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Abstract

As large language models (LLMs) continue to advance, their capacity to function
effectively across a diverse range of languages has shown marked improvement.
Preliminary studies observe that the hidden activations of LLMs often resem-
ble English, even when responding to non-English prompts. This has led to the
widespread assumption that LLMs may “think” in English. However, more re-
cent results showing strong multilingual performance, even surpassing English
performance on specific tasks in other languages, challenge this view. In this
work, we find that LLMs progressively develop a core language-agnostic param-
eter space—a remarkably small subset of parameters whose deactivation results
in significant performance degradation across all languages. This compact yet
critical set of parameters underlies the model’s ability to generalize beyond indi-
vidual languages, supporting the emergence of abstract thought that is not tied
to any specific linguistic system. Specifically, we identify language-related neu-
rons—those are consistently activated during the processing of particular languages,
and categorize them as either shared (active across multiple languages) or exclusive
(specific to one). As LLMs undergo continued development over time, we observe
a marked increase in both the proportion and functional importance of shared
neurons, while exclusive neurons progressively diminish in influence. These shared
neurons constitute the backbone of the core language-agnostic parameter space,
supporting the emergence of abstract thought. Motivated by these insights, we
propose neuron-specific training strategies tailored to LLMs’ language-agnostic
levels at different development stages. Experiments across diverse LLM families
support our approach.1

1 Introduction

As large language models (LLMs) continue to advance (OpenAI, 2023; Touvron et al., 2023a; Hurst
et al., 2024; Yang et al., 2024a; Team et al., 2024), their performance across a wide range of languages
(known as multilingual capability) has markedly improved over the past years (Le Scao et al., 2023;
Yang et al., 2024b; Üstün et al., 2024). Despite this progress, several studies have observed that LLMs
tend to “think in English”, often using it as an internal language of thought even when processing
inputs in other languages (Wendler et al., 2024; Zhao et al., 2024b; Schut et al., 2025a). This
phenomenon has led to the hypothesis that LLM performance in non-English languages is inherently
constrained by their capabilities in English (Qin et al., 2023; Liu et al., 2024).
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Yet, more recent findings complicate this narrative: some studies found that LLMs can actually
outperform their English-language performance on certain tasks in other languages (Zhao et al.,
2025c; Gemma Team et al., 2024b, 2025), indicating that non-English processing may not always
rely on English as an intermediate language. These conflicting observations raise a deeper research
question: Do LLMs think in the distinct space of each language, or Do they operate in a higher-level
language-agnostic space beyond any specific language? In other words, whether the trend of non-
English performance compared to English indicates the emergence of abstract thought within
LLMs?
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Figure 1: (Top) The trendline of shared neu-
ron proportion rises with model release date
(see Section 2.2). (Bottom) The trendline
of shared neuron importance also grows, in-
dicating their increasing language-agnostic
property (see Section 2.3).

In this work, we explore the existence and develop-
ment of abstract thought in LLMs by analyzing how
individual neurons, responsible for models’ thinking,
respond to multilingual queries. Here each neuron
corresponds to a row or column in the model’s pa-
rameter matrices and is considered activated if its re-
moval significantly alters the model’s output (Fran-
kle and Carbin, 2018; Tang et al., 2024; Wang et al.,
2025a). We begin by identifying neurons activated
when the model processes inputs in specific languages,
referred to as Language-Related Neurons. To inves-
tigate whether these neurons become increasingly
specialized for specific languages or potentially ex-
hibit more general and language-agnostic functional-
ity, we distinguish between Language-Exclusive Neu-
rons, which are activated only for one language, and
Language-Shared Neurons, which are consistently
activated across all languages considered. Figure 1
(top) shows a positive correlation between multilin-
gual ability and the proportion of language-shared
neurons across different generations of LLMs. This
suggests that as multilingual performance improves,
a greater proportion of language-related neurons
are shared across languages.

Building on the observed positive relationship between
language-shared neurons and multilingual capability,
as well as the finding that LLMs increasingly outper-
form in non-English languages on certain tasks, we
hypothesize that shared neurons may gradually as-
sume more fundamental roles beyond merely support-
ing multilingual processing. Accordingly, rather than
focusing solely on how the proportion of language-
shared neurons evolves across model generations, it is essential to evaluate their functional sig-
nificance relative to language-exclusive neurons. If shared neurons contribute more critically to
multilingual processing than language-exclusive neurons—which also participate in language tasks
and should be comparably important in principle—this would indicate that shared neurons have
evolved into Language-Agnostic Neurons, which go beyond shared activation patterns to support
abstract functions like semantic reasoning and generalization. As these neurons evolve, they support
increasingly abstract thought that transcends linguistic boundaries. As shown in Figure 1 (bottom),
language-shared neurons exhibit a markedly growing importance in multilingual processing relative
to language-exclusive neurons, signaling the emergence of language-agnostic properties and
potentially, the development of abstract thought in LLMs.

Inspired by the insights discussed above, we propose a set of targeted neuron training strategies aimed
at enhancing the multilingual capabilities of LLMs. These methods are tailored based on the presence
or absence of language-agnostic neurons, which serve as an indicator of the emergence of abstract
thought within the model. For LLMs that lack language-agnostic neurons, the model is likely still
under-trained; thus, training any language-related neurons can contribute to improving multilingual
performance. In contrast, in LLMs where abstract thought has emerged, language-shared neurons
have evolved into language-agnostic ones. As these neurons have reached a form of generalization,
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further improvement through additional training is limited. In such cases, enhancing multilingual
capabilities requires focusing on training language-exclusive neurons to better support language-
specific nuances. We validate our approach through comprehensive experiments across diverse model
series and release time. The results demonstrate that our training method, guided by the presence of
language-agnostic properties, effectively enhances multilingual performance.

2 Metrics for Exploring Abstract Thought

In this section, we identify neurons associated with language processing, referred to as Language-
Related Neurons, and, based on them, define several metrics to quantify and analyze the emergence
of abstract thought in LLMs.

2.1 Language-Related Neurons

We identify language-related neurons as those that are consistently activated when processing inputs
in a particular language, where a neuron is defined as a single row or column within the model’s
parameter matrices. Building on prior work in identifying important neurons in neural networks (Fran-
kle and Carbin, 2018; Ni et al., 2023; Tang et al., 2024; Zhao et al., 2024b), we consider a neuron to
be activated if its removal leads to a significant change in the resulting embedding. Formally, given
an input sequence x in a specific language, a neuron N is considered activated if

∥LLM(x)− LLM⊖N (x)∥2 ≥ σ, (1)

where LLM(x) denotes the output embedding when processing x, and LLM⊖N (x) denotes the
output when neuron N is deactivated, i.e., its parameters are set to zero. The threshold σ specifies
the minimum magnitude of change required to consider a neuron activated.

Furthermore, language-related neurons N ℓ
lang for a specific language ℓ are identified through

N ℓ
lang :=

{
N ∈ LLM

∣∣∣ ∥LLM(x)− LLM⊖N (x)∥2 ≥ σ, ∀x ∈ ℓ
}
. (2)

Since sequentially deactivating neurons in Equation 2 is computationally expensive, we employ the
parallel neuron detection methods proposed in Zhao et al. (2024b); Wang et al. (2025a). Further
implementation details are provided in Appendix A. Details of how the activation threshold σ is
selected and validated are provided in Appendix B.

