TCM-Ladder: A Benchmark for Multimodal Question Answering on Traditional Chinese Medicine

Jiacheng Xie 1,2 Yang Yu 1,2 Ziyang Zhang 3 Shuai Zeng 1,2 Jiaxuan He 4 Ayush Vasireddy 5 Xiaoting Tang 6 Congyu Guo 1,2 Lening Zhao 7 Congcong Jing 8 Guanghui An 9* Dong Xu 1,2*

Abstract

Traditional Chinese Medicine (TCM), as an effective alternative medicine, has been receiving increasing attention. In recent years, the rapid development of large language models (LLMs) tailored for TCM has highlighted the urgent need for an objective and comprehensive evaluation framework to assess their performance on real-world tasks. However, existing evaluation datasets are limited in scope and primarily text-based, lacking a unified and standardized multimodal questionanswering (OA) benchmark. To address this issue, we introduced TCM-Ladder, the first comprehensive multimodal QA dataset specifically designed for evaluating large TCM language models. The dataset covers multiple core disciplines of TCM, including fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy, and pediatrics. In addition to textual content, TCM-Ladder incorporates various modalities such as images and videos. The dataset was constructed using a combination of automated and manual filtering processes and comprises over 52,000 questions. These questions include single-choice, multiple-choice, fill-in-the-blank, diagnostic dialogue, and visual comprehension tasks. We trained a reasoning model on TCM-Ladder and conducted comparative experiments against nine state-of-the-art general-domain and five leading TCMspecific LLMs to evaluate their performance on the dataset. Moreover, we proposed Ladder-Score, an evaluation method specifically designed for TCM question answering that effectively assesses answer quality in terms of terminology usage and semantic expression. To the best of our knowledge, this is the first work to systematically evaluate mainstream general-domain and TCM-specific LLMs on a unified multimodal benchmark. The datasets and leaderboard are publicly available at https://tcmladder.com and will be continuously updated. The source code is available at https://github.com/orangeshushu/TCM-Ladder.

¹Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA

²Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA

³Department of Computer Science, Northwestern University, Evanston, IL, USA

⁴Department of Computer Science and Mathematics, Truman State University, Kirksville, MO, USA

⁵Marquette High School, Chesterfield, MO, USA

⁶Community Health Service Center, Shanghai Pudong New Area, Shanghai, China

⁷School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA

⁸Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China

⁹School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China

^{*}Corresponding authors

1 Introduction

The development of large language models (LLMs) tailored to the field of Traditional Chinese Medicine (TCM) [1, 2] has emerged as a significant research direction. Given the unique and intricate nature of the TCM knowledge system, the construction of intelligent tools specifically designed for this domain can substantially improve the efficiency of medical students, clinicians, and researchers. Such models have the potential to facilitate accurate and timely access to specialized information for clinical decision-making, knowledge retrieval, and academic inquiry, thereby supporting effective reasoning and practical application within the TCM framework.

TCM diagnostic methods including inspection, auscultation and olfaction, inquiry, and palpation embody a representative process of multimodal information acquisition, integration, and reasoning [3]. Fundamentally, this diagnostic paradigm reflects the nature of multimodal fusion in clinical decision-making. However, existing LLMs tailored for TCM still face notable limitations in realworld applications. These limitations are primarily manifested in their relatively small model scales, insufficient reasoning capacity, and the lack of deep integration of multimodal information. The acquisition of high-quality TCM data poses significant challenges, as it requires deep expertise in traditional medicine, sustained clinical data collection, and extensive manual annotation. Currently, most mainstream medical benchmark datasets [4, 5, 6, 7, 8] are predominantly focused on Western medicine and have yet to systematically address the core tasks unique to TCM, including syndrome differentiation, symptom-based diagnosis, and formula-herb matching. Furthermore, the training and evaluation of existing TCM large language models remain heavily reliant on unimodal textual data, neglecting other essential modalities that are widely utilized in clinical practice. These include diagnostic images (e.g., tongue and pulse), medicinal herb atlases, and structured case records. Such an overdependence on textual data severely constrains the models' ability to capture the holistic and multimodal nature of TCM knowledge, thereby impeding their performance in complex and real-world clinical scenarios.

Therefore, the construction of a standardized evaluation dataset for TCM that integrates text, images, audio, and structured data is of great importance. On one hand, such a dataset would enable a comprehensive and accurate assessment of existing LLMs in handling complex multimodal tasks, thereby providing a realistic reflection of their overall performance in clinical applications. On the other hand, a unified and standardized evaluation framework would facilitate fair and objective comparisons across different TCM-specific models, supporting continuous optimization and iterative improvement of model capabilities.

To address the aforementioned gaps, we proposed *TCM-Ladder*, which, to the best of our knowledge, is the first large-scale multimodal dataset specifically designed for the training and evaluation of large language models in TCM. TCM-Ladder encompasses a wide spectrum of domain-specific knowledge, including fundamental TCM theories, diagnostics, formulae, pharmacognosy, clinical medicine, as well as visual modalities such as tongue images, herbal medicine illustrations, acupuncture, and tuina (therapeutic massage), thereby offering a comprehensive foundation for developing and benchmarking TCM-specific LLMs.

