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Abstract
Pre-trained vision-language models (VLMs) have
revolutionized the field of machine learning,
demonstrating exceptional performance across a
wide range of tasks. However, their robustness re-
mains vulnerable to the spurious-correlation prob-
lem. Existing works often involve fine-tuning
the model with labeled data or relying on large
language models (LLMs) to generate more com-
plex prompts. Although effective to some ex-
tent, these methods introduce new challenges, in-
cluding additional computational costs and de-
pendence on the quality of prompts without fully
utilizing the vision modality. To address these lim-
itations, we propose a novel method named ER-
ICT to Enhance model Robustness by Identifying
Concept Tokens. ERICT mitigates spurious cor-
relation directly in the inference stage and com-
prises two key steps: (1) Identify concept to-
kens capturing invariant features through auxiliary
prompts to generate a token-level mask. (2) Apply
the mask to the attention weights of the CLS token
in the vision encoder to help the model focus on
the relevant image region. Extensive experiments
show that ERICT significantly improves the over-
all performance, including that of the worst group,
and achieves new state-of-the-art results.

1. Introduction
Vision language models (VLMs) have achieved remarkable
success across various multimodal downstream tasks (Rad-
ford et al., 2021; Dehdashtian et al., 2024; Lin et al.,
2024; An et al., 2023; Ge et al., 2023). These models are
typically built on contrastive language-image pretraining
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Figure 1: Token attention visualization. We selected three
tokens with distinct semantics from the original image and
visualized their attention heatmaps, highlighting their cor-
responding regions in the image. The experiment reveals
that the attention of tokens effectively captures semantic
information related to specific areas within the image.

(CLIP) (Radford et al., 2021) or similar strategies, leverag-
ing vast amounts of web-scraped data for pretraining. By
mapping images and text into a unified representation space,
VLMs effectively break the modality barrier between the
two. These models can infer the most probable answers
by comparing similarities between text and images, demon-
strating exceptional zero-shot generalization capabilities.
The success of VLMs has introduced a groundbreaking
paradigm for modern vision-language model research.

While VLMs have introduced a groundbreaking research
paradigm, recent studies (Izmailov et al., 2022; Zheng et al.,
2024; Ye et al., 2024a) have revealed their vulnerability to
spurious correlations (Sagawa et al., 2019). Specifically,
these models may rely on spurious features (e.g., back-
grounds) for predictions, leading to performance degrada-
tion on samples where spurious information changes. In
recent years, a few studies have attempted to address the
issue of spurious correlations in VLMs (Yang et al., 2023;
Dehdashtian et al., 2024; Zhang & Ré, 2022; Phan et al.,
2024). These approaches mitigate spurious correlation by
fine-tuning pre-trained VLMs using group-labeled data, sig-
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nificantly improving robustness. However, obtaining group
labels typically requires expert human knowledge and fine-
tuning introduces significant computational costs. To ad-
dress the limitations of fine-tuning VLMs, some methods
have been proposed to mitigate spurious problems during
the inference phase, without relying on additional train-
ing or group labels (An et al., 2023; Chuang et al., 2023;
Adila et al., 2024). These methods design more reasonable
prompts or use large language models (LLMs) to generate
additional spurious attributes, applying linear projections to
debias visual embeddings. However, these methods either
mainly focus on the text modality failing to utilize the infor-
mation from the vision modality, or the attributes generated
by LLMs are inherently unreliable, with linear projection
potentially distorting the distribution of visual embeddings.

To achieve better modality synergy which effectively lever-
ages information from both text and vision modalities, we
draw inspiration from patch tokens within the vision en-
coder and are surprised to find that, although these tokens
were not explicitly optimized during the pre-training phase,
their representations can capture semantic information cor-
responding to the relevant region in the image. We visualize
the attention weight of different tokens in Figure 1. We
can observe that the representations of different image to-
kens focus on the regions of the image that are relevant to
themselves. For example, in Figure 1, the token in the last
line is related to the concept of tourist, and its attention is
concentrated on tourists in the image. Based on this finding,
we leverage text prompts to identify which tokens contain
task-relevant features and use these features to debias. Un-
like methods that focus on a single modality, we incorporate
text prompts to guide the vision encoder to focus on spe-
cific tokens and get better vision embedding which preserve
alignment across text and image modalities.

In this paper, we propose ERICT which enhances the
model’s robustness during the inference phase without rely-
ing on training, assistance of LLMs or group labels. For
an image, we first use an auxiliary prompt to get the score
matrix of all tokens and perform a sparsification operation
to generate a token-level mask that reserves the tokens con-
taining task-relevant features. Then we apply the mask to
the attention weights of the CLS token in the vision encoder
during the inference stage, which can effectively help the
model focus on the relevant image region. Furthermore, to
address the challenge of acquiring auxiliary prompt words,
we propose the ERICT-C. The detailed implementation of
the method is provided in Section 4. We conduct extensive
experiments on spurious correlation datasets. The results
and visualization figures show that our approach effectively
mitigates the spurious correlation.

We summarize our contributions as follows: (1) We propose
a new approach to mitigate spurious correlation in VLMs

zero-shot inference phase by identifying invariant vision
tokens without relying on the assistance of LLMs or group
labels. (2) We present a theorem that explains why our
approach can effectively handle spurious correlation. (3) We
conduct extensive experiments and validate the superiority
of our methods via quantitative and visualization results.

