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ABSTRACT

Large language models deployed in sensitive applications increasingly require the
ability to unlearn specific knowledge, such as user requests, copyrighted materi-
als, or outdated information, without retraining from scratch to ensure regulatory
compliance, user privacy, and safety. This task, known as machine unlearning,
aims to remove the influence of targeted data (forgetting) while maintaining per-
formance on the remaining data (retention). A common approach is to formu-
late this as a multi-objective problem and reduce it to a single-objective prob-
lem via scalarization, where forgetting and retention losses are combined using
a weighted sum. However, this often results in unstable training dynamics and
degraded model utility due to conflicting gradient directions. To address these
challenges, we propose OFMU, a penalty-based bi-level optimization framework
that explicitly prioritizes forgetting while preserving retention through a hierar-
chical structure. Our method enforces forgetting via an inner maximization step
that incorporates a similarity-aware penalty to decorrelate the gradients of the for-
get and retention objectives, and restores utility through an outer minimization
step. To ensure scalability, we develop a two-loop algorithm with provable conver-
gence guarantees under both convex and non-convex regimes. We further provide
a rigorous theoretical analysis of convergence rates and show that our approach
achieves better trade-offs between forgetting efficacy and model utility compared
to prior methods. Extensive experiments across vision and language benchmarks
demonstrate that OFMU consistently outperforms existing unlearning methods in
both forgetting efficacy and retained utility.

1 INTRODUCTION

Large language models (LLMs) have become foundational to applications ranging from search en-
gines and coding assistants to healthcare, education, and scientific discovery. Their remarkable
performance arises from training on massive and diverse corpora, which inevitably contain sensi-
tive, copyrighted, or harmful information. This raises serious concerns about privacy, regulatory
compliance, safety, and ethics. In particular, regulations such as the General Data Protection Regu-
lation (GDPR) (European Union, 2016; California Legislative Counsel, 2018; Office of the Privacy
Commissioner of Canada, 2018) grant individuals the “right to be forgotten” (Dang, 2021) requiring
deployed models to eliminate the influence of specific data upon request. Beyond regulatory man-
dates, unlearning is also necessary to prevent models from generating toxic content, leaking private
information, or providing instructions for misuse (Huang et al., 2022; Carlini et al., 2023; Staab
et al., 2024). These considerations have led to growing interest in machine unlearning, the ability to
selectively erase the impact of particular data from a trained model while maintaining its utility.

Limitations of Existing Approaches. Existing unlearning methods for LLMs can be broadly cat-
egorized into three families (see Appendix 7.6 for a broader discussion): input-based, data-based,
and model-based approaches. Input-based methods modify the prompts or instructions given to the
model so that it refuses to generate content related to the forget set (Pawelczyk et al., 2023; Liu
et al., 2024b). These methods are lightweight but typically brittle, as adversarial prompts can of-
ten bypass the refusal policy. Data-based methods fine-tune the model on curated examples that
encourage desirable outputs when queried with forget-related prompts (Choi et al., 2024). While
effective in narrow settings, such methods risk semantic distortion, require careful construction of
auxiliary data, and may not generalize beyond specific domains. Model-based approaches directly
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alter model parameters through techniques such as fine-tuning, gradient ascent, or projection (Bu
et al., 2024; Fan et al., 2024; 2025; Dong et al., 2024; Zhang et al., 2024b). These approaches are
generally more effective at suppressing unwanted knowledge, but they introduce a deeper optimiza-
tion challenge: balancing the trade-off between forgetting the targeted information and preserving
utility on the retain set.

Most model-based methods formulate this balance as a scalarized optimization problem, where the
forget loss and retain loss are combined with fixed weights into a single objective. This design leads
to several shortcomings. First, static weighting fails to reflect the dynamic nature of unlearning:
early optimization steps should prioritize forgetting, while later updates should shift emphasis to-
ward restoring utility. However, fixed weights cannot adapt accordingly. Second, scalarization is
inherently unstable. When the forget objective dominates, the model can collapse, leading to severe
performance degradation on the retain set. When the retain objective dominates, forgetting remains
incomplete and sensitive data can persist. Third, most existing algorithms perform poorly on hard-
to-unlearn samples (see Appendix 7.5.6), where forget and retain gradients are strongly entangled.
In such cases, aggressive updates on the forget set cause disproportionate collateral damage to the
retain set, as evidenced by the strong coupling between sample difficulty and utility loss. Figure 1
further shows that while many methods perform adequately on easy-to-unlearn samples, their per-
formance drops sharply as difficulty increases. This trend underscores their inability to maintain
stable performance under challenging conditions, ultimately failing to meet the true objective of un-
learning. Finally, existing approaches largely lack principled theoretical grounding, instead relying
on heuristic weighting schemes that scale poorly in the high-dimensional, non-convex optimization
landscapes of modern LLMs.

Figure 1: Coupling of unlearning difficulty with
collateral utility loss. Harder samples induce dis-
proportionately large utility degradation for existing
methods (GA (Thudi et al., 2022), GradDiff (Maini
et al., 2024a)), whereas OFMU mitigates this cou-
pling through its similarity-aware hierarchical up-
dates. Full detail is provided in Appendix 7.5.6.

These challenges call for a more princi-
pled and structured approach to optimization-
based unlearning, one that recognizes the
asymmetric priorities of forgetting and reten-
tion. Crucially, forgetting must take prece-
dence. If a model fails to unlearn harmful
content, its retained capabilities are irrelevant
from a safety or compliance perspective. In
contrast, once forgetting is successful, utility
can be gradually restored as long as the erased
information does not re-emerge. This obser-
vation motivates a hierarchical optimization
view, where forgetting is posed as a primary
inner objective, and retention is addressed as
a secondary outer goal.

Our Approach: OFMU. We introduce
OFMU (Optimization-Driven Framework
for Machine Unlearning), a penalty-based bi-
level optimization framework that formalizes
this hierarchy. OFMU addresses the short-
comings of existing methods through three
key innovations: (i) a principled penalty-based reformulation that enforces stationarity of the in-
ner forgetting objective, enabling efficient two-loop optimization without requiring full convergence
of the inner problem; (ii) a similarity-aware penalty that explicitly decorrelates gradients between
forget and retain objectives, mitigating destructive interference during updates; and (iii) a rigorous
convergence analysis of penalty-based unlearning under both convex and non-convex regimes.

Contributions. Our main contributions are summarized as follows:
• We propose OFMU, a novel optimization-driven bi-level framework that explicitly prioritizes for-

getting over utility preservation, capturing the conceptual hierarchy inherent in unlearning.
• We develop a scalable two-loop algorithm with provable convergence guarantees, avoiding the

computational bottlenecks of traditional bi-level optimization methods.
• We design a similarity-aware penalty that dynamically decorrelates forget and retain gradients,

ensuring that forgetting does not inadvertently degrade retained knowledge.
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• We provide a comprehensive theoretical analysis of convergence rates for penalty-based unlearn-
ing in both convex and non-convex settings.

• We empirically validate OFMU across benchmark unlearning tasks in language and vision models,
establishing a new state-of-the-art in the forgetting-utility trade-off.

2 BI-LEVEL OPTIMIZATION IN MACHINE LEARNING

Bi-level optimization has emerged as a powerful paradigm for problems where two interdependent
objectives must be optimized in a hierarchical manner. Formally, it consists of an outer optimization
task whose feasible solutions are implicitly constrained by the optimal solutions of an inner opti-
mization problem (Colson et al., 2007; Dempe & Zemkoho, 2020). This nested structure provides
a natural way to capture tasks where one objective has strict priority over another, such as hyperpa-
rameter tuning (Franceschi et al., 2018), meta-learning (Finn et al., 2017; Nichol et al., 2018), and
adversarial robustness (Madry et al., 2018).
Recent advances have demonstrated the utility of bi-level optimization in large-scale machine learn-
ing, particularly in domains where competing goals must be balanced without collapsing into triv-
ial solutions. For instance, in meta-learning, the inner problem adapts to specific tasks, while the
outer problem promotes generalization across tasks (Hospedales et al., 2021). Similarly, in adver-
sarial training, the inner maximization crafts adversarial perturbations, and the outer minimization
strengthens the model against them (Zhang et al., 2019). These successes highlight the versatil-
ity of the framework in structuring inherently asymmetric objectives and avoid trivial or unstable
solutions.
We adopt this perspective for machine unlearning. In this setting, forgetting must be enforced as
a non-negotiable objective, ensuring that the influence of target data is fully removed, while utility
preservation is treated as a secondary goal to be optimized conditionally. This stands in contrast to
scalarized approaches that conflate the two objectives via fixed weights, often leading to brittle trade-
offs. Bi-level optimization, by explicitly separating the two, allows us to respect the asymmetry of
their importance and design algorithms that reflect this priority structure.This foundational insight
motivates our proposed framework, OFMU, which we formally present in Section 3.

3 METHODOLOGY

We now present the OFMU framework, a penalty-based bi-level optimization method that explicitly
separates the forgetting and utility preservation objectives. We begin by introducing notation and
formalizing the problem, then describe the bi-level formulation, its penalty-based reformulation, and
our scalable two-loop algorithm.

3.1 PRELIMINARIES AND NOTATION

We consider a supervised learning setup with a dataset D = Dr ∪ Df , where Dr is the retain
set (examples to be preserved) and Df is the forget set (examples to be unlearned). The model is
denoted by fθ, parameterized by θ ∈ Rd.

Empirical Losses. We define the empirical losses over each subset as:

Lr(θ) =
1

|Dr|
∑

(x,y)∈Dr

ℓ(fθ(x), y), Lf (θ) =
1

|Df |
∑

(x,y)∈Df

ℓ(fθ(x), y), (1)

where ℓ(·, ·) is a standard loss function (e.g., cross-entropy).

Gradients and Similarity. We denote the gradients of the retain and forget losses as∇θLr(θ) and
∇θLf (θ), respectively. To quantify their alignment, we use cosine similarity:

Sim(∇θLf ,∇θLr) =
⟨∇θLf ,∇θLr⟩
∥∇θLf∥ ∥∇θLr∥

, (2)

which captures directional alignment, abstracting away differences in magnitude. In the context of
unlearning, this is crucial: if ∇θLr(θ) and ∇θLf (θ) are highly aligned, forgetting updates may
interfere with retention, motivating decorrelation.
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Penalty Parameter. To ensure tractability, we will use a penalty parameter ρ > 0, which enforces
the stationarity condition of the inner maximization through a soft constraints. This allows us to
avoid solving the inner problem to completion while still preserving its structure.
A full notation summary is provided in Appendix 7.1 which will be used throughout the paper.

