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Abstract

Neural surrogates that map input configurations (e.g., initial conditions and meshes)
to simulation outputs are increasingly used in practical applications such as en-
gineering design optimization. However, pre-trained models often experience
significant performance drop on unseen problem configurations, such as different
geometries, structural dimensions, and physical parameters. Test-Time Adapta-
tion (TTA) mitigates distribution shifts by leveraging target configurations, online
and at test-time. It avoids the need for costly re-training and doesn’t require access
to the original dataset, which is typically unavailable in practice. In this work we
propose Representation Alignment for Simulations (SimRA), a novel method to
improve performance at deployment, specific for multi-dimensional regression
on simulation data. SImRA extends prior work on univariate regression [Adachi
et al., ICLR 2025] with a novel feature weighting mechanism, ensuring stability
in high-dimensional simulation settings. To our knowledge, this is the first study
of TTA for neural surrogates. Empirical evaluations on diverse engineering tasks
demonstrate strong performance and highlight the potential of TTA in the field.

1 Introduction

Neural surrogates have become powerful tools for solving Partial Differential Equation (PDE)
simulations in engineering and science. They perform well when test conditions match the training
data, but performance often drops on novel configurations (geometry, material types, structural
dimensions, and physical parameters), i.e., when the data distribution shifts. This problem often
arises in industrial design optimization, where parameters can vary significantly across iterations and
go beyond the ranges known a priori. Furthermore, in such cases, access to the original source data is
often limited by portability or proprietary restrictions, which makes zero-shot or source-free test-time
adaptation crucial for practical deployment.

Several approaches have been proposed to address distribution shifts, including domain gener-
alization [7], meta-learning [16], and active learning [36]]. Unfortunately, many of these meth-
ods are impractical for engineering tasks where rapid adaptation is essential. In contrast, Test-
Time Adaptation (TTA) adapts models at inference without source data and with minimal addi-
tional training effort [25 40l 46]. TTA has proven effective in many domains, including medi-
cal imaging, object detection, and segmentation. While many works are known for classification
(46,156, 31L153L1550117, 120410} 12, 18], comparably little research can be found for regression [27]. One
outstanding method is Significant-Subspace Alignment (SSA) [3]], capable of handling both classifica-
tion and regression tasks. It is however restricted to one-dimensional regression outputs and depends
on manual selection of feature parameters, potentially causing instability for high-dimensional data.
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Our contributions are summarized as follows:

* SimRA is the first TTA method for simulations, to our knowledge. SimRA not only
consistently outperforms SSA, but also eliminates the need for feature pre-selection.

* We evaluate TTA on distribution shifts in industrial settings, trying to cover diverse configu-
rations from realistic engineering design scenarios, on SIMSHIFT datasets [35].

* Since TTA for physical neural surrogates remains largely unexplored, we identify promising
opportunities for innovation at the intersection of physics and adaptive machine learning.

2 Related Work

Neural surrogates have emerged as a widely used approach to accelerate traditional numerical
simulation methods, by providing fast approximations of the solutions. In general, surrogate models
are trained on the solutions from numerical solvers, paired with the corresponding initial conditions
and configurations under which they were generated, e.g., [35, (8,44, 143]]. A particularly prominent
line of work within neural surrogate modeling for PDEs is operator learning [21} 24} 28] 14| 149]]. Such
models aim to directly approximate the solution operator that maps initial functions (conditions and
input terms) to output functions.

Test-Time Adaptation (TTA) refers to the emerging machine learning technique of adapting a pre-
trained model to unlabeled target data, directly at inference time and prior to generating predictions.
For this reason, TTA has recently attracted increasing attention as it offers a (nearly) free performance
gain [27]]. While the majority of existing TTA methods have been developed for low-dimensional
classification tasks [26} 51], employing methodologies such as entropy minimization [46} 56} 31, 53|
55]] and feature alignment [[17, [20, |10l 22| [18]], recent works have begun to extend these ideas to image
segmentation [45}15,119]]. Research in regression problems is very sparse, and standard TTA methods
cannot be trivially applied. One potential reason is the use of Mean Squared Error in regression
problems, which often leads to a focus on a narrow set of predictive features, reducing diversity [54].
Significant-Subspace Alignment (SSA) [3] addresses these limitations by selecting and aligning the
important feature dimensions, and shows positive performance in the one-dimensional cases. In this
work, we extend and refine SSA for neural surrogates and resolve instability issues arising in the
high-dimensional regression setting. Finally, TTA should not be confused with Test-Time Training
(TTT), often used in time series literature [39} 47,142 41]]. While both solve the same problem, TTT
typically refers to methods that employ time-series specific techniques, for example updating hidden
states during sequential inference.

