
OPEN RL BENCHMARK: Comprehensive Tracked
Experiments for Reinforcement Learning

Shengyi Huang1,2∗ Quentin Gallouédec1,3∗ Florian Felten4 Antonin Raffin5

Rousslan Fernand Julien Dossa6 Yanxiao Zhao7,8 Ryan Sullivan9 Viktor Makoviychuk10

Denys Makoviichuk11 Mohamad H. Danesh12 Cyril Roumégous13 Jiayi Weng
Chufan Chen14 Md Masudur Rahman15 João G. M. Araújo16 Guorui Quan17

Daniel C.H. Tan18,19 Timo Klein20,21 Rujikorn Charakorn22 Mark Towers23
Yann Berthelot24,25 Kinal Mehta26 Dipam Chakraborty27 Arjun KG

Valentin Charraut28 Chang Ye29 Zichen Liu30 Lucas N. Alegre31 Alexander Nikulin32

Xiao Hu33 Tianlin Liu34 Jongwook Choi35 Brent Yi36

Abstract

In many Reinforcement Learning (RL) papers, learning curves are useful indicators1

to measure the effectiveness of RL algorithms. However, the complete raw data2

of the learning curves are rarely available. As a result, it is usually necessary3

to reproduce the experiments from scratch, which can be time-consuming and4

error-prone. We present OPEN RL BENCHMARK (ORLB), a set of fully tracked5

RL experiments, including not only the usual data such as episodic return, but also6

all algorithm-specific and system metrics. ORLB is community-driven: anyone7

can download, use, and contribute to the data. At the time of writing, more than8

25,000 runs have been tracked, for a cumulative duration of more than 8 years.9

It covers a wide range of RL libraries and reference implementations. Special10

care is taken to ensure that each experiment is precisely reproducible by providing11

not only the full parameters, but also the versions of the dependencies used to12

generate it. In addition, ORLB comes with a command-line interface (CLI) for13

easy fetching and generating figures to present the results. In this document, we14

include two case studies to demonstrate the usefulness of ORLB in practice. To15

the best of our knowledge, ORLB is the first RL benchmark of its kind, and the16

authors hope that it will improve and facilitate the work of researchers in the field.17

1 Introduction18

Reinforcement Learning (RL) research is based on comparing new methods to baselines to assess19

progress (Patterson et al., 2023). This process requires the availability of the data associated with20

these baselines (Raffin et al., 2021) or, alternatively, the ability to replicate them and generate the21

data oneself (Raffin, 2020). In addition, reproducible results allow the methods to be compared with22

new benchmarks and to identify the areas in which the methods excel and those in which they are23

likely to fail, thus providing avenues for future research.24

In practice, the RL research community faces complex challenges in comparing new methods with25

reference data. The unavailability of reference data requires researchers to reproduce experiments,26

which is difficult due to insufficient source code documentation and evolving software dependencies.27

∗Equal contributions

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

0M 2M 4M 6M 8M 10M
0

100

200

300

400

500
BreakoutNoFrameskip-v4

0M 2M 4M 6M 8M 10M
0

2500

5000

7500

10000

12500
BeamRiderNoFrameskip-v4

0M 2M 4M 6M 8M 10M
20

10

0

10

20

PongNoFrameskip-v4

Steps

Ep
iso

di
c

Re
tu

rn

OpenAI Baselines PPO2 CleanRL PPO CleanRL DQN SB3 PPO SB3 DQN

Figure 1: Example of learning curves obtained with OPEN RL BENCHMARK. These compare the
episodic returns obtained by different implementations of PPO and DQN on three Atari games.

Implementation details, as highlighted in past research, can significantly impact results (Henderson28

et al., 2018; Huang et al., 2022a). Moreover, limited computing resources play a crucial role, hindering29

the reproduction process and affecting researchers without substantial access.30

The lack of standardized metrics and benchmarks across studies not only impedes comparison but31

also results in a substantial waste of time and resources. To address these issues, the RL community32

must establish rigorous reproducibility standards, ensuring replicability and comparability across33

studies. Transparent sharing of data, code, and experimental details, along with the adoption of34

consistent metrics and benchmarks, would collectively enhance the evaluation and progression of RL35

research, ultimately accelerating advancements in the field.36

ORLB presents a rich collection of tracked RL experiments and aims to set a new standard by37

providing a diverse training dataset. This initiative prioritizes the use of existing data over re-running38

baselines, emphasizing reproducibility and transparency. Our contributions are:39

• Extensive dataset: Offers a large, diverse collection of tracked RL experiments.40

• Standardization: Establishes a new norm by encouraging reliance on existing data, reducing41

the need for re-running baselines.42

• Comprehensive metrics: Includes diverse tracked metrics for method-specific and system43

evaluation, in addition to episodic return.44

• Reproducibility: Emphasizes clear instructions and fixed dependencies, ensuring easy45

experiment replication.46

• Resource for research: Serves as a valuable and collaborative resource for RL research.47

• Facilitating exploration: Enables reliable exploration and assessment of new and exisiting48

RL methods.49

2 Comprehensive overview of ORLB: content, methodology, tools, and50

applications51

This section provides a detailed exploration of the contents of ORLB, including its diverse set of52

libraries and environments, and the metrics it contains. We also look at the practical aspects of using53

ORLB, highlighting its ability to ensure accurate reproducibility and facilitate the creation of data54

visualizations thanks to its CLI.55

2.1 Content56

ORLB data is stored and shared with Weights and Biases (Biewald, 2020). The data is contained57

in a common entity named openrlbenchmark. Runs are divided into several projects. A project58

can correspond to a library, but it can also correspond to a set of more specific runs, such as59

envpool-cleanrl in which we find CleanRL runs (Huang et al., 2022b) launched with the EnvPool60

2

implementation of environments (Weng et al., 2022b). A project can also correspond to a reference61

implementation, such as TD3 (project sfujim-TD3) or Phasic Policy Gradient (Cobbe et al., 2021)62

(project phasic-policy-gradient). ORLB also includes reports, which are interactive documents63

designed to enhance the visualization of selected representations. These reports provide a more64

user-friendly format for practitioners to share, discuss, and analyze experimental results, even across65

different projects. Figure 2 shows a preview of one such report.66

Figure 2: An example of a report on the Weights and Biases platform, dealing with the
contribution of QDagger (Agarwal et al., 2022), and using data from ORLB. The URL
to access the report is https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/
Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5.

At the time of writing, ORLB contains nearly 25,000 runs, for a total of 72,000 hours (more than 867

years) of tracking. In the following paragraphs, we present the libraries and environments for which68

runs are available in ORLB, as well as the metrics tracked.69

Libraries ORLB contains runs for several reference RL libraries. These libraries are: abcdRL70

(Zhao, 2022), Acme (Hoffman et al., 2020), Cleanba (Huang et al., 2023), CleanRL (Huang et al.,71

2022b), jaxrl (Kostrikov, 2021), moolib (Mella et al., 2022), MORL-Baselines (Felten et al., 2023),72

OpenAI Baselines (Dhariwal et al., 2017), rlgames (Makoviichuk & Makoviychuk, 2021) Stable73

Baselines3 (Raffin et al., 2021; Raffin, 2020) Stable Baselines Jax (Raffin et al., 2021) and TorchBeast74

(Küttler et al., 2019).75

Environments The runs contained in ORLB cover a wide range of classic environments. They76

include Atari (Bellemare et al., 2013; Machado et al., 2018), Classic control (Brockman et al., 2016),77

Box2d (Brockman et al., 2016) and MuJoCo (Todorov et al., 2012) as part of either Gym (Brockman78

et al., 2016) or Gymnasium (Towers et al., 2023) or EnvPool (Weng et al., 2022b). They also79

include Bullet (Coumans & Bai, 2016), Procgen Benchmark (Cobbe et al., 2020), Fetch environments80

(Plappert et al., 2018), PandaGym (Gallouédec et al., 2021), highway-env (Leurent, 2018), Minigrid81

(Chevalier-Boisvert et al., 2023) and MO-Gymnasium (Alegre et al., 2022).82

Tracked metrics Metrics are recorded throughout the learning process, consistently linked with a83

global step indicating the number of interactions with the environment, and an absolute time, which84

allows to compute the duration of a run. We categorize these metrics into four distinct groups:85

• Training-related metrics: These are general metrics related to RL learning. This category86

contains, for example, the average returns obtained, the episode length or the number of87

collected samples per second.88

3

https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5
https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5

• Method-specific metrics: These are losses and measures of key internal values of the89

methods. For PPO, for example, this category includes the value loss, the policy loss, the90

entropy or the approximate KL divergence.91

• Evolving configuration parameters: These are configuration values that change during the92

learning process. This category includes, for example, the learning rate when there is decay,93

or the exploration rate (ϵ) in the Deep Q-Network (DQN) (Mnih et al., 2013).94

• System metrics: These are metrics related to system components. These could be GPU95

memory usage, its power consumption, its temperature, system and process memory usage,96

