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Abstract

Neural surrogates that map input configurations (e.g., initial conditions and meshes)1

to simulation outputs are increasingly used in practical applications such as en-2

gineering design optimization. However, pre-trained models often experience3

significant performance drop on unseen problem configurations, such as different4

geometries, structural dimensions, and physical parameters. Test-Time Adapta-5

tion (TTA) mitigates distribution shifts by leveraging target configurations, online6

and at test-time. It avoids the need for costly re-training and doesn’t require access7

to the original dataset, which is typically unavailable in practice. In this work we8

propose Representation Alignment for Simulations (SimRA), a novel method to9

improve performance at deployment, specific for multi-dimensional regression10

on simulation data. SimRA extends prior work on univariate regression [Adachi11

et al., ICLR 2025] with a novel feature weighting mechanism, ensuring stability12

in high-dimensional simulation settings. To our knowledge, this is the first study13

of TTA for neural surrogates. Empirical evaluations on diverse engineering tasks14

demonstrate strong performance and highlight the potential of TTA in the field.15

1 Introduction16

Neural surrogates have become powerful tools for solving Partial Differential Equation (PDE)17

simulations in engineering and science. They perform well when test conditions match the training18

data, but performance often drops on novel configurations (geometry, material types, structural19

dimensions, and physical parameters), i.e., when the data distribution shifts. This problem often20

arises in industrial design optimization, where parameters can vary significantly across iterations and21

go beyond the ranges known a priori. Furthermore, in such cases, access to the original source data is22

often limited by portability or proprietary restrictions, which makes zero-shot or source-free test-time23

adaptation crucial for practical deployment.24

Several approaches have been proposed to address distribution shifts, including domain gener-25

alization [7], meta-learning [16], and active learning [36]. Unfortunately, many of these meth-26

ods are impractical for engineering tasks where rapid adaptation is essential. In contrast, Test-27

Time Adaptation (TTA) adapts models at inference without source data and with minimal addi-28

tional training effort [25, 40, 46]. TTA has proven effective in many domains, including medi-29

cal imaging, object detection, and segmentation. While many works are known for classification30

[46, 56, 31, 53, 55, 17, 20, 10, 2, 18], comparably little research can be found for regression [27]. One31

outstanding method is Significant-Subspace Alignment (SSA) [3], capable of handling both classifica-32

tion and regression tasks. It is however restricted to one-dimensional regression outputs and depends33

on manual selection of feature parameters, potentially causing instability for high-dimensional data.34
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Our contributions are summarized as follows:35

• SimRA is the first TTA method for simulations, to our knowledge. SimRA not only36

consistently outperforms SSA, but also eliminates the need for feature pre-selection.37

• We evaluate TTA on distribution shifts in industrial settings, trying to cover diverse configu-38

rations from realistic engineering design scenarios, on SIMSHIFT datasets [35].39

• Since TTA for physical neural surrogates remains largely unexplored, we identify promising40

opportunities for innovation at the intersection of physics and adaptive machine learning.41

2 Related Work42

Neural surrogates have emerged as a widely used approach to accelerate traditional numerical43

simulation methods, by providing fast approximations of the solutions. In general, surrogate models44

are trained on the solutions from numerical solvers, paired with the corresponding initial conditions45

and configurations under which they were generated, e.g., [35, 8, 44, 43]. A particularly prominent46

line of work within neural surrogate modeling for PDEs is operator learning [21, 24, 28, 4, 49]. Such47

models aim to directly approximate the solution operator that maps initial functions (conditions and48

input terms) to output functions.49

Test-Time Adaptation (TTA) refers to the emerging machine learning technique of adapting a pre-50

trained model to unlabeled target data, directly at inference time and prior to generating predictions.51

For this reason, TTA has recently attracted increasing attention as it offers a (nearly) free performance52

gain [27]. While the majority of existing TTA methods have been developed for low-dimensional53

classification tasks [26, 51], employing methodologies such as entropy minimization [46, 56, 31, 53,54

55] and feature alignment [17, 20, 10, 2, 18], recent works have begun to extend these ideas to image55

segmentation [45, 15, 19]. Research in regression problems is very sparse, and standard TTA methods56

cannot be trivially applied. One potential reason is the use of Mean Squared Error in regression57

problems, which often leads to a focus on a narrow set of predictive features, reducing diversity [54].58