2. Related Work
Mitigating spurious correlation in VLMs. There are
many methods try to mitigate spurious correlation in VLMs.
These methods can be categorized into two approaches: fine-
tuning and zero-shot generalization. Most of them focus
on fine-tuning using training data with group label (Yang
et al., 2023; Varma et al., 2024; Kim et al., 2023; Eastwood
et al., 2024; Zhang et al., 2023; 2024). For example, Fair-
erCLIP (Dehdashtian et al., 2024) appends two adapters
and employs the Hilbert Schmidt Independence Criterion
(HSIC) to learn spurious features and invariant features sep-
arately. CPT (Phan et al., 2024) minimizes the entropy of
loss distribution across different groups combining prompt
tuning to mitigate spurious correlation. These methods re-
quire data with group information for training. However,
such data is difficult to obtain and typically requires human
expert knowledge for annotation.

Due to the superior performance and convenience of VLMS
zero-shot generalization, some researchers focus on mitigat-
ing spurious associations during the inference phase with-
out relying on training. Hierarchy-CLIP (Ge et al., 2023)
aims to enhance the robustness of prompts by focusing on
the semantic parents and children of label categories. Per-
ceptionCLIP (An et al., 2023) utilizes prior knowledge to
identify spurious features and then employs these identified
features to enhance prompts. Chuang et al. (2023) train a
projection using the constructed text pairs and project the
text embeddings into a space orthogonal to the spurious
attribute space. ROBOSHOT (Adila et al., 2024) generates
insight for spurious features with LLMs and applies a linear
projection to map image embeddings to a neutralization
hyperplane for spurious features. These works either only
consider the textual modality without considering the vision
modality, or rely on the help of LLMs. Our method com-
bines information from two modalities and does not require
any training data or LLMs assistance.

Difference from token pruning. Currently, many ap-
proaches solving vision-language model tasks emphasize
manipulating tokens and attention weights, and token prun-
ing is one of the most popular applications. The main goal
of existing token pruning methods is to improve model effi-
ciency (He et al., 2021; Tang et al., 2023; Wang et al., 2023;
Ye et al., 2024b). Generally, token pruning can be achieved
through two primary methods: attention mask pruning (Rao
et al., 2021) and activation mask pruning (Kim et al., 2022).
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Figure 2: Overall framework. Our framework mainly includes two steps: In Step 1, we construct an auxiliary embedding zat
to identify tokens containing invariant information, obtaining a token-level mask. In Step 2, we apply the mask within the
attention mechanism of the vision encoder, making tokens containing spurious information invisible to the [CLS] token.

Our method is partly inspired by attention mask pruning,
but different from it. Token pruning involves removing to-
kens that carry few information or are redundant during the
attention computation process. In contrast, our approach
aims to direct the model’s attention to specific regions of
the image. In terms of method implementation, we don’t
remove the tokens completely and all tokens undergo the
full attention computation process. We unilaterally reduce
the attention of the CLS token on certain tokens. In this way,
we enable the model to produce representations with more
invariant features rather than spurious features.

3. Preliminary
In this section, we first give the problem definition, and then
provide a detailed description of vision-language models.

Problem definition. This paper primarily focuses on ad-
dressing the problem of group robustness (Sagawa et al.,
2019). Specifically, let x ∈ X represent the input image,
y ∈ Y the target label, and a ∈ A the spurious feature. A
dataset with spurious correlations (y, a) is annotated with
a group label g ∈ G, where G := Y × A denotes the set
of all possible combinations of class labels and spurious
attributes. To mitigate the impact of spurious correlations
on predictions, our method follows the basic goal of existing
works (Liu et al., 2021; Asgari et al., 2022; Le et al., 2024;
Arefin et al., 2024), aiming to improve the accuracy of the
worst group and narrow the gap between the worst group
performance and average performance.

Vision-language models (VLMs). VLMs contain two types
of encoders: a vision encoder fθ

v , parameterized by θ and
a textual encoder fϕ

t , parameterized by ϕ. For simplicity,
we omit θ and ϕ in the following. The vision encoder maps

the input image xv ∈ R3×W×H to a h-dimensional vision
embedding zv = fv(xv) ∈ Rh, where W and H denote
the width and height of the image. The textual encoder pro-
cesses the corresponding textual information xt to generate
its embedding zt = ft(xt), where zt ∈ RL×B with L rep-
resenting the text length and B representing the dimension.
Taking the CLIP model (Radford et al., 2021) as an example,
a representative approach in VLMs, the specific form of its
optimization loss function is presented as follows:

LCLIP = −
∑N

i=1
log

exp
(
d(ziv, z

i
t)/τ

)∑N
j=1 exp

(
d(ziv, z

j
t )/τ

) , (1)

where d(·) denotes the cosine similarity. τ is a learnable
temperature parameter. N means the number of samples.

Specifically, taking the classification downstream task as an
example, in the zero-shot inference stage, hard prompts are
used as text to generate a zero-shot classifier, such as “A
photo of {CLASS}”. After obtaining vision and textual em-
beddings, CLIP is classified by calculating their similarity:

ŷ = argmaxi∈Nc
d(zv, z

i
t), (2)

where ŷ represents the class label predicted by model and
Nc represents the number of classes.