CPU usage or even network traffic.97

The specific metrics available may vary from one library to another. In addition, even where the98

metrics are technically similar, the terminology or key used to record them may vary from one99

library to another. Users are advised to consult the documentation specific to each library for precise100

information on these measures.101

2.2 Everything you need for perfect repeatability102

Reproducing experimental results in computational research, as discussed in Section 4.3, is often103

challenging due to evolving codebases, incomplete hyperparameter listings, version discrepancies,104

and compatibility issues. Our approach aims to enhance reproducibility by ensuring users can105

exactly replicate benchmark results. Each experiment includes a complete configuration with all106

hyperparameters, frozen versions of dependencies, and the exact command, including the necessary107

random seed, for systematic reproducibility. As a example, CleanRL (Huang et al., 2022b) introduces108

a unique utility that streamlines the process of experiment replication (see Figure 3). This tool109

produces the command lines to set up a Python environment with the necessary dependencies,110

download the run file, and the precise command required for the experiment reproduction. Such111

an approach to reproduction facilitates research and makes it possible to study in depth unusual112

phenomena, or cases of rupture2, in learning processes, which are generally ignored in the results113

presented, either because they are deliberately left out or because they are erased by the averaging114

process.115

Figure 3: CleanRL’s module reproduce allows the user to generate, from an ORLB run reference,
the exact command suite for an identical reproduction of the run.

2.3 The CLI for generating figures in one command line116

ORLB offers convenient access to raw data from RL libraries on standard environments. It includes a117

feature for easily extracting and visualizing data in a paper-friendly format, streamlining the process118

of filtering and extracting relevant runs and metrics for research papers through a single command.119

The CLI is a powerful tool for generating most metrics-related figures for RL research and notably,120

all figures in this document were generated using the CLI. The data in ORLB can also be accessed121

by custom scripts, as detailed in Appendix A.2. Specifically, the CLI integrated into ORLB provides122

users with the flexibility to:123

2Exemplified in https://github.com/DLR-RM/rl-baselines3-zoo/issues/427

4

https://github.com/DLR-RM/rl-baselines3-zoo/issues/427

• Specify algorithms’ implementations (from which library) along with their corresponding124

git commit or tag;125

• Choose target environments for analysis;126

• Define the metrics of interest;127

• Opt for the additional generation of metrics and plots using RLiable (Agarwal et al., 2021).128

Concrete example usage of the CLI and resulting plots are available in Appendix A.1.129

3 ORLB in action: an insight into case studies130

ORLB offers a powerful tool for researchers to evaluate and compare different RL algorithms. In this131

section, we will explore two case studies that showcase its benefits. First, we propose to investigate132

the effect of using TD(λ) for value estimation in PPO (Schulman et al., 2017) versus using Monte133

Carlo (MC). This simple study illustrates the use of ORLB through a classic research question.134

Moreover, to the best of our knowledge, this question has never been studied in the literature. We135

then show how ORLB is used to demonstrate the speedup and variance reduction of a new IMPALA136

implementation proposed by Huang et al. (2023). By using ORLB, we can save time and resources137

while ensuring consistent and reproducible comparisons. These case studies highlight the role of the138

benchmark in providing insights that can advance the field of RL research.139

3.1 Easily assess the contribution of TD(λ) for value estimation in PPO140

In the first case study, we show how ORLB can be used to easily compare the performance of141

different methods for estimating the value function in PPO (Schulman et al., 2017), one of the142

many implementation details of this algorithm (Huang et al., 2022a). Specifically, we compare the143

commonly used Temporal Difference (TD)(λ) estimate to the Monte-Carlo (MC) estimate.144

PPO typically employs Generalized Advantage Estimation (GAE) (Schulman et al., 2016) to update145

the actor. The advantage estimate is expressed as follows:146

A
GAE(γ,λ)
t =

N−1∑
l=0

(γλ)lδVt+l (1)

where λ ∈ [0, 1] adjusts the bias-variance tradeoff and δVt+l = Rt+l + γV̂ (St+l+1)− V̂ (St+l). The147

target return for critic optimization is estimated with TD(λ) as follows:148

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n (2)

where Gt:t+n =
∑n−1

k=0 γ
kRt+k+1 + γnV (St+n) is the n-steps return. In practice, the target return149

for updating the critic is computed from the GAE value, by adding the minibatch return, a detail150

usually overlooked by practitioners (Huang et al., 2022a, point 5). While previous studies (Patterson151

et al., 2023) have shown the joint benefit of GAE and over MC estimates for actor and critic, we152

focus on the value function alone. To isolate the influence of the value function estimation, we vary153

the method used for the value function and keep GAE for advantage estimation.154

The first step is to identify the reference runs in ORLB. Since PPO is a well-known baseline, there155

are many runs available; we decided to use those from Stable Baselines3 for this example. We156

then retrieve the exact source code and command used to generate the runs – thanks to the pinned157

dependencies that come with them – and make the necessary changes to the source code. For each158

selected environment, we start three learning runs using the same command as the one we retrieved.159

The runs are saved in a dedicated project3. For fast and user-friendly rendering of the results, we160

3https://wandb.ai/modanesh/openrlbenchmark

5

https://wandb.ai/modanesh/openrlbenchmark

create a Weights and Biases report4. Using ORLB CLI, we generate Figure 4 and 5. The command161

used to generate the figures is given in Appendix B.162

Figures 4 and 5 give an overview of the results, while detailed plots in the Appendix B provide a163

closer look at each environment. The proposed modification to the PPO value function estimation164

has an impact on the performance for Atari games (Figure 4a): not using TD(λ) results in lower165

scores. However, PPO with MC estimates has similar performance to the original PPO in Box2D166

and MuJoCo environments. This example shows how ORLB can be used to quickly investigate the167

influence of design choices in RL. It provides baseline results and tools to compare and reproduce168

results.169

0M 5M
0.0

0.5

M
ed

ia
n

0M 5M
0.0

0.5IQ
M

0M 5M
0.0

0.5

M
ea

n

0M 5M

0.5

1.0

Op
tim

al
ity

 G
ap

Steps

PPO PPO w/ MC for value estimation

(a) Results for Atari games

0K 500K 1000K

0.25
0.50
0.75

M
ed

ia
n

0K 500K 1000K
0.25
0.50
0.75

IQ
M

0K 500K 1000K

0.50
0.75

M
ea

n

0K 500K 1000K

0.25
0.50

Op
tim

al
ity

 G
ap

Steps

PPO PPO w/ MC for value estimation

(b) Results for Box2D and MuJoCo environments

Figure 4: Comparing the original PPO and the PPO with Monte-Carlo (MC) for value estimation.
These experiments were conducted over 15 environments, including Atari games, Box2D, and
MuJoCo. The plot shows min-max normalized scores with 95% stratified bootstrap CIs.

0.64 0.72 0.80 0.88
PPO w/ MC for value estimation

PPO
Median

0.64 0.72 0.80 0.88
Normalized Score

IQM

0.72 0.80 0.88

Mean

0.16 0.24 0.32

Optimality Gap

(a) Results for Atari games

0.80 0.85 0.90
PPO w/ MC for value estimation

PPO
Median

0.850 0.875 0.900 0.925
Normalized Score

IQM

0.78 0.81 0.84

Mean

0.15 0.18 0.21 0.24

Optimality Gap

(b) Results for Box2D and MuJoCo environments

Figure 5: Study of the contribution of GAE for estimating the value used to update the critic in PPO,
compared against its variant which uses the MC estimator instead. Figures show the aggregated
min-max normalized scores with stratified 95% stratified bootstrap CIs.

