposed STU-User model addresses this607

gap, showing superior accuracy and F1 scores608

for misinformation and debunking categories, as609

demonstrated in Tables 1 and 2. GLAN also per-610

forms well for True and Unverified information611

categories, integrating graph-based learning with612

attention mechanisms to analyze relational patterns.613

The STU-User model’s focus on embedding user614

content based on similarity with historical posts615

is particularly effective for identifying misinfor-616

mation related to specific themes like political or617

health rumors (Zhou et al., 2020). Our analysis,618

especially in Table 3, emphasizes the complemen-619

tary role of user content, spatial propagation, and620

temporal structure in misinformation detection. Re- 621

moving user content features significantly impacts 622

performance, underscoring the importance of en- 623

coding semantic similarity and the general context 624

of misinformation. 625

Future work aims to enhance the STU-User 626

model with additional data types, such as user pro- 627

files and geographic locations, and evaluate its ef- 628

fectiveness in early detection scenarios. We also 629

encourage integrating multimodal data to further 630

refine misinformation detection strategies. 631

8 Conclusion 632

In this study, we introduced the STU-User model 633

to tackle the issue of rampant misinformation on 634

social media. Unlike traditional detection meth- 635

ods, our approach integrates spatial-temporal and 636

content-based features within message propaga- 637

tion networks. The Spatial-Temporal Unit (STU) 638

in our neural network architecture, enhanced with 639

parameter-sharing, modified LSTM structures, and 640

a self-attention mechanism, has proven particu- 641

larly effective. Additionally, the use of Bert- 642

embedded similarity measures between user be- 643

liefs and source content offers a novel perspective 644

on misinformation detection by emphasizing the 645

importance of user and network interactions. 646

Empirical evaluations on publicly available Twit- 647

ter datasets show that our model significantly out- 648

performs existing benchmarks in misinformation 649

detection. These findings highlight the efficacy of 650

our integrated approach, which combines spatial- 651

temporal propagation and content similarity fea- 652

tures, thus enhancing the model’s performance. 653

This research not only enriches the academic dis- 654

course on misinformation detection methodologies 655

but also holds considerable practical potential. It 656

opens new avenues for algorithmic improvements 657

and fact-checking initiatives, providing valuable 658

tools for policymakers, social media platforms, and 659

the broader community engaged in combating mis- 660

information. Ultimately, this study provides both a 661

comprehensive theoretical framework and action- 662

able insights, paving the way for more effective 663

and timely interventions against misinformation in 664

the digital age. 665

9 Limitations 666

The STU-User model, while innovative, has several 667

limitations that point to gaps in current research 668

and areas for future improvement. One significant 669

8



research gap is the limited exploration of user be-670

havior dynamics over extended periods. The model671

primarily focuses on short-term interactions and672

immediate user responses, overlooking how mis-673

information might affect users’ long-term behav-674

ior and beliefs. This approach potentially misses675

deeper insights into the persistence and evolution of676

misinformation in social networks. Future research677

should aim to integrate longitudinal user data to678

capture these long-term effects, providing a more679

comprehensive understanding of misinformation680

dynamics.681

Additionally, the granularity and variety of user682

profile data used in the current study are some-683

what limited. The STU-User model employs basic684

user interaction metrics and Bert-embedded simi-685

larity measures, which may not fully capture the686

complexity of user behavior and influence. Essen-687

tial user profile details, such as demographic in-688

formation, political affiliations, and past exposure689

to misinformation, are not considered. Incorporat-690

ing these details could significantly enhance the691

model’s predictive power. Future research should692

address this by including more detailed and diverse693

user profile data, enabling a richer analysis of how694

different user characteristics influence the spread695

of misinformation.696

Furthermore, the reliance on publicly available697

Twitter datasets limits the model’s applicability to698

other social media platforms with different user699

demographics and interaction patterns. Propaga-700

tion structures and user behaviors on platforms like701

Facebook, Instagram, or TikTok may differ signifi-702

cantly from those on Twitter, potentially affecting703

the model’s performance and generalizability. Fu-704

ture studies should test the STU-User model across705

various social media platforms to validate its effec-706

tiveness and adaptability. Additionally, expanding707

the model to include multimodal data, such as im-708

ages and videos, would provide a more holistic709

approach to misinformation detection, reflecting710

the diverse forms of content shared online.711

In summary, while the STU-User model ad-712

vances the field of misinformation detection by713

integrating spatial-temporal and content-based fea-714

tures, it has notable limitations. Addressing these715

gaps through future research, such as incorporating716

longitudinal user data, more detailed user profiles,717

and testing across various social media platforms,718

will be crucial. These improvements could enhance719

the model’s comprehensiveness and effectiveness,720

providing more robust tools for combating misin- 721

formation in the digital age. 722
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