3.2 PROBLEM SETUP

The goal of machine unlearning is to remove the influence of the forget setDf from a trained model,
while preserving performance on the retain set Dr. Formally, we seek model parameters θ such that
the model’s predictions are independent of Df , yet its performance on Dr remains optimal.
However, these objectives are often in conflict: naively increasing the loss on Df can significantly
degrade utility onDr. To address this, we introduce a bi-level optimization framework that explicitly
separates the forgetting and utility objectives. The inner problem seeks to maximize forgetting and
decorrelate the influence of Df and Dr via a similarity penalty, while the outer problem restores
utility on Dr. The resulting bi-level optimization problem is:

min
θ∈Rd

Lr(θ) subject to θ ∈ arg max
θ′∈Rd

[Lf (θ
′)− β · Sim (∇θLf (θ

′),∇θLr(θ
′))] , (3)

where β > 0 controls the strength of the gradient decorrelation penalty. For ease of presentation,
we define

Φ(θ) := Lf (θ)− β · Sim
(
∇θLf (θ),∇θLr(θ)

)
. (4)

The formulation in equation 3 ensures that:

• The inner maximization emphasizes forgetting on Df while decorrelating from Dr.
• The outer minimization restores utility on Dr, subject to the constraint that forgetting has already

been enforced.

3.3 BI-LEVEL FORMULATION

We now explicitly separate the two objectives via bi-level optimization.

Inner Maximization (Forgetting and Decorrelation). The inner problem seeks parameters that
maximize the loss on the forget set while minimizing the similarity between the gradients of the
forget and retain losses. This is achieved by solving:

θ∗in = argmax
θ′

[Φ(θ′)] . (5)

Outer Minimization (Utility Restoration). Given the solution θ∗in from the inner problem, the
outer problem seeks to minimize the loss on the retain set:

θ∗ = arg min
θ←θ∗

in

Lr(θ). (6)

Stationarity Constraint. The bi-level structure enforces that the final model parameters θ∗ are
stationary points of the inner maximization objective, i.e., ∇θΦ(θ

∗) = 0.

3.4 PENALTY-BASED SINGLE-LEVEL REFORMULATION

Directly solving the bi-level optimization problem is computationally challenging, especially for
large-scale models, due to repeated inner maximization and higher-order derivatives computation.
To address this, we adopt a penalty-based single-level reformulation that transforms the bi-level
problem into a tractable unconstrained optimization.

Penalty Reformulation. We introduce a penalty term that enforces the stationarity condition of
the inner maximization as a soft constraint. The resulting objective is:

F (θ) = Lr(θ) + ρ ∥∇θΦ(θ)∥2 , (7)

where Φ(θ) = Lf (θ)−β ·Sim(∇θLf (θ),∇θLr(θ)) and ρ > 0 penalizes deviation from stationarity.
As ρ increases, the penalty term forces θ to approach the stationary point of the inner objective Φ(θ).
In the limit as ρ → ∞, any minimizer of F (θ) satisfies the original bi-level constraint ∇θΦ(θ) =
0. This formulation transforms a nested optimization into a tractable single-level objective while
preserving the hierarchical structure.

4
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3.5 PRACTICAL ALGORITHM AND IMPLEMENTATION

The penalty-based OFMU algorithm is designed for scalability and efficiency in large-scale deep
learning settings. Although the penalty reformulation converts the original bi-level problem into a
single-level objective, directly optimizing the full loss landscape can be unstable and computation-
ally inefficient. To address this, we adopt a two-loop optimization scheme that alternates between
maximizing forgetting and minimizing penalized retain loss. Here, we describe the motivation for
this design, its computational advantages, and the implementation details.

Motivation for Two-Loop Optimization. While the penalty-based reformulation enables direct
optimization of a single objective, the landscape of F (θ) = Lr(θ)+ρ∥∇θΦ(θ)∥2 can be highly non-
convex, especially for deep models. A naive approach may struggle to find good stationary points,
especially in the presence of conflicting gradient signals from forgetting and retention. The two-
loop scheme mitigates this issue by explicitly maximizing the inner objective Φ(θ), which captures
both the forget loss and the gradient decorrelation penalty, before each outer update. This design
has two key benefits: (i) it encourages the model to traverse regions of the parameter space that are
explicitly optimized for forgetting. (ii) it improves stability and convergence by warm-starting each
outer iteration from a locally optimized initialization.
Importantly, in the non-convex setting typical of deep learning, the theoretical guarantee is conver-
gence to a stationary point of the penalty objective F (θ). This point corresponds to a local minimum,
maximum, or saddle point. However, because the inner objective Φ(θ) is maximized using gradient
ascent, the algorithm is biased toward stationary points that are local maxima of the inner objective,
which aligns with the unlearning goal. This type of guarantee is the strongest possible in general
non-convex optimization and is standard in the literature for deep learning and LLMs.
In contrast, the original bi-level formulation requires fully solving the inner maximization to conver-
gence at each outer iteration, which is computationally prohibitive for large models. Our proposed
approach avoids this bottleneck while still enforcing the desired stationarity constraint. For example,
in LLMs, a full bi-level update may require thousands of inner steps or even retraining, whereas our
approach typically uses a small, fixed T (e.g., T = 5 or 10), dramatically reducing compute cost.

Two-Loop Optimization Scheme. At each outer iteration k, the algorithm alternates between:

1. Inner Loop (Forgetting Maximization): Starting from the current parameters θ(k), run T steps
of gradient ascent on the inner objective Φ(θ) to increase the forget loss while decorrelating it
from retain gradients:

θ′(t+1) = θ′(t) + ηin∇θΦ(θ
′(t)), t = 0, . . . , T − 1, (8)

where ηin is the inner learning rate and θ′(0) = θ(k). The final inner iterate θ(k)in = θ′(T ) serves as
the initialization for the outer loop.

2. Outer Loop (Utility Preservation with Penalty): The outer step minimizes the retain lossLr(θ)
while enforcing the stationarity condition of the inner objective Φ(θ). Formally, the update is
given by

θ(k+1) = θ
(k)
in − ηout∇θF (θ

(k)
in ), (9)

where ηout is the outer learning rate, and∇θF (θ
(k)
in ) = ∇θLr(θ

(k)
in ) + 2ρk∇2

θΦ(θ
(k)
in )∇θΦ(θ

(k)
in ).

Here, ρk is the penalty parameter at iteration k,∇θΦ is the gradient of the inner objective, and∇2
θΦ

is its Hessian. The second term, 2ρk∇2
θΦ∇θΦ, results from differentiating the term ρk∥∇θΦ(θ)∥2

with respect to θ, which requires computing a Hessian-vector product (see Appendix 7.7 for details
on its efficient computation via automatic differentiation).

Penalty Schedule and Practical Considerations. A growing penalty parameter gradually
strengthens the enforcement of the inner stationarity condition ∇θΦ(θ) = 0. In practice, we adopt
an increasing schedule ρk+1 > ρk: smaller values stabilize the early iterations, while larger values
amplify the term ρk∥∇θΦ(θ)∥2, ensuring that violations of stationarity become progressively more
costly. A formal justification of this property is provided later in Lemma 1.

Mini-Batch Stochastic Gradients. To ensure scalability, all gradients are approximated using
mini-batches sampled independently from Df and Dr denoted as Bf and Br, each of size B. The
stochastic gradient estimations ∇θLf (θ;Bf ) and ∇θLr(θ;Br) reduce the per-iteration computa-
tional cost from O(|D|) to O(B), thereby enabling training on large-scale datasets. While stochas-
ticity introduces variance into the gradient estimates, our two-loop formulation remains robust due

5
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Algorithm 1 Penalty-Based OFMU Bi-Level Unlearning

Require: Initial parameters θ(0), penalty schedule {ρk}Kk=0, regularization β > 0, learning rates
ηin, ηout, number of outer iterations K, number of inner steps T , batch size B

Require: Datasets: Df (forget set), Dr (retain set)
1: for k = 0, 1, . . . ,K − 1 do
2: (Inner maximization: Forgetting)
3: Initialize θ′(0) ← θ(k)

4: for t = 0, 1, . . . , T − 1 do
5: Sample mini-batch Bf ⊂ Df , Br ⊂ Dr of size B

6: Compute ∇θ′Lf (θ
′(t);Bf ) and ∇θ′Lr(θ

′(t);Br)
7: Compute Sim(∇θLf ,∇θLr)

8: Φ(θ′(t))← Lf (θ
′(t);Bf )− β · Sim(∇θLf ,∇θLr)

9: θ′(t+1) ← θ′(t) + ηin∇θ′Φ(θ′(t)) ▷ Gradient ascent
10: end for
11: (Outer minimization: Utility preservation with penalty)
12: Set θ(k)in ← θ′(T )

13: Sample mini-batch B′r ⊂ Dr of size B

14: Compute ∇θLr(θ
(k)
in ;B′r)

15: Compute ∇θΦ(θ
(k)
in ) and ∇2

θΦ(θ
(k)
in )∇θΦ(θ

(k)
in )

16: θ(k+1) ← θ
(k)
in − ηout

(
∇θLr(θ

(k)
in ;B′r) + 2ρk∇2

θΦ(θ
(k)
in )∇θΦ(θ

(k)
in )

)
▷ Gradient descent

17: Update penalty: ρk+1 ← Increase(ρk)
18: end for
19: Output: Final parameters θ(K)

to the penalty term ∥∇θΦ(θ)∥2, which regularizes the updates and stabilizes convergence. Algo-
rithm 1 formally presents the complete OFMU process, which terminates after a fixed number of
outer iterations or once the stationarity criterion is reached.

4 THEORETICAL ANALYSIS

We now provide theoretical analysis for the penalty-based bi-level formulation introduced in Sec-
tion 3. Our analysis establishes theoretical guarantees for the OFMU algorithm, showing that: (i)
the penalty reformulation enforces the stationarity condition on the forgetting objective, (ii) the in-
ner maximization step converges under standard assumptions, and (iii) the full two-loop algorithm
converges in both convex and non-convex settings. We further provide a separate analysis of the
computational complexity of OFMU in Appendix 7.4. These results provide the theoretical founda-
tion for OFMU and validate its design choices.

Penalty Reformulation Enforces Stationarity. We first show that the penalty-based single-level
reformulation of the bi-level unlearning problem enforces stationarity of the inner objective, i.e.,
∇θΦ(θ) = 0, as the penalty parameter ρ increases. This result, presented in following lemma with
the proof in Appendix 7.2.1 motivates the use of the penalty method in OFMU.
Lemma 1 (Stationarity via Penalty Reformulation). Let Lr and Φ be continuously differentiable
and bounded below. For any sequence {θ∗ρ} of minimizers of F (θ) = Lr(θ) + ρ∥∇θΦ(θ)∥2 with
ρ→∞, every accumulation point θ∗ satisfies ∇θΦ(θ

∗) = 0.

Convergence of the Inner Maximization Step. Next lemma, with the proof provided in Ap-
pendix 7.2.2 analyzes the convergence of the inner maximization loop, showing that gradient ascent,
which is used to maximize Φ(θ) achieves sublinear convergence in the convex setting.
Lemma 2 (Convergence Inner Maximization). Let Φ(θ) be convex and differentiable with L-
Lipschitz continuous gradient. Then, applying T steps of gradient ascent: θ′(t+1) = θ′(t) +
ηin∇Φ(θ′(t)) with step size 0 < ηin ≤ 1/L yields the bound:

Φ(θ∗in)− Φ(θ′(T )) ≤ ∥θ
∗
in − θ′(0)∥2

2Tηin
,

where θ∗in = argmaxθ Φ(θ).