Significant-Subspace Alignment (SSA) [3] addresses these limitations by selecting and aligning the59

important feature dimensions, and shows positive performance in the one-dimensional cases. In this60

work, we extend and refine SSA for neural surrogates and resolve instability issues arising in the61

high-dimensional regression setting. Finally, TTA should not be confused with Test-Time Training62

(TTT), often used in time series literature [39, 47, 42, 41]. While both solve the same problem, TTT63

typically refers to methods that employ time-series specific techniques, for example updating hidden64

states during sequential inference.65

Domain generalization, meta-learning, and active learning represent alternative strategies that66

can be used to improve model robustness and generalization under distribution shifts. Domain67

generalization [29, 23] and Unsupervised Domain Adaptation (UDA) [38, 14, 52, 13] While effective68

in some scenarios, their reliance on specific training, model selection and diverse training distributions69

limits their applicability. Meta-learning methods [12] and active learning [22, 30] are similarly70

motivated, but generally assume access to ground-truth information in the shifted domain. In our71

setting, all these approaches face a significant practical limitation: none of them can quickly adapt a72

pre-trained model leveraging unlabeled data at test-time, as they all rely on a priori knowledge and73

training. This motivates our exploration of TTA as a more suitable solution.74

3 Problem75

Following [50, 27], we assume access to a regressor fθ : X → Rd pre-trained on a source sample76

(xi,yi)
Nsrc

i=1 ∈ X × Rd drawn from a source distribution P src, e.g., fθ = g ◦ ϕ in Fig. 1. We also77

assume access to some real matrix-valued source statistics Σsrc, µsrc, σsrc.78

The goal is, for any new unlabeled sample (xtgt
i )N

tgt

i=1 drawn from the input marginal of a target79

distribution P tgt ̸= P src, to find θtgt (using the source statistics but not the source sample) which80

minimizes the risk81

R(fθ) =
1

N tgt

Ntgt∑
i=1

∥∥fθ(xtgt
i )− ytgt

i

∥∥2
2
.
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(b) Test-Time Adaptation

(a) Pre-Training

Feature weighting

Figure 1: Overview of training and test-time adaptation. (a) Pre-training on the source domain using
input parameters: thickness (τ ), post-rolling reduction (r), and temperature coefficients (λa, λb). The
representation learner ϕ and the predictor g are optimized jointly. (b) Test-time adaptation on the
target domain, where only the input parameters are available. Here ϕ is adapted and g is frozen.

Note that we have no access to any target labels (ytgt
i )N

tgt

i=1 . That is, the target risk R(fθ) cannot be82

evaluated directly and importance weighting [37] cannot be used without further modification.83

We study the problem above using the SIMSHIFT benchmark dataset [35], designed to evaluate84

how surrogate models adapt to distribution shifts on real-world industrial simulation tasks. In85

the benchmark, the inputs x represent parameters like geometry, material properties, or operating86

conditions, while the labels y correspond to high-dimensional fields, such as stresses, deformation87

and temperature. The target distribution originates from unseen parameter configurations and the88

goal is to predict the corresponding fields.89

4 Method90

We build on SSA [3], extending it to handle multi-output regression for simulation-based tasks. In91

the original formulation, the regression network is divided into two connected parts: a representation92

learner ϕ that produces intermediate features, and a predictor g that maps these features to outputs.93

Adaptations occur in the representation stage, while the predictor remains unchanged. Fig. 1 sketches94

this process using hot rolling as an example, and distinguishes between (a) pretraining and (b) TTA95

with SimRA.96

The idea is to adjust the features z := ϕ(x), z ∈ RC such that the target features are similarly97

distributed as the source features. During TTA, target batch statistics are computed on-the-fly, while98

source statistics Σsrc, µsrc, σsrc (pre-computed and stored after training) are used to align the source99

and target feature distributions by minimizing the Kullback-Leibler divergence (see Appendix A).100

A central element of SSA is its pre-computed significant subspace, which retains only the dominant101

eigenvalues by using a fixed, manually pre-selected subset of K principal components. Instead, we102

use all feature directions and apply dimension weighting via exponentiation of the weighting function:103

α = (1 + |W⊤Vsrc|)2, (1)

where W ∈ RK×C are weights from the first layer of the predictor g (for a C-dimensional z) and104

Vsrc ∈ RK×K is the principal component basis of the source features. Representation alignment is105

applied to the target features ztgt := ϕ(xtgt). Each channel ztgtc is projected onto the source basis106

Vsrc, reweighted by the corresponding factor αc with c ∈ [0, C − 1] as107

z̃tgtc =
(
ztgtc − µsrc

)
Vsrcαc, (2)

where αc is the c-th row of α (channel-wise). By using Eqs. (1) and (2) to do feature selection,108

SimRA can preserve a richer set of features, improving adaptation under distribution shift for109
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Table 1: Comparison of current baselines with TTA methods for all simulation datasets. Results are
averaged across 20 TTA runs, over 2 models (40 seeds in total) with standard deviation reported.

