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Abstract
Using massive datasets to train large-scale models
has emerged as a dominant approach for broad
generalization in natural language and vision ap-
plications. In reinforcement learning, however,
a key challenge is that available data of sequen-
tial decision making is often not annotated with
actions - for example, videos of game-play are
much more available than sequences of frames
paired with their logged game controls. We pro-
pose to circumvent this challenge by combining
large but sparsely-annotated datasets from a tar-
get environment of interest with fully-annotated
datasets from various other source environments.
Our method, Action Limited PreTraining (ALPT),
leverages the generalization capabilities of inverse
dynamics modelling (IDM) to label missing ac-
tion data in the target environment. We show that
utilizing even one additional environment dataset
of labelled data during IDM pretraining gives rise
to substantial improvements in generating action
labels for unannotated sequences. We evaluate our
method on Atari game-playing environments and
show that with target environment data equivalent
to only 12 minutes of gameplay, we can signif-
icantly improve game performance and general-
ization capability compared to other approaches.
Furthermore, we show that ALPT remains bene-
ficial even when target and source environments
share no common actions, highlighting the im-
portance of pretraining on broad datasets even
though they might seem irrelevant to the target
task at hand.

1. Introduction
The training of large-scale models on large and diverse data
has become a standard approach in natural language and
computer vision applications (Devlin et al., 2019; Brown
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et al., 2020; Mahajan et al., 2018; Zhai et al., 2021). Re-
cently, a number of works have shown that a similar ap-
proach can be applied to tasks more often tackled by rein-
forcement learning (RL), such as robotics and game-playing.
For example, Reed et al. (2022) suggest combining large
datasets of expert behavior from a variety of RL domains
in order to train a single generalist agent, while Lee et al.
(2022) demonstrate a similar result but using non-expert
(offline RL) data from a suite of Atari game-playing envi-
ronments and using a decision transformer (DT) sequence
modeling objective (Chen et al., 2021b).

Applying large-scale training necessarily relies on the ability
to gather sufficiently large and diverse datasets. For RL
domains, this can be a challenge, as the most easily available
data – for example, videos of a human playing a video game
or a human completing a predefined task – often does not
contain labelled actions, i.e., game controls or robot joint
controls. We call such datasets action limited, because little
or none of the dataset is annotated with action information.
Transferring the success of approaches like DT to such tasks
is therefore bottlenecked by the ability to acquire action
labels, which can be expensive and time-consuming (Zolna
et al., 2020).

Some recent works have explored approaches to mitigate
the issue of action limited datasets. For example, Video
PreTraining (VPT) (Baker et al., 2022) proposes gathering
a small amount (2k hours of video) of labeled data man-
ually which is used to train an inverse dynamics model
(IDM) (Nguyen-Tuong et al., 2008); the IDM is then used
to provide action labels on a much larger video-only dataset
(70k hours). This method is shown to achieve human level
performance in Minecraft. It has also been demonstrated
that some agents can learn directly from videos without any
action labels (Seo et al., 2022).

While VPT shows promising results, it still requires over
2k hours of manually-labelled data; thus, a similar amount
of expensive labelling is potentially necessary to extend
VPT to other environments. In this paper, we propose an
orthogonal but related approach to VPT: leveraging a large
set of labeled data from various source domains to learn an
agent policy on a limited action dataset of a target evaluation
environment. To tackle this setting, we propose Action Lim-
ited Pretraining (ALPT), which relies on the hypothesis that
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shared structures between environments can be exploited
by non-causal (i.e., bidirectional) transformer IDMs. This
allows us to look at both past and future frames to infer
actions. In many experimental settings, the dynamics are
far simpler than multi-faceted human behavior in the same
setting. It has been suggested that IDMs are therefore more
data efficient and this has been empirically shown (Baker
et al., 2022). ALPT thus uses the multi-environment source
datasets as pretraining for an IDM, which is then finetuned
on the action-limited data of the target environment in order
to provide labels for the unlabelled target data, which is then
used for training a DT agent.

Through various experiments and ablations, we demonstrate
that leveraging the generalization capabilities of IDMs is
critical to the success of ALPT, as opposed to, for example,
pretraining the DT model alone on the multi-environment
datasets or training the IDM only on the target environment.
On a benchmark game-playing environment, we show that
ALPT yields as much as 5x improvement in performance,
with as little as 10k labelled samples required (i.e., 0.01% of
the original labels), derived from only 12 minutes of labelled
game play (Ye et al., 2021). We show that these benefits
even hold when the source and target environments use
distinct action spaces; i.e., the environments share similar
states but no common actions, further demonstrating the
power of IDM pretraining.