As illustrated in Figure 1, we designed a series of evaluation tasks based on the TCM-Ladder dataset to comprehensively evaluate the capabilities of TCM-specific LLMs across multiple dimensions. We constructed a total of 21,326 high-quality questions and 25,163 diagnostic long-text dialogues based on domain-specific literature and publicly available databases across various subfields of TCM. In addition, we released a visual dataset comprising 6,061 images of medicinal herbs, 1,394 tongue images, 6,420 audio clips, and 49 videos, forming a comprehensive multimodal foundation to support diverse evaluation tasks. All textual and visual data were independently reviewed and validated by certified TCM practitioners to ensure accuracy, clinical relevance, and authoritative quality. Subsequently, we benchmarked the performance of nine state-of-the-art general-domain LLMs [9, 10, 11, 12, 13, 14, 15, 16, 17] and five TCM-specific models [18, 19, 20] using the TCM-Ladder dataset. Additionally, we fine-tuned a GPT-4-based model, *BenCao* [21, 22], and trained a Qwen2.5-7B based reasoning model [23, 24], which uses a training subset constructed from TCM-Ladder to support TCM-specific reasoning tasks.

Our contributions can be summarized as follows:

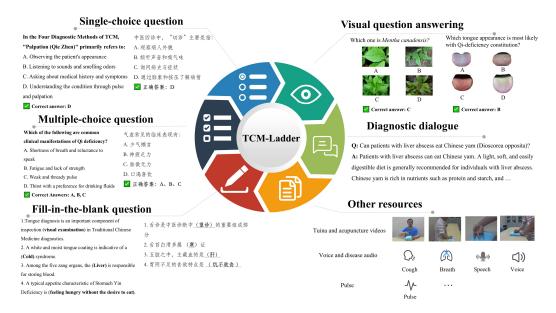


Figure 1: Overview of the architectural composition of TCM-Ladder. TCM-Ladder encompasses six task types aimed at evaluating the comprehensive capabilities of large language models in Traditional Chinese Medicine. These include: (1) single-choice questions, which assess basic knowledge recognition; (2) multiple-choice questions, designed to test the model's ability to integrate and reason over complex concepts; (3) long-form diagnostic question answering, which evaluates clinical reasoning based on detailed symptom descriptions and patient inquiries; (4) fill-in-the-blank tasks, which measure generative accuracy and contextual understanding without the aid of answer options; (5) image-based comprehension tasks, involving the interpretation of medicinal herb and tongue images to assess multimodal reasoning across visual and textual inputs; and (6) additional audio and video resources, such as diagnostic sounds, pulse recordings, and tuina (massage) videos, which support the development and evaluation of multimodal TCM models incorporating auditory and dynamic visual data.

- We constructed TCM-Ladder, a multimodal dataset designed for both training and evaluating TCM-specific and general-domain LLMs. The dataset encompasses multiple TCM subdisciplines and multiple data modalities.
- We designed a comprehensive set of tasks including single-choice questions, multiple-choice questions, fill-in-the-blank, visual understanding tasks, and long-form question answering to evaluate models' reasoning and comprehension abilities across diverse tasks.
- We introduced *Ladder-Score*, an evaluation metric that integrates TCM-specific terminology and LLM-assisted semantic scoring to assess terminological accuracy and reasoning quality in TCM question answering.
- We systematically evaluate the performance of nine general-domain and five TCM-specific LLMs on TCM-Ladder. To the best of our knowledge, this is the first work to conduct a comparative evaluation of diverse LLMs on a unified multimodal TCM dataset.
- We developed an interactive data visualization website that not only presents evaluation
 results but also allows researchers to explore existing data and contribute new entries, thereby
 providing a standardized, extensible, and multimodal infrastructure for future benchmarking
 of TCM-specific LLMs.

2 Related Works

In recent years, the expanding application of LLMs in medicine and the biomedical sciences has driven the progressive development of evaluation datasets tailored for TCM, evolving from modern medical domains to TCM-specific tasks, and from classification-based to generation-based paradigms.

As shown in Table 1, Huatuo-26M [25], released in 2020, remains the largest Chinese medical question-answering (QA) dataset, comprising over 26 million question-answer pairs sourced from online encyclopedias, medical knowledge bases, and telemedicine transcripts. Despite its scale, the dataset is affected by noisy labels, informal expressions, redundancy, and a lack of TCM-specific annotations, limiting its utility for TCM applications. CBLUE [26] introduced a standardized multitask evaluation suite for Chinese biomedical natural language processing (NLP), covering tasks such as named entity recognition, relation extraction. PromptCBLUE [27] extended this framework via instruction tuning and prompt reformulation to facilitate few-shot and zero-shot evaluation. However, both benchmarks were designed around modern medical reasoning and do not capture the unique logic or semantic structure of TCM diagnosis.

To address these gaps, TCMBench [28] compiled 5,473 structured questions from national TCM licensing examinations, providing a focused benchmark for foundational knowledge assessment. Nevertheless, it lacks multimodal input (e.g., tongue and pulse images) and real-world diagnostic reasoning tasks. TCMEval-SDT [29] introduced syndrome differentiation based on 300 clinical cases, evaluating the model's reasoning over symptom-pathomechanism-syndrome chains. While it improved interpretability, its scale and disease diversity remained limited. Subsequently, TCM-3CEval [30] proposed a cognitive three-axis framework, including basic knowledge, classical text comprehension, and clinical decision-making, enabling fine-grained cognitive evaluation. However, tasks were still text-only and often reduced the complexity of classical TCM literature to overly simplistic answers. TCMD [31] presented a human-annotated open-ended QA benchmark that emphasizes reasoning and generation, although annotation costs limited its scale and case diversity. ShenNong_TCM_Dataset [32] adopted a novel approach, combining knowledge graphs with ChatGPT-based generation to create over 110,000 instruction-response pairs on herbal medicine and treatment plans. While valuable for instruction tuning, the absence of expert validation raises concerns over factual accuracy and stylistic fidelity. CHBench [33] introduced a safety-focused benchmark with 9,492 community-sourced questions, highlighting deficiencies in LLM reliability under ethically sensitive conditions. However, its scope remains narrow. MedBench [34] represents the most comprehensive Chinese medical LLMs evaluation to date, integrating 20 datasets and over 300,000 questions across diverse tasks, including QA, clinical case analysis, diagnostic reasoning, and summarization. The platform supports dynamic sampling and randomized option ordering to prevent overfitting. However, access to API use is restricted due to data privacy concerns. Benchmarks like CMB [35] and CMExam [36] further extend to structured exam QA, offering high coverage but lacking realistic patient-physician interaction.

