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ABSTRACT

In response to the challenges posed by the extensive parameter updates required for
full fine-tuning of large-scale pre-trained models, parameter-efficient fine-tuning
(PEFT) methods, exemplified by Low-Rank Adaptation (LoRA), have emerged.
LoRA simplifies the fine-tuning process but may still struggle with a certain level of
redundancy in low-rank matrices and limited effectiveness from merely increasing
their rank. To address these issues, a natural idea is to enhance the independence and
diversity of the learning process for the low-rank matrices. Therefore, we propose
Masked LoRA Experts (MLAE), an innovative approach that applies the concept
of masking to visual PEFT. Our method incorporates a cellular decomposition
strategy that transforms a low-rank matrix into independent rank-1 submatrices,
or “experts”, thus enhancing independence. Additionally, we introduce a binary
mask matrix that selectively activates these experts during training to promote more
diverse and anisotropic learning, based on expert-level dropout strategies. Our
investigations reveal that this selective activation not only enhances performance
but also fosters a more diverse acquisition of knowledge with a marked decrease in
parameter similarity among MLAE, significantly boosting the quality of the model.
Remarkably, MLAE achieves new state-of-the-art (SOTA) performance with an
average accuracy score of 78.8% on the VTAB-1k benchmark and 90.9% on the
FGVC benchmark, surpassing the previous SOTA result by an average of 0.8% on
both benchmarks with approximately half parameters.

1 INTRODUCTION

Large-scale pre-trained vision models (Dosovitskiy et al., 2020; He et al., 2022; Liu et al., 2021; Zhai
et al., 2022) have manifested outstanding performance across a variety of downstream vision tasks
(Deng et al., 2009; Goyal et al., 2017; Kuehne et al., 2011; Khosla et al., 2011; Zhou et al., 2019).
However, full parameter fine-tuning poses significant challenges to computational resources and
data storage. To address this issue, considerable efforts have been invested in developing parameter-
efficient fine-tuning (PEFT) methods (Chen et al., 2022; Jia et al., 2022; Jie & Deng, 2022; Zhang
et al., 2022; Hu et al., 2021), which only fine-tunes a minimal number of parameters. Among these,
Low-Rank Adaptation (LoRA) (Hu et al., 2021) stands out due to its simplicity and efficiency, which
achieves high performance leveraging low-rank matrices. However, recent studies (Gao et al., 2024;
Chen et al., 2023; Zoph et al., 2022) have indicated that even within low-rank matrices, a certain
level of redundancy persists, and merely increasing the rank of the update matrix does not necessarily
enhance the quality of the model. Consequently, how to simultaneously reduce redundancy in
low-rank matrices and enhance their quality represents a fundamental challenge.

Recently, works exemplified by AdaLoRA (Zhang et al., 2023b) and IncreLoRA (Zhang et al.,
2023a) have been proposed to dynamically adjust the matrix rank by adding or removing parameters
in different layers of the model based on importance scores, addressing the issue of parameter
redundancy in shallow networks. Inspired by these, we conceive the idea of temporarily removing
certain parameters during the training phase, instead of permanently eliminating them without the
chance of revitalization. This approach not only eliminates the need for calculating parameter
scores, thereby reducing computational overhead, but also allows all parameters to participate during
inference, enhancing the model’s expressiveness and robustness. To this end, a natural idea is
employing masking to the parameters. However, it is impractical to apply masking directly to
parameters of a low-rank matrix, as it may result in training instability and inefficiency, while
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individual parameters within such matrices do not carry any semantic information advocating diverse
learning. We have observed that recent efforts (Zhu et al., 2023; Wu et al., 2023) have applied the
LoRA framework within the mixture of experts (MoE) (Shazeer et al., 2017) architecture, where each
LoRA weight is treated as an expert, and a gating mechanism selects experts to achieve sparsity. This
motivates us to explore applying masking to LoRA experts, rather than directly to the parameters.

In this work, we propose a novel method - MLAE (Masked LoRA Experts), which applies the
concept of masking to the field of visual parameter-efficient fine-tuning (PEFT) by enhancing the
independence and diversity of learning to address the issue of parameter redundancy. Specifically,
MLAE addresses redundancy and enhances the quality of LoRA from two perspectives: First,
it employs a cellular decomposition approach, where the low-rank matrix with rank r is further
decomposed into r rank-1 submatrices, which are treated as independent experts; Second, building on
cellular decomposition, it further introduces a mask matrix with adaptive coefficients, applied to the
decomposed expert matrix to implement MLAE. Through in-depth exploration of fixed, stochastic,
and mixed masking with different configurations, we have discovered that the use of expert-level
dropout to generate stochastic masks yields the best performance. Further analysis has revealed that
the parameter similarity among these experts significantly decreases and they acquire a more diverse
range of knowledge.