Domain generalization, meta-learning, and active learning represent alternative strategies that
can be used to improve model robustness and generalization under distribution shifts. Domain
generalization [29] 23] and Unsupervised Domain Adaptation (UDA) [38 14} 52} [13]] While effective
in some scenarios, their reliance on specific training, model selection and diverse training distributions
limits their applicability. Meta-learning methods [12] and active learning [22, [30] are similarly
motivated, but generally assume access to ground-truth information in the shifted domain. In our
setting, all these approaches face a significant practical limitation: none of them can quickly adapt a
pre-trained model leveraging unlabeled data at test-time, as they all rely on a priori knowledge and
training. This motivates our exploration of TTA as a more suitable solution.

3 Problem

Following [50,27]], we assume access to a regressor fs : X — R? pre-trained on a source sample
(xi,y:)Y," € X x R? drawn from a source distribution P, e.g., fs = g o ¢ in Fig.|l| We also
assume access to some real matrix-valued source statistics 3°¢, ¢, o°7°.

The goal is, for any new unlabeled sample (ngt)gft drawn from the input marginal of a rarget
distribution P! = P to find §'8" (using the source statistics but not the source sample) which
minimizes the risk

st

1 tgt tgt
R(fo) = s 2 ol =3,
i=1
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Figure 1: Overview of training and test-time adaptation. (a) Pre-training on the source domain using
input parameters: thickness (7), post-rolling reduction (r), and temperature coefficients (A\,, Ap). The
representation learner ¢ and the predictor g are optimized jointly. (b) Test-time adaptation on the
target domain, where only the input parameters are available. Here ¢ is adapted and g is frozen.

Note that we have no access to any target labels (y;*") ivjt That is, the target risk R( fg) cannot be

evaluated directly and importance weighting [37]] cannot be used without further modification.

We study the problem above using the SIMSHIFT benchmark dataset [35], designed to evaluate
how surrogate models adapt to distribution shifts on real-world industrial simulation tasks. In
the benchmark, the inputs x represent parameters like geometry, material properties, or operating
conditions, while the labels y correspond to high-dimensional fields, such as stresses, deformation
and temperature. The target distribution originates from unseen parameter configurations and the
goal is to predict the corresponding fields.

4 Method

We build on SSA [3], extending it to handle multi-output regression for simulation-based tasks. In
the original formulation, the regression network is divided into two connected parts: a representation
learner ¢ that produces intermediate features, and a predictor g that maps these features to outputs.
Adaptations occur in the representation stage, while the predictor remains unchanged. Fig. [T sketches
this process using hot rolling as an example, and distinguishes between (a) pretraining and (b) TTA
with SimRA.

The idea is to adjust the features z := ¢(x), z € RY such that the target features are similarly
distributed as the source features. During TTA, target batch statistics are computed on-the-fly, while
source statistics %57, u5¢; 05" (pre-computed and stored after training) are used to align the source
and target feature distributions by minimizing the Kullback-Leibler divergence (see Appendix [A).

A central element of SSA is its pre-computed significant subspace, which retains only the dominant
eigenvalues by using a fixed, manually pre-selected subset of K principal components. Instead, we
use all feature directions and apply dimension weighting via exponentiation of the weighting function:

a = (1 + \WTV“C|)2, (1)

where W € RE*C are weights from the first layer of the predictor g (for a C-dimensional z) and
Ve ¢ REXK i the principal component basis of the source features. Representation alignment is
applied to the target features z'8' := ¢(x'"). Each channel z'8" is projected onto the source basis

Vere reweighted by the corresponding factor . with ¢ € [0,C' — 1] as

i:c:gt — (zggt _ Msrc) Vsrcac, (2)

where o is the c-th row of a (channel-wise). By using Eqs. (I) and (2) to do feature selection,
SimRA can preserve a richer set of features, improving adaptation under distribution shift for
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Table 1: Comparison of current baselines with TTA methods for all simulation datasets. Results are
averaged across 20 TTA runs, over 2 models (40 seeds in total) with standard deviation reported.