(a) Rolling

Model RMSE (↓) MAE (↓) R2 (↑)

Source 0.723±0.046 0.419±0.014 0.860±0.018

UDA 0.644±0.041 0.399±0.012 0.869±0.017

SSA 0.735±0.097 0.441±0.055 0.854±0.039

SimRA 0.699±0.064 0.418±0.041 0.868±0.031

(b) Motor

Model RMSE (↓) MAE (↓) R2 (↑)

Source 0.127±0.002 0.061±0.002 0.987±0.001

UDA 0.119±0.001 0.061±0.000 0.987±0.001

SSA 0.125±0.002 0.062±0.002 0.986±0.001

SimRA 0.124±0.002 0.061±0.001 0.987±0.001

(c) Forming

Model RMSE (↓) MAE (↓) R2 (↑)

Source 0.166±0.020 0.055±0.006 0.982±0.004

UDA 0.154±0.009 0.052±0.003 0.984±0.002

SSA 0.170±0.026 0.057±0.010 0.981±0.006

SimRA 0.164±0.018 0.054±0.006 0.983±0.004

(d) Heatsink

Model RMSE (↓) MAE (↓) R2 (↑)

Source 0.634±0.012 0.424±0.004 0.484±0.027

UDA 0.577±0.005 0.374±0.001 0.553±0.002

SSA 0.632±0.014 0.424±0.003 0.484±0.026

SimRA 0.631±0.014 0.423±0.003 0.485±0.026

simulation datasets. Furthermore, since our targets are vector-valued, we compute the Kullback-110

Leibler divergence independently for each channel, rather than combining them into a single space.111

5 Experiments112

Performance. To investigate the performance of the proposed method, we use the SIMSHIFT datasets113

[35], which span four distinct industrial simulation settings: hot rolling, sheet metal forming, electric114

motor, and heatsink design. All datasets have explicit source and target domain splits, dependent on115

the physical and meshing parameters used to generate the samples. Shifts happen in parametric space,116

as opposed to unstructured variations occurring in images. For insights into the dataset components117

and their creation, please refer to the Appendix of SIMSHIFT [35].118

Table 1 summarizes the results across all datasets, comparing our method against SSA, "unregu-119

larized" pre-trained predictions ("Source"), and Unsupervised Domain Adaptation (UDA) applied120

to the pre-trained model. For implementation details refer to Appendix B. SimRA consistently121

outperforms SSA, establishing a new baseline for test-time adaptation in neural surrogate regression.122

While improvements over the source model may be marginal in some cases, SSA can destabilize123

the pre-trained model, whereas our approach does not degrade performance. Moreover, when using124

UDA as a lower bound, our method reduces the gap without fully closing it, leaving room for future125

improvement.126

Interpretation and ablations. Different datasets can experience varying degrees of improvement127

from TTA, highlighting the unique complexities of each problem. By analyzing the eigenvalue128

distribution (Fig. 2b for hot rolling), we observe that improvements correlate with the explanatory129

power of the leading eigenvalues: datasets where a few components capture most of the variance130

exhibit stronger adaptation gains. In contrast, in the motor dataset, variance is spread across many131

eigenvalues, indicating a higher-dimensional problem structure and limiting the effectiveness of132

current TTA methods. See Appendix C for the full eigenvalue analysis.133

To illustrate this point, we ablate the impact of the number of dimensions K of the feature subspace134

for the standard SSA algorithm in Fig. 2. Originally, K has to be chosen manually from the eigenvalue135

spectrum of the covariance matrix, requiring expert interaction. While the variance in the hot rolling136

datasets decays sharply after the first ten directions (Fig. 2b), several low-variance components137

remain correlated with regression targets. SSA results in Fig. 2a suggest that a handpicked K might138

not be optimal, and strict truncation can discard relevant information. For multivariate regression139

problems, feature selection is thus critical. Importantly, this choice is absent in SimRA, simplifying140

the tuning and yielding superior results. Fig. 2a shows that across different K-values, our method141

always outperforms SSA, irrespective to the chosen subspace size.142
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Method K RMSE ↓ MAE ↓

SSA

10 0.859±0.094 0.548±0.073

20 0.735±0.097 0.441±0.055

30 0.736±0.067 0.441±0.036

50 0.774±0.057 0.467±0.032

All 0.827±0.043 0.508±0.085

SimRA (ours) All 0.699±0.064 0.418±0.041

(a) Comparison of SimRA with SSA for different choices of k.
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(b) Eigenvalue analysis.