4. Methodology
In this section, we propose ERICT and ERICT-C to mitigate
the spurious correlation during zero-shot inference of VLMs.
Our methods don’t require any training data or group labels,
making it both efficient and broadly applicable. There are
two main steps: (1) identify invariant vision tokens in Sec-
tion 4.1 and (2) mitigate spurious correlation by leveraging
the discovered invariant information in Section 4.2.
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(a) Prompt = “bird” (b) Prompt = “tourist” (c) Prompt = “stone” (d) Prompt = “road” (e) Prompt = “tree”

Figure 3: Score maps with different prompts. We use different prompts to compute score matrices with the representations
of all tokens. The heatmaps show that scores of relevant tokens are significantly lower than other tokens.

4.1. Step 1: Identify Invariant Vision Tokens

For every image, we try to identify which tokens focus on
invariant information and which tokens focus on spurious
information. It is achieved based on our finding.

Finding. As mentioned in Section 1, in vanilla CLIP in-
ference process, the image patch token representations are
discarded, even though these representations contain rich
semantic information. We discovered that this semantic
information can be captured with specific prompts. Specif-
ically, we calculate the similarity score matrix between a
prompt and the representations of all the image tokens. Dif-
ferent from the CLS token, we observed that tokens whose
semantics align more closely with the prompt tend to have
lower similarity scores, as shown in Figures 3. Based on
this discovery, the difference in scores allows us to identify
the tokens focusing on invariant features within the image,
and we achieve this via a token-level mask.

The overall framework is shown in Figure 2. For ERICT, we
use an auxiliary prompt xa

t for every task and get the auxil-
iary text feature by the text encoder. The specific method
for selecting auxiliary prompts will be introduced later.

Then, given an image token embedding sequence X =
[xcls,x1, . . . ,xp]

T for attention blocks in Vision Trans-
former(ViT), where xcls represents the added global class
token, {xi|i = 1, 2, . . . , p} denote local patch tokens
and p represents the number of patch, we compute the
score matrix S ∈ Rp between the final token embeddings
Xpatch = X \ {xcls} and the auxiliary prompt:

S = d(Xpatch, ft(x
a
t )). (3)

According to the obtained score matrix, we generate the
corresponding mask M . A common method is to set a
percentage threshold, but the proportion of related attributes
varies in different images. So we use a method similar
to SparseMax (Martins & Astudillo, 2016) to generate a
specific mask for every image.

Let S
′
= {S′

i}
p
i=1 = Sort(−1 × S), which means S

′

1 ≥
S

′

2 ≥ · · · ≥ S
′

p. we firstly find the max index k that satisfies

the following conditions:

k = max{k ∈ [p] | 1 + kS
′
k/τ >

∑
j≤k S

′
j/τ}, (4)

where τ is the temperature parameter which we will analyze
in the ablation study. Then we calculate the threshold l:

l =

(∑
j≤k S

′

j/τ
)
− 1

k
. (5)

The mask M is determined based on the relationship be-
tween the score and the threshold.

Mi =

{
0 if S

′

i ≤ l

1 if S
′

i > l
(6)

Auxiliary embedding. The auxiliary embedding zat is pretty
important in this process. For ERICT, zat = ft(x

a
t ). Ideally,

the auxiliary prompt xa
t should be the ground-truth category

name or description of relevant features corresponding to
the image, but it is not feasible during the zero-shot infer-
ence stage. So we adopt the superclass of the task category
with a template “{} in photo”. For example, on the CelebA
dataset, we use “hair in photo” as an auxiliary prompt. Fur-
thermore, when it is difficult to determine the superclass,
we propose ERICT-C whose auxiliary embedding can be
obtained through aggregating class prompt embeddings. For
datasets with a small number of categories (eg., Waterbirds),
it is sufficient to directly aggregate the representations of all
categories.

zat =
1

Nc

∑
i∈Nc

ft(x
i
t), (7)

where C denotes the set of classes and zat represents embed-
ding of auxiliary prompt, which corresponds to ft(x

a
t ) in

the previous equation.

When the dataset contains a large number of class (e.g.,
ImageNet), ERICT-C adopt a top-K strategy. Specifically,
in Step 1, we first compute the model’s top-K outputs, and
then merge the corresponding k textual representations. Step
1 already involves a inference, so the top-k strategy does not
require an additional inference.

zat =
1

K

∑
k∈K ft(x

k
t ). (8)
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We present the results of ERICT-C on the ImageNet series
datasets in the Appendix D.1.

4.2. Step 2: Mitigate Spurious During Inference

In this step we perform the actual debiasing and inference.
Existing works (Chen et al., 2022; Li et al., 2023a; Lin
et al., 2024) have demonstrated that attention weights can
capture the relationships between different patches, thereby
reflecting the regions that the model focuses on.

Based on the token-level mask obtained in Step 1, we en-
force the model to focus on the regions containing invariant
information. Specifically, we apply the mask to the attention
weight of CLS token in vision encoder. In this case, the
CLS token’s perception of certain tokens is blocked, and
these tokens correspond to the parts containing spurious in-
formation. Only the tokens containing invariant information
are retained for further perception. The attention process
with mask becomes as follow:

A(xcls, :) = softmax(M · QclsK
T

√
dk

), (9)

A(xpatches, :) = softmax(
QpatchesK

T

√
dk

), (10)

X = X+ Proj([A(xcls, :),A(xpatches, :)] · V ), (11)

where Q,K, V are query matrix, key matrix, value matrix
in attention calculation process respectively and Proj is re-
lated projection module in the vision encoder. dK is the
dimension of K. A represents the Q-K attention weight.