(a) Rolling (b) Motor
Model RMSE (}) MAE (}) R* (1) Model RMSE (}) MAE (}) R (1)
Source 0.72340.046 0.41940.014 0.860+0.018 Source 0.12740.002 0.061+0.002 0.987+0.001
UDA 0.644+0.041 0.399+0.012 0.869+0.017 UDA 0.11940.001 0.061+0.000 0.987+0.001
SSA 0.735+0.007 0.441+0.055 0.85440.039 SSA 0.125+0.002 0.062+0.002 0.986+0.001
SimRA  0.699:0.06a 0.41810041 0.86810.031 SimRA  0.124:0.002 0.06110.001 0.98710.001
(c) Forming (d) Heatsink
Model RMSE (}) MAE (}) R* (1) Model RMSE (}) MAE (}) R (1)
Source 0.16640.020 0.055+0.006 0.98210.004 Source 0.634+0.012 0.42440.004 0.484+10.027
UDA 0.15440.000 0.052+0.003 0.984+0.002 UDA 0.577+0.005 0.374+0.001 0.553+0.002
SSA 0.170+0.026 0.057+0.010 0.981+0.006 SSA 0.632+0.014 0.424+0.003 0.48440.026
SimRA  0.164:0.018 0.05410.006 0.98310.004 SimRA  0.631:0.014 0.42310003 0.48510.026

simulation datasets. Furthermore, since our targets are vector-valued, we compute the Kullback-
Leibler divergence independently for each channel, rather than combining them into a single space.

5 Experiments

Performance. To investigate the performance of the proposed method, we use the SIMSHIFT datasets
[35], which span four distinct industrial simulation settings: hot rolling, sheet metal forming, electric
motor, and heatsink design. All datasets have explicit source and target domain splits, dependent on
the physical and meshing parameters used to generate the samples. Shifts happen in parametric space,
as opposed to unstructured variations occurring in images. For insights into the dataset components
and their creation, please refer to the Appendix of SIMSHIFT [35]].

Table |1| summarizes the results across all datasets, comparing our method against SSA, "unregu-
larized" pre-trained predictions ("Source"”), and Unsupervised Domain Adaptation (UDA) applied
to the pre-trained model. For implementation details refer to Appendix |[B| SimRA consistently
outperforms SSA, establishing a new baseline for test-time adaptation in neural surrogate regression.
While improvements over the source model may be marginal in some cases, SSA can destabilize
the pre-trained model, whereas our approach does not degrade performance. Moreover, when using
UDA as a lower bound, our method reduces the gap without fully closing it, leaving room for future
improvement.

Interpretation and ablations. Different datasets can experience varying degrees of improvement
from TTA, highlighting the unique complexities of each problem. By analyzing the eigenvalue
distribution (Fig. [2b]for hot rolling), we observe that improvements correlate with the explanatory
power of the leading eigenvalues: datasets where a few components capture most of the variance
exhibit stronger adaptation gains. In contrast, in the motor dataset, variance is spread across many
eigenvalues, indicating a higher-dimensional problem structure and limiting the effectiveness of
current TTA methods. See Appendix |C|for the full eigenvalue analysis.

To illustrate this point, we ablate the impact of the number of dimensions K of the feature subspace
for the standard SSA algorithm in Fig.[2] Originally, K has to be chosen manually from the eigenvalue
spectrum of the covariance matrix, requiring expert interaction. While the variance in the hot rolling
datasets decays sharply after the first ten directions (Fig. [2b)), several low-variance components
remain correlated with regression targets. SSA results in Fig suggest that a handpicked K might
not be optimal, and strict truncation can discard relevant information. For multivariate regression
problems, feature selection is thus critical. Importantly, this choice is absent in SimRA, simplifying
the tuning and yielding superior results. Fig.[2a] shows that across different /& -values, our method
always outperforms SSA, irrespective to the chosen subspace size.
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Method K RMSE] MAE |

10 0.85940.094 0.54840.073
20 0.73540.007 0.44140.055
SSA 30 0.736+0.067 0.44140.036
50 0.774:‘:0‘057 0.467j:0.(]32
All 0.827i()‘043 0.50810,085

SimRA (OUI‘S) All 0~699iOA064 0~418j:0A041

Eigenvalue Magnitude

0 10 20 30 40 50 60
Eigenvalue Index

(a) Comparison of SimRA with SSA for different choices of k. (b) Eigenvalue analysis.