In summary, our contributions are mainly as follows:

• We have pioneered the introduction of masking strategies into the domain of visual PEFT,
exploring various masking techniques including fixed, stochastic, and mixed masks. This
innovation paves the way for future work in the field.

• We tackle an interesting and relevant issue in the field of fine-tuning vision pre-trained
models, specifically the problem of parameter diversity and redundancy in LoRA, which is
a significant contribution to the domain of parameter-efficient fine-tuning.

• We introduce MLAE, a method that is both simple and flexible. MLAE has attained state-
of-the-art (SOTA) results on the VTAB-1k and FGVC benchmarks, achieving an average
accuracy improvement of 0.8% over previous SOTA result on both benchmarks. This
demonstrates its strong capabilities in the field of visual PEFT.

2 RELATED WORKS

Parameter-Efficient Fine-Tuning. As the number of model parameters has continued to grow, the
significant computational and storage costs with the traditional full fine tuning have made Parameter-
Efficient Fine-Tuning (PEFT) increasingly attractive. The PEFT methods for large-scale pre-trained
models first emerged in the NLP field (Houlsby et al., 2019), where they achieve comparable
performance to full fine tuning while only requiring the fine-tuning of a few lightweight modules.
Inspired by this success in NLP, researchers have begun applying PEFT to Pretrained Vision Models
(PVMs). Existing visual PEFT methods can be categorized into addition-based, unified-based, and
partial-based methods. Addition-based methods (Jie & Deng, 2022; Liu et al., 2022; Dong et al.,
2022; Jia et al., 2022; Chen et al., 2022; Li & Liang, 2021), exemplified by VPT (Jia et al., 2022),
AdaptFormer (Chen et al., 2022), Fact Jie & Deng (2023) and Prefix-tuning (Li & Liang, 2021),
incorporate additional trainable modules or parameters into the original PVMs to learn task-specific
information. Unified-based methods (Yu et al., 2022; Zhang et al., 2022; Chavan et al., 2023; Jiang
et al., 2023; Gao et al., 2023), represented by NOAH (Zhang et al., 2022), SPT (He et al., 2023) and
GLoRA (Chavan et al., 2023), integrate various fine-tuning approaches into a single architecture.
Partial-based methods (Fu et al., 2022; Hu et al., 2021; Houlsby et al., 2019; Lian et al., 2022; Luo
et al., 2023), such as LoRA (Hu et al., 2021), Adapter (Houlsby et al., 2019), SSF (Lian et al., 2022),
and RepAdapter (Luo et al., 2023), update only a small portion of the inherent parameters while
keeping most of the model’s parameters unchanged during the adaptation process. In this paper, we
explore more efficient and high-quality strategies for visual PEFT based on partial-based methods.

Masking Strategies. In recent years, masking strategies have been extensively employed in deep
learning, primarily focusing on self-supervised pre-training through mask modeling. Representative
works (Bao et al., 2021; Zhou et al., 2021; Baevski et al., 2022; Geng et al., 2022; Arici et al., 2021;
Kwon et al., 2022) include language model pre-training spearheaded by BERT (Devlin et al., 2018)
and visual model pre-training exemplified by MAE (He et al., 2022) and SimMIM (Xie et al., 2022),
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Figure 1: Our proposed Masked LoRA Experts (MLAE) framework.

both of which have achieved significant success. Typically, these works apply the masking strategy to
the input sequences, retaining a portion of the input and training models to predict the masked content.
Meanwhile, a smaller body of work (Książek & Spurek, 2023; Mallya & Lazebnik, 2018; Golkar
et al., 2019; Serra et al., 2018; Chen et al., 2020; Kang et al., 2022) has applied masking strategies to
the model architecture, achieving preliminary results in continual learning and multi-task learning.
Diverging from these approaches, we innovatively apply the masking strategy to the lightweight
modules of the model based on the PEFT methods, conducting a comprehensive and in-depth analysis
that has yielded outstanding results.

3 METHODS

Unlike existing approaches that adjust the incremental matrix rank based on importance scores or
select the optimal experts through gating mechanisms, our methodology aims to alleviate parameter
redundancy by enforcing diversity in the learning process. The key idea of our methodology is to
enhance the capabilities of the model within a given budget by promoting varied learning rather than
merely eliminating underutilized parameters. Therefore, we focus on achieving independence and
diversity in parameter learning through two strategic approaches: by designing innovative model
architectures and introducing masking strategy for training. The complete process is shown in Fig. 1.