While ALPT is, algorithmically, a straightforward applica-
tion of existing offline RL approaches, our results provide
a new perspective on large-scale training for RL. Namely,
our results suggest that the most efficient path to large-scale
RL methods may be via generalist inverse dynamics mod-
elling paired with specialized agent finetuning, instead of
generalist agent training alone.

2. Related Work
In this section, we briefly review relevant works in multi-
task RL, meta-learning for RL, semi-supervised learning,
and transfer learning.

Multi-Task RL. It is commonly assumed that similar tasks
share similar structure and properties (Caruana, 1997; Ruder,
2017; Zhang et al., 2014; Radford et al., 2019a). Many
multi-task RL works leverage this assumption by learning
a shared low-dimensional representation across all tasks
(Calandriello et al., 2014; Borsa et al., 2016; D’Eramo et al.,
2020). These methods have also been extended to tasks
where the action space does not align completely (Bräm
et al., 2020). Other methods assume a universal dynamics
model when the reward structure is shared but dynamics
are not (Zhang et al., 2021a). Multi-task RL has generally
relied on a task identifier (ID) to provide contextual infor-
mation, but recent methods have explored using additional

side information available in the task meta-data to establish
a richer context (Sodhani et al., 2021). ALPT can be seen as
multi-task RL, given that we train both the sequence model
and IDM using multiple different environments, but we do
not explicitly model context information or have access to
task IDs.

Meta RL. Meta-learning is a set of approaches for learn-
ing to learn which leverages a set of meta-training tasks
(Schmidhuber, 1987; Bengio et al., 1991), from which an
agent can learn either parts of the learning algorithms (eg
how to tune the learning rate) or the entire algorithm (La-
combe et al., 2021; Kalousis, 2002). In this setting, meta-
learning can be used to learn policies (Duan et al., 2017;
Finn et al., 2017) or dynamics models (Clavera et al., 2019).
A distribution of tasks is assumed to be available for sam-
pling, in order to provide additional contextual information
to the policy. One such method models contextual informa-
tion as probabilistic context variables which condition the
policy (Rakelly et al., 2019). This method has been shown
to learn from only a handful of trajectories. Meta-training
can be used to learn policies offline, while using online in-
teraction to correct for distribution shift, without requiring
any rewards in the online data (Pong et al., 2022). These
methods are commonly used to train on a source set of tasks,
like ALPT, but usually require task labels. Meta-training
tasks need to be hand-selected, and the results are highly
dependent on the quality of that process.

Semi-supervised learning. Semi-supervised learning uses
both labelled and unlabelled data to improve supervised
learning performance (Zhu et al., 2009). It is especially
useful when a limited amount of labelles data is given and
additional labels are difficult to acquire, unlabelled data is
plentiful. Early methods of this type infer unknown labels
using a classifier trained on the labeled data (Zhu & Ghahra-
mani, 2002). Other methods rely on additional structural
side information to regularize supervised objectives (Szum-
mer & Jaakkola, 2001), such as the time scale of a Markov
random walk over a representation of the data. Many meth-
ods, especially those using deep learning, combine super-
vised and unsupervised learning objectives (Rasmus et al.,
2015). More recent methods use generative models and
approximate Bayesian inference to fill in missing labels
(Kingma et al., 2014). The problem of semi-supervised
learning is especially relevant in RL, where large datasets
of experience containing action descriptions or rewards may
hard to acquire, eg. through manual annotation of videos or
running robotic experiments. By using an inverse dynam-
ics model, ALPT applies semi-supervised learning to label
actions in a large dataset of experience frames, given only
limited labeled action data.