2.2 Language-Shared and Language-Exclusive Neurons

To investigate whether neurons become increasingly specialized for specific languages or exhibit
language-agnostic behavior, we conduct a preliminary analysis of the proportion of Language-Shared
Neurons, defined as language-related neurons that are consistently activated across all languages
considered, and Language-Exclusive Neurons, defined as language-related neurons that are uniquely
activated for individual languages and not shared across all languages. Formally, language-shared
and language-exclusive neurons are defined as follows:

Nshared :=
⋂
ℓ∈L

N ℓ
lang, and N ℓ

exclusive := N ℓ
lang \ Nshared, (3)

where L denotes the set of all languages under consideration. In other word, Nshared consistently
exhibit high importance across inputs from different languages, while N ℓ

exclusive is the set of neurons
specific to that language but not part of the shared set. Furthermore, we examine the proportion of
language-shared neurons relative to language-exclusive neurons, defined as

Shared Neuron Ratio :=
|Nshared|

1
|L|
∑

ℓ∈L |N ℓ
exclusive|

, (4)

which quantifies the extent to which individual neurons are shared across all languages as opposed
to being specialized for specific ones. A higher ratio indicates a greater number of neurons that are
commonly activated across languages, while a lower ratio suggests that more neurons are uniquely
responsive to individual languages. A more detailed analysis of the shared and exclusive neurons,
including their layer-wise and component-level distributions, can be found in Appendix C.
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2.3 Language-Agnostic Neurons

As LLMs continue to improve in their ability to handle multiple languages, and even outperform
their English capabilities on specific tasks, we hypothesize that shared neurons may gradually serve
more fundamental functions beyond the processing of multiple languages. Consequently, rather
than solely examining the evolution of the proportion of language-shared neurons across successive
model generations, it is also crucial to assess their relative functional significance in comparison to
language-exclusive neurons. Specifically, if language-shared neurons contribute significantly more
to multilingual processing than language-exclusive neurons, this indicates a functional difference
between the two, since both types are involved in language-related tasks and identified using the
same criteria, they should be equally important if their roles are analogous. The discrepancy suggests
that shared neurons have evolved into Language-Agnostic Neurons. Note that while language-shared
neurons are activated across multiple languages, language-agnostic neurons reflect a higher level
of abstraction. Rather than encoding language-specific features, they are hypothesized to support
cognitive functions that transcend individual languages, such as semantic abstraction, reasoning, and
generalization.

To investigate whether language-agnostic property emerge in language-shared neurons, we intro-
duce the metric Language-Shared Neuron Importance, which quantifies the impact of deactivating
language-shared neurons versus language-exclusive neurons on the model’s performance in a given
language. This is operationalized by measuring the change in perplexity (∆PPL) when each neuron
group is ablated. A disproportionately larger increase in perplexity upon deactivating shared neurons
would suggest their greater functional importance. Formally, we define the language-shared neuron
importance for a language ℓ as:

Impℓ :=
∆PPLℓ

shared/|Nshared|
∆PPLℓ

exclusive/|N ℓ
exclusive|

, (5)

where ∆PPLℓ
shared and ∆PPLℓ

exclusive denote the changes in perplexity for language ℓ when shared
and corresponding exclusive neurons are deactivated, respectively, and |Nshared| and |N ℓ

exclusive|
represent the number of neurons in each group. A higher value of Impℓ indicates that shared neurons
contribute more significantly than language-exclusive neurons, thereby providing evidence for their
language-agnostic role, since both types of neurons should exhibit comparable importance if their
functions were equivalent.

To obtain an overall model-level estimation reflecting this trend across different languages, we
compute the average importance across all languages and apply a logarithmic transformation to
mitigate scale sensitivity. We refer to the resulting quantity as the Language Agnostic Score:

Language Agnostic Score := log

(
1 +

1

|L|
∑
ℓ∈L

Impℓ

)
, (6)

which quantifies the average degree to which language-shared neurons contribute in a language-
agnostic manner across the evaluated languages. In contrast to the shared neuron ratio defined in
Equation 4, which solely quantifies the number of shared neurons, the language-agnostic score
incorporates the functional importance of neurons. Higher values suggest not only stronger language-
agnostic behavior but also hint at the emergence of abstract thought in LLMs.

3 Emergence of Abstract Thought

3.1 Experiment Setup

Evaluated Models To comprehensively evaluate the emergence of abstract thought in LLMs
throughout their development, we examine 20 open-source models encompassing diverse model
families, release periods, and sizes. Specifically, we evaluate Llama series including LLaMA1-
7B (Touvron et al., 2023a), Llama2-7B (Touvron et al., 2023b), Llama3.2-1B, Llama3.2-3B, Llama3-
8B, Llama3.1-8B (Grattafiori et al., 2024), Qwen1.5-0.5B, Qwen1.5-1.8B, Qwen1.5-4B, Qwen1.5-
7B (Bai et al., 2023), Qwen2-0.5B, Qwen2-1.5B, Qwen2-7B (Yang et al., 2024a), Qwen2.5-0.5B,
Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B (Yang et al., 2024b), Gemma-7B (Gemma Team et al.,
2024a), Gemma2-9B (Gemma Team et al., 2024b), Gemma3-4B (Kamath et al., 2025).
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Figure 2: Neuron distribution across language-shared and language-exclusive neurons for six lan-
guages (En, Zh, Th, Fr, Dr, Sw) in various model series and scales. For each model, we present the
fraction of shared neurons and exclusive neurons to the total number of neurons.

Multilingual Benchmark We evaluate models across six typologically and resource-diverse lan-
guages: Chinese (Zh), English (En), Thai (Th), Swahili (Sw), French (Fr), and German (De). This
selection spans high-resource, medium-resource, and low-resource languages, enabling a represen-
tative analysis of language-related neuron behaviors. For our analysis, we utilize the Multilingual
Massive Multitask Language Understanding (MMMLU) dataset (OpenAI, 2024), a human-translated
extension of the original MMLU benchmark (Hendrycks et al., 2021), available in 14 languages. In
addition, we incorporate the Multilingual Grade School Math (MGSM) dataset (Shi et al., 2022),
a translated version of GSM8K (Cobbe et al., 2021), which covers 10 languages. Together, these
datasets provide quantitative measures of the models’ multilingual capabilities.

Neuron Detection Corpus For each language, we identify language-related neurons by analyzing
activation patterns on 1000 sentences sampled from the OSCAR corpus (Abadji et al., 2022). To
quantify the functional contribution of these neurons, we further compute perplexity changes caused
by deactivating them, using the same language-specific OSCAR data. This unified framework allows
us to assess both the proportion and the importance of language-specific and shared neurons across
languages and model generations. More detailed illustration can be found in Appendix D.

3.2 Analysis on Shared Neuron Ratio

Language-related neurons account for only a small proportion in LLMs. To develop a prelimi-
nary understanding of language-shared and language-exclusive neurons, we begin by analyzing the
distribution of shared and language-exclusive parameters across all neurons within the model. For
each language, we compute the proportion of language-shared and language-exclusive neurons rela-
tive to the total number of neurons in the model. Specifically, we calculate the ratios Nshared/|LLM|
and N ℓ

exclusive/|LLM|, where ℓ denotes a specific language. The results, illustrated in Figure 2,
encompass six languages across multiple model series. It shows that only a small fraction of neurons,
often fewer than 1%, play a critical role in processing language, underscoring the sparsity and
selectivity of language-relevant neural activations. Furthermore, the quantities of language-shared
and language-exclusive neurons are of similar magnitude, each coarsely estimated at around 0.3% of
the total number of neurons in the LLM.