3.2 Demonstrating the utility of ORLB through the Cleanba case study170

This section describes how ORLB was instrumental in the evaluation and presentation of Cleanba171

(Huang et al., 2023), a new open-source platform for distributed RL implementing highly optimized172

distributed variants of PPO (Schulman et al., 2017) and IMPALA (Espeholt et al., 2018). Cleanba’s173

authors asserted three points: (1) Cleanba implementations compare favorably with baselines in terms174

of sample efficiency, (2) for the same system, the Cleanba implementation is more optimized and175

therefore faster, and (3) the design choices allow a reduction in the variability of results.176

To prove these assertions, the evaluation of Cleanba encountered a common problem in RL research:177

the works that initially proposed these baselines did not provide the raw results of their experiments.178

Although a reference implementation is available5, it is no longer maintained. Subsequent works179

such as Moolib (Mella et al., 2022) and TorchBeast (Küttler et al., 2019) have successfully replicated180

4https://api.wandb.ai/links/modanesh/izf4yje4
5https://github.com/google-deepmind/scalable_agent

6

https://api.wandb.ai/links/modanesh/izf4yje4
https://github.com/google-deepmind/scalable_agent

the IMPALA results. However, these shared results are limited to the paper’s presented curves, which181

provide a smoothed measure of episodic return as a function of interaction steps on a specific set of182

Atari tasks. It is worth noting that these tasks are not an exact match for the widely recognized Atari183

57, and the raw data used to generate these curves is unavailable.184

Recognizing the lack of raw data for existing IMPALA implementations, the authors reproduced the185

experiments, tracked the runs and integrated them into ORLB. As a reminder, these logged data186

include not only the return curves, but also the system configurations and temporal data, which are187

crucial to support the Cleanba authors’ optimization claim. Comparable experiments have been run,188

tracked and shared on ORLB with the proposed Cleanba implementation.189

0M 10M 20M 30M 40M 50M
Steps

0

1

M
ed

ia
n

0 200 400 600 800
Time (m)

Monobeast IMPALA, 1 A100, 10 CPU
Moolib IMPALA, 1 A100, 10 CPU

Cleanba IMPALA, 1 A100, 10 CPU
Cleanba PPO (Sync), 1 A100, 10 CPU

Figure 6: Median human-normalized scores with 95% stratified bootstrap CIs of Cleanba (Huang
et al., 2023) variants compared with moolib (Mella et al., 2022) and monobeast (Küttler et al., 2019).
The experiments were conducted on 57 Atari games (Bellemare et al., 2013). The data used to
generate the figure comes from ORLB, and the figure was generated with a single command from
ORLB’s CLI. Figure from (Huang et al., 2023).

1.2 1.4 1.6 1.8
Cleanba PPO (Sync), 8 A100, 46 CPU
Cleanba PPO (Sync), 1 A100, 10 CPU

Cleanba IMPALA, 8 A100, 46 CPU
Cleanba IMPALA, 1 A100, 10 CPU

Moolib (Resnet CNN) 8 A100, 80 CPU
Moolib (Resnet CNN) 1 A100, 10 CPU

Median

1.50 1.75 2.00
Normalized Score

IQM

6 9 12 15

Mean

0.24 0.27 0.30 0.33

Optimality Gap

Figure 7: Aggregated normalized human scores with stratified 95% bootstrap CIs, showing that
unlike moolib (Mella et al., 2022), Cleanba (Huang et al., 2023) variants have more predictable
learning curves (using the same hyperparameters) across different hardware configurations. Figure
from (Huang et al., 2023).

Using ORLB CLI, the authors generated several figures. In Figure 6, taken from (Huang et al.,190

2023), the authors show that the results in terms of sample efficiency compare favorably with the191

baselines, and that for the same system configuration, convergence was temporally faster with the192

proposed implementation, thus proving claims (1) and (2). Figure 7 demonstrates that Cleanba193

variants maintain consistent learning curves across different hardware configurations. Conversely,194

moolib’s IMPALA shows marked variability in similar settings, despite identical hyperparameters,195

confirming the authors’ third claim.196

4 Current practices in RL: data reporting, sharing and reproducibility197

Many new methods have emerged in recent years, with some becoming standard baselines, but198

current practices in the field make it challenging to interpret, compare, and replicate study results. In199

this section, we highlight the inconsistent presentation of results, focusing on learning curves as an200

example. This inconsistency can hinder interpretation and lead to incorrect conclusions. We also note201

the insufficient availability of learning data, despite some positive efforts, and examine challenges202

related to method reproducibility.203

7

4.1 Analyzing learning curve practices204

Plotting learning curves is a common way to show an agent’s performance over learning. We closely205

examine the components of learning curves and the choices made by key publications. We find a lack206

of uniformity, with presentation choices rarely explained and sometimes not explicitly stated.207

Axis Typically, the y axis measures either the return acquired during data collection or evaluation.208

Some older papers, like (Schulman et al., 2015; Mnih et al., 2016; Schulman et al., 2017), fail to209

specify the metric, using the vague term learning curve. The first approach sums the rewards collected210

during agent rollout (Dabney et al., 2018; Burda et al., 2019). The second approach suspends training,211

averaging the agent’s return over episodes, deactivating exploration elements (Fujimoto et al., 2018;212

Haarnoja et al., 2018; Hessel et al., 2018; Janner et al., 2019; Badia et al., 2020b; Ecoffet et al., 2021;213

Chen et al., 2021). This method is prevalent and provides a more precise evaluation. Regarding the x214

axis, while older baselines (Schulman et al., 2015; Mnih et al., 2016) use policy updates and learning215

epochs, the norm is to use interaction counts with the environment. In Atari environments, it is often216

the number of frames, adjusting for frame skipping to match human interaction frequency.217

Shaded area Data variability is typically shown with a shaded area, but its definition varies across218

studies. Commonly, it represents the standard deviation (Chen et al., 2021; Janner et al., 2019) and219

less commonly half the standard deviation (Fujimoto et al., 2018). Haarnoja et al. (2018) uses a220

min-max representation to include outliers, covering the entire observed range. This method offers221

a comprehensive view but amplifies outliers’ impact with more runs. Ecoffet et al. (2021) adopts222

a probabilistic approach, showing a 95% bootstrap confidence interval around the mean, ensuring223

statistical confidence. Unfortunately, Schulman et al. (2015, 2017); Mnih et al. (2016); Dabney et al.224

(2018); Badia et al. (2020b) omit statistical details or even the shaded area, introducing uncertainty in225

data variability interpretation, as seen in (Hessel et al., 2018).226

Normalization and aggregation Performance aggregation assesses method results across various227

tasks and domains, indicating their generality and robustness. Outside the Atari context, aggregation228

practices are uncommon due to the lack of a universal normalization standard. Without a widely229

accepted normalization strategy, scores are typically not aggregated, or if they are, it relies on a230

min-max approach lacking absolute significance and unsuitable for comparisons. Early Atari research231

did not use normalization or aggregate results (Mnih et al., 2013). There has been a shift towards232

normalizing against human performance, though this has weaknesses and may not reflect true agent233

mastery (Toromanoff et al., 2019). Aggregation methods vary: the mean is common but influenced234

by outliers, leading some studies to prefer the more robust median, as in (Hessel et al., 2018). Many235

papers now report both mean and median results (Dabney et al., 2018; Hafner et al., 2023; Badia236

et al., 2020a). Recent approaches, like using the Interquartile Mean (IQM), provide a more accurate237

performance representation across diverse games (Lee et al., 2022), as suggested by Agarwal et al.238

(2021).239

4.2 Spectrum of data sharing practices240

While the mentioned studies often have reference implementations (see Section 4.3), the sharing of241

training data typically extends only to the curves presented in their articles. This necessitates reliance242

on libraries that replicate these methods, offering benchmarks with varying levels of completeness.243

Several widely-used libraries in the field provide high-level summaries or graphical representations244

without including raw data (e.g., Tensorforce (Kuhnle et al., 2017), Garage (garage contributors,245

2019), ACME (Hoffman et al., 2020), MushroomRL (D’Eramo et al., 2021), ChainerRL (Fujita246

et al., 2021), and TorchRL (Bou et al., 2023)). Spinning Up (Achiam, 2018) offers partial data247

accessibility, providing benchmark curves but withholding raw data. TF-Agent (Guadarrama et al.,248

2018) is slightly better, offering experiment tracking with links to TensorBoard.dev, though its future249

is uncertain due to service closure. Tianshou (Weng et al., 2022a) provides individual run reward data250

for Atari and average rewards for MuJoCo, with more detailed MuJoCo data available via a Google251

8

Drive link, but it is not widely promoted. RLLib (Liang et al., 2018) maintains an intermediate252

stance in data sharing, hosting run data in a dedicated repository. However, this data is specific to253

select experiments and often presented in non-standard, undocumented formats, complicating its254

use. Leading effective data-sharing platforms include Dopamine (Castro et al., 2018) and Sample255

Factory (Petrenko et al., 2020). Dopamine consistently provides accessible raw evaluation data for256

various seeds and visualizations, along with trained agents on Google Cloud. Sample Factory offers257

comprehensive data via Weights and Biases (Biewald, 2020) and a selection of pre-trained agents on258

the Hugging Face Hub, enhancing reproducibility and collaborative research efforts.259

4.3 Review on reproducibility260

The literature shows variations in these practices. Some older publications like (Schulman et al.,261

2015, 2017; Bellemare et al., 2013; Mnih et al., 2016; Hessel et al., 2018) and even recent ones262

like (Reed et al., 2022) lack a codebase but provide detailed descriptions for replication6. However,263

challenges arise because certain hyperparameters, important but often unreported, can significantly264

affect performance (Andrychowicz et al., 2020). In addition, implementation choices have proven to265

be critical (Henderson et al., 2018; Huang et al., 2023, 2022a; Engstrom et al., 2020), complicating266

the distinction between implementation-based improvements and methodological advances.267