Transfer Learning and Zero-shot RL. Policies learned by
RL in one domain can have limited capability to generalize
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Figure 1: The dynamics model pretraining procedure of ALPT using the source set of environments along with the limited
action target environment dataset.

to new settings (Oh et al., 2016). The most difficult problem
is zero-shot RL, where the agent must generalize at evalua-
tion time to a new environment that was not seen in training,
without acquiring any new data. Transfer learning (Taylor
& Stone, 2009) tackles a subset of generalization problems
where the agent can access interactions from a related en-
vironment or task during training. This prior experience in
other environments is leveraged to improve learning in novel
environments. Transfer learning has been applied across
both environments (Mordatch et al., 2016; Tzeng et al.,
2020) and tasks (Rusu et al., 2016; Parisotto et al., 2016). It
has also been examined in hard exploration games, using
imitation learning from human-generated video data (Aytar
et al., 2018). ALPT can be seen as tackling the transfer
learning problem, with limited action data from the target
environment and providing pseudo-labels for actions. No-
tably, we consider the under-explored scenario where the
action space is not completely shared between the training
and test environments.

Offline RL. Offline RL describes a setting that during learn-
ing, the agent has access to only a fixed dataset of expe-
rience. When function approximation becomes necessary
in environments with large, complex state spaces, online
RL algorithms are extremely sensitive to the dataset distri-
bution. It has been shown that even when the logged data
is collected with a single behavior policy, standard online
algorithms fail (Fujimoto et al., 2019). This has been hy-
pothesized to be due erroneous generalization of the state
action function. One such class of methods applies ran-
dom ensembles of Q-value function targets (Agarwal et al.,
2020a). Other works suggest regularizing the agent policy
to the behavior policy (Zhang et al., 2021b). In offline RL,
errors arise when needed to bootstrap the value function
and algorithms must apply strong regularizations on both
learned policy and value function to achieve stable perfor-
mance (Wu et al., 2020; Kumar et al., 2019; Zhang et al.,

2021b; Nachum et al., 2019). We use decision transform-
ers (DT) (Chen et al., 2021b) as the backbone for ALPT,
and these have been shown to be successful in learning
generalizable agents from logged data in a diverse set of
environments (Lee et al., 2022).

3. Background
In this section, we review the standard offline RL setting
and the use of decision transformers (DT) as a sequence
modelling objective for offline RL. We then define the set-
ting of multi-environment offline RL with action-limited
data, which is our focus.

3.1. Offline Reinforcement Learning

We consider an agent acting within a Markov decision pro-
cess (MDP) defined by 〈S,A,P,R〉, where S is the set of
states, A is the set of actions, P : S ×A → Dist(S) is the
transition probability kernel andR : S ×A → [0, 1] is the
scalar reward function.

In offline RL, the agent is given a dataset of episodes, i.e.,
sequences of states, actions, and rewards collected by un-
known policies interacting with the environment:

〈. . . , st, at, rt, . . . 〉. (1)

The objective is typically to use this dataset in order to
learn a conditional action distribution, Pθ(at|s≤t, a<t, r<t),
that maximizes the expectation of the total return, Gt =∑
k≥0 rt+k when used to interact with the environment

from which the training episodes were generated.

3.2. Offline RL as Sequence Modeling

Decision transformer (DT) (Chen et al., 2021a) is an ap-
proach to offline RL which formulates this problem as se-
quence modeling, and then uses transformer-based architec-



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

tures to solve it. For this purpose, the episodes in the offline
dataset are augmented with the returns associated with each
step:

τ = 〈. . . , st, at, rt, Gt, . . . 〉. (2)

This sequence is tokenized and passed to a causal trans-
former Pθ, which predicts both returns and actions using a
cross-entropy loss. Thus, the learning objective for θ is:

J(θ) =Eτ
[∑

t

− logPθ(Gt|s≤t, a<t, r<t)

− logPθ(at|s≤t, a<t, r<t, Gt)
]
.

(3)

During inference, at each timestep t, after observing st, DT
uses the predicted return distribution Pθ(Gt|s≤t, a<t, r<t)
to choose an optimistic estimate Ĝt of return, before using
Pθ(at|s≤t, a<t, r<t, Ĝt) to select an action ât (see Lee et al.
(2022) for details).

3.3. Multi-Environment and Action Limited Datasets

Our goal is to use pretraining on a set of environments
where labelled data is plentiful, in order to do well on a
target environment where only limited action-labelled data
is available. Therefore, the offline RL setting we consider
includes multiple environments and action-limited datasets,
as we detail below.