To further explore the evolution of shared and exclusive neurons across models and over time,
we compute the overall shared neuron ratio for each model, as defined in Equation 4, relate it to
multilingual performance measured by MMMLU and MGSM, and present the results in Figure 3.

The proportion of shared neurons increases with model evolution. We first group models from
the same series and with similar parameter scales, as indicated by the shaded color regions in Figure
3. Within each group (e.g., Qwen1.5-7B, Qwen2-7B, and Qwen2.5-7B), we observe a steady and
consistent increase in the shared-to-exclusive neuron ratio across generations. This growth closely
parallels improvements in the model’s multilingual ability, with an average Pearson correlation
coefficient of R = 0.92 and a Spearman rank correlation of ρ = 0.88, indicating a strong and reliable
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Figure 3: The relationship between multilingual ability and shared neuron ratio (as defined in Equation
4) across various models. Each point represents a model, color-coded by its release date. Shaded
regions indicate groups of models within the same series and of comparable scale. The gray dashed
line (- - - -) illustrates the overall trend: as models evolve, those with greater multilingual capabilities
tend to exhibit a higher proportion of shared neurons.

relationship. In other words, later generations within the same series show a strong trend toward
engaging more shared neurons for processing different languages.

The increase of shared neuron proportion generalizes across model families. Beyond individual
model series, we observe that the positive relationship between the proportion of shared neurons and
multilingual capability generally persists across different model families, as illustrated by the gray
dashed line (- - - -) in Figure 3. Despite differences in architecture design and pretraining corpora,
models with stronger multilingual ability tend to activate a larger proportion of shared neurons.
For instance, the Gemma series exhibits both the most strong multilingual performance and the
highest shared-to-exclusive neuron ratio. This consistency across diverse architectures suggests that
progressively leveraging shared neurons may be a general strategy adopted by multilingual LLMs,
regardless of their specific design choices.

3.3 Analysis on Language Agnostic Score
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Figure 4: Perplexity changes caused by deactivating random neuron
sets (Random), language-shared neurons (Shared) and language-
exclusive neurons (Exclusive). Notice that Random deactivation
barely affects models’ perplexity, while Shared and Exclusive de-
activation break the models’ abilities.

The above observations raise
a further question: whether
the shared neurons not only
occupy a larger proportion of
the language-related neuron set,
but also contribute more crit-
ically to multilingual process-
ing, effectively functioning as
language-agnostic neurons. To
address this question, we inves-
tigate how the language-shared
neurons importance, i.e., lan-
guage agnostic score defined in
Equation 6, evolves alongside
multilingual capability across
different generations of large
language models.

Deactivating shared and exclusive neurons both leads to model degradation. Before contrasting
language-shared neurons with language-exclusive neurons, we conduct a control experiment in
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Figure 5: The relationship between multilingual ability and language-agnostic score (as defined in
Equation 6) across various language models. Each point represents a model, colored by model size.
The red dashed line (- - - -) indicates where shared neuron influence surpasses that of exclusive
neurons, i.e., Imp = 1 and Language Agnostic Score = log(2). Shaded regions group models
within the same series and of similar scale, while the dashed line (- - - -) indicates the overall trend: as
LLMs evolve, successive generations with enhanced multilingual capabilities tend to achieve higher
language-agnostic scores. This trend suggests that shared neurons increasingly support not only
multilingual processing but also the emergence of more language-agnostic, abstract thought.

which we deactivate an equal number of randomly selected neurons, matching the quantity of both
language-shared and language-exclusive neurons. As illustrated in Figure 4, this random deactivation
results in minimal changes in perplexity across languages. In contrast, deactivating language-shared
or language-exclusive neurons leads to significant performance degradation. These results confirm
that the identified language-related neurons are indeed specialized for language processing, and that
our neuron importance metrics are robust to random perturbations.

To further investigate whether language-shared neurons evolve into language-agnostic neurons, we
analyze the evolution of the language-agnostic score, as defined in Equation 6, in relation to the
models’ multilingual capabilities, as shown in Figure 5.

Shared neurons in early-stage models reflect superficial overlap without supporting higher-level
cognition. In earlier models such as the Qwen1.5 series and LLaMA-1-7B, deactivating shared
neurons has a comparable effect to deactivating exclusive neurons, with language-agnostic scores
around 1. This suggests that in early-stage models, shared neurons have the similar importance with
exclusive neuron, and shared neurons largely reflect superficial overlaps between language-related
neuron across languages, rather than representing a distinct, functionally meaningful shared space.

Shared neurons in recent models become central and exhibit language-agnostic properties. In
contrast, recent models, such as those in the Qwen2.5 series, exhibit a dramatically different pattern.
Deactivating shared neurons leads to a sharp and disproportionate increase in perplexity across all
languages, often several orders of magnitude greater than the increase caused by removing language-
exclusive neurons. In other words, shared neurons contribute far more critically to multilingual
processing than exclusive neurons, despite both being part of the language-related neuron set. This
disproportionate degradation reveals that shared neurons in recent models have evolved beyond
serving merely as intersections of language-specific components; they now fulfill more fundamental,
language-agnostic roles. If such shared neurons have indeed evolved into language-agnostic neurons,
they may be operating within a conceptual space that abstracts away from surface-level linguistic
variations. Such a space would allow the model to perform high-level reasoning, semantic alignment,
and cross-lingual generalization—hallmarks of abstract thought in multilingual LLMs.
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Table 1: Multilingual performance improvements on MGSM (primarily involving abstract thought)
and MMMLU (requiring both abstract thought and domain knowledge) across five languages. Models
were trained only on 100,000 general documents without reasoning-related data and evaluated using
Llama-3.1-8B (high language-agnostic), Llama-3.2-3B (medium language-agnostic), and Llama-3.2-
1B (low language-agnostic) under various targeted neuron tuning strategies.

Neuron MGSM MMMLU
Zh Fr De Th Sw ∆Avg Zh Fr De Th Sw ∆Avg

L
la

m
a-

3.
1-

8B None 52.4 51.6 54.4 46.8 38.8 - 53.8 58.4 56.9 48.8 40.9 -
Shared 52.0−0.4 52.8+1.2 55.6+1.2 45.6−1.2 39.6+0.8 0.3 54.6+0.8 57.2−1.2 56.5−0.4 48.9+0.1 42.3+1.4 0.1
Exclusive 56.8+4.4 57.2+5.6 57.2+2.8 50.4+3.6 42.4+3.6 4.0 55.6+1.8 59.2+0.8 59.1+2.2 49.9+1.1 43.7+2.8 1.7
Random 50.4−2.0 51.2−0.4 54.4 −0.0 47.2+0.4 37.6−1.2 -0.6 52.4−1.4 58.3−0.1 57.2+0.3 47.1−1.7 41.3+0.4 -0.5

