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Abstract

In many Reinforcement Learning (RL) papers, learning curves are useful indicators1

to measure the effectiveness of RL algorithms. However, the complete raw data2

of the learning curves are rarely available. As a result, it is usually necessary3

to reproduce the experiments from scratch, which can be time-consuming and4

error-prone. We present OPEN RL BENCHMARK (ORLB), a set of fully tracked5

RL experiments, including not only the usual data such as episodic return, but also6

all algorithm-specific and system metrics. ORLB is community-driven: anyone7

can download, use, and contribute to the data. At the time of writing, more than8

25,000 runs have been tracked, for a cumulative duration of more than 8 years.9

It covers a wide range of RL libraries and reference implementations. Special10

care is taken to ensure that each experiment is precisely reproducible by providing11

not only the full parameters, but also the versions of the dependencies used to12

generate it. In addition, ORLB comes with a command-line interface (CLI) for13

easy fetching and generating figures to present the results. In this document, we14

include two case studies to demonstrate the usefulness of ORLB in practice. To15

the best of our knowledge, ORLB is the first RL benchmark of its kind, and the16

authors hope that it will improve and facilitate the work of researchers in the field.17

1 Introduction18

Reinforcement Learning (RL) research is based on comparing new methods to baselines to assess19

progress (Patterson et al., 2023). This process requires the availability of the data associated with20

these baselines (Raffin et al., 2021) or, alternatively, the ability to replicate them and generate the21

data oneself (Raffin, 2020). In addition, reproducible results allow the methods to be compared with22

new benchmarks and to identify the areas in which the methods excel and those in which they are23

likely to fail, thus providing avenues for future research.24

In practice, the RL research community faces complex challenges in comparing new methods with25

reference data. The unavailability of reference data requires researchers to reproduce experiments,26

which is difficult due to insufficient source code documentation and evolving software dependencies.27
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Figure 1: Example of learning curves obtained with OPEN RL BENCHMARK. These compare the
episodic returns obtained by different implementations of PPO and DQN on three Atari games.

Implementation details, as highlighted in past research, can significantly impact results (Henderson28

et al., 2018; Huang et al., 2022a). Moreover, limited computing resources play a crucial role, hindering29

the reproduction process and affecting researchers without substantial access.30

The lack of standardized metrics and benchmarks across studies not only impedes comparison but31

also results in a substantial waste of time and resources. To address these issues, the RL community32

must establish rigorous reproducibility standards, ensuring replicability and comparability across33

studies. Transparent sharing of data, code, and experimental details, along with the adoption of34

consistent metrics and benchmarks, would collectively enhance the evaluation and progression of RL35

research, ultimately accelerating advancements in the field.36

ORLB presents a rich collection of tracked RL experiments and aims to set a new standard by37

providing a diverse training dataset. This initiative prioritizes the use of existing data over re-running38

baselines, emphasizing reproducibility and transparency. Our contributions are:39

• Extensive dataset: Offers a large, diverse collection of tracked RL experiments.40

• Standardization: Establishes a new norm by encouraging reliance on existing data, reducing41

the need for re-running baselines.42

• Comprehensive metrics: Includes diverse tracked metrics for method-specific and system43

evaluation, in addition to episodic return.44

• Reproducibility: Emphasizes clear instructions and fixed dependencies, ensuring easy45

experiment replication.46

• Resource for research: Serves as a valuable and collaborative resource for RL research.47

• Facilitating exploration: Enables reliable exploration and assessment of new and exisiting48

RL methods.49

2 Comprehensive overview of ORLB: content, methodology, tools, and50

applications51

This section provides a detailed exploration of the contents of ORLB, including its diverse set of52

libraries and environments, and the metrics it contains. We also look at the practical aspects of using53

ORLB, highlighting its ability to ensure accurate reproducibility and facilitate the creation of data54

visualizations thanks to its CLI.55

2.1 Content56

ORLB data is stored and shared with Weights and Biases (Biewald, 2020). The data is contained57

in a common entity named openrlbenchmark. Runs are divided into several projects. A project58

can correspond to a library, but it can also correspond to a set of more specific runs, such as59

envpool-cleanrl in which we find CleanRL runs (Huang et al., 2022b) launched with the EnvPool60
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implementation of environments (Weng et al., 2022b). A project can also correspond to a reference61

implementation, such as TD3 (project sfujim-TD3) or Phasic Policy Gradient (Cobbe et al., 2021)62

(project phasic-policy-gradient). ORLB also includes reports, which are interactive documents63

designed to enhance the visualization of selected representations. These reports provide a more64

user-friendly format for practitioners to share, discuss, and analyze experimental results, even across65

different projects. Figure 2 shows a preview of one such report.66

Figure 2: An example of a report on the Weights and Biases platform, dealing with the
contribution of QDagger (Agarwal et al., 2022), and using data from ORLB. The URL
to access the report is https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/
Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5.