Figure 2: Ablations with SSA [3]] for the hot rolling dataset. (a) table with quantitative comparison,
(b) eigenvalues analysis for different trained models, highlighting the fast decay. ~60 % of the energy
is on the first eigenvalues, favoring compact representations.

6 Conclusion and Future Work

In this work, we make the initial step towards highly-accurate test-time adaptation methods for neural
surrogates, and in general for high-dimensional multivariate regression. Our findings show that the
proposed adjustments enable TTA to yield zero-shot improvements at negligible computational cost.
Furthermore, the current state-of-the-art method, SSA [3], can be substantially simplified, removing
the need for feature preselection, while also achieving improved performance and stability. The
promotion can be interpreted via eigen-decomposition analysis of the feature space, offering insights
into why our approach outperforms existing methods on the evaluated datasets.

In addition to the zero-cost gains, this line of research is particularly timely due to evolving compliance
requirements. Article 15 of the EU Artificial Intelligence Act states that high-risk Al systems need to
ensure appropriate levels of accuracy and robustness [1l]. Should neural surrogates be deployed in
safety critical domains, such as accelerating structural design in the automotive industry, accurate
and reliable predictions becomes indispensable.

However, performance improvements only occur on some datasets, and the lower bounds established
by UDA indicate that additional gains remain attainable. This points to the potential for a new class of
TTA algorithms, specifically developed for physics simulation data. We foresee two paths to achieve
"physics-driven" TTA that are to be explored: (i) use physics-informed constraints and priors [34, (9],
ad-hoc and calibrated on the test case, to augment the expressiveness of the limited available test data,
and (ii) incorporate uncertainty quantification to localize failure regions in the fields where adaptation
is necessary. Orthogonally, exploring the impact of TTA in data-driven design optimization [1116}[33]
represents another promising avenue for research. A concrete example would be the EngiBench
dataset [11]], which provides a standardized machine learning benchmark for engineering design.
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A Supplementary Approach Information

Significant-Subspace Alignment is a TTA method for one-dimensional regression. It consists of
two steps: feature alignment and significant-subspace alignment. In the first step, source statistics
such as mean p°"® and covariance >°'° are computed after source training. In the second step, a
significant subspace is detected by selecting the top eigenvalues )\j, of the source covariance ¥°7.

Each subspace direction v§¢ is then weighted by its influence on the regression output:

o =1+ |w'vie,

where o, > 1 ensures that dimensions that strongly affect the regression output are emphasized.

At test time, the precomputed source statistics are used to project the target features into the significant
subspace. From the projected target features, their mean and variance (ﬂ;gt, 5,tft2) are calculated
and aligned with the corresponding source statistics (0, A;'®). The adaptation objective is a weighted

symmetric Kullback-Leibler divergence between assumed Normal distributions:

K ~tgt ~tgt ~tgt
1 (ug)Q_‘_)\src (Mg)2+0g2
Lria=3) a g by =k b —2]. 3)
TTA 9 ; k ( &/tgth )\zrc

B Experimental Setup

In the following paragraphs, we detail the experimental setup, including the selected models and our
training and testing strategy, based on established methods [3]].

B.1 Model Architecture

We employ a single model architecture to evaluate our TTA method. The model is taken from the
SIMSHIFT benchmark [35]], implemented in PyTorch, and designed for conditional regression. Node
coordinates are provided as inputs and embedded using sinusoidal positional encodings. Conditioning
is applied through a dedicated network that processes the simulation input parameters.

Conditioning Network. The conditioner maps simulation parameters into a latent representation
of dimension 8. It consists of a sinusoidal encoding, followed by a small MLP, which includes two
LayerNorms to stabilize training.