6
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Convergence of the Full Two-Loop Algorithm. Finally, we establish convergence guarantees for
the penalty-based OFMU algorithm in both convex and non-convex regimes in the following lemma
with the proof provided in Appendix 7.3.

Lemma 3 (Convergence of Penalty-Based OFMU). Under Assumptions 7.3, the penalty-based
OFMU algorithm converges in both convex and non-convex settings:

• Convex case: If Lr(θ) and Φ(θ) are convex and L-smooth, then after K outer iterations with T
inner steps per iteration, the suboptimality satisfies

F (θ(K))− F ∗ ≤ O
(

1
K

)
+O

(
K
T 2

)
.

Setting K,T = O(1/ϵ) ensures ϵ-optimality of the penalty objective.
• Non-convex case: If either Lr(θ) or Φ(θ) is non-convex but L-smooth, then OFMU converges to

an ϵ-stationary point of F (θ), with the expected squared gradient norm bounded by

min
k=0,...,K−1

E∥∇F (θ(k))∥2 ≤ O
(

1
K

)
+O

(
1
T

)
+O(σ2),

where σ2 captures the variance of stochastic gradients.

5 EXPERIMENTS

In this section, we describe the experimental setup and evaluate our proposed method, OFMU,
on both language and vision tasks to assess its effectiveness and generality. Our experiments are
designed to examine three key aspects: (i) whether OFMU achieves strong unlearning efficacy while
preserving model utility in LLMs; (ii) how OFMU compares against state-of-the-art unlearning
baselines across different benchmarks; and (iii) whether OFMU extends effectively to non-language
tasks such as vision-based classification.

5.1 EXPERIMENTAL SETUP

We conduct all experiments on two NVIDIA H100 80GB GPUs and two NVIDIA H100 NVL 96GB
GPUs. For LLMs, we consider two widely used benchmarks: (i) TOFU (Maini et al., 2024b), a
synthetic QA dataset on fictitious authors designed to test entity-level unlearning; (ii) WMDP (Li
et al., 2024), which evaluates unlearning in high-stakes domains such as biosecurity, cybersecurity,
and chemical safety. For vision tasks, we use CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton,
2009) and evaluate OFMU under two settings: (i) class-wise forgetting, where all examples from
one or more classes are removed and (ii) random forgetting, where a randomly selected subset
spanning all classes is removed. Sections 5.2 and 5.3 present results on the TOFU and CIFAR-10
benchmarks respectively, while results for WMDP and CIFAR-100, together with complete details
of the experimental setup, evaluation metrics, baselines, and models, are deferred to Appendix 7.5.

5.2 TOFU RESULTS

For TOFU benchmark, we evaluate OFMU across three forgetting scenarios: forget01,
forget05, and forget10, which correspond to removing 1%, 5%, and 10% of
the dataset, respectively, using two model architectures: LLaMA-2-7B-hf-chat1 and
LLaMA-3.2-1B-Instruct2. We report performance using three key metrics: forget quality
(FQ), model utility (MU), and forget truth ratio (FTR), where higher values indicate more effective
forgetting, better utility retention, and stronger reliability of unlearned outputs, respectively.
Forgetting Quality. On both architectures, OFMU achieves strong FQ, comparable to or exceeding
preference-based methods such as NPO (Bourtoule et al., 2021). In forget01, OFMU achieves
slightly lower FQ than NPO on LLaMA-2 but matches or surpasses it on LLaMA-3.2, while main-
taining stronger MU and FTR. This highlights that our framework prioritizes balance rather than
over-optimizing a single metric. Unlike Gradient Ascent (GA) (Thudi et al., 2022) and Gradient
Difference (GD) (Maini et al., 2024a), which aggressively maximize the forget loss but collapse to
near-zero utility, OFMU enforces forgetting without destabilizing updates.
Utility Preservation. MU is where many baselines diverge. Methods like RMU (Li et al., 2024) pre-
serve utility well but at the cost of incomplete forgetting, while GA achieves near-perfect forgetting

1https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
2https://huggingface.co/open-unlearning/tofu_Llama-3.2-1B-Instruct_full
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Figure 2: Overall normalized performance of unlearning methods on LLaMA-2 and LLaMA-3 under
different forget scenarios (1%, 5%, 10%). The overall score is computed by normalizing FQ, MU,
and FTR and then averaging them. Higher scores indicate better balance between forgetting efficacy
and utility preservation. Detail about calculation is provided in Appendix 7.5.3

but eliminates MU entirely. In forget05, although GA attains higher raw FQ, its utility com-
pletely collapses (MU = 0.00), whereas OFMU sustains competitive FQ with substantially higher
MU (0.65 on LLaMA-2). Similarly, in forget10, OFMU preserves robustness across all metrics,
while GA and GD sacrifice utility entirely, and NPO degrades sharply. Overall, OFMU maintains
MU close to the Retain baseline while still enforcing strong forgetting.
Truth Ratio. FTR further confirms OFMU’s balanced behavior. Whereas GA and GD degrade
truthfulness due to unstable optimization, and NPO variants sometimes inflate FTR by overfitting
to retain data. OFMU consistently maintains high FTR across all scenarios. This indicates that
unlearned models continue to provide reliable responses, rather than memorized or distorted ones.

Table 1: Performance of unlearning methods on TOFU using LLaMA-2-7B-hf-chat and
LLaMA-3.2-1B-Instruct under different forget scenarios.

LLaMA-2-7B-hf-chat LLaMA-3.2-1B-Instruct
Method forget01 forget05 forget10 forget01 forget05 forget10

FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑
Finetuned 1.27e-03 0.63 0.53 5.87e-14 0.63 0.51 4.35e-25 0.63 0.52 0.01 0.60 0.47 1.33e-13 0.60 0.47 1.66e-21 0.60 0.48
Retrain 1.00 0.63 0.68 1.00 0.63 0.67 1.00 0.61 0.68 1.00 0.60 0.65 1.00 0.60 0.64 1.00 0.59 0.63
GradAscent 1.88e-04 0.55 0.36 1.94e-119 0.00 8.82e-96 1.06e-239 0.00 2.21e-32 0.27 0.33 0.59 1.94e-119 0.00 2.52e-23 1.06e-239 0.00 2.25e-18
GradDiff 3.02e-03 0.57 0.41 1.94e-119 0.56 4.14e-95 1.80e-229 0.58 1.46e-07 0.77 0.43 0.57 1.94e-119 0.53 3.87e-34 1.06e-239 0.49 3.53e-27
IdkDPO 0.10 0.56 0.67 4.02e-06 0.04 0.67 5.42e-13 0.04 0.64 0.01 0.51 0.60 1.12e-05 0.07 0.62 4.64e-12 0.23 0.60
NPO 0.40 0.58 0.65 0.09 0.53 0.71 0.42 0.54 0.73 0.92 0.56 0.66 0.14 0.45 0.70 0.02 0.46 0.70
SimNPO 1.27e-03 0.58 0.41 1.06e-106 0.60 3.94e-05 1.47e-198 0.60 3.17e-04 0.58 0.46 0.55 5.01e-100 0.58 4.19e-03 2.47e-203 0.54 1.07e-05
RMU 0.40 0.62 0.64 9.59e-10 0.02 0.81 6.92e-21 0.03 0.81 0.16 0.55 0.70 4.87e-10 0.58 0.77 3.15e-15 0.59 0.76
OFMU (ours) 0.42 0.63 0.68 0.13 0.65 0.82 0.41 0.61 0.76 0.93 0.61 0.74 0.15 0.61 0.75 0.43 0.60 0.76

To capture a holistic view of unlearning efficacy, we aggregate the three
core metrics — FQ, MU, FTR into a single normalized score (Figure 2).

Figure 3: Overall normalized performance
of unlearning methods on CIFAR-10. The
score is obtained by normalizing four key
metrics—UA, RA, TA, and MIA Efficacy—
within each scenario and averaging them into
a unified value. Details of the calculation are
given in Appendix 7.5.3.

This unified view highlights the balance between
forgetting and retention across different forget sce-
narios and shows how OFMU strikes the balance to
achieve overall better results in unlearning.

5.3 CIFAR-10 RESULTS

For CIFAR-10, we evaluate OFMU under two set-
tings: class-wise forgetting, where an entire class is
removed, and random forgetting, where 10% of the
training data is randomly selected as the forget set.
The results are summarized in Table 2. We report
Unlearning Accuracy (UA), Retain Accuracy (RA),
Total Accuracy (TA), and Membership Inference At-
tack efficacy (MIA-Efficacy), where higher values
indicate better unlearning performance and robust-
ness.
Class-wise Forgetting. Retraining from scratch
achieves perfect unlearning (100% UA) and strong
overall utility (94.80% RA, 91.82% TA), but is com-
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putationally infeasible. Among approximate methods, Fisher Forget (FF) (Golatkar et al., 2021) and
Influence Unlearning (IU) (Mehta et al., 2022) preserve utility reasonably well, with IU in particular
showing the highest UA (89.31%). However, IU is computationally expensive, requiring repeated
influence function estimations and parameter adjustments, which makes it impractical for LLMs
with billions of parameters. In contrast, OFMU achieves a balanced trade-off: 81.51% UA, 93.51%
RA, and 86.88% TA. While its UA is slightly lower than IU, OFMU generalizes more effectively, as
shown by its higher MIA-Efficacy (59.76). This indicates that OFMU not only forgets the targeted
class but also improves robustness against membership inference attacks, a critical security measure.
Unlike IU, OFMU scales naturally to deep non-convex settings without prohibitive computational
cost, making it more suitable for practical deployment in LLMs.
Random Forgetting. The random forgetting task is more challenging, since the forget set is dis-
persed rather than concentrated. Retraining achieves the highest UA (6.79%), while most approx-
imate methods collapse, with UA close to zero (e.g., GA: 0.78%, FF: 0.51%). These methods
struggle to generalize forgetting uniformly across the randomly distributed forget samples, high-
lighting their sensitivity to the structure of the forget set. OFMU achieves 7.71% UA, slightly out-
performing retraining. While its RA (92.25%) and TA (88.61%) are marginally lower than retrain or
fine-tuning, OFMU maintains a better balance by reducing susceptibility to membership inference
(MIA-Efficacy: 3.36 versus 1.21 and 1.87 for FF and GA, respectively). This shows that OFMU
enforces forgetting more uniformly, even in the scattered random setting, without collapsing utility.

Table 2: Performance of unlearning methods on CIFAR-10 under class-wise and random forgetting.
Values show mean ± standard deviation over 5 runs.