At the time of writing, ORLB contains nearly 25,000 runs, for a total of 72,000 hours (more than 867

years) of tracking. In the following paragraphs, we present the libraries and environments for which68

runs are available in ORLB, as well as the metrics tracked.69

Libraries ORLB contains runs for several reference RL libraries. These libraries are: abcdRL70

(Zhao, 2022), Acme (Hoffman et al., 2020), Cleanba (Huang et al., 2023), CleanRL (Huang et al.,71

2022b), jaxrl (Kostrikov, 2021), moolib (Mella et al., 2022), MORL-Baselines (Felten et al., 2023),72

OpenAI Baselines (Dhariwal et al., 2017), rlgames (Makoviichuk & Makoviychuk, 2021) Stable73

Baselines3 (Raffin et al., 2021; Raffin, 2020) Stable Baselines Jax (Raffin et al., 2021) and TorchBeast74

(Küttler et al., 2019).75

Environments The runs contained in ORLB cover a wide range of classic environments. They76

include Atari (Bellemare et al., 2013; Machado et al., 2018), Classic control (Brockman et al., 2016),77

Box2d (Brockman et al., 2016) and MuJoCo (Todorov et al., 2012) as part of either Gym (Brockman78

et al., 2016) or Gymnasium (Towers et al., 2023) or EnvPool (Weng et al., 2022b). They also79

include Bullet (Coumans & Bai, 2016), Procgen Benchmark (Cobbe et al., 2020), Fetch environments80

(Plappert et al., 2018), PandaGym (Gallouédec et al., 2021), highway-env (Leurent, 2018), Minigrid81

(Chevalier-Boisvert et al., 2023) and MO-Gymnasium (Alegre et al., 2022).82

Tracked metrics Metrics are recorded throughout the learning process, consistently linked with a83

global step indicating the number of interactions with the environment, and an absolute time, which84

allows to compute the duration of a run. We categorize these metrics into four distinct groups:85

• Training-related metrics: These are general metrics related to RL learning. This category86

contains, for example, the average returns obtained, the episode length or the number of87

collected samples per second.88
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• Method-specific metrics: These are losses and measures of key internal values of the89

methods. For PPO, for example, this category includes the value loss, the policy loss, the90

entropy or the approximate KL divergence.91

• Evolving configuration parameters: These are configuration values that change during the92

learning process. This category includes, for example, the learning rate when there is decay,93

or the exploration rate (ϵ) in the Deep Q-Network (DQN) (Mnih et al., 2013).94

• System metrics: These are metrics related to system components. These could be GPU95

memory usage, its power consumption, its temperature, system and process memory usage,96

CPU usage or even network traffic.97

The specific metrics available may vary from one library to another. In addition, even where the98

metrics are technically similar, the terminology or key used to record them may vary from one99

library to another. Users are advised to consult the documentation specific to each library for precise100

information on these measures.101

2.2 Everything you need for perfect repeatability102

Reproducing experimental results in computational research, as discussed in Section 4.3, is often103

challenging due to evolving codebases, incomplete hyperparameter listings, version discrepancies,104

and compatibility issues. Our approach aims to enhance reproducibility by ensuring users can105

exactly replicate benchmark results. Each experiment includes a complete configuration with all106

hyperparameters, frozen versions of dependencies, and the exact command, including the necessary107

random seed, for systematic reproducibility. As a example, CleanRL (Huang et al., 2022b) introduces108

a unique utility that streamlines the process of experiment replication (see Figure 3). This tool109

produces the command lines to set up a Python environment with the necessary dependencies,110

download the run file, and the precise command required for the experiment reproduction. Such111

an approach to reproduction facilitates research and makes it possible to study in depth unusual112

phenomena, or cases of rupture2, in learning processes, which are generally ignored in the results113

presented, either because they are deliberately left out or because they are erased by the averaging114

process.115

Figure 3: CleanRL’s module reproduce allows the user to generate, from an ORLB run reference,
the exact command suite for an identical reproduction of the run.

2.3 The CLI for generating figures in one command line116

ORLB offers convenient access to raw data from RL libraries on standard environments. It includes a117

feature for easily extracting and visualizing data in a paper-friendly format, streamlining the process118

of filtering and extracting relevant runs and metrics for research papers through a single command.119

The CLI is a powerful tool for generating most metrics-related figures for RL research and notably,120

all figures in this document were generated using the CLI. The data in ORLB can also be accessed121

by custom scripts, as detailed in Appendix A.2. Specifically, the CLI integrated into ORLB provides122

users with the flexibility to:123

2Exemplified in https://github.com/DLR-RM/rl-baselines3-zoo/issues/427
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• Specify algorithms’ implementations (from which library) along with their corresponding124

git commit or tag;125

• Choose target environments for analysis;126

• Define the metrics of interest;127

• Opt for the additional generation of metrics and plots using RLiable (Agarwal et al., 2021).128

Concrete example usage of the CLI and resulting plots are available in Appendix A.1.129

3 ORLB in action: an insight into case studies130

ORLB offers a powerful tool for researchers to evaluate and compare different RL algorithms. In this131

section, we will explore two case studies that showcase its benefits. First, we propose to investigate132

the effect of using TD(λ) for value estimation in PPO (Schulman et al., 2017) versus using Monte133