Then, we construct prompts using a template and class name
like vanilla CLIP. Image classification is performed using
the similarity between image representation and text repre-
sentation. For all C classes:

ŷ = argmaxi∈Ncd(fv(xv,M), ft(x
i
t)), (12)

where xi
t is a single class prompt simply constructed with

“a photo of a {CLASS}” template.

5. Theory Analysis
To better understand why the binary mask can effectively
mitigate spurious correlation, in this section, we present
an error probability bound of the model under the masking
condition and demonstrate that using a binary mask can
effectively reduce the error bound. Firstly, we define the
task in the context of vision-language settings:

Definition 5.1. Consider a classification task with n pairs
of {xi

v, x
i
t}ni=1. Every image xi

v is generated from the un-
derlying latent factor Z = [Zinv, Zspu] which is composed
of the invariant factor Zinv ∼ N (y, σ2

inv) and spurious fac-
tor Zspu ∼ N (a, σ2

spu). Prompt xi
t is generated from the

ground truth yi. The ground truth y is uniformly drawn
from {−1, 1}, and the spurious attribute a drawn from
{−1, 1} with the probability pspu = Pr(a = y), where
1 > pspu > 1/2. The variance σ2 denotes the variation of
the corresponding variable.

For the architecture, we consider two simple linear encoders
fv : RdI → Rh for the image modality and ft : RdT → Rh

for the text modality, implemented as fv(xv) = WIxv and
ft(xt) = WTxt with WI ∈ Rh×dI and WT ∈ Rh×dT

respectively. In the vanilla CLIP zero-shot inference phase,
the decision is made by computing a similarity score, which
takes the following form:

xT
v W

∗
IW

∗
Tx

ŷ
t (13)

Theorem 5.2. Given a task defined in 5.1 and an over-
parameterized CLIP model where n = ω(1), dI =
Ω(n) and dT = Ω(n). A distinguishable mask M ∼
Bernoulli(pmask) aims to remove spurious components
from the vision modality. If the gap between the vari-
ances of the core and spurious features is significant:
σinv = Θ(1), σinv ≥ 1 and σspu = O( 1√

logn
). Then with

a high probability of at least 1−O( 1
poly(n) ) = 1− o(1), the

CLIP model achieves a large error in zero-shot accuracy in
the out-of-distribution test data where a ̸= y:

Φ(κ)− o(1) ≤ Erra ̸=y ≤ Φ(κ) + o(1),

where k =
pmask(2pspu−1)−1−σinv√

(1+σ2
inv)

2σ2
inv+(2pspu−1)2p2

maskσ
2
spu

and Φ de-

notes the CDF of a standard normal distribution.

Notice that 0 ≤ pmask ≤ 1 and 1 − pmask is the actual
mask ratio ( pmask = 1 represents the vanilla error bound
without mask ) . As the proportion of the masked spurious
components increases, the model error bound gradually de-
creases. We defer the proof of Theorem 5.2 to Appendix A,
where a detailed derivation is provided.

6. Experiments
6.1. Experiment Setting

Datasets. We evaluate our approach on three widely used
spurious correlation datasets, including Waterbirds (Sagawa
et al., 2019), CelebA (Liu et al., 2015), and Urbancars (Li
et al., 2023b). For Waterbirds and CelebA, we follow the
setting of previous works (Sarridis et al., 2024; Yang et al.,
2024; You et al., 2024). Waterbirds dataset defines a task to
identify whether a bird is a land bird or water bird, and the
spurious attribute is background. CelebA dataset defines a
task to identify whether a person’s hair is blonde or not and
the spurious attribute is gender. Urbancars is an artificially
generated dataset to identify car types, and the spurious
attribute are background and co-occurrence objects.
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Table 1: Experiments on Waterbirds. We highlight the best results in bold, the second-best results with an underline.

ViT-B/32 ViT-B/16 ViT-L/14

WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓)
ZSCLIP 39.33 67.34 28.01 22.74 79.23 56.49 35.20 84.17 48.97
Group Prompt 64.17 79.91 15.74 16.82 81.51 64.69 29.43 85.22 55.79
PerceptionCLIP 66.07 89.8 23.73 16.07 82.98 66.91 44.94 86.44 41.51
PerceptionCLIP+ 60.33 78.6 18.27 41.07 85.8 44.73 61.12 87.74 26.62
ROBOSHOT 54.4 82.0 27.6 - - - 45.2 79.9 34.7
ERICT 71.44 78.67 7.23 56.23 83.81 27.58 56.39 88.66 32.27
ERICT-C 57.2 72.52 15.23 57.32 82.46 25.14 62.31 88.09 25.78

Table 2: Experiments on CelebA. We highlight the best results in bold, the second-best results with an underline.