Figure 2: Ablations with SSA [3] for the hot rolling dataset. (a) table with quantitative comparison,
(b) eigenvalues analysis for different trained models, highlighting the fast decay. ∼60 % of the energy
is on the first eigenvalues, favoring compact representations.

6 Conclusion and Future Work143

In this work, we make the initial step towards highly-accurate test-time adaptation methods for neural144

surrogates, and in general for high-dimensional multivariate regression. Our findings show that the145

proposed adjustments enable TTA to yield zero-shot improvements at negligible computational cost.146

Furthermore, the current state-of-the-art method, SSA [3], can be substantially simplified, removing147

the need for feature preselection, while also achieving improved performance and stability. The148

promotion can be interpreted via eigen-decomposition analysis of the feature space, offering insights149

into why our approach outperforms existing methods on the evaluated datasets.150

In addition to the zero-cost gains, this line of research is particularly timely due to evolving compliance151

requirements. Article 15 of the EU Artificial Intelligence Act states that high-risk AI systems need to152

ensure appropriate levels of accuracy and robustness [1]. Should neural surrogates be deployed in153

safety critical domains, such as accelerating structural design in the automotive industry, accurate154

and reliable predictions becomes indispensable.155

However, performance improvements only occur on some datasets, and the lower bounds established156

by UDA indicate that additional gains remain attainable. This points to the potential for a new class of157

TTA algorithms, specifically developed for physics simulation data. We foresee two paths to achieve158

"physics-driven" TTA that are to be explored: (i) use physics-informed constraints and priors [34, 9],159

ad-hoc and calibrated on the test case, to augment the expressiveness of the limited available test data,160

and (ii) incorporate uncertainty quantification to localize failure regions in the fields where adaptation161

is necessary. Orthogonally, exploring the impact of TTA in data-driven design optimization [11, 6, 33]162

represents another promising avenue for research. A concrete example would be the EngiBench163

dataset [11], which provides a standardized machine learning benchmark for engineering design.164
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A Supplementary Approach Information344

Significant-Subspace Alignment is a TTA method for one-dimensional regression. It consists of345

two steps: feature alignment and significant-subspace alignment. In the first step, source statistics346

such as mean µsrc and covariance Σsrc are computed after source training. In the second step, a347

significant subspace is detected by selecting the top eigenvalues λk of the source covariance Σsrc.348

Each subspace direction vsrck is then weighted by its influence on the regression output:349

αk = 1 + |w⊤vsrc
k |,

where αk ≥ 1 ensures that dimensions that strongly affect the regression output are emphasized.350

At test time, the precomputed source statistics are used to project the target features into the significant351

subspace. From the projected target features, their mean and variance (µ̃tgt
k , σ̃tgt

k
2) are calculated352

and aligned with the corresponding source statistics (0, λsrc
k ). The adaptation objective is a weighted353

symmetric Kullback-Leibler divergence between assumed Normal distributions:354

LTTA =
1

2

K∑
k=1

αk

(
(µ̃tgt

k )2 + λsrc
k

σ̃tgt
k

2
+

(µ̃tgt
k )2 + σ̃tgt

k
2

λsrc
k

− 2

)
. (3)

B Experimental Setup355

In the following paragraphs, we detail the experimental setup, including the selected models and our356

training and testing strategy, based on established methods [3].357

B.1 Model Architecture358

We employ a single model architecture to evaluate our TTA method. The model is taken from the359

SIMSHIFT benchmark [35], implemented in PyTorch, and designed for conditional regression. Node360

coordinates are provided as inputs and embedded using sinusoidal positional encodings. Conditioning361

is applied through a dedicated network that processes the simulation input parameters.362

Conditioning Network. The conditioner maps simulation parameters into a latent representation363

of dimension 8. It consists of a sinusoidal encoding, followed by a small MLP, which includes two364