L
la

m
a-

3.
2-

3B None 40.8 42.4 57.2 35.2 30.8 - 45.2 49.0 47.1 40.6 34.1 -
Shared 42.8+2.0 45.6+3.2 66.4+9.2 40.4+5.2 39.6+8.8 5.7 44.9−0.3 49.8+0.8 47.3+0.2 41.0+0.4 34.8+0.7 0.4
Exclusive 42.4+1.6 43.2+0.8 65.6+8.4 37.2+2.0 36.0+5.2 3.6 44.9−0.3 48.9−0.1 47.1+0.0 40.9+0.3 34.7+0.6 0.1
Random 40.4−0.4 41.6−0.8 63.2+6.0 34.8−0.4 30.0−0.8 0.7 44.5−0.7 49.0+0.0 46.9−0.2 40.3−0.3 34.1+0.0 -0.2

L
la

m
a-

3.
2-

1B None 26.4 26.0 29.2 20.0 22.8 - 29.0 27.8 28.8 28.8 26.6 -
Shared 30.0+3.6 30.4+4.4 30.8+1.6 22.4+2.4 26.4+3.6 3.1 29.2+0.2 28.7+0.9 29.5+0.7 29.4+0.6 26.8+0.2 0.5
Exclusive 27.6+1.2 30.0+4.0 34.4+5.2 23.2+3.2 30.4+7.6 4.2 29.0−0.0 28.0+0.2 29.3+0.5 28.2−0.6 26.8+0.2 0.1
Random 26.8+0.4 26.4−0.4 29.6+0.4 21.2+1.2 26.4+3.6 1.0 28.8−0.2 28.3+0.5 29.1+0.3 28.6−0.2 26.8+0.2 0.1

4 Multilingual Enhancement via Neuron-Targeted Training

4.1 Language Agnostic Score Guided Multilingual Enhance

Inspired by above insights, we propose various targeted neuron training methods to enhance models’
multilingual capability according to their language agnostic score.

LLMs with low language agnostic score can train any language-related neurons. These models
exhibit limited multilingual capabilities, indicating that all language-related neurons require improve-
ment. To enhance their performance across languages, we propose training all language-related
neurons, whether they are shared across languages or specific to individual ones.

LLMs with middle language agnostic score should train language-shared neurons. These
models demonstrate a degree of multilingual capability; however, the language-shared neurons have
not yet evolved to become truly language-agnostic. Given that language-shared neurons are more
prevalent than language-exclusive ones in these models, it is essential to further train and refine them
to more effectively enhance the models’ multilingual performance.

LLMs with high language agnostic score should train language-exclusive neurons The
language-shared neurons in these models have evolved into language-agnostic neurons, responsible
for abstract thought. They are already well-trained and offer limited room for further improve-
ment. Therefore, to enhance multilingual performance, it is necessary to focus on training the
language-exclusive neurons in these LLMs.

4.2 Experiment Setup
Dataset To further validate our hypothesis and explore how to utilize our findings to efficiently
enhance multilingual capability in LLMs, we conduct continuous pretraining on specific neurons
using multilingual corpora. Specifically, we construct a training set by sampling 100,000 examples
per language from a mixture of three widely used multilingual datasets: Culturax (Nguyen et al.,
2024), MADLAD (Kudugunta et al., 2023), and Wikipedia (Guo et al., 2020).

Training Settings We utilize Llama3.2-1B (Grattafiori et al., 2024), Llama3.2-3B, and Lamma-
3.1-8B as representative LLMs with low, medium, and high language-agnostic scores, respectively.
We conduct experiments under three training settings: language-shared neurons, language-exclusive
neurons, and an equal number of randomly selected neurons. To evaluate multilingual capability, we
employ the MMMLU and MGSM benchmarks.
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Experiment Results Table 1 demonstrates that the multilingual capabilities of language models can
be effectively enhanced through targeted neuron-specific tuning. For Llama-3.2-1B, which exhibits
a relatively low language-agnostic score, tuning both shared and exclusive neurons significantly
improves the model’s cross-lingual reasoning performance, yielding average gains of 3.1 and 4.2
points on the MGSM benchmark, respectively. In the case of Llama-3.2-3B, which has a moder-
ate language-agnostic score, tuning language-shared neurons results in the greatest performance
improvement—an average gain of 5.7 points on MGSM. This is likely because these neurons are
more numerous and less well-trained than exclusive ones. Finally, for Llama-3.2-8B, which already
possesses a high language-agnostic score, the language-shared neurons appear to be sufficiently
trained; thus, tuning exclusive neurons leads to further enhancement of multilingual performance,
with an observed improvement of 4.0 points on MGSM. Compared to the improvement observed on
MGSM, the performance gain on MMLU—which relies more heavily on knowledge extraction—is
relatively smaller. This suggests that our training approach primarily enhances the model’s thinking
capabilities rather than its factual recall. Moreover, since we exclusively utilize general documents
without incorporating reasoning-specific data, the substantial improvement further validates the
effectiveness of our neuron-targeted training methodology. Additional experimental settings, results
on different backbone LLMs, comparisons with baseline methods (e.g., LoRA), and cross-lingual
evaluation analyses are provided in Appendix E and Appendix F.

5 Related Work

Thinking Language of LLMs Large language models (LLMs) (Touvron et al., 2023b; OpenAI,
2023; Zhang et al., 2024a; Chen et al., 2024; Liu et al., 2025c; Gemma Team et al., 2025) demonstrate
strong multilingual reasoning and transfer abilities (Pires et al., 2019; Wu and Dredze, 2019; You
et al., 2025; Cai et al., 2025; Nooralahzadeh et al., 2020), raising questions about whether these
models operate in a language-agnostic or language-specific concept space (Nanda et al., 2023; Schut
et al., 2025a; Zhao et al., 2024b), and which language would the model “think” in. One stream of
work supports the hypothesis that LLMs “think” in a concept space centered on the predominant
training language. Zhong et al. (2024) analyzed LLMs trained predominantly on English or Japanese
(Fujii et al., 2024; LLM-jp et al., 2024) for their mainly activated languages; Fierro et al. (2025)
showed language dependence in object retrieval; and Schut et al. (2025b), found representations
align more closely with English even on foreign inputs. On the other hand, a language-agnostic
view is supported by either probing studies (Pires et al., 2019; Stanczak et al., 2022), neuron-level
manipulations (Dumas et al., 2024; Brinkmann et al., 2025; Ding et al., 2024) or both (Wu et al., 2025;
Wendler et al., 2024). Our work falls in line with Dumas et al. (2024); Wendler et al. (2024); Wu
et al. (2025), with more fine-grained neuron-level results and a novel activation-and-training-based
analysis method.

Multilingual Enhancement Early-on, multilingual enhancement is mainly approached from pre-
training in works such as XLM, XLM-R(Conneau et al., 2020; Lample and Conneau, 2019) and
M-BERT (Devlin et al., 2018). More post-training work, ranging from continual pre-training (Zhang
et al., 2021; Cui et al., 2024; Liu et al., 2025b; Husain et al., 2024; Kuulmets et al., 2024) to fine-tuning
(Muennighoff et al., 2023; Chen et al., 2023; Ahuja et al., 2024; Lai et al., 2023; Indurthi et al., 2024;
Lai and Nissim, 2024; Zhao et al., 2024c) have emerged to effectively improve models’ multilingual
abilities, though rather sensitive to training corpus and settings. A parallel body of work focuses on
prompt-based methods, either leaning on language alignment (Zhang et al., 2024b; Etxaniz et al.,
2023; Zhao et al., 2024a) or instruction-following and attention (Wang et al., 2025b; Zhao et al.,
2025b,a). However, Liu et al. (2024) points out the suboptimality in translation-based prompting
pipelines. Our neuron-specific tuning strategy answers the academic call (Liu et al., 2024, 2025a) for
a more comprehensive approach to multilingual enhancement than translation-based prompting, and
provides a more efficient and task-neutral alternative than the post-training based methods.