Table 1: Overview of TCM and medical QA datasets. En: English, Zh: Chinese

Dataset	Format	TCM Coverage	Size	Source Domain		Task	Verified	Language
Huatuo-26M [25]	Text	х	26,000,000+	Online QA platforms and physician records	Medicine	QA, Dialogue	x	Zh
CBLUE [26]	Text	×	13 subtasks	Clinical trials, EHRs, logs, textbooks	Biomedical	Classification, NER, RE, NLI	Partial	Zh
PromptCBLUE [27]	Text	X	11 prompt datasets	Prompt-formatted CBLUE	Biomedical	Same as CBLUE	×	Zh
TCMD [31]	Text	1	1,500+	Professional TCM practitioners	TCM	NER, Term Normalization	✓	Zh
TCM-3CEval [30]	Text	1	4,000+	Expert-annotated multi-rater QA	TCM	QA	/	Zh
ShenNong_TCM_Dataset [32]	Text	1	113,000	TCM knowledge graph, GPT-3.5 assisted	TCM	Dialogue	x	Zh
CMB [35]	Text	Partial	280,839 MCQ, 74 consults	Textbooks, forums, exams	TCM	MCQ, Dialogue	1	Zh
CMExam [36]	Text	Partial	60,000+	TCM licensing exam	Medicine	MCQ, QA	Partial	Zh
CHBench [33]	Text	Partial	9,492	Community health Q&A	Health	QA	/	Zh
MedBench [34]	Text	Partial	40,041	Clinical exam questions	Medicine	MCQ, QA	Partial	Zh
TCMBench [28]	Text	✓	5,473	TCM licensing exam	TCM	QA	×	Zh
TCM-Ladder (Ours)	Text, images, audio, video	/	52,000+	Research, books, exams, online medical QA platforms	TCM	MCQ, FIB, QA, Dialogue, Image Understanding	/	Zh & En

TCM-Ladder distinguishes itself from existing datasets in several key aspects. First, it establishes a large-scale, open-ended QA dataset that spans a wide range of TCM subfields, including fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy and pediatrics. This breadth enables more thorough and representative evaluation of TCM-specific LLMs across multiple knowledge domains. Second, TCM-Ladder incorporates visual elements, including herbal medicine images and tongue diagnostics. This multimodal design reflects TCM diagnostic practices, requiring LLMs to demonstrate both textual reasoning and visual understanding capabilities. Third, TCM-Ladder incorporates a variety of task formats. This comprehensive task structure facilitates

an in-depth evaluation of the strengths and limitations of LLMs, providing guidance for the future development of TCM-specific models.

3 TCM-Ladder Dataset

3.1 Data Collection

We collected a question-answering dataset covering various domains of TCM, including several publicly available datasets previously published in academic literature under permissive licenses. For the textual data, we identified seven subfields: fundamental theory, diagnostics, herbal formulas, internal medicine, surgery, pharmacognosy, and pediatrics.

Regarding herbal medicine images, we collected over 6,061 images of medicinal herbs based on the names referenced in the *Pharmacology of Chinese Herbs* [37]. The dataset comprises images sourced from publicly available online resources, as well as photographs we captured at traditional Chinese medicine manufacturing facilities. Sample images and the collection process are provided in **Appendix G**.

The clinical tongue images were collected by a tongue imaging device [14] at Shanghai University of Traditional Chinese Medicine. This device is designed for tongue diagnosis and provides stable and consistent lighting conditions during image acquisition. Another subset of the proprietary data was obtained from our previous work, the *iTongue* [38, 39] diagnostic software. All data collection procedures were approved by the institutional ethics review board. To protect the privacy of tongue image contributors, only a subset of tongue image patches and corresponding labels has been released.

The video data was recorded by faculty members from the Department of Acupuncture-Moxibustion and Tuina at Shanghai University of Traditional Chinese Medicine. These instructional videos cover essential techniques, procedural explanations, and key operational steps. Audio and pulse diagnosis data were sourced from publicly available datasets referenced in academic publications [40, 41, 42, 43]. We manually filtered and removed samples with poor quality or missing information from the collected data.

3.2 Construction of the Datasets

The textual QA data consisted of two parts. The first part comprises 5,000 TCM-related QA pairs manually written by licensed TCM practitioners following a standardized question design protocol (see **Appendix I**). To ensure answer accuracy, each question was independently reviewed and verified by two additional TCM physicians. The second part of the textual QA data was collected from publicly available sources, including the *National Physician Qualification Examination of China* and various open-access online resources. Detailed data sources and construction guidelines are provided in **Appendix B**.