We consider a set of n source environments, defined by a
set of MDPs: E = {M1, . . . ,Mn}, and a single target
environmentM?. For each source environmentMd, we
have an offline dataset of episodes generated fromMd, de-
noted by Dd = {τ := 〈. . . , st, at, rt, . . . 〉}, fully labelled
with actions. For the target environment, the agent has
access to a small labelled dataset from M?, denoted as
D+
? = {τ := 〈. . . , st, at, rt, . . . 〉}, and a large dataset with-

out action labels, D−
? = {τ := 〈. . . , st, rt, . . . 〉}.

4. Action Limited Pretraining (ALPT)
We now describe our proposed approach to offline RL in
multi-environment and action limited settings. ALPT relies
upon an inverse dynamics model (IDM) which uses the
combined labelled data in order to learn a representation
that generalizes well to the limited action data from the
target environment. The predicted labels of the IDM on
the unlabelled portion of the target environment dataset are
then used for training a sequence model parameterized as a
decision transformer (DT). We elaborate on this procedure
below and summarize the full algorithm in Table 1.

4.1. Inverse Dynamics Modeling

Our inverse dynamics model (IDM) is a bidirectional trans-
former trained to predict actions from an action-unlabelled

sub-trajectory of an episode. The training objective for
learning an IDM Pβ is

J(β) = Eτ

[∑
t

k−1∑
i=0

− logPβ(at+i|st, . . . , st+k)

]
, (4)

where k is the length of training sub-trajectories. In our
experiments, we use k = 5 and parameterize Pβ using
the GPT-2 transformer architecture (Radford et al., 2019b),
modified to be bidirectional by changing the attention mask.

4.2. Multi-Environment Pretraining and Finetuning

ALPT is composed of a two-stage pretraining and finetun-
ing process.

During pretraining, we use the combined labelled datasets
for all source environments combined with the labelled
portion of the target environment dataset: (

⋃n
d=1Dd)∪D+

? ,
to train the IDM Pβ . Concurrently, we also train the DT
Pθ on the combined labelled and unlabelled datasets for all
source environments combined with the target environment
datasets, by using the IDM to provide action labels on the
unlabelled portion D−

? . The DT training dataset is therefore:
(
⋃n
d=1Dd) ∪ D+

? ∪ D−
? .

During finetuning, we simultaneously train both the IDM
and DT exclusively on the target environment dataset. We
train the IDM on the labelled portion D+

? . We train DT on
the full action limited dataset D+

? ∪ D−
? by using the IDM

to provide action labels on the unlabelled portion D−
? .

Finally, during evaluation we use the trained DT agent to
select actions in the target environmentM?, following the
same protocol described in Section 3.2.

5. Experiments
We evaluate ALPT on a multi-game Atari setup similar to
Lee et al. (2022). Our findings are three-fold: (1) ALPT,
when pretrained on multiple source games, demonstrates
significant benefits on the target game with limited action
labels; (2) ALPT maintains its significant benefits even
when pretrained on just a single source game with a disjoint
action space, (3) we demonstrate similar benefits on maze
navigation tasks.

5.1. Experimental Procedure

Architecture and Training. Our architecture and train-
ing protocol follow the multi-game Atari setting outlined
in Lee et al. (2022). Specifically, we use a transformer with
6 layers of 8 heads each and hidden size 512. The rest of
the architecture and training hyperparameters remain un-
changed for experiments on Atari. For the Maze navigation
experiments, we modify the original hyperparameters to use
a batch size of 256 and a weight decay of 5× 10−5. During
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Table 1: A summary of ALPT.

Step Procedure

Pretraining Train IDM on all labelled data: (
⋃n
d=1Dd) ∪ D+

? .
Train DT on all data: (

⋃n
d=1Dd) ∪ D+

? ∪ D−
? , with IDM providing action labels on D−

?

Finetuning Train IDM on labelled data in target environment dataset: D+
? .

Train DT on all data in target environment dataset: D+
? ∪ D−

? , with IDM providing action labels on D−
?

Evaluation Use trained DT agent to interact with target environmentM?.

pre-training, we train the DT and IDM for 1M frames. The
details of all parameters can be found in Appendix B.