6 Conclusion & Discussion

In this work, we explore the emergence of abstract thought in large language models through the
lens of neuron behavior. By identifying and categorizing language-related neurons as either shared
or exclusive, we uncover a consistent trend across model development: shared neurons not only
increase in proportion but also grow in functional importance, eventually forming a compact yet
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critical set of language-agnostic neurons. These neurons underpin the model’s ability to generalize
across languages and support abstract reasoning that transcends linguistic boundaries. Motivated by
this insight, we introduce neuron-specific training strategies that adapt to the developmental stage of
an LLM, whether or not it exhibits language-agnostic behavior. Extensive experiments confirm that
our targeted training approach effectively enhances multilingual performance across diverse models.
We believe this neuron-centric perspective opens new avenues for understanding and improving the
generalization capabilities of LLMs in multilingual and cross-lingual contexts.

Our study is limited by computational resources, which restricts evaluation on the larger LLMs and
prevents full exploration of the potential of neuron-centric training at larger scales. We leave these
directions for future work. Nonetheless, our findings shed light on the emergence of multilingual and
abstract reasoning in LLMs, which may promote language equity but also raise risks like cross-lingual
misinformation, calling for responsible deployment.
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the necessary information on compute resources used for each
experiment. Further details are included in the supplemental material.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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parency, reproducibility, and responsible use of models, and our work does not involve
sensitive data, human subjects, or harmful applications.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We explicitly discuss the broader impacts of our work in Section 6.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work relies solely on publicly available open-source models and datasets.
We do not release any new models or data that would require additional safeguards.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in this work, including models and datasets, are
open-source and properly credited. Their licenses and terms of use have been respected as
per their original distribution.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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service of that source should be provided.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include all necessary details about the dataset and codes in Section 3.1,
Section 4.2, and the anonymous link.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This study does not involve human subjects and thus does not require IRB
approval.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for minor writing and editing purposes, and did not
contribute to the core methodology or scientific content of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM


Appendix

A Parallel Neuron Detection Algorithm 24

A.1 Feed-Forward Network (FFN) Neurons . . . . . . . . . . . . . . . . . . . . . . . 24

A.2 Self-Attention Network Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Neuron Detection Threshold 26

C Neuron Analysis 26

C.1 Component-Level Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.2 Layer-wise Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.3 Unique Language Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D Neuron Detection Corpus 28

D.1 OSCAR Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.2 Illustration of Sample Sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E Multilingual Enhancement 29

E.1 Illustration of Random Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

E.2 Results on Additional Backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

E.3 Comparison with LoRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

F Cross-lingual Evaluation 31

G Broder Impacts 32

H Limitations 32

23



A Parallel Neuron Detection Algorithm

Inspired by Zhao et al. (2024b); Wang et al. (2025a), the neuron detection method in Equation 2 can
be done parallel. While Equation 2 considers the change in the final output embedding, the parallel
methods described here efficiently calculate the change in the output of the specific layer containing
the neuron when that neuron is deactivated. This layer-wise impact serves as a proxy or component
for the overall impact.

In this context, let X ∈ Rl×dmodel be the input hidden states to a given layer, where l is the sequence
length and dmodel is the hidden dimension of the model. For a neuron N within this layer, its impact
is measured as ∥f(X; Θ)− f(X; Θ⊖N )∥2, where f(X; Θ) is the layer’s output with parameters Θ,
and f(X; Θ⊖N ) is the output when neuron N (a specific row or column in Θ) is deactivated (its
parameters set to zero).

A.1 Feed-Forward Network (FFN) Neurons

A standard FFN layer in modern transformer models can be expressed as:
FFN(X) = (SiLU(XWgate)⊙ (XWup))Wdown (7)

where X ∈ Rl×dmodel is the input to the FFN layer, Wgate,Wup ∈ Rdmodel×dinter , and Wdown ∈
Rdinter×dmodel . Here, dinter is the intermediate dimension of the FFN. The symbol ⊙ denotes
element-wise multiplication. Let Hact = SiLU(XWgate)⊙ (XWup) be the intermediate activation
matrix, Hact ∈ Rl×dinter . Thus, the FFN output is YFFN = HactWdown ∈ Rl×dmodel .

We consider a neuron Ninter,k to be associated with the k-th dimension of the intermediate repre-
sentation Hact. Deactivating such a neuron means that the k-th column of Hact, denoted Hact[:, k],
is effectively zeroed out before the multiplication with Wdown. This deactivation corresponds to
zeroing out the parameters that produce this k-th intermediate feature, e.g., the k-th column of Wup

(i.e., neuron N is Wup[:, k]) and Wgate, or by zeroing out parameters that read from it, e.g., the k-th
row of Wdown (i.e., neuron N is Wdown[k, :]).

Let YFFN,⊖Ninter,k
be the output when the k-th intermediate neuron is deactivated. The change in

the layer’s output is:
∆YFFN,k = YFFN − YFFN,⊖Ninter,k

If H ′
act is Hact with its k-th column zeroed, then YFFN,⊖Ninter,k

= H ′
actWdown. So,

∆YFFN,k = (Hact −H ′
act)Wdown

The matrix (Hact − H ′
act) is zero everywhere except for its k-th column, which consists of the

elements Hact[:, k]. Let this difference matrix be δHk. Then ∆YFFN,k = δHkWdown. This
resulting l × dmodel matrix is formed by the outer product of the k-th column of Hact and the k-th
row of Wdown:

∆YFFN,k = Hact[:, k](Wdown)k,:
The impact of the k-th intermediate FFN neuron is then the L2 norm of this change:

∥∆YFFN,k∥2 = ∥Hact[:, k](Wdown)k,:∥2 (8)
This computation can be performed in parallel for all k ∈ {1, . . . , dinter} to obtain the impact of all
intermediate neurons in the FFN layer.

A.2 Self-Attention Network Neurons

The output of a self-attention layer (for simplicity, we describe a single attention head; multi-head
attention involves similar computations per head) can be given by:

YAttn = Softmax
(
(XWQ)(XWK)T√

dk

)
(XWV ) (9)

Let Q = XWQ ∈ Rl×dattn , K = XWK ∈ Rl×dattn , and V = XWV ∈ Rl×dattn , where dattn
is the dimension of queries, keys, and values for the attention mechanism. dk is the scaling factor,
typically the dimension of the key/query vectors (e.g., dk = dattn). Let A = Softmax

(
QKT

√
dk

)
∈

Rl×l. The layer output is YAttn = AV ∈ Rl×dattn . (An additional output projection WO might
follow this, which would be multiplied subsequently).
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A.2.1 Neurons in WV

Consider a neuron NV,k defined as the k-th column of WV , i.e., WV [:, k]. Deactivating this neuron
sets WV [:, k] to zero, which in turn makes the k-th column of V = XWV , denoted V [:, k], zero. Let
V ′ be the matrix V with its k-th column zeroed. The change in the layer’s output is:

∆Y
(V )
Attn,k = AV −AV ′ = A(V − V ′)

The matrix (V − V ′) is zero everywhere except for its k-th column, which is V [:, k]. Let this
difference matrix be δVk. Then ∆Y

(V )
Attn,k = A(δVk). This l × dattn matrix has AV [:, k] (the matrix

A multiplied by the vector V [:, k]) as its k-th column, and zeros in other columns. The impact of
neuron NV,k is: ∥∥∥∆Y

(V )
Attn,k

∥∥∥
2
= ∥AV [:, k]∥2 (10)

where the norm is effectively taken over the l × 1 vector AV [:, k] that forms the k-th column of the
change matrix. This can be calculated in parallel for all k ∈ {1, . . . , dattn}.