Carlo (MC). This simple study illustrates the use of ORLB through a classic research question.134

Moreover, to the best of our knowledge, this question has never been studied in the literature. We135

then show how ORLB is used to demonstrate the speedup and variance reduction of a new IMPALA136

implementation proposed by Huang et al. (2023). By using ORLB, we can save time and resources137

while ensuring consistent and reproducible comparisons. These case studies highlight the role of the138

benchmark in providing insights that can advance the field of RL research.139

3.1 Easily assess the contribution of TD(λ) for value estimation in PPO140

In the first case study, we show how ORLB can be used to easily compare the performance of141

different methods for estimating the value function in PPO (Schulman et al., 2017), one of the142

many implementation details of this algorithm (Huang et al., 2022a). Specifically, we compare the143

commonly used Temporal Difference (TD)(λ) estimate to the Monte-Carlo (MC) estimate.144

PPO typically employs Generalized Advantage Estimation (GAE) (Schulman et al., 2016) to update145

the actor. The advantage estimate is expressed as follows:146

A
GAE(γ,λ)
t =

N−1∑
l=0

(γλ)lδVt+l (1)

where λ ∈ [0, 1] adjusts the bias-variance tradeoff and δVt+l = Rt+l + γV̂ (St+l+1)− V̂ (St+l). The147

target return for critic optimization is estimated with TD(λ) as follows:148

Gλ
t = (1− λ)

∞∑
n=1

λn−1Gt:t+n (2)

where Gt:t+n =
∑n−1

k=0 γ
kRt+k+1 + γnV (St+n) is the n-steps return. In practice, the target return149

for updating the critic is computed from the GAE value, by adding the minibatch return, a detail150

usually overlooked by practitioners (Huang et al., 2022a, point 5). While previous studies (Patterson151

et al., 2023) have shown the joint benefit of GAE and over MC estimates for actor and critic, we152

focus on the value function alone. To isolate the influence of the value function estimation, we vary153

the method used for the value function and keep GAE for advantage estimation.154

The first step is to identify the reference runs in ORLB. Since PPO is a well-known baseline, there155

are many runs available; we decided to use those from Stable Baselines3 for this example. We156

then retrieve the exact source code and command used to generate the runs – thanks to the pinned157

dependencies that come with them – and make the necessary changes to the source code. For each158

selected environment, we start three learning runs using the same command as the one we retrieved.159

The runs are saved in a dedicated project3. For fast and user-friendly rendering of the results, we160

3https://wandb.ai/modanesh/openrlbenchmark
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create a Weights and Biases report4. Using ORLB CLI, we generate Figure 4 and 5. The command161

used to generate the figures is given in Appendix B.162

Figures 4 and 5 give an overview of the results, while detailed plots in the Appendix B provide a163

closer look at each environment. The proposed modification to the PPO value function estimation164

has an impact on the performance for Atari games (Figure 4a): not using TD(λ) results in lower165

scores. However, PPO with MC estimates has similar performance to the original PPO in Box2D166

and MuJoCo environments. This example shows how ORLB can be used to quickly investigate the167

influence of design choices in RL. It provides baseline results and tools to compare and reproduce168

results.169
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(b) Results for Box2D and MuJoCo environments

Figure 4: Comparing the original PPO and the PPO with Monte-Carlo (MC) for value estimation.
These experiments were conducted over 15 environments, including Atari games, Box2D, and
MuJoCo. The plot shows min-max normalized scores with 95% stratified bootstrap CIs.
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Figure 5: Study of the contribution of GAE for estimating the value used to update the critic in PPO,
compared against its variant which uses the MC estimator instead. Figures show the aggregated
min-max normalized scores with stratified 95% stratified bootstrap CIs.

3.2 Demonstrating the utility of ORLB through the Cleanba case study170

This section describes how ORLB was instrumental in the evaluation and presentation of Cleanba171

(Huang et al., 2023), a new open-source platform for distributed RL implementing highly optimized172

distributed variants of PPO (Schulman et al., 2017) and IMPALA (Espeholt et al., 2018). Cleanba’s173

authors asserted three points: (1) Cleanba implementations compare favorably with baselines in terms174

of sample efficiency, (2) for the same system, the Cleanba implementation is more optimized and175

therefore faster, and (3) the design choices allow a reduction in the variability of results.176

To prove these assertions, the evaluation of Cleanba encountered a common problem in RL research:177

the works that initially proposed these baselines did not provide the raw results of their experiments.178

Although a reference implementation is available5, it is no longer maintained. Subsequent works179

such as Moolib (Mella et al., 2022) and TorchBeast (Küttler et al., 2019) have successfully replicated180

4https://api.wandb.ai/links/modanesh/izf4yje4
5https://github.com/google-deepmind/scalable_agent
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the IMPALA results. However, these shared results are limited to the paper’s presented curves, which181

provide a smoothed measure of episodic return as a function of interaction steps on a specific set of182

Atari tasks. It is worth noting that these tasks are not an exact match for the widely recognized Atari183