Datasets As in Lee et al. (2022), we use the standard of-
fline RL Atari datasets from RL Unplugged (Gulcehre et al.,
2020). Each game’s dataset consists of 100M environment
steps of training a DQN agent (Agarwal et al., 2020b). For
the source games, we use this dataset in its entirety. For the
target game, we derive an action-limited dataset by keeping
the action labels for randomly sampled sequences consist-
ing of a total 10k transitions (0.01% of the original dataset,
equivalent to 12 minutes of gameplay) and removing action
labels in the remainder of the dataset. For the maze nav-
igation experiments, we generate the data ourselves. The
offline datasets for each maze configuration contain 500
trajectories with a length of 500 steps or until the goal state
is reached. They are generated using an optimal policy
for each maze, with an ε-greedy exploration rate of 0.5 to
increase data diversity.

5.2. Baseline Methods

We detail the methods that we compare ALPT to below.

Single-game variants. To evaluate the benefit of multi- ver-
sus single-environment training, we assess the performance
of training either DT alone or DT and IDM simultaneously
on the target game. When training DT alone (DT1), we train
it only on the 10k subset of data that is labelled, while when
training DT and IDM simultaneously (DT1-IDM) we use
the IDM to provide action labels on the unlabelled portion
of the data.

Multi-game DT variants. To assess the need for IDM
versus training on DT alone, we evaluate a multi-game
baseline (DT5) composed of DT alone. For this baseline,
we pretrain DT on all labelled datasets combined from both
the source and target environments before finetuning the DT
model on the 10k labelled portion of the target game.

Return prediction DT variants. As an alternative way for
DT to leverage the unlabelled portion of the target environ-

Table 2: A summary of the baseline methods.

Method Training Games IDM
DT-1 1 ×
DT-5 5 ×
DT-1-IDM 1 X
DT-5-RET 1 ×
ALPT-X X if specified, otherwise 5 X

ment dataset, we evaluate a baseline (DT5-RET) that uses
the unlabelled portion for training its return prediction. The
model still undergoes a pretraining and finetuning stage,
first pretraining on all available data and then finetuning
only on data from the target game.

We give a summary of the baseline methods as well as ALPT
in Table 2. We also present results of an additional variant
of ALPT in which only the IDM is pretrained (rather than
both the IDM and DT) in Appendix A.

5.3. How does ALPT perform compared to the
baselines?

We focus our first set of multi-game pretraining experi-
ments on 5 Atari games: {Asterix, Breakout, SpaceInvaders,
Freeway, Seaquest}. This subset of games is selected due
to having a similar shared game structure and access to
high-quality and diverse pretraining data. We evaluate each
choice of target game in this setting, i.e., for each game we
evaluate using it as the target game while the remaining 4
games comprise the source environments. We compare our
pretraining regime (ALPT) with the single-game variant and
standard DT baselines in Figure 2. We see that pretraining
ALPT on the source games results in substantial downstream
performance improvements. We show that there are rela-
tively minimal performance improvements when pretraining
on datasets that do not include any non-target environments
(DT1-IDM). Utilizing ALPT results in improvements up to
≈ 500% higher than the single-game training regime. The
performance difference is especially stark in Breakout and



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

Figure 2: Game performance across the ALE environments for the baseline and ALPT. The figure shows the evaluation
game performance (Episodic Return) of our DT policies during finetuning on the limited action target dataset. Higher score
is better. The shaded area represents the standard deviation over 3 random seeds. The x-axis shows the number of finetuning
steps. We evaluate ALPT on 16 episodes of length 2500 each following (Lee et al., 2022).
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Figure 3: We evaluate performance of ALPT with a higher number of source games. We show performance of ALPT trained
on 36 Atari source games (ALPT-36) and ALPT trained on 9 Atari source games (ALPT-9). We find that performance
generally improves with more source games.

Seaquest. Additionally, we show that performance is not
recovered under pretraining only the sequence model (DT5)
on the action rich environments, indicating that most gener-
alization benefits are occurring due to the IDM pretraining.
We also show that performance using DT1 and DT5-RET
is poor, highlighting the need for explicit re-labelling to
achieve good performance during sequence model finetun-
ing.

We also encourage the reader to look to Appendix A for a
comparison to a variant of ALPT for which only the IDM is
pretrained, while the DT is initialized from scratch during
finetuning. We find that this variant maintains strong per-
formance compared to DT1-IDM, suggesting that the main
benefit of pretraining is the IDM.

For completeness, we examine the performance of a stan-
dard offline RL algorithm (Conservative Q-Learning) (Ku-
mar et al., 2020) against ALPT in Appendix C.