A.2.2 Neurons in WQ

Consider a neuron NQ,k defined as the k-th column of WQ, i.e., WQ[:, k]. Deactivating this neuron
sets WQ[:, k] to zero. This makes the k-th column of Q = XWQ, denoted Q[:, k], zero. Let Q′ be the
matrix Q with its k-th column zeroed. The original unnormalized attention scores are Sraw = QKT

√
dk

.

The new unnormalized attention scores with NQ,k deactivated are S′
raw = Q′KT

√
dk

. The change in

the unnormalized scores due to deactivating NQ,k is ∆Sraw,k = Sraw − S′
raw = (Q−Q′)KT

√
dk

. The
matrix (Q−Q′) is zero everywhere except for its k-th column, which is Q[:, k]. Thus,

∆Sraw,k =
(Q[:, k])(K[:, k])T√

dk
This l× l matrix represents the change in raw attention scores attributable to the interaction involving
the k-th column of Q and the k-th column of K.

Let Aorig = softmax(Sraw) be the original attention probability matrix. Let A⊖NQ,k
=

softmax(Sraw −∆Sraw,k) be the attention probability matrix when neuron NQ,k is deactivated. The
change in the layer’s output is:

∆Y
(Q)
Attn,k = AorigV −A⊖NQ,k

V = (Aorig −A⊖NQ,k
)V

The impact of neuron NQ,k is:∥∥∥∆Y
(Q)
Attn,k

∥∥∥
2
=
∥∥(Aorig −A⊖NQ,k

)V
∥∥
2

(11)

To calculate this efficiently for all k ∈ {1, . . . , dattn} (corresponding to each column neuron in WQ):

1. Compute the original Sraw = QKT

√
dk

and Aorig = softmax(Sraw).

2. For each k, compute the specific change term ∆Sraw,k = Q[:,k](K[:,k])T√
dk

. This step can be
parallelized by constructing a tensor ∆Sraw ∈ Rdattn×l×l where the slice ∆Sraw[k, :, :] =
∆Sraw,k.

3. For each k, compute the adjusted scores Sadjusted,k = Sraw −∆Sraw[k, :, :].
4. For each k, compute A⊖NQ,k

= softmax(Sadjusted,k).

5. For each k, calculate the impact norm ∥(Aorig −A⊖NQ,k
)V ∥2.

A.2.3 Neurons in WK

The impact of deactivating a neuron NK,k (the k-th column of WK) is calculated symmetrically to

that of NQ,k. The same change term ∆Sraw,k = Q[:,k](K[:,k])T√
dk

is used, reflecting the idea that this
term captures the interaction component associated with the k-th features of both Q and K. The
procedure then follows steps 3-5 as outlined for WQ neurons, using this ∆Sraw,k to find the adjusted
attention matrix and the resulting impact.

25



B Neuron Detection Threshold

An important implementation detail in identifying language-related neurons lies in the selection of the
activation threshold σ. Rather than adopting a fixed global scalar, we employ a dynamic thresholding
mechanism that adapts to each query. Specifically, as shown in our released implementation, for every
query in a given language, we rank neurons based on their computed importance scores and select
the top 1% as activated neurons. Subsequently, for each language ℓ, its language-specific neuron set
N ℓ

lang is defined as the intersection of these top-ranked neurons across all queries belonging to that
language.

This dynamic top-1% strategy ensures consistent sensitivity across languages with different overall
activation magnitudes, allowing the model to capture meaningful variations without being biased
by language-specific activation scales. The choice of 1% is empirically determined through a set of
calibration experiments designed to balance selectivity and stability.

To validate the appropriateness of this threshold, we conduct a sanity check using random baselines.
For each language, we compare the model degradation caused by deactivating the selected language-
specific neurons with that caused by deactivating an equal number of randomly chosen neurons. In all
cases, we observe that removing the identified neurons results in a drastic performance drop—often
exceeding a 100× increase in perplexity—while removing random neurons yields negligible effects.
This substantial performance disparity confirms that the selected neurons are functionally meaningful
and that the threshold effectively distinguishes critical neurons from background noise.

If, conversely, random neuron deactivation were to cause a comparable decline in performance,
it would suggest that the threshold is too lenient, allowing excessive neurons to be classified as
important. In such cases, the percentile threshold would be systematically reduced until the random
baseline no longer impacts model behavior. This adaptive validation process ensures that the threshold
σ remains both rigorous and empirically grounded across all examined languages and model families.

C Neuron Analysis

To further understand the internal organization of multilingual representations within large language
models, we conduct a comprehensive neuron-level analysis. This section explores how language-
shared, language-exclusive, and strictly unique neurons are distributed across different architectural
components and model layers, offering insight into how multilingual models balance generalization
and specialization.

C.1 Component-Level Distribution

We first analyze how neurons are distributed across major architectural components. Neurons are
categorized into three groups: query-key (QK), value-output (VO), and feed-forward network (FFN).
As shown in Table 2, shared neurons are primarily concentrated in the QK components, aligning
with the general attention mechanism responsible for capturing cross-lingual relational patterns. In
contrast, exclusive neurons are more prevalent in VO and FFN layers, indicating their more important
role in language-specific transformations and output generation. This decomposition suggests that
shared and exclusive neurons perform complementary roles in multilingual processing.

We find that the component-level trend remains consistent across model families: shared neurons con-
centrate within the attention’s QK submodules, supporting cross-lingual abstraction, while exclusive
neurons appear more prominently in VO and FFN blocks, handling language-specific representations
and refinements.

C.2 Layer-wise Distribution

We further examine how these neurons are distributed across model layers. Figures 6 and 7 illustrate
the proportion of shared and exclusive neurons across all layers for Gemma2-9B and LLaMA3.1-8B,
respectively. To quantify the trend, we group layers into early, middle, and late stages and report the
average proportions in Table 3.

The layer-wise distribution reveals distinct allocation patterns for shared and exclusive neurons.
Exclusive neurons are more concentrated in the early and late layers, suggesting that language-
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Table 2: Component-level neuron distribution across models. Percentages represent the proportion of
shared or exclusive neurons (averaged across languages) within each component.

Model Component Shared (%) Exclusive (%)
LLaMA3.1-8B QK 92.50 59.48

VO 2.90 23.80
FFN 4.59 16.71

Qwen2.5-3B QK 76.40 53.06
VO 16.72 30.36
FFN 6.88 16.58

Gemma2-9B QK 65.32 35.40
VO 22.02 40.46
FFN 12.66 24.16

Figure 6: Layer-wise distribution analysis of Gemma2-9B.

specific processing primarily occurs near the input and output boundaries, where lexical and syntactic
variations are handled. In contrast, shared neurons maintain a stable proportion across all layers,
reflecting their role in capturing transferable, cross-lingual representations throughout the network.