The visual question-answering (VQA) tasks were constructed through both manual annotation and automated generation based on existing knowledge bases. For the manually created subset, domain experts selected high-quality images from the herbal medicine image repository and generated corresponding questions based on each herb's name and medicinal properties. The automatically generated subset was produced through a procedural pipeline. For example, an image labeled as *Astragalus membranaceus* (Huangqi) was selected as the correct answer, while three distractor images were randomly sampled from the knowledge base. A question was then constructed using a predefined template library, such as "Which of the following images shows *Huangqi*?" The design of tongue image understanding tasks followed a similar approach. Details of the construction process and implementation code can be found in **Appendix G**.

3.3 Deduplication and Preprocessing

Detecting duplication and semantic similarity in the data is critical for both model evaluation and training, as it helps prevent evaluation failures and reduces the risk of overfitting caused by redundant content. Given the diverse sources of the original data, we conducted a comprehensive similarity detection process on the aggregated dataset and removed highly similar questions to enhance overall data quality. The methods employed included string edit distance [44], TF-IDF [45, 46] with cosine similarity, and BERT-based [47, 48] semantic encoding. Subsequently, all questions and answers

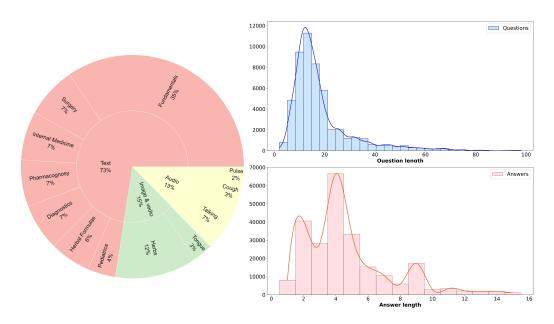


Figure 2: Data distribution and length statistics in TCM-Ladder. The left illustrates the dataset composition across text, image, and audio modalities, along with TCM subfields. The right plots show the distribution of question and answer lengths.

were manually reviewed by two licensed physicians. The selection criteria and detailed experimental procedures are provided in **Appendix I**. Subsequently, we divided the dataset into three subsets: 10% for evaluation, 10% for validation, and 80% for training. To ensure balanced representation, each subset contains question-answer pairs spanning all subfields.

3.4 Datasets Statistics

Table 2 presents the statistics of all constructed question-answer pairs across different categories. The TCM-Ladder dataset comprises 52,169 TCM-related QA instances, including 6,061 herbal medicine images and 1,394 annotated tongue image patches. The distribution of each data type is illustrated in Figure 2.

4 Ladder-Score

Evaluating free-form question answering presents notable challenges, as the responses are often descriptive and lack a predefined standard format. This issue is further exacerbated in the context of TCM diagnostic tasks, where large language models are capable of generating diverse and nuanced answers. Even when the expressions differ, the underlying responses may still be factually correct. Traditional evaluation metrics such as BLEU [49] and ROUGE [50] often fail to capture this semantic equivalence adequately. Recently proposed methods [51, 52, 53] employ instruction-tuned models to score candidate answers on a rubric-based scale. We propose a novel evaluation metric for TCM question answering, named Ladder-Score. This score comprises two components: TermScore, which assesses the accuracy and completeness

Table 2: Statistics of the collected questions

Statistics	Number
Total questions	52,169
Total answers	238,867
Total subjects	7
Maximum question length	98
Maximum answer length	16
Average question length	18
Average answer length	5
Total images	7,455
Herbs visual questions	6,061
Tongue visual questions	1,394
Total videos	49
Total audios	6,420

of TCM terminology usage, and *SemanticScore*, derived from LLMs to evaluate multiple aspects including logical consistency, semantic accuracy, comprehensiveness of knowledge, and fluency of expression. As shown in Equation (1), the Ladder-Score is a weighted combination of these two components:

Ladder-Score =
$$\alpha \cdot \text{TermScore} + \beta \cdot \text{SemanticScore}$$
 (1)

where $\alpha = 0.4$ and $\beta = 0.6$, which can be adjusted based on practical needs. The scoring criteria, terminology dictionary, and calculation examples can be found in **Appendix H**.

5 Experiments

5.1 Experiment Setup

We evaluated nine state-of-the-art general-domain LLMs and five TCM-specific models on the TCM-Ladder dataset across five task settings: single-choice questions, multiple-choice questions, fill-in-the-blank questions, image-based understanding, and long-form dialogue tasks. Evaluations were conducted under zero-shot settings, and models received only the task instructions as input. For single-choice and image understanding tasks, we used the top-1 prediction accuracy [54] as the primary evaluation metric. For multiple-choice tasks, we adopted exact match accuracy to assess performance comprehensively. For fill-in-the-blank and long-form dialogue tasks, we evaluated models using metrics such as accuracy, BLEU [49], ROUGE [50], METEOR [55] and BERTScore [56]. The detailed evaluation environment can be found in **Appendix D**.

5.2 Model Training

We trained two models using the TCM-Ladder dataset. The first is BenCao [21], an online model fine-tuned from ChatGPT, and the second is *Ladder-base*, which is built upon the pretrained Qwen2.5-7B-Instruct [57] model and enhanced with Group Relative Policy Optimization (GRPO) [58] to improve its reasoning capabilities. The BenCao model was trained on knowledge extracted from over 700 classical Chinese medicine books, none of which contained any question-answer pairs. Additionally, the training subset of TCM-Ladder was used as its knowledge base.

The GRPO stage for Ladder-base was conducted on two NVIDIA A100 PCIe GPUs (80GB each). The temperature and top-p sampling of Ladder-base were 0.7 and 0.8. Training was performed for 2 epochs with a group size of 6 and a batch size of 12, resulting in a total training time of approximately 60 hours. Model training and inference were implemented using HuggingFace Transformers, while the GRPO process was carried out using the TRL (Transformer Reinforcement Learning) library [59]. Details of the training process can be found in **Appendix C**.

