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Abstract— Vision-Language Models (VLMs) can describe
scenes in natural language, supporting tasks such as robot
planning and action grounding. However, they struggle in
deformable object manipulation (DOM), where reasoning about
motion, interaction, and deformation is critical. In this work, we
investigate whether guiding language models with a taxonomy
for DOM can provide a structured reasoning about DOM tasks.
We evaluate the performance of our approach on three chal-
lenging DOM tasks: towel twisting, meat phantom transport,
and cloth edge tracing. Our results demonstrate the potential of
taxonomy-guided VLMs to interpret these tasks without fine-
tuning or curated datasets.

I. INTRODUCTION

Recent advances in Vision-Language Models (VLMs)

have enabled robots to interpret images and scenes in natu-

ral language, supporting tasks such as scene understanding

for robot manipulation [1], or task and motion planning

(TAMP) [2]. By leveraging vision and language, VLMs can

describe the environments that robots interact with, parse

textual commands, and translate these into action com-

mands [3]. However, VLMs often fail in tasks that require

deeper physical reasoning. To extend the capabilities of these

models, one recent solution is to perform fine-tuning on

datasets that incorporate physical concepts [4]. Nevertheless,

these approaches require substantial computational resources

and carefully curated datasets for large-scale fine-tuning. It

limits their applicability to challenging tasks like deformable

object manipulation (DOM), where measuring the internal

state of deformable objects is challenging [5].

To systematically describe manipulation tasks, prior works

have proposed several taxonomies of manipulation. These

taxonomies provide a structure for key manipulation aspects

such as motion at contact [6], robot trajectories [7], and

deformation [8]. By providing structured, interpretable cat-

egories, these taxonomies can enable systematic reasoning

about robot actions and object states.

In this extended abstract, we investigate whether these

taxonomy frameworks can guide VLM reasoning, see Fig. 1.

Specifically, we evaluate whether VLMs guided by the Tax-

onomy for Deformable Object Manipulation (T-DOM) [8]
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VLM System Prompt

You are an analytical per-
ception agent...

• Reasoning rules
• Taxonomy structure
• Output requirement
• Self-correction

User Request

[VLM System Prompt]

VLM Response

Taxonomy Code: 011011-...

Motion: Left arm: Quasi-static (Gravita-
tional+Elastic). Right arm : Quasi-static
(Gravitational+Elastic). Reasoning: ...
Prehensile: Left arm: Point grasp. Right
arm : Point grasp. Reasoning: ...
Non-Prehensile: Environment:None. Left
arm:None. Right arm :None. Reasoning: ...
Contact Sliding: Left arm: None. Right
arm : None. Reasoning: ...
Deformation: Compression+Torsion. Rea-
soning: The bunching and slight twisting

of the fabric near the grippers indicate a

torsional component to the deformation.
Bending: Structured: Level 0. Unstruc-
tured: Level 1. Reasoning: ...

Fig. 1: Example of a VLM response guided by Taxonomy for

Deformable Object Manipulation (T-DOM) [8] for analyzing

a cloth manipulation scene, providing a structured output

for the categories: motion, prehensile grasp, non-prehensile

interaction, contact sliding, deformation, and bending.

can generate structured scene descriptions of DOM tasks,

which may support downstream applications such as TAMP.

We evaluate this by comparing VLM outputs against human

expert annotations using (i) BERT-based similarity for free-

text descriptions, and (ii) Hamming distance for T-DOM tax-

onomy codes. Our results demonstrate that taxonomy-guided

VLMs can produce structured and interpretable analyses of

DOM tasks, while also revealing limitations in handling

subtle deformations and occlusions.

II. GUIDING VLMS WITH A TAXONOMY FOR DOM

To investigate the scene understanding capabilities of

taxonomy-guided VLMs in the context of DOM, we provide

a visual observation of a manipulation scene (see Fig. 1).

The visual input provides information on (i) the scene prior

to manipulation, and (ii) the resulting manipulation state to

be analyzed. The visual input is accompanied by a sys-

tem prompt that incorporates the T-DOM categories—robot

motion, prehensile grasp, non-prehensile environment and

agent interactions, contact sliding, object deformation, and

bending. In addition, it incorporates essential context, such

as camera and robot coordinate conventions, as well as

reasoning rules derived from the taxonomy, which help

to eliminate ambiguity in spatial reasoning. The complete

system prompt is provided in our project website.