Recognizing these challenges, the RL community is advocating for higher standards. NeurIPS, for268

instance, has been requesting a reproduction checklist since 2019 (Pineau et al., 2021). Recent269

efforts focus on systematic sharing of source code to promote reproducibility. However, codebases270

are often left unmaintained post-publication (with rare exceptions (Fujimoto et al., 2018)), creating271

complexity for users dealing with various dependencies and unsolved issues. To address these272

challenges, libraries have aggregated multiple baseline implementations (see Section 2.1), aiming273

to match reported paper performance. However, long-term sustainability remains a concern. While274

these libraries enhance reproducibility, in-depth repeatability is still rare.275

5 Discussion and conclusion276

Reproducing results in RL research is often difficult due to limited access to data and code, as well277

as the impact of minor implementation variations on performance. Researchers typically rely on278

imprecise comparisons with paper figures, making the reproduction process time-consuming and279

challenging. To address these issues, we introduce ORLB, a large collection of tracked experiments280

spanning various algorithms, libraries and benchmarks. ORLB records all relevant metrics and281

data points, offering detailed resources for precise reproduction. This tool facilitates access to282

comprehensive datasets, simplifies the extraction of valuable information, enables metric comparisons,283

and provides a CLI for easier data access and visualization. As a dynamic resource, ORLB is regularly284

updated by both its maintainers and the user community, gradually improving the reliability of the285

available results.286

Despite its strengths, ORLB faces challenges in user-friendliness that need to be addressed. Incon-287

sistencies between libraries in evaluation strategies and terminology can make it difficult for users.288

Scaling community engagement becomes a challenge with more members, libraries, and runs. The289

lack of Git-like version tracking for runs adds to these limitations.290

ORLB is a major step forward in addressing the needs of RL research. It offers a comprehensive,291

accessible, and collaborative experiment database, enabling precise comparisons and analysis. It292

improves data access and promotes a deeper understanding of algorithmic performance. While293

challenges remain, ORLB has the potential to raise the standard of RL research.294

6This section uses the taxonomy introduced by Lynnerup et al. (2019): repeatability means accurately
duplicating an experiment with source code and random seed availability, reproducibility involves redoing an
experiment using an existing codebase, and replicability aims to achieve similar results independently through
algorithm implementation.

9

Affiliations295

1Hugging Face296
2Drexel University297
3Univ. Lyon, Centrale Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR 5205298
4SnT, University of Luxembourg299
5German Aerospace Center (DLR) RMC, Weßling, Germany300
6Graduate School of System Informatics, Kobe University, Hyogo, Japan301
7School of Computer Science and Technology, University of Chinese Academy of Sciences302
8Chengdu Institute of Computer Applications, Chinese Academy of Sciences303
9University of Maryland, College Park304
10NVIDIA305
11Snap Inc.306
12School of Computer Science, McGill University307
13Polytech Montpellier DO308
14Zhejiang University309
15Department of Computer Science, Purdue University310
16Work done while at Cohere311
17Chinese University of Hong Kong, Shenzhen312
18University College London313
19Agency for Science, Technology and Research314
20Faculty of Computer Science, University of Vienna, Vienna, Austria315
21UniVie Doctoral School Computer Science, University of Vienna316
22Vidyasirimedhi Institute of Science and Technology (VISTEC)317
23University of Southampton318
24Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 – CRIStAL319
25Saint-Gobain Research Paris320
26International Institute of Information Technology, Hyderabad, India321
27AIcrowd SA322
28Valeo Driving Assistance Research323
29New York University324
30Sea AI Lab325
31Institute of Informatics, Federal University of Rio Grande do Sul326
32AIRI327
33Department of Automation, Tsinghua University328
34University of Basel329
35University of Michigan330
36UC Berkley331

Acknowledgments332

This work has been supported by a highly committed RL community. We have listed all the333

contributors to date, and would like to thank all future contributors and users in advance.334

This work was granted access to the HPC resources of IDRIS under the allocation 2022-335

[AD011012172R1] made by GENCI. The MORL-Baselines experiments have been conducted on the336

HPCs of the University of Luxembourg, and of the Vrije Universiteit Brussel. This work was partly337

supported by the National Key Research and Development Program of China (2023YFB3308601),338

Science and Technology Service Network Initiative (KFJ-STS-QYZD-2021-21-001), the Talents by339

Sichuan provincial Party Committee Organization Department, and Chengdu - Chinese Academy340

of Sciences Science and Technology Cooperation Fund Project (Major Scientific and Technological341

Innovation Projects). Some experiments are conducted at Stability AI and Hugging Face’s cluster.342

10

References343

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. https://github.com/openai/344

spinningup, 2018. URL https://github.com/openai/spinningup.345

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Bellemare.346

Deep Reinforcement Learning at the Edge of the Statistical Precipice. In Marc’Aurelio Ranzato,347

Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-348

vances in Neural Information Processing Systems 34: Annual Conference on Neural Information349

Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 29304–29320, 2021.350

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-351

mare. Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress.352

In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),353

Advances in Neural Information Processing Systems 35: Annual Conference on Neural Infor-354

mation Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-355

cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/356

ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html.357

Lucas N. Alegre, Florian Felten, El-Ghazali Talbi, Grégoire Danoy, Ann Nowé, Ana L. C. Bazzan, and358

Bruno C. da Silva. MO-Gym: A Library of Multi-Objective Reinforcement Learning Environments.359

In Proceedings of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn 2022,360

2022.361

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,362

Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier363

Bachem. What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study.364

arXiv preprint arXiv:2006.05990, 2020.365

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,366

Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark.367

In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18368

July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 507–517.369

PMLR, 2020a. URL http://proceedings.mlr.press/v119/badia20a.html.370

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel Guo, Bilal Piot,371

Steven Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andrew Bolt, and372

Charles Blundell. Never Give Up: Learning Directed Exploration Strategies. In 8th International373

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.374

OpenReview.net, 2020b. URL https://openreview.net/forum?id=Sye57xStvB.375

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning376

Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence377

Research, 47:253–279, 2013. doi: 10.1613/JAIR.3912. URL https://doi.org/10.1613/378

jair.3912.379

Lukas Biewald. Experiment Tracking with Weights and Biases, 2020. URL https://www.wandb.380

com/. Software available from wandb.com.381

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,382

Gianni De Fabritiis, and Vincent Moens. TorchRL: A Data-Driven Decision-Making Library for383

Pytorch. arXiv preprint arXiv:2306.00577, 2023.384

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and385

Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.386

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network387

distillation. In 7th International Conference on Learning Representations, ICLR 2019, New388

Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/389

forum?id=H1lJJnR5Ym.390

11

https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://github.com/openai/spinningup
http://papers.nips.cc/paper_files/paper/2022/hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ba1c5356d9164bb64c446a4b690226b0-Abstract-Conference.html
http://proceedings.mlr.press/v119/badia20a.html
https://openreview.net/forum?id=Sye57xStvB
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Belle-391

mare. Dopamine: A Research Framework for Deep Reinforcement Learning. arXiv preprint392

arXiv:1812.06110, 2018.393

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized Ensembled Double Q-394

Learning: Learning Fast Without a Model. In 9th International Conference on Learning Rep-395

resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL396

https://openreview.net/forum?id=AY8zfZm0tDd.397

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem398

Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & Miniworld: Modular &399

Customizable Reinforcement Learning Environments for Goal-Oriented Tasks. arXiv preprint400

arXiv:2306.13831, 2023.401

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging Procedural Generation402

to Benchmark Reinforcement Learning. In Proceedings of the 37th International Conference on403

Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of404

Machine Learning Research, pp. 2048–2056. PMLR, 2020. URL http://proceedings.mlr.405

press/v119/cobbe20a.html.406

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic Policy Gradient. In Marina407

Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine408

Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine409

Learning Research, pp. 2020–2027. PMLR, 2021. URL http://proceedings.mlr.press/410

v139/cobbe21a.html.411

Erwin Coumans and Yunfei Bai. PyBullet, a Python Module for Physics Simulation for Games,412

Robotics and Machine Learning. 2016.413

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit Quantile Networks for414

Distributional Reinforcement Learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings415

of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,416

Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.417

1104–1113. PMLR, 2018. URL http://proceedings.mlr.press/v80/dabney18a.html.418

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. MushroomRL:419

Simplifying Reinforcement Learning Research. Journal of Machine Learning Research, 22(131):420

1–5, 2021. URL http://jmlr.org/papers/v22/18-056.html.421

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,422

John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines. https://423

github.com/openai/baselines, 2017. URL https://github.com/openai/baselines.424

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. First Return,425

Then Explore. Nature, 590(7847):580–586, 2021. doi: 10.1038/S41586-020-03157-9. URL426

https://doi.org/10.1038/s41586-020-03157-9.427

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,428

and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on PPO and429

TRPO. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,430

Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?431

id=r1etN1rtPB.432

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam433

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:434

Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures. In Jen-435

nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on436

12

https://openreview.net/forum?id=AY8zfZm0tDd
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v119/cobbe20a.html
http://proceedings.mlr.press/v139/cobbe21a.html
http://proceedings.mlr.press/v139/cobbe21a.html
http://proceedings.mlr.press/v139/cobbe21a.html
http://proceedings.mlr.press/v80/dabney18a.html
http://jmlr.org/papers/v22/18-056.html
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines
https://doi.org/10.1038/s41586-020-03157-9
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-437

ume 80 of Proceedings of Machine Learning Research, pp. 1406–1415. PMLR, 2018. URL438

http://proceedings.mlr.press/v80/espeholt18a.html.439

Florian Felten, Lucas Nunes Alegre, Ann Nowe, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire440