5.3 Human Evaluation

We conducted a human evaluation using 20% of the TCM-Ladder test set. Due to the coverage of multiple subfields, establishing a reliable human upper bound poses a significant challenge, as accurately answering questions across all domains requires extensive interdisciplinary expertise. To investigate this issue, we recruited two licensed clinical TCM physicians, both holding senior titles and not involved in the original data annotation. Human evaluators were asked to select the correct answers based on the question stems and to identify the correct herbal medicine and tongue images. During the evaluation process, both physicians emphasized the challenge of maintaining high confidence across all domains. For example, although they are highly knowledgeable about the pharmacological properties and clinical applications of herbal medicines, they encountered difficulties when asked to identify herbs solely based on images. The challenge became especially evident when the herbs appeared in different visual forms, such as raw botanical specimens, dried slices, or moist decoctions, which often vary significantly in appearance. According to their feedback, such recognition tasks, especially those involving distinctions among various processed forms of herbs, are better handled by trained dispensary pharmacists than by clinical practitioners. In terms of top-1 accuracy for answer retrieval, the human evaluators achieved a performance of 64%, which was approximately 4% lower than that of the best-performing model (BenCao). This suggests that

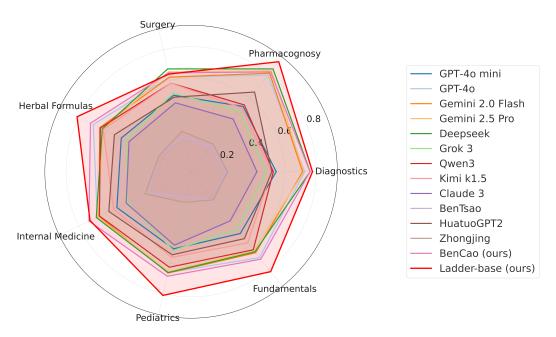


Figure 3: Performance of general-domain and TCM-specific language models on single and multiple-choice question answering tasks.

LLMs may already possess strong comprehension capabilities in the domains of herbal medicine and tongue image recognition.

5.4 Main Results

5.4.1 Text-Based Single and Multiple-Choice Question Answering

As shown in Figure 3, Ladder-base consistently outperforms other models across all subject areas, achieving the highest overall accuracy. Notably, its performance is especially strong in Pharmacognosy, Herbal Formulas, and Pediatrics, where exact match scores exceed 0.85. Our model, BenCao, also demonstrates robust performance, particularly in Diagnostics and Internal Medicine. Among the general-domain LLMs, Gemini 2.5 Pro, Deepseek, and Qwen3 show relatively stable accuracy across domains, with scores ranging from 0.65 to 0.75, though they still fall short compared to domain-specific models. In contrast, Claude 3, GPT-40 mini, and BenTsao underperform, especially in the more clinically nuanced domains such as Surgery and Pediatrics, suggesting limited capability in handling complex, multi-faceted TCM tasks. These findings highlight the advantage of domain-specific fine-tuning and multi-source integration, as utilized in Ladder-base, for enhancing the accuracy and generalization of LLMs on structured TCM knowledge assessments.

5.4.2 Visual Question Answering

To further assess the models' capability in visual understanding tasks within TCM, we evaluated ten LLMs on two image-based benchmarks: herbs classification and tongue image diagnosis. As illustrated in Figure 4, performance varies considerably across models. Among the evaluated models, BenCao achieves the highest accuracy in both tasks, with over 80% on herb recognition and above 65% on tongue classification, demonstrating strong multimodal understanding grounded in TCM-specific training. General-domain LLMs such as Gemini 2.5 Pro, Gemini 2.0 Flash, and Qwen3 exhibit moderate performance, with herb classification accuracy around 65–75%, but show a relative drop in tongue image tasks (around 50–60%), likely due to the greater complexity and domain specificity of tongue diagnosis.

In contrast, models like GPT-40, Claude 3, Kimi k1.5, and Grok 3 demonstrate limited performance, particularly in the tongue classification task, where accuracies fall below 40%. This reveals their insufficient visual comprehension of TCM-related imagery. Notably, models such as Ladder-base

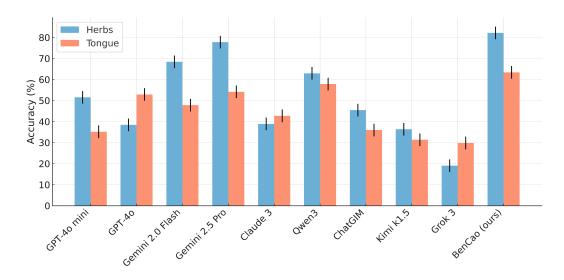


Figure 4: The performance of large language models on questions regarding Chinese herbal medicine and tongue image classification.

and Zhongjing are excluded from this figure because their current architectures do not support image understanding. Their current design focuses on structured text-based TCM evaluation and does not support visual input.

5.4.3 Diagnostic Dialogue and Fill-in-the-Blank Questions

As shown in Table 3, in the diagnostic dialogue task, our model Ladder-base achieved the highest scores in BLEU-4 (0.0249), and ROUGE-L (0.2431), while also maintaining a strong Ladder-Score (0.803). This indicates that Ladder-base generates answers with high lexical similarity, semantic accuracy, and alignment with TCM diagnostic logic. Notably, Qwen3 achieved the best Ladder-Score (0.861) and the highest METEOR (0.2328), showcasing its strength in generating fluently worded responses. BenCao achieved the best BERTScore (0.9663), reflecting its semantic closeness to gold references.