3.1 PRELIMINARY

Low-Rank Adaptation. LoRA (Hu et al., 2021) has been demonstrated to be a popular parameter-
efficient fine-tuning approach to adapt pre-trained models to specific tasks. It leverages low-rank
matrix decomposition of pre-trained weight matrices to significantly reduce the number of training
parameters. Formally, for a pre-trained weight matrix W0 ∈ Rdin×dout , LoRA creates two low-rank
trainable matrices A and B with rank r, where B ∈ Rdin×r, A ∈ Rr×dout , and r ≪ min{din, dout}.

h = W0x+∆Wx = W0x+BAx (1)

During training, LoRA updates only the two matrices A and B , while W0 is frozen. The matrix A is
initialized with a random Gaussian distribution and matrix B is initialized to zero.

3.2 MASKED LORA EXPERTS

Vanilla LoRA significantly reduces the fine-tuning parameters of over-parametrized models by
updating only low-rank matrices, nevertheless, without carefully imposed independence and diversity
constraints, a certain degree of redundancy may still remain within these low-rank matrices.

3
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Figure 2: Different masking strategies.

Cellular Decomposition. To obtain independent experts, we propose to decompose the parameters
of low-rank matrices into the disjoint union of cells, each represented by a rank-1 submatrix. We
regard each rank-1 submatrix as a self-contained expert, thus the update matrix in the l-th layer
is decomposed into an ensemble of r experts. More specifically, the low-rank matrices B and A

with rank r in Equation (1) can be written as their respective column vectors [b1 b2 . . . br]
T , and

row vectors [a1 a2 . . . ar]. Correspondingly, the BA matrices in the l-th layer can be expressed as:
∆Wl =

∑r
i=1 wli =

∑r
i=1 bliali.

For a pre-trained model with a total of L layers, each with r experts, the model features L × r
self-contained experts in total, denoted as expert matrix E :

∆W1

∆W2

...
∆WL

 =


∑r

i=1 w1i∑r
i=1 w2i

...∑r
i=1 wLi

 =


∑r

i=1 b1ia1i∑r
i=1 b2ia2i

...∑r
i=1 bLiaLi

 into matrix
=⇒ E =


b11a11 b12a12 . . . b1ra1r

b21a21 b22a22 . . . b2ra2r

...
...

. . .
...

bL1aL1 bL2aL2 . . . bLraLr

 (2)

where bijaij corresponds to the j-th expert in the i-th layer.

Masking Rank-1 LoRA Experts. On the basis of cellular decomposition, we introduce a mask
matrix M ∈ BL×r, where B denotes the binary set {0, 1}, and each element mij of M is a member
of this set. The update matrices across L layers are:

[∆W1 ∆W2 . . . ∆WL]
T
= M ⊙ E (3)

where ⊙ is the Hadamard product. During the parameter initialization phase, each aij and bij is
initialized separately to ensure that each expert starts the updating process in a distinct initial state,
with aij being drawn from a random Gaussian distribution and bij set to zero.

3.3 ADAPTIVE MASKING THROUGH EXPERT-LEVEL DROPOUT

Adaptive Coefficients. We hypothesize that the contribution of each expert to the model’s perfor-
mance varies, thus necessitating the allocation of unique weights to each component. In a similar
vein, ∆Wl =

∑r
i=1 λliwli =

∑r
i=1 λlibliali. So the total update matrices are:

[∆W1 ∆W2 . . . ∆WL]
T
= M ⊙ Λ⊙ E = M ⊙




λ11 λ12 . . . λ1r

λ21 λ22 . . . λ2r

...
...

. . .
...

λL1 λL2 . . . λLr


⊙ E (4)

where Λ is the adaptive coefficient matrix, λij denotes the weight assigned to the j-th expert in the
i-th layer, and all the elements in Λ are initialized to 1 to ensure that all experts contribute equally
during the initial phase. Notably, IncreLoRA (Zhang et al., 2023a) has also adopted a similar strategy
of scaling coefficients. However, their primary goal is to enable the update matrix to be decomposed
in a manner similar to SVD in AdaLoRA (Zhang et al., 2023b), facilitating subsequent incremental
allocation. In their approach, the initial values of the scaling coefficients λ are set to zero.
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Fixed Masking. Drawing inspiration from MoLA (Gao et al., 2024), which explores layer-wise
expert allocation under the MoE framework, we specifically design fixed masks to investigate which
layer–lower, middle, or upper–requires a more dense application of masks, as the five representative
masks shown in Fig. 2. When fixed masking is applied, the masked experts are permanently discarded,
meaning they do not undergo gradient updates and are not utilized during inference.