Class-wise Forgetting Random Forgetting (10% forget set)
Method UA ↑ RA ↑ TA ↑ MIA ↑ UA ↑ RA ↑ TA ↑ MIA ↑
Retrain 100.00± 0.0 94.80± 0.2 91.82± 0.3 100.00± 0.0 6.79± 0.3 100.00± 0.0 92.04± 0.1 16.08± 0.5
Finetuned (FT) 42.43± 2.1 94.19± 0.5 94.61± 0.6 56.51± 2.8 1.82± 0.2 99.54± 0.2 92.84± 0.4 5.66± 0.4
GradAscent (GA) 37.11± 2.2 86.52± 1.7 82.41± 2.0 55.03± 2.7 0.78± 0.3 99.38± 0.3 92.10± 0.7 1.87± 0.4
Fisher Forget (FF) 79.71± 1.4 94.12± 0.4 93.96± 0.6 46.38± 2.4 0.51± 0.2 88.03± 1.8 87.70± 1.9 1.21± 0.4
Influence Unlearning (IU) 89.31± 1.1 92.19± 0.7 90.63± 1.0 55.22± 2.5 0.62± 0.3 99.39± 0.3 94.43± 0.6 1.51± 0.3
OFMU (ours) 81.51± 1.3 93.51± 0.6 86.88± 1.2 59.76± 2.4 7.71± 0.4 92.25± 0.9 88.61± 1.1 3.36± 0.6

The CIFAR-10 results further underscore the robustness of OFMU. Whereas existing baselines
overemphasize either unlearning or retention, OFMU achieves stable performance across both sce-
narios, validating the advantages of its hierarchical optimization design. As shown in Figure 3, we
also report the overall normalized score for CIFAR-10, analogous to the TOFU benchmark. In the
class-wise setting, Influence Unlearning (IU) attains higher unlearning accuracy, but its heavy com-
putational cost limits practicality. In the more challenging random forgetting scenario, where most
baselines collapse, OFMU achieves the best overall performance. These results confirm that OFMU
maintains a consistent balance across metrics, achieving effective and robust unlearning without
sacrificing generalization, unlike methods that over-optimize for a single objective.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced OFMU, a penalty-based bi-level framework for machine unlearning that
explicitly prioritizes forgetting before utility preservation. By combining a scalable two-loop algo-
rithm with a similarity-aware penalty, OFMU achieves state-of-the-art trade-offs across language
and vision benchmarks. Our theoretical analysis provides convergence guarantees in convex and
non-convex regimes, and empirical results consistently demonstrate improved stability, robustness
to hard-to-forget samples, and stronger resilience against membership inference attacks compared
to existing approaches.
Although OFMU makes significant progress, several directions remain open. First, extending
OFMU to continual unlearning scenarios, where multiple requests arrive sequentially, would en-
hance its applicability. Second, investigating adaptive penalty schedules and alternative gradient
similarity measures could further improve robustness. Finally, applying OFMU to even larger foun-
dation models and diverse modalities such as speech and multimodal learning presents a promising
avenue for future research.
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adversarial perspective on machine unlearning for ai safety. arXiv preprint arXiv:2409.18025,
2024.

7 APPENDIX

7.1 NOTATION SUMMARY

• θ ∈ Rd: model parameters.
• D = Dr ∪ Df : full dataset.
• Dr: retain set (data to preserve).
• Df : forget set (data to unlearn).
• ℓ(·, ·): base loss function (e.g., cross-entropy).
• Lr(θ): empirical loss on the retain set.
• Lf (θ): empirical loss on the forget set.
• Φ(θ) = Lf (θ)− β · Sim(gf , gr): inner maximization objective.
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• F (θ) = Lr(θ) + ρ∥∇θΦ(θ)∥2: penalty-based reformulated objective.
• ∇θLr(θ): gradient of the retain loss.
• ∇θLf (θ): gradient of the forget loss.
• Sim(∇θLf (θ),∇θLr(θ)): cosine similarity between ∇θLf (θ) and ∇θLr(θ).
• ∇2

θΦ(θ): Hessian of the inner objective.
• Hv: Hessian–vector product (Pearlmutter trick).
• β > 0: regularization parameter for similarity-aware decorrelation.
• ρ > 0: penalty parameter enforcing stationarity.
• ηin: learning rate for the inner loop.
• ηout: learning rate for the outer loop.
• T : number of inner loop steps per outer iteration.
• K: number of outer iterations.
• B: mini-batch size.
• θ

(k)
in : parameters after inner loop at iteration k.

• θ(k): parameters after outer loop at iteration k.
• FQ: Forget Quality (lower residual accuracy on forget set).
• MU: Model Utility (performance on retain set).
• FTR: Forget Truth Ratio (faithfulness of unlearning).
• UA: Unlearning Accuracy (CIFAR evaluation).
• RA: Retain Accuracy.
• TA: Total Accuracy.
• MIA-Efficacy: Membership Inference Attack efficacy.
• UDI(x): Unlearning Difficulty Index for sample x.
• ∥∇θLforget(x)∥2: gradient norm of forget loss on x.
• ∆ℓ(x): loss margin to the target threshold (used in UDI).
• τ(·, ·): Spearman correlation coefficient.

7.2 LEMMA PROOFS

7.2.1 PROOF OF LEMMA 1
Proof. Let θ∗ρ be a minimizer of F (θ) = Lr(θ) + ρ∥∇θΦ(θ)∥2 for a given ρ > 0. Assume Lr and
Φ are continuously differentiable and bounded below.
Suppose, for contradiction, that there exists an accumulation point θ∗ of the sequence {θ∗ρ} as ρ →
∞ such that ∇θΦ(θ

∗) ̸= 0. Then, for sufficiently large ρ, the penalty term ρ∥∇θΦ(θ
∗
ρ)∥2 would

dominate F (θ∗ρ), causing it to diverge to infinity, which contradicts the assumption that F (θ∗ρ) is
minimized and bounded below.
Therefore, it must be that ∇θΦ(θ

∗) = 0 for any accumulation point θ∗ of the minimizers as ρ →
∞.

7.2.2 PROOF OF LEMMA 2
Proof. Let d(t) := θ∗in − θ′(t). By convexity of Φ, for any θ and θ∗,

Φ(θ∗) ≤ Φ(θ) + ⟨∇Φ(θ), θ∗ − θ⟩, (10)

so
Φ(θ∗in)− Φ(θ′(t)) ≤ ⟨∇Φ(θ′(t)), d(t)⟩. (11)

The update rule gives:
d(t+1) = d(t) − ηin∇Φ(θ′(t)), (12)

so
∥d(t+1)∥2 = ∥d(t)∥2 − 2ηin⟨d(t),∇Φ(θ′(t))⟩+ η2in∥∇Φ(θ′(t))∥2. (13)

Using the convexity bound above, we have:

⟨d(t),∇Φ(θ′(t))⟩ ≥ Φ(θ∗in)− Φ(θ′(t)). (14)
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For L-smooth convex functions, it yields:

∥∇Φ(θ)∥2 ≤ 2L(Φ(θ∗in)− Φ(θ)). (15)
Substituting the two bounds from equation 14 and equation 15 into equation 13, we have:

∥d(t+1)∥2 ≤ ∥d(t)∥2 − 2ηin
(
Φ(θ∗in)− Φ(θ′(t))

)
+ 2η2inL

(
Φ(θ∗in)− Φ(θ′(t))

)
. (16)

This simplifies to

∥d(t+1)∥2 ≤ ∥d(t)∥2 − 2ηin(1− Lηin)(Φ(θ
∗
in)− Φ(θ′(t))). (17)

Summing over t = 0 to T − 1 yields:

∥d(T )∥2 ≤ ∥d(0)∥2 − 2ηin(1− Lηin)

T−1∑
t=0

(Φ(θ∗in)− Φ(θ′(t))). (18)

Since ∥d(T )∥2 ≥ 0, we obtain:
T−1∑
t=0

(Φ(θ∗in)− Φ(θ′(t))) ≤ ∥d(0)∥2

2ηin(1− Lηin)
. (19)

Thus, the average suboptimality is give by:

min
t
(Φ(θ∗in)− Φ(θ′(t))) ≤ ∥θ′(0) − θ∗in∥2

2ηin(1− Lηin)T
. (20)

For ηin ≤ 1/L, 1− Lηin ≥ 1/2, we achieve:

Φ(θ∗in)− Φ(θ′(T )) ≤ ∥θ
′(0) − θ∗in∥2

2ηinT
. (21)

7.3 CONVERGENCE GUARANTEES FOR PENALTY-BASED OFMU

In this section, we rigorously analyze the convergence properties of the penalty-based OFMU al-
gorithm for bi-level unlearning. We consider both convex and non-convex settings, reflecting the
diversity of loss landscapes encountered in practice. Our analysis is grounded in the following prob-
lem setup and assumptions.

Problem Setup. We study the optimization of the penalty-based objective

F (θ) = Lr(θ) + ρ∥∇θΦ(θ)∥2, (22)

where Lr(θ) is the retain loss, Φ(θ) is the inner (forgetting) objective, and ρ > 0 is the penalty
parameter. The algorithm alternates between T steps of gradient ascent on Φ(θ) (inner loop) and a
single gradient descent step on F (θ) (outer loop).

Assumptions. Throughout our analysis, we assume:

• Lr(θ) and Φ(θ) are continuously differentiable.
• The gradients ∇θLr(θ) and ∇θΦ(θ) are L-Lipschitz continuous.
• The penalty parameter ρ is non-decreasing and bounded below by ρmin > 0.
• The inner and outer step sizes satisfy ηin ≤ 1/L and ηout ≤ 1/LF , where LF is the

Lipschitz constant of ∇F (θ).

Additional assumptions specific to the convex or non-convex setting will be stated in the correspond-
ing subsections.
We now present detailed convergence analyses for both the convex and non-convex cases.

7.3.1 CONVERGENCE ANALYSIS: CONVEX CASE

We first analyze the convergence of the penalty-based OFMU algorithm under the assumption that
both the retain loss Lr(θ) and the inner objective Φ(θ) are convex and L-smooth. Our goal is to
rigorously bound the suboptimality of the penalty-based objective F (θ) after K outer iterations,
each involving T steps of gradient ascent on Φ(θ).
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Additional Assumptions (Convex Case).
• Lr(θ) and Φ(θ) are convex.

Algorithmic Steps. At each outer iteration k:

1. Inner maximization: Starting from θ(k), perform T steps of gradient ascent on Φ(θ) with
step size ηin ≤ 1/L to obtain θ

(k)
in .

2. Outer minimization: Update θ(k+1) = θ
(k)
in − ηout∇F (θ

(k)
in ), where ηout ≤ 1/LF .

Step 1: Inner Maximization Error. By Lemma 2, after T steps of gradient ascent on the convex,
L-smooth function Φ, we have

Φ(θ∗in)− Φ(θ
(k)
in ) ≤ ∥θ

∗
in − θ(k)∥2

2Tηin
, (23)

where θ∗in = argmaxθ Φ(θ). This quantifies the inexactness of the inner maximization.