57, and the raw data used to generate these curves is unavailable.184

Recognizing the lack of raw data for existing IMPALA implementations, the authors reproduced the185

experiments, tracked the runs and integrated them into ORLB. As a reminder, these logged data186

include not only the return curves, but also the system configurations and temporal data, which are187

crucial to support the Cleanba authors’ optimization claim. Comparable experiments have been run,188

tracked and shared on ORLB with the proposed Cleanba implementation.189
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Figure 6: Median human-normalized scores with 95% stratified bootstrap CIs of Cleanba (Huang
et al., 2023) variants compared with moolib (Mella et al., 2022) and monobeast (Küttler et al., 2019).
The experiments were conducted on 57 Atari games (Bellemare et al., 2013). The data used to
generate the figure comes from ORLB, and the figure was generated with a single command from
ORLB’s CLI. Figure from (Huang et al., 2023).
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Figure 7: Aggregated normalized human scores with stratified 95% bootstrap CIs, showing that
unlike moolib (Mella et al., 2022), Cleanba (Huang et al., 2023) variants have more predictable
learning curves (using the same hyperparameters) across different hardware configurations. Figure
from (Huang et al., 2023).

Using ORLB CLI, the authors generated several figures. In Figure 6, taken from (Huang et al.,190

2023), the authors show that the results in terms of sample efficiency compare favorably with the191

baselines, and that for the same system configuration, convergence was temporally faster with the192

proposed implementation, thus proving claims (1) and (2). Figure 7 demonstrates that Cleanba193

variants maintain consistent learning curves across different hardware configurations. Conversely,194

moolib’s IMPALA shows marked variability in similar settings, despite identical hyperparameters,195

confirming the authors’ third claim.196

4 Current practices in RL: data reporting, sharing and reproducibility197

Many new methods have emerged in recent years, with some becoming standard baselines, but198

current practices in the field make it challenging to interpret, compare, and replicate study results. In199

this section, we highlight the inconsistent presentation of results, focusing on learning curves as an200

example. This inconsistency can hinder interpretation and lead to incorrect conclusions. We also note201

the insufficient availability of learning data, despite some positive efforts, and examine challenges202

related to method reproducibility.203
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4.1 Analyzing learning curve practices204

Plotting learning curves is a common way to show an agent’s performance over learning. We closely205

examine the components of learning curves and the choices made by key publications. We find a lack206

of uniformity, with presentation choices rarely explained and sometimes not explicitly stated.207

Axis Typically, the y axis measures either the return acquired during data collection or evaluation.208

Some older papers, like (Schulman et al., 2015; Mnih et al., 2016; Schulman et al., 2017), fail to209

specify the metric, using the vague term learning curve. The first approach sums the rewards collected210

during agent rollout (Dabney et al., 2018; Burda et al., 2019). The second approach suspends training,211

averaging the agent’s return over episodes, deactivating exploration elements (Fujimoto et al., 2018;212

Haarnoja et al., 2018; Hessel et al., 2018; Janner et al., 2019; Badia et al., 2020b; Ecoffet et al., 2021;213

Chen et al., 2021). This method is prevalent and provides a more precise evaluation. Regarding the x214

axis, while older baselines (Schulman et al., 2015; Mnih et al., 2016) use policy updates and learning215

epochs, the norm is to use interaction counts with the environment. In Atari environments, it is often216

the number of frames, adjusting for frame skipping to match human interaction frequency.217

Shaded area Data variability is typically shown with a shaded area, but its definition varies across218

studies. Commonly, it represents the standard deviation (Chen et al., 2021; Janner et al., 2019) and219

less commonly half the standard deviation (Fujimoto et al., 2018). Haarnoja et al. (2018) uses a220

min-max representation to include outliers, covering the entire observed range. This method offers221

a comprehensive view but amplifies outliers’ impact with more runs. Ecoffet et al. (2021) adopts222

a probabilistic approach, showing a 95% bootstrap confidence interval around the mean, ensuring223

statistical confidence. Unfortunately, Schulman et al. (2015, 2017); Mnih et al. (2016); Dabney et al.224

(2018); Badia et al. (2020b) omit statistical details or even the shaded area, introducing uncertainty in225

data variability interpretation, as seen in (Hessel et al., 2018).226

Normalization and aggregation Performance aggregation assesses method results across various227

tasks and domains, indicating their generality and robustness. Outside the Atari context, aggregation228

practices are uncommon due to the lack of a universal normalization standard. Without a widely229

accepted normalization strategy, scores are typically not aggregated, or if they are, it relies on a230

min-max approach lacking absolute significance and unsuitable for comparisons. Early Atari research231

did not use normalization or aggregate results (Mnih et al., 2013). There has been a shift towards232

normalizing against human performance, though this has weaknesses and may not reflect true agent233

mastery (Toromanoff et al., 2019). Aggregation methods vary: the mean is common but influenced234

by outliers, leading some studies to prefer the more robust median, as in (Hessel et al., 2018). Many235

papers now report both mean and median results (Dabney et al., 2018; Hafner et al., 2023; Badia236

et al., 2020a). Recent approaches, like using the Interquartile Mean (IQM), provide a more accurate237

performance representation across diverse games (Lee et al., 2022), as suggested by Agarwal et al.238