In the fill-in-the-blank task, BenCao significantly outperformed all other models, achieving the highest exact match accuracy of 0.9034, followed by Qwen3 (0.8786) and Deepseek (0.874). Our Ladder-base model also performed competitively with 0.8623 accuracy, further demonstrating its generalizability beyond free-form dialogue. Overall, the results demonstrate that Ladder-base excels in structured diagnostic dialogue tasks, generating semantically accurate and logically coherent responses, while BenCao shows outstanding performance in fill-in-the-blank tasks, reflecting strong factual recall and precise terminology usage. Domain-specific models consistently outperform general-domain LLMs, particularly in tasks that require accurate retrieval of structured TCM knowledge and professional terms.

6 Application Website

In addition to releasing the raw dataset, we provide access to all TCM-Ladder data and leaderboard results through an interactive website (https://tcmladder.com/). This platform enables researchers to explore, verify, and contribute to the open-access data. We encourage the research community to submit additional data through the platform, and we intend to expand the dataset continuously as part of our ongoing efforts. Our objective is to establish a long-term and reliable data foundation for the training and evaluation of TCM-specific LLMs.

Table 3: Performance comparison on diagnostic dialogue and fill-in-the-blank tasks

	Diagnostic dialogue						
Model	BLEU-4	ROUGE-L	METEOR	BERTScore	Ladder-Score	Exact match accuracy	
GPT-4o mini	0.0034	0.1125	0.1190	0.9433	0.718	0.4320	
GPT-4o	0.0040	0.1447	0.2073	0.9620	0.828	0.5140	
Gemini 2.0 Flash	0.0067	0.1518	0.2155	0.9633	0.836	0.4360	
Gemini 2.5 Pro	0.0180	0.1353	0.2393	0.9605	0.859	0.7143	
Deepseek	0.0047	0.1533	0.1293	0.9455	0.825	0.8740	
Grok 3	0.0063	0.1751	0.1691	0.9526	0.686	0.6389	
Qwen3	0.0225	0.1818	0.2328	0.9642	0.861	0.8786	
Kimi k1.5	0.0100	0.1878	0.1586	0.9559	0.708	0.8378	
Claude 3	0.0068	0.2267	0.2203	0.9561	0.756	0.4890	
BenTsao	0.0024	0.1135	0.1725	0.9531	0.613	0.1620	
HuatuoGPT2	0.0086	0.1375	0.1742	0.9635	0.855	0.2347	
Zhongjing	0.0044	0.1951	0.1134	0.9539	0.573	0.2167	
BenCao (ours)	0.0073	0.2156	0.2013	0.9663	0.791	0.9034	
Ladder-base (ours)	0.0249	0.2431	0.2268	0.9549	0.803	0.8623	

7 Limitations and Societal Impact

Although TCM-Ladder encompasses question-answer pairs from multiple disciplines within TCM, its current scale remains insufficient to cover the full breadth of TCM knowledge. TCM diagnosis is inherently a multimodal process, in which textual information represents only one component. At present, the utilization of data related to tongue diagnosis, pulse diagnosis, and olfactory inspection remains limited, and these modalities require further supplementation and enrichment. Expanding and continuously updating the scope and scale of data included in TCM-Ladder will be a critical direction for future research. It is also important to acknowledge that the current dataset was primarily derived from Chinese clinical populations, which constrains demographic diversity, particularly in terms of ethnicity. Such geographical and cultural specificity may introduce bias when extrapolating findings to broader populations. Future extensions of TCM-Ladder will aim to incorporate more demographically and regionally diverse samples to improve fairness, inclusivity, and generalizability across different healthcare contexts. Additional discussions can be found in **Appendix J**.

8 Conclusion

We introduced TCM-Ladder, the first multimodal benchmark dataset designed explicitly for evaluating LLMs in the context of TCM. In addition, we proposed a novel evaluation metric, Ladder-Score, which enabled more precise analysis of the semantic alignment between candidate and reference answers. We conducted comprehensive experiments involving nine state-of-the-art general-domain and five TCM-specific LLMs, marking the first systematic comparison on a unified benchmark. Furthermore, we fine-tuned two open-source models using a subset of TCM-Ladder, and observed significant performance improvements over zero-shot baselines. Our work established a reproducible and extensible benchmark for TCM-specific, providing a foundation for future development and evaluation in this emerging research area.

Acknowledgements

This work was supported by Paul K. and Diane Shumaker Endowment Fund at University of Missouri.