Danoy, and Bruno Castro da Silva. A Toolkit for Reliable Benchmarking and Research in Multi-441

Objective Reinforcement Learning. In Proceedings of the Neural Information Processing Systems442

Track on Datasets and Benchmarks 3, NeurIPS Datasets and Benchmarks 2023, 2023. URL443

https://openreview.net/forum?id=jfwRLudQyj.444

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error445

in Actor-Critic Methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the446

35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,447

Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1582–448

1591. PMLR, 2018. URL http://proceedings.mlr.press/v80/fujimoto18a.html.449

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. ChainerRL: A Deep450

Reinforcement Learning Library. Journal of Machine Learning Research, 22(77):1–14, 2021.451

URL http://jmlr.org/papers/v22/20-376.html.452

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-453

Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:454

Self-Supervised and Lifelong Learning at NeurIPS, 2021.455

The garage contributors. Garage: A toolkit for reproducible reinforcement learning research. https:456

//github.com/rlworkgroup/garage, 2019.457

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,458

Ke Wang, Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor459

Bartók, Jesse Berent, Chris Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library460

for Reinforcement Learning in TensorFlow. https://github.com/tensorflow/agents, 2018.461

URL https://github.com/tensorflow/agents.462

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy463

Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer G. Dy and464

Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,465

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings466

of Machine Learning Research, pp. 1856–1865. PMLR, 2018. URL http://proceedings.mlr.467

press/v80/haarnoja18b.html.468

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains469

through World Models. arXiv preprint arXiv:2301.04104, 2023.470

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.471

Deep Reinforcement Learning That Matters. In Sheila A. McIlraith and Kilian Q. Weinberger472

(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),473

the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium474

on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,475

February 2-7, 2018, pp. 3207–3214. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11694. URL476

https://doi.org/10.1609/aaai.v32i1.11694.477

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,478

Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining479

Improvements in Deep Reinforcement Learning. In Sheila A. McIlraith and Kilian Q. Weinberger480

(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),481

the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium482

on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,483

February 2-7, 2018, pp. 3215–3222. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11796. URL484

https://doi.org/10.1609/aaai.v32i1.11796.485

13

http://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=jfwRLudQyj
http://proceedings.mlr.press/v80/fujimoto18a.html
http://jmlr.org/papers/v22/20-376.html
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1609/aaai.v32i1.11694
https://doi.org/10.1609/aaai.v32i1.11796

Matthew W. Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Nikola Momchev,486

Danila Sinopalnikov, Piotr Stańczyk, Sabela Ramos, Anton Raichuk, Damien Vincent, Léonard487

Hussenot, Robert Dadashi, Gabriel Dulac-Arnold, Manu Orsini, Alexis Jacq, Johan Ferret, Nino488

Vieillard, Seyed Kamyar Seyed Ghasemipour, Sertan Girgin, Olivier Pietquin, Feryal Behbahani,489

Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson,490

Abe Friesen, Ruba Haroun, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar491

Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando492

de Freitas. Acme: A Research Framework for Distributed Reinforcement Learning. arXiv preprint493

arXiv:2006.00979, 2020.494

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and495

Weixun Wang. The 37 Implementation Details of Proximal Policy Optimization.496

In ICLR Blog Track, 2022a. URL https://iclr-blog-track.github.io/2022/497

03/25/ppo-implementation-details/. https://iclr-blog-track.github.io/2022/03/25/ppo-498

implementation-details/.499

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal500

Mehta, and João G.M. Araújo. CleanRL: High-quality Single-file Implementations of Deep501

Reinforcement Learning Algorithms. Journal of Machine Learning Research, 23(274):1–18,502

2022b. URL http://jmlr.org/papers/v23/21-1342.html.503

Shengyi Huang, Jiayi Weng, Rujikorn Charakorn, Min Lin, Zhongwen Xu, and Santiago Ontañón.504

Cleanba: A Reproducible and Efficient Distributed Reinforcement Learning Platform, 2023.505

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to Trust Your Model:506

Model-Based Policy Optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-507

imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-508

ral Information Processing Systems 32: Annual Conference on Neural Information Pro-509

cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,510

pp. 12498–12509, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/511

5faf461eff3099671ad63c6f3f094f7f-Abstract.html.512

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX. https:513

//github.com/ikostrikov/jaxrl, Oct 2021. URL https://github.com/ikostrikov/514

jaxrl.515

Alexander Kuhnle, Michael Schaarschmidt, and Kai Fricke. Tensorforce: a TensorFlow library516

for applied reinforcement learning. https://github.com/tensorforce/tensorforce, 2017.517

URL https://github.com/tensorforce/tensorforce.518

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim519

Rocktäschel, and Edward Grefenstette. TorchBeast: A PyTorch Platform for Distributed RL. arXiv520

preprint arXiv:1910.03552, 2019.521

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Sergio Guadarrama, Ian522

Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, and Igor Mordatch. Multi-Game Decision523

Transformers. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh524

(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural525

Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -526

December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/527

b2cac94f82928a85055987d9fd44753f-Abstract-Conference.html.528

Edouard Leurent. An Environment for Autonomous Driving Decision-Making. https://github.529

com/eleurent/highway-env, 2018. URL https://github.com/eleurent/highway-env.530

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph531

Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for Distributed Reinforcement532

Learning. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International533

14

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
http://papers.nips.cc/paper_files/paper/2022/hash/b2cac94f82928a85055987d9fd44753f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b2cac94f82928a85055987d9fd44753f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b2cac94f82928a85055987d9fd44753f-Abstract-Conference.html
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,534

2018, volume 80 of Proceedings of Machine Learning Research, pp. 3059–3068. PMLR, 2018.535

URL http://proceedings.mlr.press/v80/liang18b.html.536

Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, and John Hallam. A Survey on Repro-537

ducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. In538

Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), 3rd Annual Conference on539

Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019, Proceedings, vol-540

ume 100 of Proceedings of Machine Learning Research, pp. 466–489. PMLR, 2019. URL541

http://proceedings.mlr.press/v100/lynnerup20a.html.542

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht, and543

Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open544

Problems for General Agents. Journal of Artificial Intelligence Research, 61:523–562, 2018. doi:545

10.1613/JAIR.5699. URL https://doi.org/10.1613/jair.5699.546

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A High-performance Framework for547

Reinforcement Learning. https://github.com/Denys88/rl_games, May 2021. URL https:548

//github.com/Denys88/rl_games.549

Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Küttler. moolib: A Platform for550

Distributed RL. GitHub repository, 2022. URL https://github.com/facebookresearch/551

moolib.552

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan553

Wierstra, and Martin A. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv554

preprint arXiv:1312.5602, 2013.555

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim556

Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement557

Learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd558

International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,559

2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,560

2016. URL http://proceedings.mlr.press/v48/mniha16.html.561

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical Design in Rein-562

forcement Learning. arXiv preprint arXiv:2304.01315, 2023.563

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sample564

Factory: Egocentric 3D Control from Pixels at 100000 FPS with Asynchronous Reinforcement565

Learning. In Proceedings of the 37th International Conference on Machine Learning, ICML566

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,567

pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/petrenko20a.568

html.569

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer,570

Florence d’Alché-Buc, Emily B. Fox, and Hugo Larochelle. Improving Reproducibility in Machine571

Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). Journal of572

Machine Learning Research, 22:164:1–164:20, 2021. URL http://jmlr.org/papers/v22/573

20-303.html.574

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Powell,575

Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech576

Zaremba. Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request577

for Research. arXiv preprint arXiv:1802.09464, 2018.578

Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.579

15

http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v100/lynnerup20a.html
https://doi.org/10.1613/jair.5699
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://github.com/Denys88/rl_games
https://github.com/facebookresearch/moolib
https://github.com/facebookresearch/moolib
https://github.com/facebookresearch/moolib
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
http://jmlr.org/papers/v22/20-303.html
https://github.com/DLR-RM/rl-baselines3-zoo

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah580

Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of581

Machine Learning Research, 22(268):1–8, 2021.582

Scott E. Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander Novikov,583

Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom584

Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol585

Vinyals, Mahyar Bordbar, and Nando de Freitas. A Generalist Agent. Transactions on Machine586

Learning Research, 2022, 2022. URL https://openreview.net/forum?id=1ikK0kHjvj.587