5.4. Is dynamics modelling improved under more or
less source datasets?

In this set of experiments, we expand the set of source
and target games. As in the previous experiments, each
source game provides a fully-labelled dataset of size 100M,
while each target game has a dataset of size 100M with
only 10k action labels. We evaluate performance using

5 target games ({‘Pong’, ‘SpaceInvaders’, ‘StarGunner’,
‘MsPacman’, ‘Alien’}) and using either 36 source games
(ALPT-36, trained on all 41 game datasets available in Agar-
wal et al. (2020b) minus the 5 target games) and using 9
source games (ALPT-9, trained on {‘Asterix’, ‘Breakout’,

‘Freeway’, ‘Seaquest’, ‘Atlantis’, ‘DemonAttack’, ‘Frost-
bite’, ‘Gopher’, ‘TimePilot’}). Note that for each of these
ALPT variants, we perform a single pretraining phase and
then multiple finetuning phases (one for each target game),
thus showing that a single pretrained model can be trans-
ferred to various target games.

We compare pretraining with ALPT to training DT1-IDM
on each target game alone. Results are presented in Figure
3, and show that target game performance improves with
more source games.

5.5. Can ALPT help when source and target have
disjoint action spaces?

The previous experiments have included at least one source
game during pretraining whose the action space overlaps
with that of the target environment. The next set of experi-
ments aims to explore pretraining on source environments
where the action space (Ad) is disjoint with the target envi-
ronment action space (A∗), that is, Ad ∩ A∗ = ∅. To do so,
we use Freeway as our single source environment dataset.
In Freeway, the action space consists of {Up, Down}. In



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Multi-Environment Pretraining Enables Transfer to Action Limited Datasets

0.0 0.2 0.4 0.6 0.8 1.0
Frames 1e6

0

20

40

60

80

100

120

Ev
al

ua
tio

n 
Pe

rfo
rm

an
ce

Breakout
ALPT
DT1-IDM

Figure 4: We evaluate performance of ALPT when source and target games have disjoint action spaces. In each of these
plots we pretrain using a single source game Freeway. Despite the disjoint action space, we still see benefits of pretraining.

contrast, a game such as Breakout has an action space con-
sisting of {Left, Right}. Surprisingly, using Freeway as a
source environment and Breakout as a target environment
still yields significant benefits for ALPT. We present this
result in Figure 4, as well as a variety of other choices for
the target environment, none of which share any actions
with the source environment Freeway.

We hypothesize that performance improvements are not
unexpected due to the already known broad generalization
capabilities of transformer architectures. It may also be
the case that, despite the action spaces being disjoint, they
still exhibit similar structure. For example, a top-down
action space and a left-right action space are structurally
opposite to each other in terms of movement, differing only
in orientation. This similar structure is potentially learned
and leveraged during finetuning.

5.6. Do ALPT’s benefits persist in other domains ?

We now demonstrate ALPT’s benefits on an action-limited
navigation task. This corresponds to a scenario where we
have densely annotated navigation maps for a set of source
regions but only a sparsely annotated navigation map for
a target region. We would like to evaluate whether ALPT,
pretrained on source regions with abundant action labels,
can generalize to navigating in a target region (of a different
layout) with limited action labels.

Maze Navigation Environments. To answer the above
question, we consider a gridworld navigation task where
an agent seeks to navigate to a goal location in a 20 × 20
2D maze from a random starting location to a random goal

location using 4 discrete actions: {Up, Down, Left, Right}.
The agent receives a reward of 1 at the goal state and r = 0
otherwise. To collect the offline training datasets, we follow
Yang et al. (2022); Zhang et al. (2018) to algorithmically
generate maze layouts with random internal walls that form
blocked or tunneled obstacles as shown in Figure 5. We start
with blocked obstacles, and generate one source maze from
which we collect 500 trajectories with full action labels.
We then use a different random seed to generate the target
maze, from which we collect 500 trajectories with only 250
action labels (0.5% of the full action labels). We then train
the IDM of ALPT-Blocked on both the source and target
datasets, labeling the missing actions from the target game,
and train DT all at the same time (no separate finetuning
stage). ALPT-Blocked and other baselines are evaluated in
the target maze only.

