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Abstract— Vision-Language Models (VLMs) can describe
scenes in natural language, supporting tasks such as robot
planning and action grounding. However, they struggle in
deformable object manipulation (DOM), where reasoning about
motion, interaction, and deformation is critical. In this work, we
investigate whether guiding language models with a taxonomy
for DOM can provide a structured reasoning about DOM tasks.
We evaluate the performance of our approach on three chal-
lenging DOM tasks: towel twisting, meat phantom transport,
and cloth edge tracing. Our results demonstrate the potential of
taxonomy-guided VLMs to interpret these tasks without fine-
tuning or curated datasets.

I. INTRODUCTION

Recent advances in Vision-Language Models (VLMs)
have enabled robots to interpret images and scenes in natu-
ral language, supporting tasks such as scene understanding
for robot manipulation [1], or task and motion planning
(TAMP) [2]. By leveraging vision and language, VLMs can
describe the environments that robots interact with, parse
textual commands, and translate these into action com-
mands [3]. However, VLMs often fail in tasks that require
deeper physical reasoning. To extend the capabilities of these
models, one recent solution is to perform fine-tuning on
datasets that incorporate physical concepts [4]. Nevertheless,
these approaches require substantial computational resources
and carefully curated datasets for large-scale fine-tuning. It
limits their applicability to challenging tasks like deformable
object manipulation (DOM), where measuring the internal
state of deformable objects is challenging [5].

To systematically describe manipulation tasks, prior works
have proposed several taxonomies of manipulation. These
taxonomies provide a structure for key manipulation aspects
such as motion at contact [6], robot trajectories [7], and
deformation [8]. By providing structured, interpretable cat-
egories, these taxonomies can enable systematic reasoning
about robot actions and object states.

In this extended abstract, we investigate whether these
taxonomy frameworks can guide VLM reasoning, see Fig. 1.
Specifically, we evaluate whether VLMs guided by the Tax-
onomy for Deformable Object Manipulation (T-DOM) [8]
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Fig. 1: Example of a VLM response guided by Taxonomy for
Deformable Object Manipulation (T-DOM) [8] for analyzing
a cloth manipulation scene, providing a structured output
for the categories: motion, prehensile grasp, non-prehensile
interaction, contact sliding, deformation, and bending.

can generate structured scene descriptions of DOM tasks,
which may support downstream applications such as TAMP.
We evaluate this by comparing VLM outputs against human
expert annotations using (i) BERT-based similarity for free-
text descriptions, and (ii) Hamming distance for T-DOM tax-
onomy codes. Our results demonstrate that taxonomy-guided
VLMSs can produce structured and interpretable analyses of
DOM tasks, while also revealing limitations in handling
subtle deformations and occlusions.

II. GUIDING VLMS WITH A TAXONOMY FOR DOM

To investigate the scene understanding capabilities of
taxonomy-guided VLMs in the context of DOM, we provide
a visual observation of a manipulation scene (see Fig. 1).
The visual input provides information on (i) the scene prior
to manipulation, and (ii) the resulting manipulation state to
be analyzed. The visual input is accompanied by a sys-
tem prompt that incorporates the T-DOM categories—robot
motion, prehensile grasp, non-prehensile environment and
agent interactions, contact sliding, object deformation, and
bending. In addition, it incorporates essential context, such
as camera and robot coordinate conventions, as well as
reasoning rules derived from the taxonomy, which help
to eliminate ambiguity in spatial reasoning. The complete
system prompt is provided in our project website.



To constrain the VLM output to the structured reasoning
provided by the taxonomy, the system prompt requests to
output with the following format: (i) a 28-bit binary string
code that classifies the manipulation state across the six
T-DOM categories; (ii) concise textual justification for each
classification; and (iii) a self-correction step, cross-checking
that its generated binary code is consistent with its textual
justifications.

III. EXPERIMENTS

Our experiments aim to answer the following:

« Can taxonomy-guided VLM achieve performance com-
parable to human expert annotations when describing
DOM tasks?

« Do VLMs provide reasonable analyses of both the robot
action and the resulting object state?

A. Tasks and Baselines

To evaluate the VLMs’ capabilities of DOM scene under-
standing, we reused a subset of three real-world tasks from
the T-DOM dataset [8]. The selected tasks cover different
types of objects, motions, interactions, and deformations:
task 1 performs the twisting of a towel, fask 2 transports
a meat phantom object, and fask 3 performs edge tracing for
a piece of cloth. The tasks were performed by a bimanual
robotic platform, with a fixed camera capturing the manip-
ulation workspace. The resulting visual data was manually
segmented into distinct states representing different phases
of the manipulation (e.g., approaching, grasping, twisting).
The selected frames were prepared as inputs for the models,
ensuring the manipulation scenes were not occluded. Fig.2
shows some examples of the images. To assess the perfor-
mance of our taxonomy-guided approach, we selected three
models: Gemini2.5Pro[9], Qwen2.5-VL-32B and Qwen?2.5-
VL-72B[10]. This choice allows for a comparative analysis
across model architectures as well as model scale.

B. Evaluation Metrics

To evaluate the model accuracy, we create a human-labeled
ground-truth (GT) for each representative frame, in accor-
dance with the T-DOM framework [8]. To comprehensively
assess the model performance, we employed two metrics,
one for the binary code and one for the language reasoning.

Since the taxonomy classifies each state using a binary
code, for the VLM-generated binary codes, we used the
Hamming distance. This directly measures the classifica-
tion error by counting differing bit positions between the
predicted and the GT codes. Lower values indicate higher
accuracy in classifying the manipulation state according to
the taxonomy categories. For the unstructured text, we used
the BERT score, which leverages contextual embeddings to
measure semantic similarity between the model explanations
and the GT reasoning. Unlike word-overlap metrics, it can
capture correct explanations even when phrased differently
compared to the reference text. By using both metrics, we
can distinguish between a model’s ability to correctly classify
a state, measured by Hamming distance, and its ability to

(d) Motion with slippage in the cloth edge tracing task.