References

- Jin-Ling Tang, Bao-Yan Liu, and Kan-Wen Ma. Traditional chinese medicine. *The Lancet*, 372(9654):1938– 1940, 2008.
- [2] Dennis Normile. The new face of traditional chinese medicine. Science, 299(5604):188–190, 2003.
- [3] Tianhan Xue and Rustum Roy. Studying traditional chinese medicine. Science, 300(5620):740–741, 2003.
- [4] Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.
- [5] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient have? a large-scale open domain question answering dataset from medical exams. *Applied Sciences*, 11(14):6421, 2021.
- [6] Alistair EW Johnson, Tom J Pollard, Seth J Berkowitz, Nathaniel R Greenbaum, Matthew P Lungren, Chih-ying Deng, Roger G Mark, and Steven Horng. Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. *Scientific data*, 6(1):317, 2019.
- [7] Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode clinical knowledge. *Nature*, 620(7972):172–180, 2023.
- [8] Boya Zhang, Alban Bornet, Anthony Yazdani, Philipp Khlebnikov, Marija Milutinovic, Hossein Rouhizadeh, Poorya Amini, and Douglas Teodoro. A dataset for evaluating clinical research claims in large language models. *Scientific Data*, 12(1):86, 2025.
- [9] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.
- [10] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [11] Google DeepMind. Gemini 2.0: Deepmind's multimodal llm. https://deepmind.google/technologies/gemini/, 2023. Accessed: 2025-05-16.
- [12] Google DeepMind. Gemini 2.5: Next-generation multimodal reasoning model. https://deepmind.google/technologies/gemini/, 2024. Accessed: 2025-05-16.
- [13] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint arXiv:2401.02954, 2024.
- [14] Jun Li, Pei Yuan, Xiaojuan Hu, Jingbin Huang, Longtao Cui, Ji Cui, Xuxiang Ma, Tao Jiang, Xinghua Yao, Jiacai Li, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. *Journal of biomedical informatics*, 115:103693, 2021.
- [15] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
- [16] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv preprint arXiv:2501.12599, 2025.
- [17] Anthropic. Claude 3. https://www.anthropic.com/index/claude-3, 2024. Accessed: 2025-05-16.
- [18] Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo: Tuning llama model with chinese medical knowledge. *arXiv preprint arXiv:2304.06975*, 2023.
- [19] Junying Chen, Xidong Wang, Ke Ji, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie Song, Wenya Xie, Chuyi Kong, et al. Huatuogpt-ii, one-stage training for medical adaption of llms. *arXiv* preprint arXiv:2311.09774, 2023.

- [20] Songhua Yang, Hanjie Zhao, Senbin Zhu, Guangyu Zhou, Hongfei Xu, Yuxiang Jia, and Hongying Zan. Zhongjing: Enhancing the chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pages 19368–19376, 2024.
- [21] Bencao. https://chatgpt.com/g/g-6750c5262fb48191a08ef4d899a3dd1f-bencao, 2025. Accessed: May 16, 2025.
- [22] Jiacheng Xie, Yang Yu, Yibo Chen, Hanyao Zhang, Lening Zhao, Jiaxuan He, Lei Jiang, Xiaoting Tang, Guanghui An, and Dong Xu. Bencao: An instruction-tuned large language model for traditional chinese medicine. *arXiv preprint arXiv:2510.17415*, 2025.
- [23] Jiacheng Xie, Shuai Zeng, Yang Yu, Xiaoting Tang, Guanghui An, and Dong Xu. Leveraging group relative policy optimization to advance large language models in traditional chinese medicine. arXiv preprint arXiv:2510.17402, 2025.
- [24] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*, 2024.
- [25] Jianquan Li, Xidong Wang, Xiangbo Wu, Zhiyi Zhang, Xiaolong Xu, Jie Fu, Prayag Tiwari, Xiang Wan, and Benyou Wang. Huatuo-26m, a large-scale chinese medical qa dataset. arXiv preprint arXiv:2305.01526, 2023.
- [26] Ningyu Zhang, Mosha Chen, Zhen Bi, Xiaozhuan Liang, Lei Li, Xin Shang, Kangping Yin, Chuanqi Tan, Jian Xu, Fei Huang, et al. Cblue: A chinese biomedical language understanding evaluation benchmark. arXiv preprint arXiv:2106.08087, 2021.
- [27] Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen, and Buzhou Tang. Promptcblue: A chinese prompt tuning benchmark for the medical domain. *arXiv* preprint arXiv:2310.14151, 2023.
- [28] Wenjing Yue, Xiaoling Wang, Wei Zhu, Ming Guan, Huanran Zheng, Pengfei Wang, Changzhi Sun, and Xin Ma. Tcmbench: A comprehensive benchmark for evaluating large language models in traditional chinese medicine. *arXiv* preprint arXiv:2406.01126, 2024.
- [29] Zhe Wang, Meng Hao, Suyuan Peng, Yuyan Huang, Yiwei Lu, Keyu Yao, Xiaolin Yang, and Yan Zhu. Tcmeval-sdt: a benchmark dataset for syndrome differentiation thought of traditional chinese medicine. Scientific Data, 12(1):437, 2025.
- [30] Tianai Huang, Lu Lu, Jiayuan Chen, Lihao Liu, Junjun He, Yuping Zhao, Wenchao Tang, and Jie Xu. Tcm-3ceval: A triaxial benchmark for assessing responses from large language models in traditional chinese medicine. *arXiv* preprint arXiv:2503.07041, 2025.
- [31] Ping Yu, Kaitao Song, Fengchen He, Ming Chen, and Jianfeng Lu. Tcmd: A traditional chinese medicine qa dataset for evaluating large language models. *arXiv preprint arXiv:2406.04941*, 2024.
- [32] Wenjing Yue Wei Zhu and Xiaoling Wang. Shennong-tcm: A traditional chinese medicine large language model. https://github.com/michael-wzhu/ShenNong-TCM-LLM, 2023.
- [33] Chenlu Guo, Nuo Xu, Yi Chang, and Yuan Wu. Chbench: A chinese dataset for evaluating health in large language models. *arXiv preprint arXiv:2409.15766*, 2024.
- [34] Mianxin Liu, Weiguo Hu, Jinru Ding, Jie Xu, Xiaoyang Li, Lifeng Zhu, Zhian Bai, Xiaoming Shi, Benyou Wang, Haitao Song, et al. Medbench: A comprehensive, standardized, and reliable benchmarking system for evaluating chinese medical large language models. *Big Data Mining and Analytics*, 7(4):1116–1128, 2024.
- [35] Xidong Wang, Guiming Hardy Chen, Dingjie Song, Zhiyi Zhang, Zhihong Chen, Qingying Xiao, Feng Jiang, Jianquan Li, Xiang Wan, Benyou Wang, et al. Cmb: A comprehensive medical benchmark in chinese. *arXiv preprint arXiv:2308.08833*, 2023.
- [36] Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, et al. Benchmarking large language models on cmexam-a comprehensive chinese medical exam dataset. Advances in Neural Information Processing Systems, 36:52430–52452, 2023.
- [37] Kee C Huang. The pharmacology of Chinese herbs. CRC press, 1998.
- [38] Jiacheng Xie, Congcong Jing, Ziyang Zhang, Jiatuo Xu, Ye Duan, and Dong Xu. Digital tongue image analyses for health assessment. *Medical Review*, 1(2):172–198, 2021.