Results. Performance in the target maze environment with
limited action labels is presented in Figure 5 (b). ALPT-
Blocked trained on both source and target mazes allows
us to solve the target task twice as fast compared to only
training on the target maze without access to another source
maze. To further illustrate the benefit of multi-environment
training on more diverse data, we introduce the tunnelled
maze, and train ALPT-Blocked+Tunnelled on 500 trajec-
tories with full actions from a source blocked maze and a
source tunneled maze, respectively, as well as 250 action
samples of the target blocked maze. Training on both tun-
nelled and blocked mazes enables greater dataset diversity,
which further improves generalization, leading to even faster
convergence on the target task. These preliminary results on
navigation suggest that multi-environment pretraining can
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benefit a broad set of tasks.

(a) (b)

Figure 5: (a) An example diagram of the Blocked (above)
and Tunneled (below) mazes. The green cell is the goal
state. (b) Evaluation performance while training on the
20x20 Maze dataset. Higher score is better. The shaded area
represents the standard deviation over 3 random seeds. The
action limited target dataset contains 250 labelled actions in
these experiments.

6. Conclusion
We explored the problem of learning agent policies from
action limited datasets. Inspired by the paradigm of large-
scale, multi-environment training, we proposed ALPT,
which pretrains an inverse dynamics model (IDM) on mul-
tiple environments to provide accurate action labels for a
decision transformer (DT) agent on an action limited target
environment dataset. Our experiments and ablations high-
light the importance of pretraining the IDM, as opposed
to pretraining the DT agent alone. Our results support the
importance of generalist inverse dynamics models as an ef-
ficient way to implement large-scale RL. As more labelled
data becomes available for training offline RL agents, ALPT
provides an efficient way of bootstrapping performance on
new tasks with action limited data.

6.1. Limitations

The largest limitation of ALPT is the assumption that we
would have plentiful labelled data from related environ-
ments. One interesting fact we uncover is that this data does
not have to be based on the same action space as the desired
target environment, indicating the versatility of ALPT and
its ability to ingest diverse source environment training data.
We also caution that we have only evaluated ALPT so far
on limited, self-contained video game tasks and simple nav-
igation environments. We hope that as more labelled data
becomes available in RL domains, ALPT will have wider
applicability, allowing RL agents to scale and bootstrap to
new environments. It would also be useful to investigate
further how much labelled data from a limited set of source

environments is required to be able to handle a much larger
set of unlabelled datasets.
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A. Experiments with no DT pretraining
In the following set of experiments, we pretrain only the
IDM component of ALPT and not the DT. We show the
finetuning performance results for the Narrow set of Atari
games in Figure 6. Note that the axis here is up to 100k
steps as opposed to 1M for the figures in the main text.

B. Implementation Details
In Table 3 we give the implementation details of our IDM
and DT transformer architectures.

The IDM model is the same as the DT model, except that
it is non-causal. This is enforced by changing the attention
mask to a matrix of all 1 values in the IDM.

Table 3: A summary of the transformer model parameters.

Parameter Value
Layers 6
Hidden Size 512
Heads 8
Batch Size 256
Weight Decay 5× 10−5

Learning Rate 3× 10−4

Gradient Clipping 1.0
β1, β2 0.9, 0.999
Warm-up Steps 4000
Optimizer LAMB

C. Experiments with Conservative
Q-Learning (CQL)

In this set of experiments, we examine the performance
of Conservative Q-Learning (CQL) (Kumar et al., 2020)
trained on a dataset of 10, 000 frames, as opposed to
500, 000 in the original work (Table 3 of CQL, 1% dataset
size), from various Atari games utilized in our experiments.
In Table 4 we report the final evaluation performance on the
game after training for 100 iterations. All implementation
details are consistent with the original implementation in
the cited work. We utilize the CQL(H) method.

Figure 6: Evaluation game performance during finetuning
of ALPT and DT1-IDM. In these experiments we do not
pretrain the DT. 100k steps are shown.
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Table 4: The final evaluation game performance after train-
ing CQL for 100 iterations on a dataset of 10,000 labelled
frames from each Atari game.

Game Name Final Performance
Asterix 227.5
Breakout 12.3
Freeway 10.2
Seaquest 236.0
SpaceInvaders 250.9

D. Source Code
We make the source code publicly available for our
Maze experiment only at this time. The details can be
found at: https://anonymous.4open.science/
r/alpt_maze-5927/README.md.

https://anonymous.4open.science/r/alpt_maze-5927/README.md
https://anonymous.4open.science/r/alpt_maze-5927/README.md