(2021).239

4.2 Spectrum of data sharing practices240

While the mentioned studies often have reference implementations (see Section 4.3), the sharing of241

training data typically extends only to the curves presented in their articles. This necessitates reliance242

on libraries that replicate these methods, offering benchmarks with varying levels of completeness.243

Several widely-used libraries in the field provide high-level summaries or graphical representations244

without including raw data (e.g., Tensorforce (Kuhnle et al., 2017), Garage (garage contributors,245

2019), ACME (Hoffman et al., 2020), MushroomRL (D’Eramo et al., 2021), ChainerRL (Fujita246

et al., 2021), and TorchRL (Bou et al., 2023)). Spinning Up (Achiam, 2018) offers partial data247

accessibility, providing benchmark curves but withholding raw data. TF-Agent (Guadarrama et al.,248

2018) is slightly better, offering experiment tracking with links to TensorBoard.dev, though its future249

is uncertain due to service closure. Tianshou (Weng et al., 2022a) provides individual run reward data250

for Atari and average rewards for MuJoCo, with more detailed MuJoCo data available via a Google251
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Drive link, but it is not widely promoted. RLLib (Liang et al., 2018) maintains an intermediate252

stance in data sharing, hosting run data in a dedicated repository. However, this data is specific to253

select experiments and often presented in non-standard, undocumented formats, complicating its254

use. Leading effective data-sharing platforms include Dopamine (Castro et al., 2018) and Sample255

Factory (Petrenko et al., 2020). Dopamine consistently provides accessible raw evaluation data for256

various seeds and visualizations, along with trained agents on Google Cloud. Sample Factory offers257

comprehensive data via Weights and Biases (Biewald, 2020) and a selection of pre-trained agents on258

the Hugging Face Hub, enhancing reproducibility and collaborative research efforts.259

4.3 Review on reproducibility260

The literature shows variations in these practices. Some older publications like (Schulman et al.,261

2015, 2017; Bellemare et al., 2013; Mnih et al., 2016; Hessel et al., 2018) and even recent ones262

like (Reed et al., 2022) lack a codebase but provide detailed descriptions for replication6. However,263

challenges arise because certain hyperparameters, important but often unreported, can significantly264

affect performance (Andrychowicz et al., 2020). In addition, implementation choices have proven to265

be critical (Henderson et al., 2018; Huang et al., 2023, 2022a; Engstrom et al., 2020), complicating266

the distinction between implementation-based improvements and methodological advances.267

Recognizing these challenges, the RL community is advocating for higher standards. NeurIPS, for268

instance, has been requesting a reproduction checklist since 2019 (Pineau et al., 2021). Recent269

efforts focus on systematic sharing of source code to promote reproducibility. However, codebases270

are often left unmaintained post-publication (with rare exceptions (Fujimoto et al., 2018)), creating271

complexity for users dealing with various dependencies and unsolved issues. To address these272

challenges, libraries have aggregated multiple baseline implementations (see Section 2.1), aiming273

to match reported paper performance. However, long-term sustainability remains a concern. While274

these libraries enhance reproducibility, in-depth repeatability is still rare.275

5 Discussion and conclusion276

Reproducing results in RL research is often difficult due to limited access to data and code, as well277

as the impact of minor implementation variations on performance. Researchers typically rely on278

imprecise comparisons with paper figures, making the reproduction process time-consuming and279

challenging. To address these issues, we introduce ORLB, a large collection of tracked experiments280

spanning various algorithms, libraries and benchmarks. ORLB records all relevant metrics and281

data points, offering detailed resources for precise reproduction. This tool facilitates access to282

comprehensive datasets, simplifies the extraction of valuable information, enables metric comparisons,283

and provides a CLI for easier data access and visualization. As a dynamic resource, ORLB is regularly284

updated by both its maintainers and the user community, gradually improving the reliability of the285

available results.286

Despite its strengths, ORLB faces challenges in user-friendliness that need to be addressed. Incon-287

sistencies between libraries in evaluation strategies and terminology can make it difficult for users.288

Scaling community engagement becomes a challenge with more members, libraries, and runs. The289

lack of Git-like version tracking for runs adds to these limitations.290

ORLB is a major step forward in addressing the needs of RL research. It offers a comprehensive,291

accessible, and collaborative experiment database, enabling precise comparisons and analysis. It292

improves data access and promotes a deeper understanding of algorithmic performance. While293

challenges remain, ORLB has the potential to raise the standard of RL research.294

6This section uses the taxonomy introduced by Lynnerup et al. (2019): repeatability means accurately
duplicating an experiment with source code and random seed availability, reproducibility involves redoing an
experiment using an existing codebase, and replicability aims to achieve similar results independently through
algorithm implementation.
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A Plotting results guidelines659