ViT-B/32 ViT-B/16 ViT-L/14

WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓)
ZSCLIP 61.11 90.48 29.37 68.88 88.35 19.47 72.77 87.68 14.91
Group Prompt 45.32 88.46 43.14 67.09 86.13 19.04 75.00 89.09 14.09
PerceptionCLIP 76.70 79.89 3.19 65.13 75.27 10.14 74.31 80.30 5.99
PerceptionCLIP+ 75.94 82.02 6.08 69.18 77.17 7.99 80.84 83.04 2.20
ROBOSHOT 80.5 84.8 4.3 - - - 82.6 85.5 2.9
ERICT 83.46 86.53 3.07 80.00 86.49 6.49 85.00 86.43 1.43
ERICT-C 83.62 86.25 2.63 81.98 84.30 2.32 85.44 86.53 1.09

Baselines. We compare our method with state-of-the-
art methods, including vanilla zero-shot CLIP (ZSCLIP),
ZSCLIP with group information (Group Prompt), Percep-
tionCLIP (An et al., 2023) and ROBOSHOT (Adila et al.,
2024). Group Prompt assumes access to spurious attributes
and includes them in the label prompts. For instance, the la-
bel prompts of Waterbirds dataset become “a photo of water-
bird with water background, a photo of waterbird with land
background, a photo of landbird with water background, a
photo of landbird with land background”. For Perception-
CLIP, it uses a variety of different combinations of assists.
We show all of them, PerceptionCLIP represents using the
standard spurious attribute (e.g., gender for CelebA dataset),
and PerceptionCLIP+ represents using extended attributes
(e.g., gender, age, and race for CelebA dataset).

6.2. Main Results

We present results on three widely used backbones, in-
cluding ViT-B/16, ViT-B/32 and ViT-L/14. Generally, our
method has a significant improvement on the worst group
performance and narrows the gap between the worst group
and the average performance among all backbones.

Table 1 shows the results on the Waterbirds dataset. Our
methods perform well across all backbones, especially on
the base backbone, where it shows significant improvement
compared to baseline methods. On the ViT-B/32 backbone,
ERICT achieves a worst-case group accuracy of 71.44%.
And on the ViT-B/16 backbone, ERICT-C achieves a worst-

case group accuracy of 57.32%, surpassing the current best-
performing method by a margin of 16.25 percentage points.

Table 2 presents the results on the CelebA dataset. Our
methods perform outstandingly on the CelebA dataset, with
ERICT-C and ERICT achieving the best and second best
performance across all backbones, respectively. In particu-
lar, with the ViT-B/16 backbone, our methods achieve an
improvement of more than 10 percentage points on the worst
group compared to the previous baseline methods. Addi-
tionally, we significantly reduced the gap between the per-
formance of the worst group and the average performance,
narrowing the gap to 1.09 on the ViT-L/14 backbone.

We also conduct experiments on the Urbancars dataset in
Table 3, which poses a significant challenge for CLIP. Nev-
ertheless, our method remains effective: on the ViT-L/14
backbone, it improves the accuracy of the worst group per-
formance from 12.4% to 49.6%. Importantly, this improve-
ment does not come at the cost of average performance; in
fact, we observe a notable enhancement in average accuracy.

Overall, as shown in Tables 1 2 3, ERICT and ERICT-C
consistently outperform all other methods across different
datasets and backbones, setting a new state-of-the-art perfor-
mance. However, we observed that ERICT does not show
significant improvement in some cases, and ERICT-C out-
performs ERICT in many cases. The phenomenon points to
the suboptimality impact of the auxiliary prompt, which we
will discuss in following sections.
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Table 3: Experiments on Urbancars. We highlight the best results in bold, the second-best results with an underline.

ViT-B/32 ViT-B/16 ViT-L/14

WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓) WG (↑) AVG (↑) Gap (↓)
ZSCLIP 14.80 51.60 36.80 0.00 52.00 52.00 12.40 54.00 41.60
Group Prompt 33.20 53.50 20.30 7.60 52.70 45.10 25.20 51.30 26.10
ERICT 38.80 53.30 14.50 9.20 51.40 42.20 49.60 63.30 13.70
ERICT-C 29.60 53.00 23.40 8.40 51.70 43.30 48.00 62.60 14.60
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Figure 4: t-SNE comparison diagram on the Waterbirds dataset. The output representations of the ERICT method in
the t-SNE visualization exhibit limited distinction with respect to background information, indicating that the model’s
decision-making does not rely on background information (i.e., spurious attribute).
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Figure 5: CAM comparison diagram. We visualized some
images from the Waterbirds and CelebA datasets, showing
that our approach successfully focuses on the desired region.

6.3. Visualization Results

Beyond the quantitative analysis of the datasets, we fur-
ther provide a detailed demonstration of ERICT’s debiasing
capability by presenting visualized results.

Considering the widespread use of CAM (Zhou et al., 2016;
Jung & Oh, 2021; Vilas et al., 2024) images for interpreting
what model focus on, we compared the CAM images of the

final layer in the model before and after ERICT application.
As illustrated in Figure 5, it can be observed that, in com-
parison to the vanilla zero-shot CLIP, ERICT effectively
guides the model’s attention toward the invariant features,
thereby mitigating the impact of spurious attributes on in-
ference outcomes. For instance, in the Waterbirds dataset,
the vanilla zero-shot CLIP erroneously focuses on back-
ground elements, whereas our method successfully redirects
attention to the invariant features, specifically the bird.