To constrain the VLM output to the structured reasoning

provided by the taxonomy, the system prompt requests to

output with the following format: (i) a 28-bit binary string

code that classifies the manipulation state across the six

T-DOM categories; (ii) concise textual justification for each

classification; and (iii) a self-correction step, cross-checking

that its generated binary code is consistent with its textual

justifications.

III. EXPERIMENTS

Our experiments aim to answer the following:

• Can taxonomy-guided VLM achieve performance com-

parable to human expert annotations when describing

DOM tasks?

• Do VLMs provide reasonable analyses of both the robot

action and the resulting object state?

A. Tasks and Baselines

To evaluate the VLMs’ capabilities of DOM scene under-

standing, we reused a subset of three real-world tasks from

the T-DOM dataset [8]. The selected tasks cover different

types of objects, motions, interactions, and deformations:

task 1 performs the twisting of a towel, task 2 transports

a meat phantom object, and task 3 performs edge tracing for

a piece of cloth. The tasks were performed by a bimanual

robotic platform, with a fixed camera capturing the manip-

ulation workspace. The resulting visual data was manually

segmented into distinct states representing different phases

of the manipulation (e.g., approaching, grasping, twisting).

The selected frames were prepared as inputs for the models,

ensuring the manipulation scenes were not occluded. Fig.2

shows some examples of the images. To assess the perfor-

mance of our taxonomy-guided approach, we selected three

models: Gemini2.5Pro[9], Qwen2.5-VL-32B and Qwen2.5-

VL-72B[10]. This choice allows for a comparative analysis

across model architectures as well as model scale.

B. Evaluation Metrics

To evaluate the model accuracy, we create a human-labeled

ground-truth (GT) for each representative frame, in accor-

dance with the T-DOM framework [8]. To comprehensively

assess the model performance, we employed two metrics,

one for the binary code and one for the language reasoning.

Since the taxonomy classifies each state using a binary

code, for the VLM-generated binary codes, we used the

Hamming distance. This directly measures the classifica-

tion error by counting differing bit positions between the

predicted and the GT codes. Lower values indicate higher

accuracy in classifying the manipulation state according to

the taxonomy categories. For the unstructured text, we used

the BERT score, which leverages contextual embeddings to

measure semantic similarity between the model explanations

and the GT reasoning. Unlike word-overlap metrics, it can

capture correct explanations even when phrased differently

compared to the reference text. By using both metrics, we

can distinguish between a model’s ability to correctly classify

a state, measured by Hamming distance, and its ability to

(a) Slide under action in the twist towel task.

(b) Torsion action in the twist towel task.

(c) Lift action in the transport meat task.

(d) Motion with slippage in the cloth edge tracing task.

Fig. 2: Example states provided as input to the VLM.

coherently explain why it made that classification, measured

by the BERT score.

C. Evaluation and Analysis

Due to space limitations, detailed task analyses, including

full tables and figures, are provided in the Supplementary

Material and on our project website.

Our quantitative evaluation, summarized in Table I, pro-

vides several insights into the performance of the selected

VLMs. In terms of textual reasoning (BERT score), Gem-

ini2.5Pro achieves the highest average score, suggesting its

explanations are often well-aligned with the ground truth,

particularly for prehensile and non-prehensile interactions in

the towel and meat tasks. However, the Qwen models show

competitive performance, sometimes outperforming Gemini

in specific categories, such as in task 3. For classification

accuracy (Hamming distance), the models performed simi-

larly on average. Notably, the smaller Qwen-VL-32B model

often performs on par with or sometimes better than its larger

counterpart and Gemini, indicating that model scale does not

consistently correlate with higher classification accuracy in

this structured task.

Beyond quantitative results, we also conducted a qualita-

tive analysis to better understand the strengths and limitations

of taxonomy-guided reasoning.We observed several recurring

patterns across all experiments. A primary challenge for the



TABLE I: Quantitative results of taxonomy-guided VLMs for the three DOM tasks averaged over categories.