A.1 Using the CLI660

This section gives notable additional examples of usage of the provided CLI. A more comprehensive661

set of examples and manual is available in the README page of the project.662

A.1.1 Plotting episodic return from various libraries663

First, we showcase the most basic usage of the CLI, that is comparing two different implementations664

of the same algorithm based on learning curve of episodic return. For example, Figure 8 and 9665

compare CleanRL’s TD3 implementation against the original TD3, both in terms of sample efficiency666

and time. The command used to generate this plot is listed below.667

python -m openrlbenchmark.rlops \668
--filters ’?we=openrlbenchmark&wpn=sfujim-TD3&ceik=env&cen=policy&metric=charts/episodic_return’ ’TD3?669

cl=Official TD3’ \670
--filters ’?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/episodic_return’ ’671

td3_continuous_action_jax?cl=Clean RL TD3’ \672
--env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 \673
--pc.ncols 3 \674
--pc.ncols-legend 2 \675
--output-filename static/td3_vs_cleanrl \676
--scan-history677

In the above command, wpn denotes the project name, typically the learning library name. This allows678

to fetch results of implementations from different projects. Moreover, it is possible to specify which679

metric to compare, in this case charts/episodic_return. Also, the CLI provides the possibility680

to select a given algorithm and apply a different name in the plot, e.g. we rename TD3 to Official681

TD3 and td3_continuous_action_jax to Clean RL TD3. Finally, we can also select a set of682

environments through the --end-ids option.683
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Figure 8: Comparing CleanRL’s TD3 against the original TD3 implementation (sample efficiency).
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A.1.2 RLiable integration684

ORLB also integrates with RLiable (Agarwal et al., 2021). To enable such plot, the option --rliable685

can be toggled, then additional parameters are available under --rc. Figures 10, 11, 12, 13 showcase686

the resulting plots of the following command:687

python -m openrlbenchmark.rlops \688
--filters ’?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/episodic_return’ ’689

baselines-ppo2-cnn?cl=OpenAI Baselines PPO2’ \690
--filters ’?we=openrlbenchmark&wpn=envpool-atari&ceik=env_id&cen=exp_name&metric=charts/691

avg_episodic_return’ ’ppo_atari_envpool_xla_jax_truncation?cl=CleanRL PPO’ \692
--env-ids AlienNoFrameskip-v4 AmidarNoFrameskip-v4 AssaultNoFrameskip-v4 AsterixNoFrameskip-v4693

AsteroidsNoFrameskip-v4 AtlantisNoFrameskip-v4 BankHeistNoFrameskip-v4 BattleZoneNoFrameskip-v4694
BeamRiderNoFrameskip-v4 BerzerkNoFrameskip-v4 BowlingNoFrameskip-v4 BoxingNoFrameskip-v4695
BreakoutNoFrameskip-v4 CentipedeNoFrameskip-v4 ChopperCommandNoFrameskip-v4696
CrazyClimberNoFrameskip-v4 DefenderNoFrameskip-v4 DemonAttackNoFrameskip-v4 DoubleDunkNoFrameskip-697
v4 EnduroNoFrameskip-v4 FishingDerbyNoFrameskip-v4 FreewayNoFrameskip-v4 FrostbiteNoFrameskip-v4698
GopherNoFrameskip-v4 GravitarNoFrameskip-v4 HeroNoFrameskip-v4 IceHockeyNoFrameskip-v4699
PrivateEyeNoFrameskip-v4 QbertNoFrameskip-v4 RiverraidNoFrameskip-v4 RoadRunnerNoFrameskip-v4700
RobotankNoFrameskip-v4 SeaquestNoFrameskip-v4 SkiingNoFrameskip-v4 SolarisNoFrameskip-v4701
SpaceInvadersNoFrameskip-v4 StarGunnerNoFrameskip-v4 SurroundNoFrameskip-v4 TennisNoFrameskip-v4702
TimePilotNoFrameskip-v4 TutankhamNoFrameskip-v4 UpNDownNoFrameskip-v4 VentureNoFrameskip-v4703
VideoPinballNoFrameskip-v4 WizardOfWorNoFrameskip-v4 YarsRevengeNoFrameskip-v4 ZaxxonNoFrameskip-704
v4 JamesbondNoFrameskip-v4 KangarooNoFrameskip-v4 KrullNoFrameskip-v4 KungFuMasterNoFrameskip-v4705
MontezumaRevengeNoFrameskip-v4 MsPacmanNoFrameskip-v4 NameThisGameNoFrameskip-v4706
PhoenixNoFrameskip-v4 PitfallNoFrameskip-v4 PongNoFrameskip-v4 \707