Considering that our method directly adjusts the attention
mechanism, CAM images may not accurately reflect the de-
biasing capability. Therefore, we also visualize the model’s
output representations using t-SNE (Van der Maaten & Hin-
ton, 2008), with separate divisions based on ground-truth
label and spurious attribute. We present the t-SNE results
for the Waterbirds dataset in Figure 4. The vanilla zero-shot
CLIP separates the two types of background distinctly in
the feature space, indicating that it considers background
features as an important discriminative factor. The t-SNE
visualization of our method shows that after applying ER-
ICT, the model no longer focuses on the background, which
is a spurious attribute. All the images were generated using
the default t-SNE parameters from the scikit-learn package.

6.4. Ablation Study

In this section, we present the results of several ablation
studies aiming to identify key factors that influence the per-
formance of our proposed method. Specifically, we examine
the impact of the temperature parameter, the effect of mask
placement, and the role of auxiliary prompt words.

7
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Impact of temperature. In this section, we investigate the
impact of the temperature parameter τ . The temperature
parameter controls the sharpness of the similarity score ma-
trix distribution, thereby influencing the mask ratio during
the inference phase. A lower temperature value results in
a higher mask ratio. The optimal temperature parameter
varies depending on specific dataset. In general, the lower
the proportion of invariant features in an image, the smaller
the temperature parameter. For example, the temperature
parameter for the Waterbirds dataset is lower than that for
the CelebA dataset, as the proportion of bird features in the
Waterbirds dataset is smaller, whereas the proportion of hair
features is larger in the CelebA dataset.
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90

Worst Group
Average

(a) ViT-B/16
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Figure 6: The impact of different temperature parameters
on the CelebA. As the temperature gradually increases, the
performance of the worst group exhibits an initial upward
trend followed by a subsequent decline.

We illustrate the impact of different temperature parame-
ters in Figure 6. As the temperature parameter decreases,
the performance of the worst-performing group initially im-
proves, followed by a decline. This can be explained by
the following reasoning: as the mask ratio increases, the
model’s robustness improves. However, when the mask
ratio becomes excessively high, some invariant features are
also masked, resulting in a performance degradation. The
optimal results are presented in the main experiments.

Application location of mask. In this section, we analyze
the impact of the applied mask location. Previous stud-
ies (Kirichenko et al., 2022; Gandelsman et al., 2023) have
emphasized the critical role of the final layers, particularly
the last two layers, in enhancing the model’s robustness.
Therefore, we apply the mask to the last two layers of the vi-
sion encoder. To assess its effect, we conduct a comparative
experiment where the mask is applied to various locations:
the original image, the last 1-3 layers in vision encoder, the
latter half of the vision encoder, and all layers in vision
encoder. The detailed results are presented in Table 4.

As shown in Table 4, we observe that, compared to the
vanilla CLIP, various masking strategies contribute to im-
proved robustness. Among these strategies, applying the
mask to the CLS weight of the last two layers achieves the
best performance on the worst-performing group. The re-
sults presented in our main experiments correspond to those
obtained by masking the last two layers.

Table 4: Effect of mask location with ViTL14 backbone on
CelebA dataset. In our method, the mask is applied to the
CLS weights of the last two layers.

WG (↑) AVG (↑) Gap (↓)
ZSCLIP 72.77 87.68 14.91
Mask image 81.67 90.30 8.63
Last 1 layer 83.33 85.48 2.15
Last 2 layers 85.44 86.53 1.09
Last 3 layers 84.44 87.37 2.93
Last half backbone 80.00 88.61 8.61
All layers 79.44 88.18 8.74
Token purning 83.89 87.91 4.02

Impact of the auxiliary prompt. In our approach, auxiliary
prompt words play a critical role, as they determine the key
information that the model focuses on. In this paper, we
propose ERICT, which computes auxiliary representations
using parent class prompts, and ERICT-C, which employs
clustering based on class prompt representations as aux-
iliary representations. Due to the limitations of model’s
capabilities, the current recognition stage remains relatively
simplistic, capturing primarily basic semantics. The aux-
iliary information used by ERICT and ERICT-C offers a
viable solution, though it is not the optimal one. We hope
that future work can address this challenge.

7. Conclusion
In this paper, we aim to enhance the robustness of vision
language models during zero-shot inference without requir-
ing any additional training or external model assistance.
To achieve this, we proposed ERICT and ERICT-C, which
identify concept tokens that capture invariant features and
leverage this invariant knowledge to effectively alleviate
spurious correlation during inference. Through experiments
and visualizations, we demonstrate the effectiveness of our
approach, which significantly reduces the impact of spu-
rious correlations and achieves notable performance im-
provements compared to existing baseline methods across
multiple datasets and backbones. Ablation studies on vari-
ous experimental settings explain the impact of temperature
parameter and mask location on performance. Additionally,
for CLIP-based VLMs, we provided a new theory support-
ing the effectiveness of masks to enhance robustness, pro-
viding strong theoretical support for our method. Although
our proposed method demonstrates significant performance,
it still has some limitations. The current model relies on
specific auxiliary embedding, which don’t guarantee the
optimality. Future research could explore the following
directions: investigating how to obtain more effective auxil-
iary text representation and optimizing mask strategies.
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A. Proof of Theory
Definition A.1. Consider a classification task with n pairs of {xi

v, x
i
t}ni=1. Every image xi

v ∈ RdI is generated from the
underlying latent factor Z = [Zinv, Zspu] which is composed of the invariant factor Zinv ∼ N (y, σ2

inv) and spurious factor
Zinv ∼ N (a, σ2

spu). Text xi
t ∈ RdT is generated from the ground truth yi. The ground truth y is uniformly drawn from

{−1, 1}, and the spurious attribute drawn from {−1, 1} with the probability Pr(a = y) = pspu, where 1 > pspu > 1/2.
The variance σ2 denotes the variation of the corresponding variable.