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust Region588

Policy Optimization. In Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd589

International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,590

volume 37 of JMLR Workshop and Conference Proceedings, pp. 1889–1897. JMLR.org, 2015.591

URL http://proceedings.mlr.press/v37/schulman15.html.592

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-593

Dimensional Continuous Control Using Generalized Advantage Estimation. In Yoshua Ben-594

gio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR595

2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL596

http://arxiv.org/abs/1506.02438.597

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy598

Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.599

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A Physics Engine for Model-Based600

Control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS601

2012, Vilamoura, Algarve, Portugal, October 7-12, 2012, pp. 5026–5033. IEEE, 2012.602

Marin Toromanoff, Émilie Wirbel, and Fabien Moutarde. Is Deep Reinforcement Learning Really603

Superhuman on Atari? arXiv preprint arXiv:1908.04683, 2019.604

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,605

Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea606

Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,607

March 2023. URL https://zenodo.org/record/8127025.608

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang Su,609

and Jun Zhu. Tianshou: A Highly Modularized Deep Reinforcement Learning Library. Journal610

of Machine Learning Research, 23(267):1–6, 2022a. URL http://jmlr.org/papers/v23/611

21-1127.html.612

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen613

Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. EnvPool: A Highly614

Parallel Reinforcement Learning Environment Execution Engine. In Proceedings of the Neural615

Information Processing Systems Track on Datasets and Benchmarks 2, NeurIPS Datasets and616

Benchmarks 2022, 2022b. URL http://papers.nips.cc/paper_files/paper/2022/hash/617

8caaf08e49ddbad6694fae067442ee21-Abstract-Datasets_and_Benchmarks.html.618

Yanxiao Zhao. abcdRL: Modular Single-file Reinforcement Learning Algorithms Library. https:619

//github.com/sdpkjc/abcdrl, December 2022. URL https://github.com/sdpkjc/620

abcdrl.621

Checklist622

1. For all authors...623

16

https://openreview.net/forum?id=1ikK0kHjvj
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
https://zenodo.org/record/8127025
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
http://papers.nips.cc/paper_files/paper/2022/hash/8caaf08e49ddbad6694fae067442ee21-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/8caaf08e49ddbad6694fae067442ee21-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/8caaf08e49ddbad6694fae067442ee21-Abstract-Datasets_and_Benchmarks.html
https://github.com/sdpkjc/abcdrl
https://github.com/sdpkjc/abcdrl
https://github.com/sdpkjc/abcdrl
https://github.com/sdpkjc/abcdrl
https://github.com/sdpkjc/abcdrl
https://github.com/sdpkjc/abcdrl

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s624

contributions and scope? [Yes]625

(b) Did you describe the limitations of your work? [Yes] see Section 5.626

(c) Did you discuss any potential negative societal impacts of your work? [No]627

(d) Have you read the ethics review guidelines and ensured that your paper conforms to628

them? [Yes]629

2. If you are including theoretical results...630

(a) Did you state the full set of assumptions of all theoretical results? [N/A]631

(b) Did you include complete proofs of all theoretical results? [N/A]632

3. If you ran experiments (e.g. for benchmarks)...633

(a) Did you include the code, data, and instructions needed to reproduce the main experi-634

mental results (either in the supplemental material or as a URL)? [Yes] The paper deals635

specifically with new ways of sharing experimental results to improve reproducibility.636

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they637

were chosen)? [Yes]638

(c) Did you report error bars (e.g., with respect to the random seed after running experi-639

ments multiple times)? [Yes]640

(d) Did you include the total amount of compute and the type of resources used (e.g., type641

of GPUs, internal cluster, or cloud provider)? [Yes]642

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...643

(a) If your work uses existing assets, did you cite the creators? [Yes]644

(b) Did you mention the license of the assets? [Yes]645

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]646

Each experiment on ORLB is carefully linked to the source code needed to produce it.647

(d) Did you discuss whether and how consent was obtained from people whose data you’re648

using/curating? [N/A] Data is collected by proactive contributors649

(e) Did you discuss whether the data you are using/curating contains personally identifiable650

information or offensive content? [N/A]651

5. If you used crowdsourcing or conducted research with human subjects...652

(a) Did you include the full text of instructions given to participants and screenshots, if653

applicable? [N/A]654

(b) Did you describe any potential participant risks, with links to Institutional Review655

Board (IRB) approvals, if applicable? [N/A]656

(c) Did you include the estimated hourly wage paid to participants and the total amount657

spent on participant compensation? [N/A]658

17

A Plotting results guidelines659

A.1 Using the CLI660

This section gives notable additional examples of usage of the provided CLI. A more comprehensive661

set of examples and manual is available in the README page of the project.662

A.1.1 Plotting episodic return from various libraries663

First, we showcase the most basic usage of the CLI, that is comparing two different implementations664

of the same algorithm based on learning curve of episodic return. For example, Figure 8 and 9665

compare CleanRL’s TD3 implementation against the original TD3, both in terms of sample efficiency666

and time. The command used to generate this plot is listed below.667

python -m openrlbenchmark.rlops \668
--filters ’?we=openrlbenchmark&wpn=sfujim-TD3&ceik=env&cen=policy&metric=charts/episodic_return’ ’TD3?669

cl=Official TD3’ \670
--filters ’?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return’ ’671

td3_continuous_action_jax?cl=Clean RL TD3’ \672
--env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 \673
--pc.ncols 3 \674
--pc.ncols-legend 2 \675
--output-filename static/td3_vs_cleanrl \676
--scan-history677

In the above command, wpn denotes the project name, typically the learning library name. This allows678

to fetch results of implementations from different projects. Moreover, it is possible to specify which679

metric to compare, in this case charts/episodic_return. Also, the CLI provides the possibility680

to select a given algorithm and apply a different name in the plot, e.g. we rename TD3 to Official681

TD3 and td3_continuous_action_jax to Clean RL TD3. Finally, we can also select a set of682

environments through the --end-ids option.683

0K 200K 400K 600K 800K 1000K

0

2000

4000

6000

8000

10000
HalfCheetah-v2

0K 200K 400K 600K 800K 1000K
0

1000

2000

3000

4000

Walker2d-v2

0K 200K 400K 600K 800K 1000K

0

1000

2000

3000

Hopper-v2

Steps

Ep
iso

di
c

Re
tu

rn

Official TD3 Clean RL TD3

Figure 8: Comparing CleanRL’s TD3 against the original TD3 implementation (sample efficiency).

0 20 40 60

0

2500

5000

7500

10000
HalfCheetah-v2

0 20 40 60 80
0

1000

2000

3000

4000

Walker2d-v2

0 20 40 60

0

1000

2000

3000

4000
Hopper-v2

Time (m)

Ep
iso

di
c

Re
tu

rn

Official TD3 Clean RL TD3

Figure 9: Comparing CleanRL’s TD3 against the original TD3 implementation (time).

18

A.1.2 RLiable integration684

ORLB also integrates with RLiable (Agarwal et al., 2021). To enable such plot, the option --rliable685

can be toggled, then additional parameters are available under --rc. Figures 10, 11, 12, 13 showcase686

the resulting plots of the following command:687

python -m openrlbenchmark.rlops \688
--filters ’?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return’ ’689

baselines-ppo2-cnn?cl=OpenAI Baselines PPO2’ \690
--filters ’?we=openrlbenchmark&wpn=envpool-atari&ceik=env_id&cen=exp_name&metric=charts/691

avg_episodic_return’ ’ppo_atari_envpool_xla_jax_truncation?cl=CleanRL PPO’ \692
--env-ids AlienNoFrameskip-v4 AmidarNoFrameskip-v4 AssaultNoFrameskip-v4 AsterixNoFrameskip-v4693

AsteroidsNoFrameskip-v4 AtlantisNoFrameskip-v4 BankHeistNoFrameskip-v4 BattleZoneNoFrameskip-v4694
BeamRiderNoFrameskip-v4 BerzerkNoFrameskip-v4 BowlingNoFrameskip-v4 BoxingNoFrameskip-v4695
BreakoutNoFrameskip-v4 CentipedeNoFrameskip-v4 ChopperCommandNoFrameskip-v4696
CrazyClimberNoFrameskip-v4 DefenderNoFrameskip-v4 DemonAttackNoFrameskip-v4 DoubleDunkNoFrameskip-697
v4 EnduroNoFrameskip-v4 FishingDerbyNoFrameskip-v4 FreewayNoFrameskip-v4 FrostbiteNoFrameskip-v4698
GopherNoFrameskip-v4 GravitarNoFrameskip-v4 HeroNoFrameskip-v4 IceHockeyNoFrameskip-v4699
PrivateEyeNoFrameskip-v4 QbertNoFrameskip-v4 RiverraidNoFrameskip-v4 RoadRunnerNoFrameskip-v4700
RobotankNoFrameskip-v4 SeaquestNoFrameskip-v4 SkiingNoFrameskip-v4 SolarisNoFrameskip-v4701
SpaceInvadersNoFrameskip-v4 StarGunnerNoFrameskip-v4 SurroundNoFrameskip-v4 TennisNoFrameskip-v4702
TimePilotNoFrameskip-v4 TutankhamNoFrameskip-v4 UpNDownNoFrameskip-v4 VentureNoFrameskip-v4703
VideoPinballNoFrameskip-v4 WizardOfWorNoFrameskip-v4 YarsRevengeNoFrameskip-v4 ZaxxonNoFrameskip-704
v4 JamesbondNoFrameskip-v4 KangarooNoFrameskip-v4 KrullNoFrameskip-v4 KungFuMasterNoFrameskip-v4705
MontezumaRevengeNoFrameskip-v4 MsPacmanNoFrameskip-v4 NameThisGameNoFrameskip-v4706
PhoenixNoFrameskip-v4 PitfallNoFrameskip-v4 PongNoFrameskip-v4 \707