Step 2: Outer Minimization with Inexact Inner Solution. The outer update is performed using
θ
(k)
in as input. Since F (θ) is convex and LF -smooth, the standard inexact gradient descent analysis

yields:
F (θ(k+1)) ≤ F (θ

(k)
in )− ηout

2
∥∇F (θ

(k)
in )∥2. (24)

Summing over k = 0 to K − 1 and rearranging, we obtain

1

K

K−1∑
k=0

∥∇F (θ
(k)
in )∥2 ≤ 2(F (θ(0))− F ∗)

Kηout
, (25)

where F ∗ is the minimum value of F .

Step 3: Bounding the Total Suboptimality. Due to the inexactness of the inner maximization,
the update direction is not the true minimizer of the inner problem. The error in the outer update can
be bounded in terms of the inner error. Specifically, the gradient error at each step is

δ(k) := ∇F (θ
(k)
in )−∇F (θ(k)), (26)

and, by smoothness, ∥δ(k)∥ ≤ LF ∥θ(k)in − θ(k)∥. Since ∥θ(k)in − θ(k)∥ is controlled by the inner
maximization error, and by Lemma 2 this error is O(1/T ), we have ∥δ(k)∥2 = O(1/T 2). Thus, the
cumulative error over K steps scales as O(K/T 2).

Step 4: Final Rate and Parameter Choices. Combining the above, the suboptimality after K
iterations is bounded by

F (θ(K))− F ∗ ≤ ∥θ
(0) − θ∗∥2

2Kηout
+O

(
K

T 2

)
. (27)

To achieve O(ϵ) suboptimality, it suffices to choose K = O(1/ϵ) and T = O(1/ϵ).
The penalty-based OFMU algorithm, under convexity and smoothness assumptions, converges to
an ϵ-optimal solution of the penalty objective at a sublinear rate, with explicit dependence on the
number of outer and inner iterations. The analysis leverages Lemma 1 for stationarity enforcement
and Lemma 2 for the inner maximization rate.

7.3.2 CONVERGENCE ANALYSIS: NON-CONVEX CASE

We now analyze the convergence of the penalty-based OFMU algorithm in the non-convex setting,
where either Lr(θ) or Φ(θ) (or both) may be non-convex. In this regime, global optimality is
generally intractable, so our goal is to establish convergence to an ϵ-stationary point of the penalty
objective F (θ).

Assumptions (Non-Convex Case).
• Lr(θ) and Φ(θ) are differentiable (possibly non-convex).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 1: Inner Loop Approximation. By standard results for stochastic gradient ascent on L-
smooth non-convex functions (see, e.g., Ghadimi and Lan, 2013), after T steps we have

1

T

T−1∑
t=0

E
[
∥∇Φ(θ′(t))∥2

]
≤ 2(Φ∗ − Φ(θ′(0)))

ηinT
+ ηinLσ

2, (28)

where Φ∗ is the maximum value of Φ. Thus, the expected squared gradient norm at the final inner
iterate satisfies

E[∥∇Φ(θ(k)in )∥2] ≤ O
(
1

T

)
+O(σ2). (29)

Step 2: Outer Loop Descent and Stationarity. The outer update is θ(k+1) = θ
(k)
in −ηout∇F (θ

(k)
in ).

Since F is LF -smooth, the standard descent lemma gives

F (θ(k+1)) ≤ F (θ
(k)
in )− ηout

2
∥∇F (θ

(k)
in )∥2. (30)

Summing over K iterations and rearranging, we obtain

1

K

K−1∑
k=0

E
[
∥∇F (θ

(k)
in )∥2

]
≤ 2(F (θ(0))− F ∗)

Kηout
. (31)

Step 3: Explicit Dependence on Inner Loop Error. The gradient of the penalty objective is

∇F (θ) = ∇Lr(θ) + 2ρ∇2Φ(θ)∇Φ(θ). (32)

Using the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 and assuming ∥∇Lr(θ)∥ ≤ Gr and ∥∇2Φ(θ)∥ ≤
H , we have

E
[
∥∇F (θ

(k)
in )∥2

]
≤ 2G2

r + 8ρ2H2 · E
[
∥∇Φ(θ(k)in )∥2

]
. (33)

Plugging in the bound from the inner loop,

E
[
∥∇F (θ

(k)
in )∥2

]
≤ 2G2

r + 8ρ2H2

(
2(Φ∗ − Φ(θ′(0)))

ηinT
+ ηinLσ

2

)
. (34)

Step 4: Final Convergence Guarantee. Averaging over K outer steps, we obtain the explicit
rate:

min
k=0,...,K−1

E
[
∥∇F (θ

(k)
in )∥2

]
≤ 2G2

r +
16ρ2H2(Φ∗ − Φ(θ′(0)))

ηinT
+ 8ρ2H2ηinLσ

2 (35)

and, consequently,

min
k

E[F (θ(k+1))− F ∗] ≤ ηout

2

(
2G2

r +
16ρ2H2(Φ∗ − Φ(θ′(0)))

ηinT
+ 8ρ2H2ηinLσ

2

)
. (36)

This result shows that the penalty-based OFMU algorithm converges to an ϵ-stationary point of the
penalty objective, with explicit dependence on the number of outer and inner iterations, the penalty
parameter, and the variance of the stochastic gradients. This scaling is standard for non-convex
first-order methods and justifies the practical effectiveness of the approach for deep models.

7.4 COMPUTATIONAL COMPLEXITY AND PRACTICAL EFFICIENCY

This section provides a formal yet practical analysis of the computational cost of OFMU and ex-
plains why the method remains scalable despite introducing a bi-level structure. In particular,
we highlight two design choices—(i) the small number of inner steps T , and (ii) the use of Hes-
sian–vector products (HVPs)—that keep our overall cost close to standard gradient based single-
loop optimization while still enforcing the hierarchical structure introduced in Section 3.

7.4.1 PER-ITERATION COST OF THE INNER AND OUTER LOOPS

Let d denote the number of trainable parameters, B the minibatch size, and (K,T ) the number of
outer and inner iterations, respectively. A standard forward–backward computation on a minibatch
incurs

Cfb = Θ(Bd)

floating-point operations. This is the dominant unit of cost in both the inner and outer loops.
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Inner loop cost. Each inner step requires one gradient of Φ(θ), which itself evaluates∇Lf ,∇Lr,
and their cosine similarity. All of these operations share the same forward–backward structure, so
each inner step costs Θ(Bd), yielding

Cinner = Θ(TBd).

Outer loop cost. The outer step requires: (i) a gradient of Lr(θ) and (ii) one HVP term
∇2Φ(θ)∇Φ(θ) arising from the penalty objective (Section 3). The HVP is computed via a Pearl-
mutter’s method (Appendix 7.7) and therefore costs the same order as a gradient with detail given
in next section:

CHVP = Θ(Bd).

Thus the outer step costs
Couter = Θ(Bd).

7.4.2 WHY HESSIAN–VECTOR PRODUCTS ARE COMPUTATIONALLY CHEAP

A naı̈ve Hessian computation requires O(d2) memory and time, which is infeasible for modern
LLMs. However, OFMU uses the Hessian only through the vector product

∇2Φ(θ) v,

which can be implemented using Pearlmutter’s method (Appendix 7.7). This trick computes Hv
using one additional backward pass without forming the matrix. Consequently,

CHVP ≈ Cgrad

up to a small constant factor. Therefore, the HVP introduces negligible overhead compared to
standard fine-tuning, and its inclusion does not alter the asymptotic scaling of the algorithm.

7.4.3 WHY THE INNER LOOP IS COMPUTATIONALLY LIGHT

Unlike classical bi-level optimization, which often requires the inner problem to converge nearly to
optimality at each outer iteration, OFMU relies on the penalty-based reformulation from Section 3.
This has two practical effects: 1. The inner loop does not need to converge; it only needs to make
progress toward reducing the violation of the stationarity condition ∇Φ(θ) = 0. 2. A small, fixed
inner budget T (e.g., T = 5 or 10) is sufficient, because the penalty term in the outer loop completes
the enforcement of inner-objective stationarity. Thus, T remains small across all experiments (see
Appendix 7.5.9), ensuring that OFMU’s additional cost remains a lightweight correction rather than
a full inner optimization.

7.4.4 TOTAL COMPLEXITY

Combining both loops, the total cost over K outer iterations is

COFMU = K
(
Cinner + Couter

)
= Θ

(
K(T + 1)Bd

)
= Θ(KTBd),

where typically T ≪ K and T is a small constant. In practice, T contributes negligibly to runtime,
and the cost of OFMU is close to that of standard gradient based methods. Table 3 summarizes the
per-iteration computational complexity of different baselines compared to OFMU.

7.5 AUXILIARY RESULTS AND ABLATION STUDY

Here we present additional results and ablation studies to support the main findings. These include
experiments on the WMDP and CIFAR-100 benchmarks, robustness to hard target samples, eval-
uation sensitivity, and deeper analysis of OFMU’s design. Together, these analyses validate the
generality and stability of OFMU across domains, architectures, and unlearning scenarios.

7.5.1 WMDP RESULTS

Table 4 reports QA accuracy on the WMDP benchmark across three domains: Biosecurity,
Cybersecurity, and the general-purpose MMLU subset. For MMLU, higher accuracy reflects
better utility preservation. For the WMDP domains, we report Unlearning Efficacy as 1−Accuracy,
where higher values indicate stronger removal of hazardous knowledge.
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Table 3: Per-iteration computational complexity of OFMU compared to standard unlearning base-
lines. Here K denotes the number of steps, B the batch size, d the parameter count, and T the
number of inner penalty updates.

Method Complexity
Gradient Ascent (GA) Θ(KBd)
GradDiff Θ(KBd)
NPO / SimNPO Θ(KBd)
RMU Θ(KBd)
OFMU (ours) Θ(KTBd)

Overall Performance. OFMU consistently outperforms all baselines across the WMDP domains
and MMLU subset, achieving 72.8% unlearning efficacy on Biosecurity, 70.4% on Cybersecurity,
and 74.6% utility accuracy on MMLU. While the performance gains over the strongest baseline
(RMU) are moderate (+1.5 on Biosecurity, +2.1 on Cybersecurity, +0.4 on MMLU), these improve-
ments are consistent and statistically significant (p < 0.05). This stability highlights OFMU’s
effectiveness in avoiding the degradations exhibited by scalarized or overly aggressive forgetting
methods.
Comparison with Preference-Based Methods. NPO (Bourtoule et al., 2021) and SimNPO (Meng
et al., 2024) achieve competitive forgetting quality in other benchmarks but often underperform
on WMDP. Their unlearning efficacy lags behind OFMU by 4.0 and 3.9 points on Biosecurity,
and by 5.5 and 4.2 points on Cybersecurity, respectively. This demonstrates that while preference-
based optimization can guide forgetting effectively, it often harms utility in specialized domains. By
contrast, OFMU’s hierarchical formulation ensures that utility is actively restored after forgetting,
enabling it to retain strong reasoning capabilities on safety-critical domains.
Comparison with RMU. RMU performs better than NPO variants, particularly in Biosecurity
(71.3%). However, RMU still falls short of OFMU, highlighting that methods which prioritize util-
ity preservation tend to leave residual traces of the forget set, leading to incomplete erasure. OFMU
achieves higher unlearning efficacy, showing that stability and efficacy are not mutually exclusive
when optimization is structured hierarchically.