With the definition, we can write Z =

[
y + ξ1
a+ ξ2

]
where ξ1 ∼ N (0, σ2

inv), ξ2 ∼ N (0, σ2
spu) are two Gaussian variables in the

definition. The xv is generated via xv = DIZ, text xt is generated via y = DT

[
y
0

]
, with DI ∈ RdI×l and DT ∈ RdT×l.

The matrix DI and DT is a matrix with orthonormal columns which can be considered as a dictionary matrix. And the
distinguishable mask M ∼ Bernoulli(pmask) removes spurious components from the vision modality.

In clip architecture, there are two encoders fv : RdI → Rh for the image modality and ft : RdT → Rh for the text modality,
implemented as fv(xv) = WIxv and ft(xt) = WTxt with WI ∈ Rh×dI and WT ∈ Rh×dT respectively. In the vanilla
CLIP zero-shot inference phase, the decision is made by computing a similarity score, which takes the following form:

xT
v W

∗
IW

∗
Tx

ŷ
t (14)

Before the formal proof, we firstly introduce a useful lemma:
Lemma A.2 ((Xue et al., 2024)). The minimizer of linearized CLIP loss W ∗T

I W ∗
T satisfies the following with a probability

of at least 1−O( 1
poly(n) ) such that,

||W ∗T
I W ∗

T −
1

ρ
DI

[
1 + σ2

inv 2pspu − 1
2pspu − 1 1 + σ2

spu

]
DT

T ||2 ≤
1

ρ
O(
√
ϵ0), (15)

where ϵ0 = O(
√

logn
n ). Then, we have

|xT
v W

∗
IW

∗
Tx

ŷ
t −

1

ρ
xT
v DI

[
1 + σ2

inv 2pspu − 1
2pspu − 1 1 + σ2

spu

]
DT

Tx
ŷ
t ||2 ≤ ||xv||||xŷ

t ||
1

ρ
O(
√
ϵ0) ≤ 1

ρ
O(
√
ϵ0 log n). (16)

In Lemma A.2 , we notice that

xT
v DI

[
1 + σ2

inv 2pspu − 1
2pspu − 1 1 + σ2

spu

]
DT

Tx
ŷ
t = ŷ((y + ξ1)(1 + σ2

inv) + (a+ ξ2)(2pspu − 1). (17)

For inference, the model discriminates based on the similarity between the two modalities. Consider the scenario where the

model encounters samples with spurious correlations ( y = 1, a = −1 ), and we apply the mask M =

[
1 0
0 M

]
on vision

modality. When CLIP makes an incorrect prediction, we have

MxT
v W

∗
IW

∗
Tx

ŷ=1
t < MxT

v W
∗
IW

∗
Tx

ŷ=−1
t (18)

Note that M follows a Bernoulli distribution, so Mxv =

[
y + ξ1

pmask(a+ ξ2) + (1− pmask)ξ0

]
where ξ0 can be considered as

N (0, 0). The entire spurious part can be considered as following a Gaussian mixture distribution.

By substituting Mxv for xv in Eq. 16, we still obtain:

1

ρ
MxT

v DI

[
1 + σ2

inv 2pspu − 1
2pspu − 1 1 + σ2

spu

]
DT

Tx
ŷ=1
t +

1

ρ
O(
√
ϵ0 log n) <

1

ρ
MxT

v DI

[
1 + σ2

inv 2pspu − 1
2pspu − 1 1 + σ2

spu

]
DT

Tx
ŷ=−1
t − 1

ρ
O(
√
ϵ0 log n),

(19)
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with Eq. 17 plugged in, denote ϵ1 = O(
√
ϵ0 log n), we further have

2
[
(1 + ξ1)(1 + σ2

inv) + pmask(−1 + ξ2)(2pspu − 1)− ϵ1
]
< 0. (20)

Since ξ1(1 + σ2
inv) + ξ2(2pspu − 1)pmask is a Gaussian variable follows the distribution of

ξ1(1 + σ2
inv) + ξ2(2pspu − 1) ∼ N (0, (1 + σ2

inv)
2σ2

inv + (2pspu − 1)2p2maskσ
2
spu),

then, we have

Pr(2
[
(1 + ξ1)(1 + σ2

inv) + pmask(−1 + ξ2)(2pspu − 1)− ϵ1
]
< 0)

= Prv∼N (0,1)(v <
pmask(2pspu − 1)− 1− σinv + ϵ1√

(1 + σ2
inv)

2σ2
inv + (2pspu − 1)2p2maskσ

2
spu

)

= Φ(
pmask(2pspu − 1)− 1− σinv + ϵ1√

(1 + σ2
inv)

2σ2
inv + (2pspu − 1)2p2maskσ

2
spu

),

(21)

where Φ is the CDF of the standard Gaussian distribution. Then, it suffices to know that the Erry=1,a=−1 is lower bounded
by Φ(k)− o(1) and upper bounded by Φ(k) + o(1) where k =

pmask(2pspu−1)−1−σinv√
(1+σ2

inv)
2σ2

inv+(2pspu−1)2p2
maskσ

2
spu

which also applies to

the case y = −1, a = 1.