--env-ids Alien-v5 Amidar-v5 Assault-v5 Asterix-v5 Asteroids-v5 Atlantis-v5 BankHeist-v5 BattleZone-v5708
BeamRider-v5 Berzerk-v5 Bowling-v5 Boxing-v5 Breakout-v5 Centipede-v5 ChopperCommand-v5709
CrazyClimber-v5 Defender-v5 DemonAttack-v5 DoubleDunk-v5 Enduro-v5 FishingDerby-v5 Freeway-v5710
Frostbite-v5 Gopher-v5 Gravitar-v5 Hero-v5 IceHockey-v5 PrivateEye-v5 Qbert-v5 Riverraid-v5711
RoadRunner-v5 Robotank-v5 Seaquest-v5 Skiing-v5 Solaris-v5 SpaceInvaders-v5 StarGunner-v5712
Surround-v5 Tennis-v5 TimePilot-v5 Tutankham-v5 UpNDown-v5 Venture-v5 VideoPinball-v5 WizardOfWor-713
v5 YarsRevenge-v5 Zaxxon-v5 Jamesbond-v5 Kangaroo-v5 Krull-v5 KungFuMaster-v5 MontezumaRevenge-v5714
MsPacman-v5 NameThisGame-v5 Phoenix-v5 Pitfall-v5 Pong-v5 \715

--no-check-empty-runs \716
--pc.ncols 5 \717
--pc.ncols-legend 2 \718
--rliable \719
--rc.score_normalization_method atari \720
--rc.normalized_score_threshold 8.0 \721
--rc.sample_efficiency_plots \722
--rc.sample_efficiency_and_walltime_efficiency_method Median \723
--rc.performance_profile_plots \724
--rc.aggregate_metrics_plots \725
--rc.sample_efficiency_num_bootstrap_reps 50000 \726
--rc.performance_profile_num_bootstrap_reps 2000 \727
--rc.interval_estimates_num_bootstrap_reps 2000 \728
--output-filename static/cleanrl_vs_baselines_atari \729
--scan-history730

0.75 0.90 1.05
CleanRL PPO

OpenAI Baselines PPO2
Median

0.88 0.96 1.04
Normalized Score

IQM

5.6 6.4 7.2 8.0

Mean

0.350 0.375 0.400

Optimality Gap

Figure 10: Clean RL PPO vs. OpenAI Baselines PPO, normalized score (RLiable).
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Figure 11: Clean RL PPO vs. OpenAI Baselines PPO, performance profile (RLiable).
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Figure 12: Clean RL PPO vs. OpenAI Baselines PPO, sample efficiency (RLiable).
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A.1.3 Multi-metrics731

Sometimes, such as in multi-objective RL (MORL), it is useful to report multiple metrics in the paper.732

Hence, the CLI includes an option to plot multiple metrics. Below is an example of CLI and resulting733

plots (Figure 14) for multiple MORL algorithms on different environments.734

python -m openrlbenchmark.rlops_multi_metrics \735
--filters ’?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=eval/hypervolume&metrics=736

eval/igd&metrics=eval/sparsity&metrics=eval/mul’ \737
’Pareto Q-Learning?cl=Pareto Q-Learning’ \738
’MultiPolicy MO Q-Learning?cl=MPMOQL’ \739
’MultiPolicy MO Q-Learning (OLS)?cl=MPMOQL (OLS)’ \740
’MultiPolicy MO Q-Learning (GPI-LS)?cl=MPMOQL (GPI-LS)’ \741
--env-ids deep-sea-treasure-v0 deep-sea-treasure-concave-v0 fruit-tree-v0 \742
--pc.ncols 3 \743
--pc.ncols-legend 4 \744
--pc.xlabel ’Training steps’ \745
--pc.ylabel ’’ \746
--pc.max_steps 400000 \747
--output-filename morl/morl_deterministic_envs \748
--scan-history749
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Figure 14: Plotting different metrics for different environments.

21



A.2 Using a custom script750

Our CLI proves highly beneficial for generating standard RL plots, as demonstrated above. Neverthe-751

less, in certain specialized cases, researchers may wish to expose the data in an alternative format.752

Fortunately, all the data hosted in ORLB is accessible through the Weights and Biases API. The753

following example illustrates how this API can be utilized. From there, researchers can employ any754

custom script for plotting this data to suit their specific needs. A simple example of such a script is755

given below, and the corresponding generated plot is shown in Figure 15.756

import matplotlib.pyplot as plt757
import wandb758

759
project_name = "sb3"760
run_id = "0a1kqgev"761

762
api = wandb.Api()763
run = api.run(f"openrlbenchmark/{project_name}/{run_id}")764
history = run.history(keys=["global_step", "eval/mean_reward"])765
plt.plot(history["global_step"], history["eval/mean_reward"])766
plt.title(run.name)767
plt.savefig("custom_plot.png")768

Figure 15: Example of a plot created with a custom script, by importing data directly from ORLB
using the WandB API.
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B Additional details for the case study769

This appendix gives additional results related to the first case study presented in Section 3.1. Figure770

17 shows the results by environment for the Atari benchmark, and Figure 16 shows them for the771

MuJoCo and Box2d benchmarks. The command lines used to generate these figures are as follows.772

python -m openrlbenchmark.rlops \773
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \774
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO w/775