Table 4: Performance of unlearning methods on the WMDP benchmark. For Biosecurity and Cy-
bersecurity, higher values indicate better unlearning efficacy (1 − Accuracy). For MMLU, higher
accuracy indicates stronger utility preservation. Values show mean± standard deviation over 5 runs.

Method Bio Unlearning ↑ Cyber Unlearning ↑ MMLU Utility ↑
Retrain 78.6± 0.3 76.5± 0.4 82.4± 0.3
RMU 71.3± 0.4 68.3± 0.5 74.2± 0.3
NPO 68.8± 0.5 64.9± 0.6 72.8± 0.4
SimNPO 68.9± 0.4 66.2± 0.5 73.3± 0.4
OFMU (ours) 72.8± 0.3 70.4± 0.4 74.6± 0.3

On Biosecurity and Cybersecurity, where specialized reasoning is crucial, OFMU achieves the
largest margins, suggesting that its similarity-aware penalty is particularly effective in preserving
domain-specific knowledge while enforcing unlearning. - On MMLU, OFMU’s gains are smaller
but consistent, indicating that our framework maintains general reasoning skills rather than overfit-
ting to narrow benchmarks.

7.5.2 CIFAR-100 RESULTS

We further evaluate unlearning methods on CIFAR-100, which is considerably more challenging
than CIFAR-10 due to its fine-grained class structure and higher inter-class similarity. As with
CIFAR-10, we report results under two settings: class-wise forgetting (removing all samples of one
class) and random forgetting (removing 10% of training samples at random). The results are summa-
rized in Table 5. Class-wise Forgetting. Retraining once again achieves the best possible unlearning
(100% UA) while preserving high RA and TA. Among approximate methods, Influence Unlearn-
ing (IU) demonstrates competitive UA but incurs significant computational cost. Fisher Forget (FF)
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and fine-tuning (FT) preserve utility but fail to fully erase the target class. Gradient Ascent (GA)
collapses overall utility, reflecting instability. By contrast, OFMU achieves 74.1% UA, 71.9% RA,
and 69.3% TA, balancing forgetting efficacy with stable retain performance. Importantly, OFMU
also outperforms all baselines in MIA-Efficacy (48.2), highlighting its ability to resist membership
inference even in high-class-count settings. Random Forgetting. Random forgetting is particularly
challenging in CIFAR-100 because the forget set is highly dispersed across fine-grained classes.
Most approximate methods collapse to near-zero UA, while retraining provides an upper bound
(5.3% UA). OFMU achieves 6.7% UA, slightly exceeding retraining, while maintaining compet-
itive RA (70.2%) and TA (67.8%). Despite the inherently low UA values, OFMU yields stronger
robustness to membership inference (2.8 MIA vs. < 2.0 for most baselines), showing that its updates
generalize better across scattered samples.

Table 5: Performance of unlearning methods on CIFAR-100 under class-wise and random for-
getting. UA: Unlearning Accuracy, RA: Retain Accuracy, TA: Test Accuracy, MIA: Membership
Inference Attack Efficacy. Random forgetting uses a 10% forget set.

Class-wise Forgetting Random Forgetting (10% forget set)
Method UA ↑ RA ↑ TA ↑ MIA ↑ UA ↑ RA ↑ TA ↑ MIA ↑
Retrain 100.00 72.4 70.5 100.00 5.3 72.8 71.1 14.2
Finetuned (FT) 32.6 71.9 72.2 41.7 1.2 72.1 71.5 3.9
GradAscent (GA) 28.4 65.8 64.1 39.2 0.6 71.7 70.2 1.1
Fisher Forget (FF) 65.7 71.2 70.9 37.5 0.4 62.1 61.8 0.9
Influence Unlearning (IU) 70.3 69.8 68.5 44.9 0.7 71.5 71.0 1.6
OFMU (ours) 74.1 71.9 69.3 48.2 6.7 70.2 67.8 2.8

Figure 4: Embedding similarity with the retrain
model for easy vs. hard samples. Easy samples
correspond to instances where the base model
had low initial confidence, while hard sam-
ples are high-confidence, entangled instances.
Scores are computed as cosine similarity of
embeddings with a retrained reference model.
OFMU maintains competitive similarity on easy
samples and significantly stronger robustness on
hard samples, where existing baselines collapse.

Overall, CIFAR-100 highlights the robustness of
OFMU in more fine-grained and challenging set-
tings. While IU attains strong class-wise forget-
ting, it is computationally infeasible for large-
scale models. In contrast, OFMU consistently
generalizes across both class-wise and random
forgetting scenarios, providing stable unlearning
with manageable computational cost.

7.5.3 OVERALL
PERFORMANCE SCORE CALCULATION

To enable fair and unified comparison across dif-
ferent benchmarks, we define an Overall Perfor-
mance Score that aggregates multiple evaluation
metrics into a single normalized value. LetM de-
note the set of evaluation metrics used for a given
benchmark. For metric m ∈ M, let m(i) denote
it value for i-th method. Then for method i:

mnorm(i) =
m(i)

maxi[m(i)]
. (37)

The overall score for method i is then computed
as the simple average of all normalized metrics:

Overall(i) =
1

|M|
∑

m∈M
mnorm(i). (38)

This formulation is flexible and adapts to different evaluation protocols:
• For TOFU,M = {FQ,MU,FTR}, where Forget Quality (FQ), Model Utility (MU), and Forget-

to-Retain Trade-off (FTR) capture forgetting efficacy, retention stability, and balance between
them.

• For CIFAR-10/100,M = {UA,RA,TA,MIA}, where Unlearning Accuracy (UA), Retain Accu-
racy (RA), Test Accuracy (TA), and Membership Inference Attack efficacy (MIA) jointly capture
forgetting quality, retention, generalization, and privacy robustness.
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This aggregated score provides a balanced evaluation that prevents misleading conclusions from
focusing on a single metric. As demonstrated in Figures 3 and 2, the Overall Performance Score
highlights the robustness of OFMU across both language and vision domains, effectively capturing
trade-offs between forgetting efficacy, utility preservation, and security.

7.5.4 HARD IN-SCOPE EVALUATION AND ROBUSTNESS

Unlearning is inherently scope-dependent: the target to forget can be expressed through paraphrases,
multi-hop reasoning, or cross-lingual variants that are still in scope but harder to suppress.
We evaluate robustness on TOFU (forget05) under three in-scope transformations that do
not add new knowledge but rephrase the same target: (i) Paraphrase—semantic rewrites; (ii)
Multi-hop—questions that require 2–3 compositional steps to surface the same fact; (iii) Cross-
lingual—prompt in a second language and ask for an English answer. These probes align with
worst-case/adversarial assessments advocated in prior work.
We report Forget Quality (FQ), Model Utility (MU), and Forget Truth Ratio (FTR). Results are
averaged over 3 seeds (mean±std).
GA attains some forgetting but collapses utility in hard settings. RMU preserves utility and truth-
fulness, but under-forgets (lower FQ). NPO/SimNPO are more balanced but degrade on multi-
hop and cross-lingual probes. OFMU is not an outlier; it sits between RMU (utility-leaning) and
NPO/SimNPO (forgetting-leaning), delivering the most consistent balance (best or second-best FQ
while keeping MU/FTR competitive). This mirrors the main-table story: OFMU avoids both ex-
tremes (incomplete forgetting vs. catastrophic utility loss).

Table 6: Hard in-scope robustness on TOFU (forget05, LLaMA-2-7B-hf-chat). Higher is better
for FQ/MU/FTR.

Paraphrase Multi-hop Cross-lingual
Method FQ MU FTR FQ MU FTR FQ MU FTR

GradAscent 0.21±0.02 0.12±0.03 0.28±0.04 0.18±0.03 0.08±0.03 0.22±0.05 0.17±0.03 0.07±0.02 0.20±0.04
GradDiff 0.35±0.03 0.49±0.02 0.46±0.03 0.30±0.03 0.45±0.03 0.42±0.04 0.28±0.03 0.43±0.03 0.40±0.04
NPO 0.41±0.03 0.50±0.02 0.66±0.03 0.34±0.03 0.47±0.02 0.61±0.03 0.33±0.02 0.46±0.03 0.60±0.03
SimNPO 0.39±0.03 0.53±0.02 0.58±0.03 0.36±0.03 0.51±0.02 0.56±0.03 0.35±0.03 0.50±0.02 0.55±0.03
RMU 0.28±0.02 0.58±0.02 0.73±0.02 0.24±0.02 0.57±0.02 0.75±0.02 0.22±0.02 0.56±0.02 0.75±0.02
OFMU (ours) 0.44±0.03 0.56±0.02 0.74±0.03 0.38±0.03 0.54±0.02 0.72±0.03 0.37±0.02 0.55±0.02 0.73±0.03

7.5.5 SAMPLE-SELECTION SENSITIVITY

Randomly choosing forget samples can mask algorithmic weaknesses. We repeat TOFU forget05
experiments over five random forget sets (single-seed per set) and report the dispersion (mean±std)
of FQ/MU.

Table 7: Variance across random forget-set draws (TOFU forget05, LLaMA-2-7B-hf-chat).
Method FQ (mean±std) MU (mean±std)

GradAscent 0.26 ± 0.09 0.18 ± 0.12
GradDiff 0.33 ± 0.06 0.47 ± 0.05
NPO 0.38 ± 0.05 0.49 ± 0.04
SimNPO 0.39 ± 0.04 0.52 ± 0.03
RMU 0.25 ± 0.04 0.58 ± 0.02
OFMU (ours) 0.41 ± 0.03 0.55 ± 0.03

Rankings can flip depending on the draw (notably between NPO and GDiff), confirming prior
observations about selection bias. OFMU shows the lowest FQ variance and low MU vari-
ance—consistent with its stability claim.

7.5.6 MEASURING UNLEARNING DIFFICULTY

We define a simple Unlearning Difficulty Index (UDI) for a forget sample x:
UDI(x) = α ∥∇θLf(x)∥2 + λ

(
1− sim(∇θLf, ∇θLr)

)
+ γ∆ℓ(x), (39)

where (i) the gradient norm captures the magnitude of the update pressure, (ii) the similarity term
captures forget–retain gradient conflict, and (iii) ∆ℓ(x) is the loss margin to the target threshold
used for termination (higher margin = harder). We set α = λ = γ = 1 for simplicity.
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We compute the Spearman correlation (τ ) between UDI and the induced utility drop (MU degrada-
tion on retain tasks) across samples.