--env-ids Alien-v5 Amidar-v5 Assault-v5 Asterix-v5 Asteroids-v5 Atlantis-v5 BankHeist-v5 BattleZone-v5708
BeamRider-v5 Berzerk-v5 Bowling-v5 Boxing-v5 Breakout-v5 Centipede-v5 ChopperCommand-v5709
CrazyClimber-v5 Defender-v5 DemonAttack-v5 DoubleDunk-v5 Enduro-v5 FishingDerby-v5 Freeway-v5710
Frostbite-v5 Gopher-v5 Gravitar-v5 Hero-v5 IceHockey-v5 PrivateEye-v5 Qbert-v5 Riverraid-v5711
RoadRunner-v5 Robotank-v5 Seaquest-v5 Skiing-v5 Solaris-v5 SpaceInvaders-v5 StarGunner-v5712
Surround-v5 Tennis-v5 TimePilot-v5 Tutankham-v5 UpNDown-v5 Venture-v5 VideoPinball-v5 WizardOfWor-713
v5 YarsRevenge-v5 Zaxxon-v5 Jamesbond-v5 Kangaroo-v5 Krull-v5 KungFuMaster-v5 MontezumaRevenge-v5714
MsPacman-v5 NameThisGame-v5 Phoenix-v5 Pitfall-v5 Pong-v5 \715

--no-check-empty-runs \716
--pc.ncols 5 \717
--pc.ncols-legend 2 \718
--rliable \719
--rc.score_normalization_method atari \720
--rc.normalized_score_threshold 8.0 \721
--rc.sample_efficiency_plots \722
--rc.sample_efficiency_and_walltime_efficiency_method Median \723
--rc.performance_profile_plots \724
--rc.aggregate_metrics_plots \725
--rc.sample_efficiency_num_bootstrap_reps 50000 \726
--rc.performance_profile_num_bootstrap_reps 2000 \727
--rc.interval_estimates_num_bootstrap_reps 2000 \728
--output-filename static/cleanrl_vs_baselines_atari \729
--scan-history730

0.75 0.90 1.05
CleanRL PPO

OpenAI Baselines PPO2
Median

0.88 0.96 1.04
Normalized Score

IQM

5.6 6.4 7.2 8.0

Mean

0.350 0.375 0.400

Optimality Gap

Figure 10: Clean RL PPO vs. OpenAI Baselines PPO, normalized score (RLiable).

0 1 2 3 4 5 6 7 8
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

0 1 2 3 4 5 6 7 8
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ta

sk
s w

ith
 sc

or
e

>

OpenAI Baselines PPO2 CleanRL PPO

Figure 11: Clean RL PPO vs. OpenAI Baselines PPO, performance profile (RLiable).

19

0M 2M 4M 6M 8M

0.00

0.25

0.50

0.75

1.00

M
ed

ia
n

0M 2M 4M 6M 8M

0.00

0.25

0.50

0.75

1.00

IQ
M

0M 2M 4M 6M 8M

0

2

4

6

8

M
ea

n

0M 2M 4M 6M 8M

0.4

0.6

0.8

1.0

1.2

Op
tim

al
ity

 G
ap

Steps

OpenAI Baselines PPO2 CleanRL PPO

Figure 12: Clean RL PPO vs. OpenAI Baselines PPO, sample efficiency (RLiable).

0M 2M 4M 6M 8M
Steps

0.00

0.25

0.50

0.75

1.00

M
ed

ia
n

0 20 40 60 80 100 120 140
Time (m)

OpenAI Baselines PPO2 CleanRL PPO

Figure 13: Clean RL PPO vs. OpenAI Baselines PPO, walltime efficiency (RLiable).

20

A.1.3 Multi-metrics731

Sometimes, such as in multi-objective RL (MORL), it is useful to report multiple metrics in the paper.732

Hence, the CLI includes an option to plot multiple metrics. Below is an example of CLI and resulting733

plots (Figure 14) for multiple MORL algorithms on different environments.734

python -m openrlbenchmark.rlops_multi_metrics \735
--filters ’?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=eval/hypervolume&metrics=736

eval/igd&metrics=eval/sparsity&metrics=eval/mul’ \737
’Pareto Q-Learning?cl=Pareto Q-Learning’ \738
’MultiPolicy MO Q-Learning?cl=MPMOQL’ \739
’MultiPolicy MO Q-Learning (OLS)?cl=MPMOQL (OLS)’ \740
’MultiPolicy MO Q-Learning (GPI-LS)?cl=MPMOQL (GPI-LS)’ \741
--env-ids deep-sea-treasure-v0 deep-sea-treasure-concave-v0 fruit-tree-v0 \742
--pc.ncols 3 \743
--pc.ncols-legend 4 \744
--pc.xlabel ’Training steps’ \745
--pc.ylabel ’’ \746
--pc.max_steps 400000 \747
--output-filename morl/morl_deterministic_envs \748
--scan-history749

0M 0.1M 0.2M 0.3M 0.4M
400

500

600

700

800

hy
pe

rv
ol

um
e

deep-sea-treasure-v0

0M 0.1M 0.2M 0.3M 0.4M

1000

1500

2000

2500

3000

3500

deep-sea-treasure-concave-v0

0M 0.1M 0.2M 0.3M 0.4M
0

10000

20000

30000

40000

fruit-tree-v0

0M 0.1M 0.2M 0.3M 0.4M
0

2

4

6

8

10

ig
d

0M 0.1M 0.2M 0.3M 0.4M
0

20

40

60

80

0M 0.1M 0.2M 0.3M 0.4M
0

2

4

6

8

0M 0.1M 0.2M 0.3M 0.4M

0

100

200

300

400

sp
ar

sit
y

0M 0.1M 0.2M 0.3M 0.4M
2500

0

2500

5000

7500

10000

12500

0M 0.1M 0.2M 0.3M 0.4M
0

20

40

60

80

100

120

0M 0.1M 0.2M 0.3M 0.4M
0

2

4

6

8

10

12

14

m
ul

0M 0.1M 0.2M 0.3M 0.4M

0

20

40

60

80

0M 0.1M 0.2M 0.3M 0.4M
0

2

4

6

8

Training steps

Pareto Q-Learning MPMOQL MPMOQL (OLS) MPMOQL (GPI-LS)

Figure 14: Plotting different metrics for different environments.

21

A.2 Using a custom script750

Our CLI proves highly beneficial for generating standard RL plots, as demonstrated above. Neverthe-751

less, in certain specialized cases, researchers may wish to expose the data in an alternative format.752

Fortunately, all the data hosted in ORLB is accessible through the Weights and Biases API. The753

following example illustrates how this API can be utilized. From there, researchers can employ any754

custom script for plotting this data to suit their specific needs. A simple example of such a script is755

given below, and the corresponding generated plot is shown in Figure 15.756

import matplotlib.pyplot as plt757
import wandb758

759
project_name = "sb3"760
run_id = "0a1kqgev"761

762
api = wandb.Api()763
run = api.run(f"openrlbenchmark/{project_name}/{run_id}")764
history = run.history(keys=["global_step", "eval/mean_reward"])765
plt.plot(history["global_step"], history["eval/mean_reward"])766
plt.title(run.name)767
plt.savefig("custom_plot.png")768

Figure 15: Example of a plot created with a custom script, by importing data directly from ORLB
using the WandB API.