Fig. 2: Example states provided as input to the VLM.

coherently explain why it made that classification, measured
by the BERT score.

C. Evaluation and Analysis

Due to space limitations, detailed task analyses, including
full tables and figures, are provided in the Supplementary
Material and on our project website.

Our quantitative evaluation, summarized in Table I, pro-
vides several insights into the performance of the selected
VLMs. In terms of textual reasoning (BERT score), Gem-
ini2.5Pro achieves the highest average score, suggesting its
explanations are often well-aligned with the ground truth,
particularly for prehensile and non-prehensile interactions in
the towel and meat tasks. However, the Qwen models show
competitive performance, sometimes outperforming Gemini
in specific categories, such as in task 3. For classification
accuracy (Hamming distance), the models performed simi-
larly on average. Notably, the smaller Qwen-VL-32B model
often performs on par with or sometimes better than its larger
counterpart and Gemini, indicating that model scale does not
consistently correlate with higher classification accuracy in
this structured task.

Beyond quantitative results, we also conducted a qualita-
tive analysis to better understand the strengths and limitations
of taxonomy-guided reasoning.We observed several recurring
patterns across all experiments. A primary challenge for the



TABLE I: Quantitative results of taxonomy-guided VLMs for the three DOM tasks averaged over categories.

BERT 1 HAMMING |
Gemini2.5Pro  Qwen-VL-72B  Qwen-VL-32B ‘ Gemini2.5Pro  Qwen-VL-72B  Qwen-VL-32B
Motion 0.67+0.15 0.58+0.16 0.56+0.16 0.18+0.15 0.20+0.10 0.25+0.12
Prehensile Interaction 0.64+0.07 0.55+0.14 0.6340.12 0.08+0.14 0.08+0.12 0.1940.17
Non P. Interaction 0.69+0.08 0.60+0.08 0.6540.10 0.244-0.17 0.1840.12 0.1940.12
Contact Sliding 0.67+0.13 0.69+0.17 0.64+0.13 0.1610.12 0.15+0.11 0.16%0.12
Deformation 0.56+0.18 0.5240.19 0.584+0.23 0.1440.14 0.1640.10 0.1040.09
Bending 0.6240.15 0.64+0.19 0.64+0.21 0.2010.14 0.25+0.13 0.16+0.11
Average 0.64+0.13 0.60£0.16 0.62+0.16 0.1740.14 0.1740.11 0.1840.12

VLMs was interpreting states characterized by subtle visual
cues or occlusions. For instance, identifying contact sliding
was consistently difficult, as the corresponding pixel changes
were often too small to capture. Similarly, pre-grasp motions
were often misclassified as a completed prehensile grasp
because the gripper occluded key features of the interaction.

In addition, we provide a qualitative analysis of specific
cases, with the corresponding robot actions depicted in Fig.
2. The full VLM outputs for these and all other cases
are available in the supplementary material; here, we high-
light key observations. For the sliding action in the towel
twisting task (Fig. 2b), the VLM identified deformation as
compression and tension, while the ground-truth (GT) was
tension and torsion. Both interpretations are physically plau-
sible, yet this semantic ambiguity leads to a high Hamming
distance of 0.5, incorrectly suggesting a model failure. In
the meat transport task (Fig. 2c), the VLM classified the
motion as dynamic, which is reasonable given that only
the start and end frames were provided. However, the GT
labeled it as quasistatic, as the human annotator possessed
knowledge of the robot’s speed. In this example, the VLM
was able to apply the taxonomy principles to correctly
identify tension due to the object elongating, whereas the
GT focused only on the compression from the gripper. This
highlights a fundamental information asymmetry and shows
the VLM’s ability to reason from visual evidence. Finally,
in the cloth tracing task (Fig. 2d), the VLMs correctly
predicted the level of structured bending but struggled to
classify the unstructured bending, which is more ambiguous.
The accurate classification across other complex categories
for this task demonstrates how the taxonomy provides a
structured analysis strategy, enabling the VLM to parse these
challenging DOM tasks.

IV. DISCUSSION

Our results demonstrate that a taxonomy can impose a
structured and interpretable semantic layer on VLM outputs,
enabling them to systematically analyze DOM scenes with-
out fine-tuning. This highlights the potential of taxonomy-
guided VLMs to facilitate annotation and support scene
understanding, thereby reducing the need for exhaustive
human labeling. Such capabilities open a promising direction
for applying taxonomy-guided VLMs in robotic data analysis
and motion planning.

At the same time, we have discussed some limitations of
the approach. Discrepancies with ground-truth often arose

from task ambiguity (e.g., distinguishing torsion from ten-
sion), or information asymmetry between model output and
annotation. These cases suggest that differences should not
always be interpreted as failure modes, but rather as signals
to improve both models and human labels.

A key direction for future work is to demonstrate how the
quality of the VLM’s structured output impacts downstream
robotic tasks. This highlights a key challenge: while a
comparison to an ‘unguided’ VLM seems logical, a truly un-
guided model’s free-form text is not directly robot-parsable.
To be useful, any VLM output requires some structure,
which is itself a form of implicit taxonomy. The central
hypothesis is therefore centered on the value of semantic
translation: that a detailed, domain-aware structure like T-
DOM enables a more effective conversion of visual percep-
tion into executable robotic actions compared to minimally
structured formats. Future work will focus on validating this
by comparing the utility of T-DOM-guided outputs against
those from VLMs prompted for simpler, generic formats in
automating robotic task and motion planning.
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