Overall, these analyses demonstrate that while both neuron types are crucial for multilingual pro-
cessing, shared neurons form a stable representational backbone that supports language-agnostic
reasoning, whereas exclusive neurons enable fine-grained, language-specific adjustments near the
model periphery. These findings are consistent across LLaMA, Qwen, and Gemma series, reinforcing
the robustness of this observation.

C.3 Unique Language Neurons

To further refine our understanding of neuron selectivity, we investigate strictly unique neurons—those
that respond exclusively to one language. While our definition of language-exclusive neurons allows
for activation across a subset of languages, this stricter criterion provides additional insight into the
specialization of multilingual models.

Table 4 reports the proportion of strictly unique neurons per language. These neurons constitute
only a small percentage of the total population, suggesting that the model predominantly relies
on shared neurons for multilingual understanding. Interestingly, higher values for Swahili and
Thai—both lower-resource languages—indicate a stronger reliance on language-specific neurons,
likely to compensate for limited training data.

We also analyze their layer-wise distribution by grouping the model layers into three stages: early
(0–7), middle (8–23), and late (24–31). The averaged proportions of unique, shared, and exclusive
neurons in each group are shown in Table 5. The early and late stages exhibit higher proportions of
unique and exclusive neurons, implying that language-specific encoding and decoding occur near
the input and output boundaries. The middle layers, dominated by shared neurons, correspond to a
cross-lingual abstraction stage responsible for language-independent reasoning.
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Figure 7: Layer-wise distribution analysis of LLaMA3.1-8B.

Table 3: Layer-wise neuron distribution across representative models. Percentages indicate average
proportions of shared and exclusive neurons within each layer range.

Model Layer Range Shared (%) Exclusive (%)
LLaMA3.1-8B 0–7 3.07 4.40

8–23 3.11 2.89
24–31 2.83 3.83

Qwen2.5-3B 0–5 3.69 4.45
6–29 2.70 2.43
30–35 2.20 2.48

Gemma2-9B 0–5 2.41 3.13
6–34 2.39 1.92
35–41 2.29 3.65

Finally, we examine the component-level distribution of strictly unique neurons (Table 6). Shared
neurons cluster within QK, reinforcing their role in cross-lingual alignment. Exclusive neurons, as
well as strictly unique ones, are more concentrated in VO and FFN, highlighting their specialization
in language-specific semantic transformation and output projection.

These findings reinforce our broader conclusion: shared neurons underpin cross-lingual generaliza-
tion, capturing transferable semantics; exclusive neurons encode language-specific nuances, crucial
for accurate understanding and generation; and strictly unique neurons—being the most selective
subset—reflect the model’s fine-grained adaptation to individual languages, typically concentrated at
the model’s periphery where input encoding and output generation occur.

D Neuron Detection Corpus

This section provides additional details regarding the corpus used for neuron detection, as mentioned
in the main text. Our methodology relies on the OSCAR corpus for both identifying language-related
neurons through activation patterns and quantifying their functional contribution via perplexity
changes upon deactivation.

D.1 OSCAR Corpus

The OSCAR (Open Super-large Crawled Aggregated coRpus) corpus (Abadji et al., 2022) is a massive
multilingual collection of texts obtained by language classification and filtering of the Common Crawl
dataset. Common Crawl is a publicly available web crawl spanning petabytes of data. OSCAR further
processes this raw data to produce monolingual corpora across a wide range of languages, making it
a valuable resource for training large language models and conducting cross-lingual research.

Key characteristics of the OSCAR corpus include:

• Large Scale: It contains hundreds of gigabytes to terabytes of text data for many languages.
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Table 4: Proportion of strictly unique neurons (responding to only one language).
Language Strictly Unique Neurons (%)
English (en) 0.02
Chinese (zh) 0.03
Thai (th) 0.06
French (fr) 0.03
German (de) 0.02
Swahili (sw) 0.07

Table 5: Layer-wise distribution of unique, shared, and exclusive neurons in LLaMA3.1-8B.
Layer Group Unique (%) Shared (%) Exclusive (%)
Early (0–7) 3.69 3.07 4.40
Middle (8–23) 2.28 3.11 2.89
Late (24–31) 4.62 2.83 3.83

• Multilingual Coverage: It supports a vast number of languages, facilitating studies that require
diverse linguistic data.

• Data Cleaning: Efforts are made to clean and filter the crawled data, though the quality can vary
depending on the language and the nature of web content.

• Accessibility: OSCAR is publicly available, promoting reproducibility and broader research in
NLP.

For our study, we sample 1000 sentences for each target language from its respective monolingual
section within the OSCAR corpus. This sampled data serves as the basis for analyzing neuron
activations and evaluating perplexity changes. The diversity and scale of OSCAR help in capturing
a wide array of linguistic phenomena necessary for robustly identifying language-specific neural
correlates.

D.2 Illustration of Sample Sentences

To provide a concrete illustration of the data used, Table 7 presents conceptual example sentences
from the OSCAR corpus for the five languages central to our analysis: English (en), Chinese (zh),
Swahili (sw), German (de), and French (fr).

The sentences sampled for each language are then further used to observe which neurons are
consistently activated during processing. A similar set of sentences is then used to measure the
perplexity of the model when specific neurons or sets of neurons are deactivated, thereby quantifying
their functional importance to that language.

E Multilingual Enhancement

This section provides additional details on our multilingual enhancement experiments, including (1)
the construction of random neuron baselines, (2) results on additional backbones, and (3) comparisons
with LoRA, a famous parameter-efficient fine-tuning method. Together, these analyses validate the
robustness and efficiency of our neuron-level enhancement strategy.

E.1 Illustration of Random Neurons

Regarding the random neurons presented in Figure 4, we carefully designed the sampling process to
ensure a fair comparison. Specifically, we sampled two sets of random neurons—each matching the
total number of shared and exclusive neurons, respectively. These random neurons were uniformly
sampled across all layers and components of the model, under the assumption of a homogeneous
distribution.
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Table 6: Component-level comparison among unique, shared, and exclusive neurons in LLaMA3.1-
8B.

Component Unique (%) Shared (%) Exclusive (%)
QK 18.40 92.50 59.48
VO 50.96 2.90 23.80
FFN 30.64 4.59 16.71

Table 7: Illustrative sample sentences from the OSCAR corpus for the selected languages. These are
conceptual examples, as actual sentences are randomly sampled.

Language Conceptual Example
English (en) The quick brown fox jumps over the lazy dog.
Chinese (zh) 敏捷的棕色狐狸跳过了懒惰的狗。
Swahili (sw) Mbweha mwepesi wa kahawia anaruka juu ya mbwa mvivu.
German (de) Der schnelle braune Fuchs springt über den faulen Hund.
French (fr) Le renard brun rapide saute par-dessus le chien paresseux.

We then selected the random set that exhibited a stronger influence on model performance, and used
it consistently in both Figure 4 and Table 1. This ensures comparability across evaluations. It is
indeed expected that the distribution and activation patterns of random neurons differ from those
of the identified language-specific neurons, as the latter capture semantically grounded linguistic
features rather than arbitrary activation patterns.

E.2 Results on Additional Backbones

Figure 1 presents a simplified cross-model analysis within the same generation but across different
model sizes. We observe that larger models generally exhibit a lower proportion and reduced
importance of shared neurons. This aligns with prior findings showing that as models scale up,
parameter specialization increases, leading to fewer neurons being shared across languages.