LayerNorms to stabilize training.365

Transolver. The Transolver architecture [48] starts by encoding node coordinates using sinusoidal366

position embeddings, followed by an MLP that produces initial feature vectors. A learned mapping367

then assigns each node to a slice, enabling attention operations both within slices and between them.368

The processed features are passed through an MLP readout to generate the final field outputs. Two369

conditioning mechanisms are available: concatenating the conditioning vector with input features or370

applying it via DiT-based modulation across the network. Conditioning is done with the dit-based371

modulation [32]. Where a latent dimension of 128, a slice base of 32, and four attention layers372

are used. We additionally employ a larger model with 56, 128, and 8 layers for the more complex373

datasets.374

B.2 Test-Time Adaptation Setup375

In our experiments, we train baseline models for each dataset on 2 seeds, using the training pipeline376

from SIMSHIFT. We employ the small model variants for hot rolling, electric motor design, and sheet377

metal forming, and the large model variant for the more complex heatsink. For the TTA experiments,378

we utilize source test data to compute statistical information, then adapt and evaluate the models on379

target test data. The implementation of TTA follows the algorithmic framework provided in the SSA380

repository, with modifications described in Section 4. The adaptation process is limited to a single381

epoch, as in [3].382

In our specific setup, task-dependent parameters, such as thickness or temperature, are encoded383

through a conditioner network. The conditioner is divided into two components: a main body and384

a final linear layer. We extract features from the main body’s output and define the split between385

representation learner and predictor at this point—the conditioner serves as the representation learner,386
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while Transolver acts as the predictor. This choice reflects the observation that most task-related387

parameter shifts occur within the conditioner [35]. For training SimRA we modify the weighted388

symmetric Kullback-Leibler divergence from Eq. (3) to account for Eq. (2) by removing αk389

LTTA =
1

2

K∑
k=1

(
(µ̃tgt

k )2 + λsrc
k

σ̃tgt
k

2
+

(µ̃tgt
k )2 + σ̃tgt

k
2

λsrc
k

− 2

)
. (4)

During testing, we adapt only the layer normalization [5] parameters of the conditioner, keeping all390

other model parameters fixed. To ensure robustness, we repeat each experiment with 20 different391

random seeds per model. This is particularly important since layer normalization is updated online,392

after every batch. All experiments are conducted with a fixed batch size of 32.393

For comparison, we also report the best performing UDA algorithm as a lower bound. These models394

are trained according to the procedure outlined in SIMSHIFT [35]. We run the DeepCoral algorithm395

[38] with the provided λ ranges. After applying selection and emsembling strategies on top of the396

UDA algorithm, we showcase the best-performing model for each dataset. It is important to note397

that the UDA training process requires significantly more compute budget than the TTA approach:398

instead of requiring a single pre-trained model, UDA model selection relies on multiple models for399

robustness, each trained independently with different λ values.400

C Additional results401

To investigate the difference in effectiveness of TTA algorithms to different datasets, we analyze402

the features extracted by the representation learner. Specifically, the eigenvalue spectra of the403

corresponding covariance matrices are compared for each dataset. In Fig. 3, the eigenvalues for three404

out of four datasets (hot rolling, sheet metal forming, and heatsink design) show a similar decay:405

the first five eigenvalues already capture up to ∼60 % of the total variance. This is also confirmed406

by Table 2. In contrast, the electric motor dataset exhibits a much slower decay, suggesting that407

the variance is distributed across a larger number of components. This implies that electric motor408

requires a higher-dimensional representation to preserve the same level of information, whereas the409

other datasets are more efficiently represented in a low-dimensional manifold.410
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Figure 3: Eigenvalues analysis of hot rolling, sheet metal forming, electric motor and heatsink design,
expressing the diverging decay throughout the datasets.

Table 2: Percentage of variance explained by the top 10 eigenvalues for each dataset.
Dataset λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

Rolling 57.9 % 23.6 % 7.1 % 5.4 % 3.4 % 1.4 % 0.7 % 0.3 % 0.2 % 0.1 %
Forming 47.6 % 18.3 % 14.2 % 8.6 % 5.6 % 3.0 % 1.3 % 0.8 % 0.4 % 0.2 %
Motor 25.0 % 19.5 % 15.2 % 13.2 % 10.4 % 7.6 % 4.3 % 2.7 % 1.3 % 0.7 %
Heatsink 63.9 % 22.3 % 8.5 % 4.2 % 0.5 % 0.2 % 0.1 % 0.1 % 0.0 % 0.0 %
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