Transolver. The Transolver architecture [48] starts by encoding node coordinates using sinusoidal
position embeddings, followed by an MLP that produces initial feature vectors. A learned mapping
then assigns each node to a slice, enabling attention operations both within slices and between them.
The processed features are passed through an MLP readout to generate the final field outputs. Two
conditioning mechanisms are available: concatenating the conditioning vector with input features or
applying it via DiT-based modulation across the network. Conditioning is done with the dit-based
modulation [32]. Where a latent dimension of 128, a slice base of 32, and four attention layers
are used. We additionally employ a larger model with 56, 128, and 8 layers for the more complex
datasets.

B.2 Test-Time Adaptation Setup

In our experiments, we train baseline models for each dataset on 2 seeds, using the training pipeline
from SIMSHIFT. We employ the small model variants for hot rolling, electric motor design, and sheet
metal forming, and the large model variant for the more complex heatsink. For the TTA experiments,
we utilize source test data to compute statistical information, then adapt and evaluate the models on
target test data. The implementation of TTA follows the algorithmic framework provided in the SSA
repository, with modifications described in Section[d] The adaptation process is limited to a single
epoch, as in [3].

In our specific setup, task-dependent parameters, such as thickness or temperature, are encoded
through a conditioner network. The conditioner is divided into two components: a main body and
a final linear layer. We extract features from the main body’s output and define the split between
representation learner and predictor at this point—the conditioner serves as the representation learner,
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while Transolver acts as the predictor. This choice reflects the observation that most task-related
parameter shifts occur within the conditioner [35]. For training SimRA we modify the weighted
symmetric Kullback-Leibler divergence from Eq. (3) to account for Eq. (Z)) by removing o,

K ~tgt\2 src ~tety2 | ~tgt2
1 ()* + A ()" +o
O k k k kK _9). 4
TTA = 5 1;:1 ( 502 + e “

During testing, we adapt only the layer normalization [5] parameters of the conditioner, keeping all
other model parameters fixed. To ensure robustness, we repeat each experiment with 20 different
random seeds per model. This is particularly important since layer normalization is updated online,
after every batch. All experiments are conducted with a fixed batch size of 32.

For comparison, we also report the best performing UDA algorithm as a lower bound. These models
are trained according to the procedure outlined in SIMSHIFT [35]]. We run the DeepCoral algorithm
[38]] with the provided A ranges. After applying selection and emsembling strategies on top of the
UDA algorithm, we showcase the best-performing model for each dataset. It is important to note
that the UDA training process requires significantly more compute budget than the TTA approach:
instead of requiring a single pre-trained model, UDA model selection relies on multiple models for
robustness, each trained independently with different A values.

C Additional results

To investigate the difference in effectiveness of TTA algorithms to different datasets, we analyze
the features extracted by the representation learner. Specifically, the eigenvalue spectra of the
corresponding covariance matrices are compared for each dataset. In Fig.[3] the eigenvalues for three
out of four datasets (hot rolling, sheet metal forming, and heatsink design) show a similar decay:
the first five eigenvalues already capture up to ~60 % of the total variance. This is also confirmed
by Table 2| In contrast, the electric motor dataset exhibits a much slower decay, suggesting that
the variance is distributed across a larger number of components. This implies that electric motor
requires a higher-dimensional representation to preserve the same level of information, whereas the
other datasets are more efficiently represented in a low-dimensional manifold.
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Figure 3: Eigenvalues analysis of hot rolling, sheet metal forming, electric motor and heatsink design,
expressing the diverging decay throughout the datasets.

Table 2: Percentage of variance explained by the top 10 eigenvalues for each dataset.
Dataset Ao A1 Ao A3 A4 A5 A6 A7 A Ag
Rolling 579% 23.6% 71% 54% 34% 14% 07% 03% 02% 0.1%
Forming 47.6% 183% 142% 8.6% 56% 30% 13% 08% 04% 02%

Motor 250% 195% 152% 132% 104% 76% 43% 27% 13% 0.7%
Heatsink 639% 223% 85% 42% 05% 02% 01% 01% 00% 00%
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