BERT ↑ HAMMING ↓

Gemini2.5Pro Qwen-VL-72B Qwen-VL-32B Gemini2.5Pro Qwen-VL-72B Qwen-VL-32B

Motion 0.67±0.15 0.58±0.16 0.56±0.16 0.18±0.15 0.20±0.10 0.25±0.12
Prehensile Interaction 0.64±0.07 0.55±0.14 0.63±0.12 0.08±0.14 0.08±0.12 0.19±0.17
Non P. Interaction 0.69±0.08 0.60±0.08 0.65±0.10 0.24±0.17 0.18±0.12 0.19±0.12
Contact Sliding 0.67±0.13 0.69±0.17 0.64±0.13 0.16±0.12 0.15±0.11 0.16±0.12
Deformation 0.56±0.18 0.52±0.19 0.58±0.23 0.14±0.14 0.16±0.10 0.10±0.09
Bending 0.62±0.15 0.64±0.19 0.64±0.21 0.20±0.14 0.25±0.13 0.16±0.11
Average 0.64±0.13 0.60±0.16 0.62±0.16 0.17±0.14 0.17±0.11 0.18±0.12

VLMs was interpreting states characterized by subtle visual

cues or occlusions. For instance, identifying contact sliding

was consistently difficult, as the corresponding pixel changes

were often too small to capture. Similarly, pre-grasp motions

were often misclassified as a completed prehensile grasp

because the gripper occluded key features of the interaction.

In addition, we provide a qualitative analysis of specific

cases, with the corresponding robot actions depicted in Fig.

2. The full VLM outputs for these and all other cases

are available in the supplementary material; here, we high-

light key observations. For the sliding action in the towel

twisting task (Fig. 2b), the VLM identified deformation as

compression and tension, while the ground-truth (GT) was

tension and torsion. Both interpretations are physically plau-

sible, yet this semantic ambiguity leads to a high Hamming

distance of 0.5, incorrectly suggesting a model failure. In

the meat transport task (Fig. 2c), the VLM classified the

motion as dynamic, which is reasonable given that only

the start and end frames were provided. However, the GT

labeled it as quasistatic, as the human annotator possessed

knowledge of the robot’s speed. In this example, the VLM

was able to apply the taxonomy principles to correctly

identify tension due to the object elongating, whereas the

GT focused only on the compression from the gripper. This

highlights a fundamental information asymmetry and shows

the VLM’s ability to reason from visual evidence. Finally,

in the cloth tracing task (Fig. 2d), the VLMs correctly

predicted the level of structured bending but struggled to

classify the unstructured bending, which is more ambiguous.

The accurate classification across other complex categories

for this task demonstrates how the taxonomy provides a

structured analysis strategy, enabling the VLM to parse these

challenging DOM tasks.

IV. DISCUSSION

Our results demonstrate that a taxonomy can impose a

structured and interpretable semantic layer on VLM outputs,

enabling them to systematically analyze DOM scenes with-

out fine-tuning. This highlights the potential of taxonomy-

guided VLMs to facilitate annotation and support scene

understanding, thereby reducing the need for exhaustive

human labeling. Such capabilities open a promising direction

for applying taxonomy-guided VLMs in robotic data analysis

and motion planning.

At the same time, we have discussed some limitations of

the approach. Discrepancies with ground-truth often arose

from task ambiguity (e.g., distinguishing torsion from ten-

sion), or information asymmetry between model output and

annotation. These cases suggest that differences should not

always be interpreted as failure modes, but rather as signals

to improve both models and human labels.

A key direction for future work is to demonstrate how the

quality of the VLM’s structured output impacts downstream

robotic tasks. This highlights a key challenge: while a

comparison to an ’unguided’ VLM seems logical, a truly un-

guided model’s free-form text is not directly robot-parsable.

To be useful, any VLM output requires some structure,

which is itself a form of implicit taxonomy. The central

hypothesis is therefore centered on the value of semantic

translation: that a detailed, domain-aware structure like T-

DOM enables a more effective conversion of visual percep-

tion into executable robotic actions compared to minimally

structured formats. Future work will focus on validating this

by comparing the utility of T-DOM-guided outputs against

those from VLMs prompted for simpler, generic formats in

automating robotic task and motion planning.
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