Although our main focus lies in analyzing the evolution of abstract thought over model development
rather than size scaling, we include this discussion for completeness. To further verify the generality
of our findings, we conducted additional analyses on the Qwen-2.5 family, particularly the 1.5B
variant. The results are summarized below:

Table 8: Performance comparison of shared, exclusive, and random neuron sets on Qwen-2.5-1.5B.
Metrics represent accuracy (%) on MGSM and MMMLU datasets.

MGSM MMMLU
Model zh de fr th sw ∆ zh de fr th sw ∆

Qwen2.5-1.5B 63.60 57.20 61.20 50.80 28.00 – 53.95 48.47 50.96 44.00 30.49 –
+ Exclusive 65.20 57.60 61.60 52.00 29.60 +1.04 53.81 48.65 51.29 44.49 31.57 +0.39
+ Shared 63.20 56.80 62.00 49.20 31.20 +0.32 53.72 48.38 51.30 44.42 31.48 +0.29
+ Random 62.80 54.00 60.40 46.80 27.60 -2.88 53.71 48.62 51.09 44.17 31.36 -0.17

These results indicate that both shared and exclusive neuron adjustments consistently improve
multilingual reasoning, whereas random neuron updates negatively affect performance.

We further tested our findings on the Gemma2-9B model, which represents a different model family
and a high language-agnostic score at the global level. The results are presented in Table 9.

We observe consistent trends across backbones: fine-tuning exclusive neurons enhances reasoning
in target languages, while shared neurons contribute to general stability. In contrast, random or
unstructured modifications fail to improve multilingual alignment.

Furthermore, our GSM8K experiments confirm that fine-tuning a model on a specific language im-
proves reasoning in that language but may degrade performance in others—supporting our hypothesis
that language-specific adaptation often comes at the cost of reduced cross-lingual transferability.
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Table 9: Performance of neuron subsets on Gemma2-9B across languages.
Subset Zh Fr De Th Sw Avg ∆

None 58.4 58.0 58.8 57.2 51.2 –
Shared 56.8 57.6 58.8 54.8 48.4 -1.4
Exclusive 61.6 60.8 62.4 58.4 55.6 +3.0
Random 56.0 57.6 57.2 56.0 50.8 -1.2

E.3 Comparison with LoRA

Although our method focuses on neuron-level tuning rather than introducing new fine-tuning layers,
we further conduct a comparison with LoRA to verify the efficiency and effectiveness of our approach.
Unlike LoRA and other parameter-efficient fine-tuning (PEFT) methods, which insert additional
adapter layers and train extra parameters, our method adjusts only a small subset of existing shared
neurons. This enables multilingual enhancement without any architectural modification or parameter
growth, highlighting a distinct trade-off between targeted internal adaptation and parameter-efficient
extension.

For fair comparison, we implement LoRA-based fine-tuning on LLaMA3.2-3B under a similar
parameter budget (rank = 48). As shown in Table 10, LoRA improves performance in certain MGSM
cases (e.g., German, Swahili) but shows limited generalization and even degradation on MMMLU.
Moreover, LoRA requires longer training time (2.2 hours on 2×H200 GPUs) compared to our
neuron-level method (1.5 hours), demonstrating that our approach achieves competitive multilingual
gains with higher efficiency and simpler implementation.

Table 10: Comparison between our neuron-level fine-tuning and LoRA on LLaMA3.2-3B.
MGSM MMMLU

Model zh de fr th sw ∆ zh de fr th sw ∆

LLaMA3.2-3B 40.80 57.20 42.40 35.20 30.80 – 45.20 47.10 49.00 40.60 34.10 –
+ LoRA 38.80 68.80 44.00 31.20 37.20 +2.72 44.40 45.79 47.74 39.58 32.50 -1.12

Overall, LoRA demonstrates partial improvements but lacks consistency across benchmarks and
languages. In contrast, our neuron-level approach achieves stable multilingual enhancement with
lower computational overhead, highlighting its simplicity and interpretability as a complementary
direction to PEFT methods.

F Cross-lingual Evaluation

To further explore the effect of language-specific fine-tuning on multilingual generalization, we
conduct cross-lingual evaluation experiments. While our primary focus is on understanding how
fine-tuning with a single language corpus can enhance performance in that language, it is equally
important to assess how such adaptation influences the model’s capabilities across other languages.

We fine-tune LLaMA-3.2-3B using corpora from individual languages and then evaluate its per-
formance on all target languages. Two metrics are examined: (1) accuracy improvement on the
multilingual GSM8K (MGSM) benchmark, reflecting reasoning capability; and (2) change in lan-
guage perplexity (PPL), reflecting language understanding and fluency.

Table 11 reports the results of fine-tuning on one language and testing across all others. “Target Lan-
guage Acc” denotes the improvement on the language used for fine-tuning, while “Other Languages
Acc (Avg)” shows the average accuracy change over the remaining four languages.

We also measure the change in perplexity (PPL) before and after fine-tuning as an intuitive indi-
cator of the model’s linguistic understanding. A decrease in PPL indicates improved fluency and
comprehension in that language. The results are summarized in Table 12.

These results demonstrate a consistent trade-off: fine-tuning on a single language improves both
reasoning ability and linguistic understanding in that language, but often at the expense of reduced
performance on others. This observation suggests that language-specific adaptation repurposes part
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Table 11: Cross-lingual evaluation on MGSM for LLaMA-3.2-3B. Fine-tuning on a single language
improves reasoning in that language but moderately reduces performance in others.

Language Trained On Target Language Acc Other Languages Acc (Avg)
Chinese (Zh) +2.0 -1.6
French (Fr) +3.2 -2.4
German (De) +9.2 -3.2
Thai (Th) +5.2 -2.8
Swahili (Sw) +8.8 -2.0

Table 12: Change in language perplexity (PPL) before and after fine-tuning on LLaMA-3.2-3B.
Negative values indicate reduced perplexity (better language modeling).

Language Trained On Target Language PPL Other Languages PPL (Avg)
Chinese (Zh) -3.15 +0.89
French (Fr) -2.03 +0.77
German (De) -2.76 +0.64
Thai (Th) -0.41 +0.75
Swahili (Sw) -12.40 +1.84

of the shared neuron subspace to better align with the target language, consequently weakening
cross-lingual generalization.

In summary, language-specific fine-tuning enhances targeted capabilities while moderately com-
promising multilingual balance, implying that shared neurons serve as a critical mechanism for
maintaining cross-lingual consistency.

G Broder Impacts

This work contributes to a deeper understanding of how LLMs develop multilingual and abstract
reasoning capabilities, which may help improve language equity in AI systems. By enhancing perfor-
mance across diverse languages, our methods could benefit underrepresented linguistic communities.
However, stronger multilingual models also carry risks, such as enabling more sophisticated misinfor-
mation in multiple languages. We encourage responsible use and further research into safeguards for
multilingual LLM deployment.

H Limitations

While our study provides compelling evidence for the emergence of abstract, language-agnostic
thought in LLMs and demonstrates the effectiveness of neuron-centric training strategies, several
limitations remain: First, due to resource constraints, our analysis—though conducted across diverse
model families and scales—has not been extended to the larger LLMs. Whether the observed patterns
of neuron sharing and functional importance generalize to such scales remains an open question.
Second, although our proposed training strategy yields consistent gains, the scope of our experiments
remains limited by computational cost. We have not fully explored the upper bound of performance
improvements that could be achieved with larger-scale or longer-term neuron-centric training. We
leave these limitations as future work.
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