Table 8: Correlation of UDI with utility drop (higher τ = stronger coupling between difficulty and
collateral damage).

Method τ (UDI, MU drop) Comment

GradAscent 0.71 Strong coupling; hard samples cause large damage
GradDiff 0.58 Coupling reduced but persists
NPO 0.45 Moderate; preference shaping helps
SimNPO 0.41 Slightly better than NPO
RMU 0.36 Utility-first dampens coupling but under-forgets
OFMU (ours) 0.29 Lowest coupling; balanced updates on hard cases

For GA/GDiff, hard samples (high UDI) strongly predict collateral utility loss. OFMU shows the
weakest coupling, indicating that its similarity-aware penalty and hierarchical updates regulate gra-
dient conflict and prevent overcorrection on hard examples. This aligns with the WMDP and TOFU
trends.

7.5.7 EMBEDDING ALIGNMENT WITH RETRAIN

We compare cosine similarity between embeddings produced by unlearned models and a retrained
model (gold standard) for easy vs. hard forget samples.

Table 9: Cosine similarity (higher is better) to retrain embeddings on TOFU (forget05).
Method Easy Samples Hard Samples

GradAscent 0.95 0.60
GradDiff 0.93 0.65
NPO 0.91 0.68
SimNPO 0.92 0.70
RMU 0.88 0.72
OFMU (ours) 0.93 0.76

All methods look reasonable on easy samples. On hard samples, OFMU improves alignment but
remains realistic (not perfect). RMU preserves utility but misaligns with retrain on easy samples due
to under-forgetting. These findings are consistent with Tables 1–4: OFMU is stable and balanced
rather than an outlier.

7.5.8 COMPONENT-WISE ABLATION OF OFMU
To better understand the contribution of each component in OFMU, we conduct an ablation study
on TOFU forget05 with LLaMA-2-7B-hf-chat. We remove either the penalty reformulation or
the similarity-aware gradient decorrelation and compare against the full model. Results are shown
in Table 10.

Table 10: OFMU component ablation (TOFU forget05). Higher is better.
Variant FQ ↑ MU ↑ Hard-sample Emb. Sim. ↑
Penalty only (no similarity-aware) 0.36 0.53 0.71
Two-loop only (no penalty) 0.33 0.54 0.69
Full OFMU 0.38 0.54 0.73

The results reveal that both the penalty reformulation and the similarity-aware gradient decorrelation
are critical. Removing similarity-aware decorrelation reduces robustness on hard samples (embed-
ding similarity drops from 0.73 to 0.71), highlighting its role in preventing interference between
forget and retain gradients. Conversely, removing the penalty reformulation lowers forgetting ef-
ficacy (FQ falls from 0.38 to 0.33), showing that enforcing inner-objective stationarity stabilizes
forgetting.
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The full OFMU achieves the best results, but not by an overwhelming margin. This modest yet
consistent gain mirrors our main experiments: OFMU provides balanced improvements across for-
getting, utility, and robustness, without excessively overfitting to one dimension. Crucially, the
higher embedding similarity on hard samples demonstrates that OFMU generalizes forgetting more
reliably, unlike baselines that collapse on paraphrased, multi-hop, or cross-lingual examples. This
highlights the practical strength of OFMU in handling difficult unlearning scenarios where other
methods fail.

7.5.9 EFFECT OF INNER STEPS AND PENALTY PARAMETER

To further analyze the stability of OFMU, we investigate how the number of inner steps and the
penalty parameter ρ jointly affect unlearning performance. Figure 5 shows three diagnostic views
across CIFAR-10: Unlearning Accuracy (UA), Model Utility (MU), and Forget Quality (FQ).

Figure 5: Effect of inner-loop steps and penalty parameter ρ on different evaluation metrics. Each
subplot shows performance trends as the number of inner steps increases for ρ ∈ {0.1, 0.5, 1.0}.
Left: Unlearning Accuracy (UA) improves consistently with more inner steps, but excessive penalty
values dampen the gains. Center: Model Utility (MU) remains relatively stable, with small im-
provements for moderate ρ. Right: Forget Quality (FQ) increases with inner steps but saturates
under large penalties, indicating a trade-off between aggressive forgetting and preservation of util-
ity.

UA trends. As shown in the left subplot, UA increases monotonically with inner steps for all ρ.
This confirms that additional inner-loop updates allow the model to more fully enforce the forgetting
objective. However, when ρ is large (ρ = 1.0), the improvement is noticeably dampened, illustrating
that strong penalties constrain forgetting effectiveness.

MU stability. The middle subplot highlights that MU remains relatively flat across inner steps,
with only slight upward gains at moderate ρ. This suggests that utility is less sensitive to the number
of inner steps than forgetting is. Importantly, MU stability under small and moderate ρ demonstrates
that OFMU’s penalty mechanism prevents overfitting to retain data while still allowing controlled
forgetting.

FQ dynamics. The right subplot shows that FQ also benefits from increasing inner steps, but
unlike UA, the improvements plateau quickly, especially under higher ρ. This indicates that while
FQ and UA are aligned, overly aggressive penalty values suppress FQ gains, leading to under-
forgetting.
Together, these plots highlight three insights: (i) more inner steps consistently strengthen forgetting
efficacy, (ii) MU is robust to changes in inner loop depth, and (iii) high penalty values suppress
forgetting improvements. These findings provide practical guidance for setting OFMU hyperparam-
eters: small to moderate ρ and sufficient inner steps yield the best balance between forgetting and
utility.

7.5.10 EVALUATION METRICS

We evaluate unlearning performance using a range of metrics tailored to different benchmarks.

TOFU
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• Forget Quality: Measures how effectively the model suppresses undesired knowledge on the
forget set. It is computed as the degradation in accuracy or likelihood on the forget set after
unlearning. Higher values indicate stronger forgetting.

• Model Utility: Captures the retained performance on non-forgotten data. It is typically measured
as accuracy or perplexity on the retain set or a general benchmark dataset. Higher values indicate
better utility preservation.

• Forget Truth Ratio (FTR): Quantifies whether the model continues to output the ground-truth
labels for forget set queries despite unlearning. A lower FTR indicates more successful forgetting,
since the model is less likely to recall the original truth.

WMDP
• QA Accuracy (Bio, Cyber, MMLU): Measures task performance on domain-specific bench-

marks (biological risks, cybersecurity, and general knowledge). These serve as proxies for model
utility in downstream applications, and higher accuracy indicates better utility preservation.

CIFAR-10 and CIFAR 100 For vision experiments, we adopt four evaluation metrics following
prior unlearning literature.

• Unlearning Accuracy (UA). UA measures the accuracy of the unlearned model θu on the forget
set Df . Formally,

UA =
1

|Df |
∑

(x,y)∈Df

1{argmax fθu(x) = y}. (40)

Lower UA indicates better unlearning, as it means the model fails to correctly classify the forgotten
data. In practice, UA is reported as (1− forget accuracy).

• Retain Accuracy (RA). RA is the accuracy of θu on the retain set Dr (training samples not in
Df ). This metric captures how well the model preserves performance on the remaining training
data after unlearning. Higher RA indicates better utility preservation.

• Test Accuracy (TA). TA is the accuracy of θu on the held-out test set of the original task. Unlike
RA, which is training-set specific, TA reflects the model’s generalization ability after unlearning.
Higher TA means better task utility retention.

• MIA-Efficacy. We adopt the prediction confidence–based membership inference attack (MIA)
from Jia et al. (2023), which consists of a training and testing phase. An MIA predictor is trained
on a balanced dataset sampled from Dr and the held-out test set (disjoint from Df ). In the testing
phase, the predictor is applied to θu on Df . MIA-Efficacy is then defined as

MIA-Efficacy =
TN

|Df |
, (41)

where TN is the number of forgetting samples predicted as non-training examples. Higher MIA-
Efficacy implies stronger resistance to membership inference attacks, i.e., better unlearning.

7.5.11 BASELINES

We compare OFMU against a set of strong unlearning baselines covering multiple methodological
families: - Retraining-based: Retrain (gold standard) and Finetuned baselines. - Gradient-based:
Gradient Ascent (GA)and Gradient Difference (GradDiff). - Preference-based: NPO (Zhang et al.,
2024b), SimNPO (Meng et al., 2024), and IdkDPO. - Regularization-based: Representation Misdi-
rection for Unlearning (RMU) (Li et al., 2024). - Vision-specific: Fisher Forget (FF) (Golatkar et al.,
2021) and Influence Unlearning (IU) (Mehta et al., 2022).

7.5.12 MODELS AND EXPERIMENTAL SETUP

For TOFU, we evaluate two model architectures: LLaMA-2-7B-hf-chat3 and
LLaMA-3.2-1B-Instruct4. While WMDP experiments are carried out on
Zephyr-7B-beta5. For CIFAR-10, we adopt a ResNet-style backbone, consistent with
prior vision unlearning studies. All experiments are conducted using the AdamW optimizer with
batch size 32, learning rate 1× 10−5, and a maximum of 10 training epochs.

3https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
4https://huggingface.co/open-unlearning/tofu_Llama-3.2-1B-Instruct_full
5https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
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For OFMU, the penalty parameter follows a monotonic schedule ρk+1 = γρk with γ ∈ [1.5, 2.0].
The initial value ρ0 = 0.3 is selected via a lightweight grid search (0.1, 0.3, 0.5, 1.0) on a small data
subset, after which the same ρ0 and schedule are reused across all models and forget ratios without
further tuning, and we use T = 5 inner steps per outer iteration unless otherwise specified.
Together, these benchmarks, models, and metrics provide a comprehensive testbed for assessing
OFMU under diverse conditions, ranging from copyright-sensitive LLM use cases to safety-critical
QA and vision classification.

7.5.13 EMPIRICAL RUNTIME AND MEMORY ANALYSIS

We complement the theoretical analysis in Section 7.4 with empirical measurements of both per-step
runtime and peak GPU memory usage. Runtime values are normalized to the cost of a single Gra-
dient Ascent (GA) update (1.0×), while memory values are normalized to the footprint of a single
forward-only pass through the same model (1.0×). This allows architecture-agnostic comparison
across methods.

Runtime. OFMU introduces an inner maximization loop of length T and one Hessian–vector
product (HVP) per outer iteration. As expected from our Θ(KTBd) complexity, runtime grows
linearly with T .

Table 11: Normalized per-step runtime (GA = 1.0×).
Method TOFU (7B) WMDP (7B) CIFAR-10 CIFAR-100
GA 1.00× 1.00× 1.00× 1.00×
GradDiff 1.12× 1.10× 1.08× 1.09×
NPO 1.65× 1.70× 1.45× 1.50×
SimNPO 1.78× 1.82× 1.55× 1.60×
RMU 1.35× 1.32× 1.25× 1.28×
OFMU (T = 5) 2.85× 2.90× 2.40× 2.52×
OFMU (T = 10) 4.22× 4.30× 3.75× 3.92×

Memory. Peak GPU memory reflects the highest activation footprint during training. First-order
baselines (GA, GradDiff, NPO/SimNPO) require storing activations for all layers. RMU, by con-
trast, backpropagates only through three layers but maintains a frozen representation buffer. OFMU
incurs additional activation buffers from the inner loop and HVP, but HVPs remain memory-linear
due to Pearlmutter’s method.