Next we demonstrate the impact of pmask. dk
dpmask

=
(2pspu−1)(1+σ2

inv)
2σ2

inv+(1+σ2
inv)(2pspu−1)2σ2

spupmask

((1+σ2
inv)

2σ2
inv+(2pspu−1)2σ2

spup
2
mask)

3/2 Considering

1/2 < pspu < 1 and 0 ≤ pmask ≤ 1, k increases monotonically as p increases. Notice that 1− pmask is the actual mask
ratio and pmask = 1 represents the vanilla error bound without mask. As the proportion of the masked spurious components
increases, the model’s error bound gradually decreases.

B. Experimental Details
All of our experiments are conducted on a single NVIDIA GeForce RTX 4090 GPU. The class prompts and auxiliary
prompts for ERICT used in experiments are shown in Table 5.

Table 5: Summary of prompts in main experiments.

Dataset Class Prompts Auxiliary Prompt for ERICT

Waterbirds “ a photo of a landbird ” “ bird in photo ”“ a photo of a waterbird ”

CelebA “ a photo of a person with non-blonde hair ” “ hair in photo ”“ a photo of a person with blonde hair ”

Urbancars “ a photo of an urban car ” “ car in photo ”“ a photo of a country car ”
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C. Pseudocode

Algorithm 1: Step 1 of ERICT-C
Input :Image xv , Image encoder fv , Text encoder ft, Class

prompts xt, Temperature parameter τ , Top-K strategy
parameter k, Patch number p.

// Auxiliary Prompt

zclsv = fv(xv)[cls]
||fv(xv)[cls]|| ;

for xi
t ∈ xt do

zit =
ft(x

i
t)

||ft(xi
t)||

;

Si = zclsv × zit ;
end
S ← sort(S, descending) ;
Sk ← S[1 : k] ;
ẑt ← zt corresponding to Sk ;
ẑat ← 1

k

∑k
i=1 ẑt[i] ;

// Get Mask

zpatchesv = fv(xv)[patch]
||fv(xv)[patch]|| ;

for i = 1 to p do
Si = zpatchesv [i]× ẑat ;

end
S ← sort(−1× S, descending) ;
S ← sort(S, descending) ;

ρ← max
(
i : Si/τ > 1

i

∑i
i=1 Si/τ

)
;

l← 1
ρ (

∑ρ
i=1 Si/τ − 1) ;

for i = 1 to p do
if Si > l then

Mi ← 1 ;
end
else

Mi ← 0 ;
end

end
Output :M
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Algorithm 2: Step 2 of ERICT-C
Input :Image Token sequence X , Image encoder fv , Text encoder

ft, Class prompts xt, Corresponding mask M .
for BLK ∈ fv[: −2] do

X ← BLK(X) ;
end
for BLK ∈ fv[−2 :] do

Q,K, V ← ProjQKV (X) ;

Acls = softmax(M · QclsK
T

√
dk

) ;

Apatches = softmax(QpatchesK
T

√
dk

) ;
X = X + Proj([Acls, Apatches] · V ) ;
X = X + FFN(X) ;

end
zv = Proj(X) ;
for xi

t ∈ xt do
zit =

ft(x
i
t)

||ft(xi
t)||

;

end
ŷ = argmaxzi

t∈zt
(zv × zit) ;

Output : ŷ

D. More results
D.1. Imagenet Series Datasets

In these section, we present the results of ERICT-C on multi-category datasets. Imagenet (Deng et al., 2009) is a widely used
large-scale vision dataset containing more than 14 million images covering 1,000 categories. ImageNet-A (Hendrycks et al.,
2021b) is a subset of ImageNet consisting of hard samples that were misclassified by the ResNet model, which contains 200
categories. ImageNet-R (Hendrycks et al., 2021a) is constructed by stylizing some images in the ImageNet in various ways,
aiming to test the robustness of the model when facing style-transferred images. It contains 200 categories.

We present the performance of ERICT-C with the top-3 strategy as an example across three datasets in Table 6. As shown in
table 6, our method outperforms vanilla CLIP on all these datasets, with particularly significant improvements observed on
ViT-L14.

Table 6: Experimental results of ERIT* on Imagenet dataset with top-3 strategy.

Imagenet Imagenet-A Imagenet-R

ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14 ViT-B/32 ViT-B/16 ViT-L/14

ZSCLIP 59.31 64.01 70.21 29.07 46.32 66.75 66.54 73.58 85.19
ERICT-C 59.45↑0.14 64.02↑0.01 72.15↑1.94 31.19↑2.12 48.19↑1.87 70.03↑3.28 67.25↑0.71 75.23↑1.65 87.19↑2.00

D.2. Visualization Experiments
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Figure 7: CAM comparison diagram. From left to right, the sequence is as follows: the original image, the score heatmap
visualization ( to identify the desired tokens), the original CAM image, and the CAM image with ERICT.
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