- [39] Ye Duan and Dong Xu. Itongue: an iphone app for personal health monitoring based on tongue image. 2014.
- [40] Ivandro Sanches, Victor V Gomes, Carlos Caetano, Lizeth SB Cabrera, Vinicius H Cene, Thomas Beltrame, Wonkyu Lee, Sanghyun Baek, and Otávio AB Penatti. Mimic-bp: A curated dataset for blood pressure estimation. Scientific Data, 11(1):1233, 2024.
- [41] zhidong zhang. pulse dataset, 2023.
- [42] Ahsan Mehmood, Asma Sarouji, M Mahboob Ur Rahman, and Tareq Y Al-Naffouri. Your smartphone could act as a pulse-oximeter and as a single-lead ecg. *Scientific Reports*, 13(1):19277, 2023.
- [43] Andrea Nemcova, Enikö Vargova, Radovan Smisek, Lucie Marsanova, Lukas Smital, and Martin Vitek. Brno university of technology smartphone ppg database (but ppg): Annotated dataset for ppg quality assessment and heart rate estimation. *BioMed Research International*, 2021(1):3453007, 2021.
- [44] Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals. In *Soviet physics doklady*, volume 10, pages 707–710. Soviet Union, 1966.
- [45] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. *Introduction to information retrieval*, volume 39. Cambridge University Press Cambridge, 2008.
- [46] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975.
- [47] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pages 4171–4186, 2019.
- [48] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.
- [49] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association for Computational Linguistics*, pages 311–318, 2002.
- [50] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization branches out*, pages 74–81, 2004.
- [51] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information Processing Systems, 36:55006–55021, 2023.
- [52] Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun, Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evaluation capability in language models. In *The Twelfth International Conference on Learning Representations*, 2023.
- [53] Seongyun Lee, Seungone Kim, Sue Park, Geewook Kim, and Minjoon Seo. Prometheus-vision: Vision-language model as a judge for fine-grained evaluation. In *Findings of the Association for Computational Linguistics ACL 2024*, pages 11286–11315, 2024.
- [54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 2012.
- [55] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic evaluation* measures for machine translation and/or summarization, pages 65–72, 2005.
- [56] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.
- [57] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- [58] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.
- [59] Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, and Dacheng Tao. On transforming reinforcement learning with transformers: The development trajectory. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: As stated in the abstract and introduction, to address the current scarcity of multimodal datasets in Traditional Chinese Medicine (TCM), we proposed a multimodal TCM question-answering dataset. We evaluated it using nine general domain and five TCM-specific large language models, and present the dataset and leaderboard through an online platform.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions
 made in the paper and important assumptions and limitations. A No or NA answer to this
 question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section 7. Limitations and Societal Impact.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how
 they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers
 as grounds for rejection, a worse outcome might be that reviewers discover limitations that
 aren't acknowledged in the paper. The authors should use their best judgment and recognize
 that individual actions in favor of transparency play an important role in developing norms that
 preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
 honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Please see Appendix H.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To ensure the reproducibility, we have publicly released all datasets, as well as the code and access links used for models evaluation. The training process of Ladder-base is also made available on GitHub. Please see **Appendix A** for details.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions
 to provide some reasonable avenue for reproducibility, which may depend on the nature of the
 contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We have released all datasets and the code used for evaluating the models, along with the training process of Ladder-base, which is publicly available on GitHub. The data and code resources can be found in the **Abstract** and **Appendix A**.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access
 the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed
 method and baselines. If only a subset of experiments are reproducible, they should state which
 ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please see Section 3.3, Section 5 and Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is
 necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Figure 4, we include error curves based on a 3% error margin. However, due to the high cost associated with repeated API calls, we conducted only a single run of the experiment. As such, no statistically derived errors are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please see Section 5.2, Appendix C and Appendix D.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics. The tongue image data used in our dataset were approved by the institutional review board. All personally identifiable information has been thoroughly anonymized or removed to ensure the privacy and protection of the individuals involved.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: A comprehensive discussion of the broader impact is presented in **Section 7**, with additional details included in **Appendix J**.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies
 (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the
 efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: Please see Appendix E.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Please see Appendix B, where we list the existing assets used in this work.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Please see **Appendix G**. We provide a detailed description of the image acquisition procedures for Chinese herbal medicine samples and tongue images used in our study.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is
 used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an
 anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: We describe the tongue image acquisition process in **Appendix G**.

Guidelines:

 The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Including this information in the supplemental material is fine, but if the main contribution of the
 paper involves human subjects, then as much detail as possible should be included in the main
 paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: The tongue image collection process was approved by the Institutional Review Board (IRB).

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification:The detailed evaluation procedure of the large language models is described in **Section 5** and **Appendix F**.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.