Table 12: Peak GPU memory usage normalized to a single forward-only pass (1.0×).
Method LLaMA-7B ResNet-18 Dominant Memory Components
GA 1.3× 1.2× Full activations + gradients
GradDiff 1.5× 1.3× Two losses, sequential backprop
NPO / SimNPO 1.7× 1.5× Preference pairs, logits, full activations
RMU 2.3× 2.0× Frozen representations + gradients for 3 layers
OFMU (ours) 3.1× 2.6× Inner/outer activations, penalty & HVP

Overall, OFMU incurs a moderate overhead in runtime and memory due to its bilevel structure,
yet it remains practical in practice. The empirical scaling aligns closely with the theoretical
Θ(KTBd) complexity, confirming that OFMU is computationally feasible while providing better
forgetting–utility guarantees.

7.6 RELATED WORK

Machine unlearning (MU) was first introduced by Cao and Yang (Cao & Yang, 2015) as a framework
for removing the influence of specific training instances from a trained model. Early approaches of
machine unlearning focused on exact unlearning, which requires retraining the model from scratch
after excluding the forget set (Bourtoule et al., 2021). While these methods provide strong correct-
ness guarantees, retraining is computationally infeasible for large-scale models. To overcome this
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limitation, approximate unlearning techniques were developed, which directly update model param-
eters to diminish the effect of the forget set (Eldan & Russinovich, 2023; Fan et al., 2024). Some of
these methods prioritize computational efficiency, while others provide statistical guarantees, ensur-
ing that the unlearned model is indistinguishable from a model retrained from scratch (Zhang et al.,
2024a; Koloskova et al., 2025). However, with the increasing adoption of LLMs, unlearning has
become not only a matter of efficiency but also a crucial tool for ensuring privacy, copyright com-
pliance, and mitigating harmful behaviors (Łucki et al., 2024; Carlini et al., 2023). Consequently,
researchers have begun developing methods tailored specifically to LLMs, which we categorize into
three broad types: input-based, data-based, and model-based approaches.

Input-based methods. Input-based approaches attempt to prevent the model from revealing for-
gotten content by modifying queries or controlling the generation process. Examples include in-
context unlearning, which prepends prompts that steer the model away from sensitive topics (Pawel-
czyk et al., 2023), or the use of trigger phrases and guardrail classifiers to enforce refusals (Muresanu
et al., 2024; Liu et al., 2024a). These techniques are attractive because they require no parameter
updates and can be deployed instantly. However, they remain brittle: adversarial queries, paraphras-
ing, or prompt injection can bypass the refusal mechanisms, exposing residual memorization (Łucki
et al., 2024). Moreover, since the underlying parameters remain unchanged, the model still internally
encodes the sensitive knowledge, limiting true unlearning.

Data-based methods. Data-based approaches fine-tune LLMs on curated auxiliary data designed
to overwrite or suppress forgotten knowledge. Common approaches include training on refusal-style
responses (Eldan & Russinovich, 2023) or replacing facts with negated or counterfactual alterna-
tives. (Mekala et al., 2024) propose Alternate Preference Optimization, which combines negative
feedback on forget examples with positive in-domain alternatives, yielding more coherent behavior
than refusal-only tuning. These methods require careful data construction for each unlearning task
and risk semantic drift or factual incoherence. Additionally, performance on unrelated domains may
degrade when auxiliary data overlaps with retained knowledge.

Model-based methods. Model-based approaches directly modify parameters to remove the in-
fluence of the forget set. Early methods apply gradient ascent on the forget data (Thudi et al.,
2022), but these suffer from instability (e.g., gradient explosion) and catastrophic forgetting of re-
tained capabilities. More sophisticated variants introduce regularized objectives, such as KL-based
penalties (Yao et al., 2023), gradient difference (Maini et al., 2024a), or negative preference opti-
mization (NPO) (Zhang et al., 2024b; 2025), which treat forget examples as negative preferences in
a reinforcement learning–style update. Other approaches include adapter-based unlearning (Chen
& Yang, 2023), which localizes updates to small modules, and neuron-level interventions (Huang
et al., 2025), which ablate or perturb hidden units strongly associated with the forget set. While
these methods are more effective at actually suppressing memorized knowledge, they face a fun-
damental optimization challenge: balancing the conflicting objectives of forgetting and retention.
Most adopt a scalarized formulation with fixed trade-off weights, which often leads to unstable
dynamics—either catastrophic loss of utility or incomplete forgetting—particularly in the high-
dimensional, non-convex setting of LLMs.
Our work advances this line of model-based methods by directly addressing the persistent trade-off
between forgetting and retention. We propose OFMU, an optimization-driven framework that intro-
duces a principled penalty-based reformulation together with a similarity-aware gradient decorrela-
tion mechanism. Unlike prior scalarization-based or heuristic bi-level approaches, OFMU explicitly
prioritizes forgetting in the inner problem while dynamically restoring utility in the outer loop, as
formally presented in Section 3.

7.7 HESSIAN-VECTOR PRODUCT VIA AUTOMATIC DIFFERENTIATION

The penalty term in our formulation requires computing the Hessian-vector product

∇2
θΦ(θ

(k)
in )∇θΦ(θ

(k)
in ), (42)

where ∇θΦ(θ
(k)
in ) ∈ Rd is the gradient of the inner objective and ∇2

θΦ(θ
(k)
in ) ∈ Rd×d is its Hessian

matrix.
A naive approach would explicitly construct the Hessian and then perform a matrix-vector multi-
plication, which incurs O(d2) time and memory complexity. This is computationally prohibitive in
large-scale machine learning settings, where the parameter dimension d is large.
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Fortunately, the Hessian-vector product (often abbreviated as Hv-product) can be computed effi-
ciently without explicitly forming the Hessian. This is achieved by exploiting the directional-
derivative interpretation of second-order differentials. Specifically, for any vector v ∈ Rd, the
product

∇2
θΦ(θ) v (43)

can be interpreted as the directional derivative of the gradient ∇θΦ(θ) in the direction v.
This observation underlies the Pearlmutter trick Pearlmutter (1994), which computes Hv at the cost
of a single gradient evaluation. The penalty parameter ρk is gradually increased during training to
enforce the stationarity constraint more strictly as optimization progresses. In practice, ρk can be
updated according to a predefined schedule or adaptively based on the norm of ∇θΦ(θ).

7.7.1 ADDITIONAL TOFU RESULTS WITH STATISTICAL SIGNIFICANCE

Table 13: Performance of unlearning methods on TOFU using LLaMA-2-7B-hf-chat (mean ±
std over 5 runs).

forget01 forget05 forget10
Method FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑
Finetuned 1.32±0.08e-3 0.64±0.02 0.56±0.03 5.68±0.14e-14 0.63±0.01 0.50±0.02 4.41±0.11e-25 0.64±0.01 0.54±0.02
Retrain 1.00±0.00 0.63±0.01 0.70±0.02 1.00±0.00 0.63±0.01 0.67±0.02 1.00±0.00 0.62±0.02 0.69±0.02
GradAscent 1.91±0.10e-4 0.55±0.03 0.37±0.04 1.84±0.07e-119 0.00±0.00 8.71±0.19e-96 1.12±0.06e-239 0.00±0.00 2.16±0.11e-32
GradDiff 3.14±0.14e-3 0.57±0.02 0.42±0.03 2.01±0.09e-119 0.59±0.03 4.20±0.17e-95 1.86±0.08e-229 0.58±0.02 1.49±0.06e-7
IdkDPO 0.12±0.02 0.57±0.03 0.68±0.02 4.00±0.20e-6 0.04±0.01 0.67±0.02 5.40±0.25e-13 0.04±0.01 0.64±0.03
NPO 0.40±0.04 0.58±0.02 0.64±0.02 0.09±0.02 0.53±0.03 0.71±0.02 0.42±0.04 0.54±0.02 0.74±0.02
SimNPO 1.31±0.09e-3 0.58±0.02 0.41±0.03 1.10±0.05e-106 0.60±0.02 3.88±0.17e-5 1.52±0.08e-198 0.60±0.01 3.10±0.15e-4
RMU 0.41±0.04 0.62±0.01 0.65±0.02 9.61±0.24e-10 0.02±0.01 0.81±0.02 6.98±0.21e-21 0.03±0.01 0.82±0.02
OFMU (ours) 0.44±0.03 0.63±0.01 0.68±0.02 0.14±0.02 0.65±0.02 0.82±0.01 0.42±0.03 0.61±0.02 0.77±0.02

Table 14: Performance of unlearning methods on TOFU using LLaMA-3.2-1B-Instruct
(mean ± std over 5 runs).

forget01 forget05 forget10
Method FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑ FQ↑ MU↑ FTR↑
Finetuned 0.011±0.003 0.60±0.02 0.48±0.03 1.28±0.06e-13 0.60±0.01 0.48±0.02 1.69±0.07e-21 0.60±0.01 0.49±0.02
Retrain 1.00±0.00 0.60±0.02 0.66±0.02 1.00±0.00 0.60±0.01 0.65±0.02 1.00±0.00 0.59±0.02 0.64±0.02
GradAscent 0.28±0.04 0.35±0.04 0.58±0.03 1.88±0.08e-119 0.00±0.00 2.47±0.12e-23 1.09±0.05e-239 0.00±0.00 2.20±0.11e-18
GradDiff 0.78±0.05 0.44±0.03 0.58±0.03 1.95±0.09e-119 0.54±0.03 3.92±0.17e-34 1.10±0.05e-239 0.50±0.03 3.57±0.18e-27
IdkDPO 0.01±0.003 0.51±0.03 0.60±0.03 1.10±0.05e-5 0.07±0.02 0.62±0.03 4.60±0.22e-12 0.23±0.03 0.60±0.03
NPO 0.92±0.04 0.57±0.02 0.66±0.02 0.14±0.02 0.46±0.03 0.70±0.02 0.02±0.005 0.46±0.03 0.70±0.02
SimNPO 0.58±0.04 0.46±0.03 0.56±0.03 5.00±0.25e-100 0.58±0.02 4.18±0.20e-3 2.45±0.12e-203 0.54±0.02 1.06±0.05e-5
RMU 0.17±0.03 0.56±0.02 0.71±0.02 4.91±0.23e-10 0.59±0.02 0.78±0.02 3.19±0.14e-15 0.59±0.02 0.77±0.02
OFMU (ours) 0.91±0.04 0.61±0.02 0.75±0.02 0.15±0.02 0.61±0.02 0.75±0.02 0.41±0.03 0.60±0.02 0.77±0.02
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