MC for value estimation’ \776
--env-ids BreakoutNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 SeaquestNoFrameskip-v4 EnduroNoFrameskip-777

v4 PongNoFrameskip-v4 QbertNoFrameskip-v4 BeamRiderNoFrameskip-v4 \778
--no-check-empty-runs \779
--pc.ncols 3 \780
--pc.ncols-legend 2 \781
--rliable \782
--rc.score_normalization_method atari \783
--rc.normalized_score_threshold 8.0 \784
--rc.sample_efficiency_plots \785
--rc.sample_efficiency_and_walltime_efficiency_method Median \786
--rc.performance_profile_plots \787
--rc.aggregate_metrics_plots \788
--rc.sample_efficiency_num_bootstrap_reps 1000 \789
--rc.performance_profile_num_bootstrap_reps 1000 \790
--rc.interval_estimates_num_bootstrap_reps 1000 \791
--output-filename static/gae_for_ppo_value_atari_per_env \792
--scan-history \793
--rc.sample_efficiency_figsize 7 4794

795
python -m openrlbenchmark.rlops \796

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \797
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO w/798

MC for value estimation’ \799
--env-ids InvertedDoublePendulum-v2 InvertedPendulum-v2 Reacher-v2 HalfCheetah-v3 Hopper-v3 Swimmer-v3800

Walker2d-v3 LunarLander-v2 \801
--no-check-empty-runs \802
--pc.ncols 3 \803
--pc.ncols-legend 2 \804
--rliable \805
--rc.normalized_score_threshold 1.0 \806
--rc.sample_efficiency_plots \807
--rc.sample_efficiency_and_walltime_efficiency_method Median \808
--rc.performance_profile_plots \809
--rc.aggregate_metrics_plots \810
--rc.sample_efficiency_num_bootstrap_reps 1000 \811
--rc.performance_profile_num_bootstrap_reps 1000 \812
--rc.interval_estimates_num_bootstrap_reps 1000 \813
--output-filename static/gae_for_ppo_value_mujoco_per_env \814
--scan-history \815
--rc.sample_efficiency_figsize 7 4816
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Figure 16: Comparison between the original PPO and the PPO with MC value estimates in various
MuJoCo and Box2D environments. Plots represent the evolution of the episodic return as a function
of the number of interactions with the environment, and shaded areas represent the standard deviation.
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Figure 17: Comparison between the original PPO and the PPO with MC value estimates in various
MuJoCo and Box2D environments. Plots represent the evolution of the episodic return as a function
of the number of interactions with the environment, and shaded areas represent the standard deviation.
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C Refine the MuJoCo benchmark with Stable Baselines3817

In this appendix, we present a synthetic representation of the learning results of the Stable Baselines3818

algorithms (Raffin et al., 2021) tested on the MuJoCo benchmark (Brockman et al., 2016; Todorov819

et al., 2012), whose data is contained in ORLB. At the time of writing, data from 757 runs has820

been used, unevenly distributed between the different experiments. It is important to emphasise that821

the optimisation of hyperparameters and the training budget vary from one experiment to another.822

Consequently, the results should be interpreted with caution. All the hyperparameters and raw823

data used to generate these curves are available on ORLB. Figure 18 shows the aggregation of824

the final performances following the recommendations of Agarwal et al. (2021), and Figure 19 the825

corresponding performance profiles. Figure 20 shows the learning curves as a function of the number826

of interactions.827
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Figure 18: Aggregated final normalized episodic return with 95% stratified bootstrap CIs on the
MuJoCo benchmark of the algorithms integrated into Stable Baselines3.
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Figure 19: Performance profile of algorithms implemented using Stable Baselines 3 (Raffin et al.,
2021) on the MuJoCo benchmark (Todorov et al., 2012). Scores are normalized using the min-max
method.

The command used to generate Figures 18, 19 and 20 is as follows7.828

python -m openrlbenchmark.rlops \829
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’trpo?cl=TRPO’ \830
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ddpg?cl=DDPG’ \831
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’a2c?cl=A2C’ \832
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl=PPO’ \833
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo_lstm?cl=PPO LSTM834

’ \835
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’sac?cl=SAC’ \836
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’td3?cl=TD3’ \837
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ars?cl=ARS’ \838
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’tqc?cl=TQC’ \839
--env-ids Ant-v3 BipedalWalker-v3 BipedalWalkerHardcore-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer840

-v3 Walker2d-v3 \841
--no-check-empty-runs \842
--pc.ncols 2 \843
--pc.ncols-legend 4 \844
--rliable \845
--rc.normalized_score_threshold 1.0 \846
--output-filename static/mujoco_sb3 \847
--scan-history848

7For Figure 20, we are omitting ARS as it was run with many more steps, and its inclusions hinder readability.
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Figure 20: Sample efficiency curves for algorithms on the MuJoCo Benchmark (Todorov et al., 2012).
This graph presents the mean episodic return for algorithms implemented using Stable Baselines 3
(Raffin et al., 2021), averaged across a minimum of 10 runs (refer to ORLB for specific run counts).
Data points are subsampled to 10,000 and interpolated for clarity. The curves are smoothed using
a rolling average with a window size of 100. The shaded regions around each curve indicate the
standard deviation.
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