22

B Additional details for the case study769

This appendix gives additional results related to the first case study presented in Section 3.1. Figure770

17 shows the results by environment for the Atari benchmark, and Figure 16 shows them for the771

MuJoCo and Box2d benchmarks. The command lines used to generate these figures are as follows.772

python -m openrlbenchmark.rlops \773
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \774
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO w/775

MC for value estimation’ \776
--env-ids BreakoutNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 SeaquestNoFrameskip-v4 EnduroNoFrameskip-777

v4 PongNoFrameskip-v4 QbertNoFrameskip-v4 BeamRiderNoFrameskip-v4 \778
--no-check-empty-runs \779
--pc.ncols 3 \780
--pc.ncols-legend 2 \781
--rliable \782
--rc.score_normalization_method atari \783
--rc.normalized_score_threshold 8.0 \784
--rc.sample_efficiency_plots \785
--rc.sample_efficiency_and_walltime_efficiency_method Median \786
--rc.performance_profile_plots \787
--rc.aggregate_metrics_plots \788
--rc.sample_efficiency_num_bootstrap_reps 1000 \789
--rc.performance_profile_num_bootstrap_reps 1000 \790
--rc.interval_estimates_num_bootstrap_reps 1000 \791
--output-filename static/gae_for_ppo_value_atari_per_env \792
--scan-history \793
--rc.sample_efficiency_figsize 7 4794

795
python -m openrlbenchmark.rlops \796

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \797
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO w/798

MC for value estimation’ \799
--env-ids InvertedDoublePendulum-v2 InvertedPendulum-v2 Reacher-v2 HalfCheetah-v3 Hopper-v3 Swimmer-v3800

Walker2d-v3 LunarLander-v2 \801
--no-check-empty-runs \802
--pc.ncols 3 \803
--pc.ncols-legend 2 \804
--rliable \805
--rc.normalized_score_threshold 1.0 \806
--rc.sample_efficiency_plots \807
--rc.sample_efficiency_and_walltime_efficiency_method Median \808
--rc.performance_profile_plots \809
--rc.aggregate_metrics_plots \810
--rc.sample_efficiency_num_bootstrap_reps 1000 \811
--rc.performance_profile_num_bootstrap_reps 1000 \812
--rc.interval_estimates_num_bootstrap_reps 1000 \813
--output-filename static/gae_for_ppo_value_mujoco_per_env \814
--scan-history \815
--rc.sample_efficiency_figsize 7 4816

23

0M 2M 4M 6M 8M 10M
0

100

200

300

400

BreakoutNoFrameskip-v4

0M 2M 4M 6M 8M 10M

200

400

600

800

1000

SpaceInvadersNoFrameskip-v4

0M 2M 4M 6M 8M 10M

500

1000

1500

2000
SeaquestNoFrameskip-v4

0M 2M 4M 6M 8M 10M

0

200

400

600

800

EnduroNoFrameskip-v4

0M 2M 4M 6M 8M 10M
20

10

0

10

20
PongNoFrameskip-v4

0M 2M 4M 6M 8M 10M
0

2500

5000

7500

10000

12500

15000
QbertNoFrameskip-v4

0M 2M 4M 6M 8M 10M

1000

2000

3000

4000

BeamRiderNoFrameskip-v4

Steps

Ep
iso

di
c

Re
tu

rn

PPO PPO w/ MC for value estimation

Figure 16: Comparison between the original PPO and the PPO with MC value estimates in various
MuJoCo and Box2D environments. Plots represent the evolution of the episodic return as a function
of the number of interactions with the environment, and shaded areas represent the standard deviation.

24

0M 0.2M 0.4M 0.6M 0.8M 1M

0

2000

4000

6000

8000

10000
InvertedDoublePendulum-v2

0M 0.2M 0.4M 0.6M 0.8M 1M

0

250

500

750

1000

1250
InvertedPendulum-v2

0M 0.2M 0.4M 0.6M 0.8M 1M

10

8

6

4
Reacher-v2

0M 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

5000

6000
HalfCheetah-v3

0M 0.2M 0.4M 0.6M 0.8M 1M

200

400

600

800

1000

1200

Hopper-v3

0M 0.2M 0.4M 0.6M 0.8M 1M
0

100

200

300

400
Swimmer-v3

0M 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000

Walker2d-v3

0K 200K 400K 600K 800K 1000K

600

400

200

0

200

LunarLander-v2

Steps

Ep
iso

di
c

Re
tu

rn

PPO PPO w/ MC for value estimation

Figure 17: Comparison between the original PPO and the PPO with MC value estimates in various
MuJoCo and Box2D environments. Plots represent the evolution of the episodic return as a function
of the number of interactions with the environment, and shaded areas represent the standard deviation.

25

C Refine the MuJoCo benchmark with Stable Baselines3817

In this appendix, we present a synthetic representation of the learning results of the Stable Baselines3818

algorithms (Raffin et al., 2021) tested on the MuJoCo benchmark (Brockman et al., 2016; Todorov819

et al., 2012), whose data is contained in ORLB. At the time of writing, data from 757 runs has820

been used, unevenly distributed between the different experiments. It is important to emphasise that821

the optimisation of hyperparameters and the training budget vary from one experiment to another.822

Consequently, the results should be interpreted with caution. All the hyperparameters and raw823

data used to generate these curves are available on ORLB. Figure 18 shows the aggregation of824

the final performances following the recommendations of Agarwal et al. (2021), and Figure 19 the825

corresponding performance profiles. Figure 20 shows the learning curves as a function of the number826

of interactions.827

0.2 0.4 0.6 0.8
ARS
TQC
TD3
SAC

PPO LSTM
PPO
A2C

DDPG
TRPO

Median

0.2 0.4 0.6 0.8
Normalized Score

IQM

0.4 0.6 0.8

Mean

0.2 0.4 0.6

Optimality Gap

Figure 18: Aggregated final normalized episodic return with 95% stratified bootstrap CIs on the
MuJoCo benchmark of the algorithms integrated into Stable Baselines3.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ta

sk
s w

ith
 sc

or
e

>

TRPO
DDPG
A2C

PPO
PPO LSTM

SAC
TD3

TQC
ARS

Figure 19: Performance profile of algorithms implemented using Stable Baselines 3 (Raffin et al.,
2021) on the MuJoCo benchmark (Todorov et al., 2012). Scores are normalized using the min-max
method.

The command used to generate Figures 18, 19 and 20 is as follows7.828

python -m openrlbenchmark.rlops \829
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’trpo?cl=TRPO’ \830
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ddpg?cl=DDPG’ \831
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’a2c?cl=A2C’ \832
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \833
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo_lstm?cl=PPO LSTM834

’ \835
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’sac?cl=SAC’ \836
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’td3?cl=TD3’ \837
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ars?cl=ARS’ \838
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’tqc?cl=TQC’ \839
--env-ids Ant-v3 BipedalWalker-v3 BipedalWalkerHardcore-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer840

-v3 Walker2d-v3 \841
--no-check-empty-runs \842
--pc.ncols 2 \843
--pc.ncols-legend 4 \844
--rliable \845
--rc.normalized_score_threshold 1.0 \846
--output-filename static/mujoco_sb3 \847
--scan-history848

7For Figure 20, we are omitting ARS as it was run with many more steps, and its inclusions hinder readability.

26

0M 0.2M 0.4M 0.6M 0.8M 1M

0

2000

4000

6000

Ant-v3

0M 1M 2M 3M 4M 5M

100

0

100

200

300

400

BipedalWalker-v3

0M 50M 100M 150M 200M

200

100

0

100

200

300

BipedalWalkerHardcore-v3

0M 0.2M 0.4M 0.6M 0.8M 1M

0

2000

4000

6000

8000

10000

12000

HalfCheetah-v3

0M 0.2M 0.4M 0.6M 0.8M 1M
0

1000

2000

3000

4000
Hopper-v3

0M 2M 4M 6M 8M 10M
0

2000

4000

6000

8000

Humanoid-v3

0M 0.2M 0.4M 0.6M 0.8M 1M

0

100

200

300

400

Swimmer-v3

0M 0.2M 0.4M 0.6M 0.8M 1M

0

1000

2000

3000

4000

5000

Walker2d-v3

Steps

Ep
iso

di
c

Re
tu

rn

TRPO
DDPG

A2C
PPO

PPO LSTM
SAC

TD3
TQC

Figure 20: Sample efficiency curves for algorithms on the MuJoCo Benchmark (Todorov et al., 2012).
This graph presents the mean episodic return for algorithms implemented using Stable Baselines 3
(Raffin et al., 2021), averaged across a minimum of 10 runs (refer to ORLB for specific run counts).
Data points are subsampled to 10,000 and interpolated for clarity. The curves are smoothed using
a rolling average with a window size of 100. The shaded regions around each curve indicate the
standard deviation.

27

	Introduction
	Comprehensive overview of ORLB: content, methodology, tools, and applications
	Content
	Everything you need for perfect repeatability
	The CLI for generating figures in one command line

	ORLB in action: an insight into case studies
	Easily assess the contribution of TD(λ) for value estimation in PPO
	Demonstrating the utility of ORLB through the Cleanba case study

	Current practices in RL: data reporting, sharing and reproducibility
	Analyzing learning curve practices
	Spectrum of data sharing practices
	Review on reproducibility

	Discussion and conclusion
	Plotting results guidelines
	Using the CLI
	Plotting episodic return from various libraries
	RLiable integration
	Multi-metrics

	Using a custom script

	Additional details for the case study
	Refine the MuJoCo benchmark with Stable Baselines3