Stochastic Masking. Similar to the fixed patterns, we have implemented five variations of stochastic
masking by employing expert-level dropout to Λ and adjusting the dropout rate p across different
layers, as illustrated in the bottom of Fig. 2. Accordingly, the total update matrix is given by:

[∆W1 ∆W2 . . . ∆WL]
T
= M ⊙ Λ⊙ E = (Dropout(Λ, p))⊙ E (5)

where p represents the probability of an element being set to zero. During the training process,
experts are randomly discarded, and the outputs of the remaining experts are scaled up to maintain the
expected output magnitude. Consequently, these discarded experts do not undergo gradient updates
during that iteration. During the inference, all experts are activated and used without any scaling.

Mixed Masking. Building on the aforementioned fixed masking and stochastic masking, we further
propose mixed masking. In this strategy, certain experts are permanently masked, while stochastic
masking is applied to the remaining experts. Accordingly, there are also five representative masks.

4 EXPERIMENTS

4.1 SETUP

Datasets and Metrics. We evaluate our method on a total of 24 downstream tasks in two groups
following VPT (Jia et al., 2022): (1) VTAB-1k (Zhai et al., 2019) is a large-scale transfer learning
benchmark consisting of a collection of 19 vision datasets, which are clustered into three domains:
Natural, Specialized, and Structured. The final model used for evaluation is trained using the full
1,000 examples in each dataset. Following Jia et al. (2022), we use top-1 classification accuracy
(%) averaged within each domain as the metric; (2) FGVC is a benchmark for fine-grained visual
classification tasks including CUB-200-2011 (Wah et al., 2011), NABirds (Van Horn et al., 2015),
Oxford Flowers Nilsback & Zisserman (2008), Stanford Dogs (Gebru et al., 2017) and Stanford Cars
(Khosla et al., 2011). We follow the validation splits in VPT (Jia et al., 2022). We also report the
top-1 accuracy averaged on the FGVC datasets. The average accuracy score on the test set with three
runs is reported. More details are in Appendix A.1.

Pretrained Backbones. For a fair comparison, we follow SPT (He et al., 2023) and mainly use
ViT-B/16 (Dosovitskiy et al., 2020) pre-trained on supervised ImageNet-21K (Deng et al., 2009) as
our default backbone. We only implement our proposed MLAE in the Q-K-V linear transformation
layer across the 12 blocks of ViT-B, and this alone enables us to surpass GLoRA (Chavan et al., 2023)
which fine-tunes all linear layers in the model. However, MLAE can be implemented in any linear
layer across various network architectures.

Implementation. All the experiments are trained by use of PyTorch on an NVIDIA GeForce RTX
3090 GPU. Following SPT (He et al., 2023), we employ the AdamW optimizer (Loshchilov & Hutter,
2018) with cosine learning rate decay in the training process. We set the batch size, learning rate, and
weight decay as 64, 5e-4, 1e-4, respectively. Based on previous works (He et al., 2023; Jia et al., 2022;
Zhang et al., 2022), we also follow the same standard data augmentation pipeline, e.g., processing the
image with randomly resize crop to 224 × 224 and a random horizontal flip for the FGVC datasets.
Additionally, during data preprocessing, we use ImageNet inception mean and standard deviation
for normalization. The number of training epochs is set to 500 for VTAB-1k and 300 for FGVC to
achieve better convergence. For the coefficient initialization and dropout probability choices, we
provide more details in Appendix A.2.

4.2 RESULTS

Our proposed approach achieves SOTA performance on both VTAB-1k and FGVC benchmarks.

Performance on VTAB-1k. We first compare MLAE with the state-of-the-art PEFT methods
on ViT, as reported in Table 1. We initially note that all PEFT methods significantly surpass full
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Table 1: Full results on VTAB-1K benchmark. “# param” specifies the total number of trainable
parameters in backbones. Average accuracy and # param are averaged over group-wise mean values.
The best result is in bold, and the second-best result is underlined.
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Figure 3: Domain-wise average scores on VTAB-1k benchmark. Our MLAE performs best in all
three domains, especially in Structured domain, surpassing GLoRA by 3.2% under a similar budget.

finetuning in performance, whereas linear probing, which involves merely adjusting the classifier,
yields substantially poorer results. Compared to these methods, we can see that under a similar budget
(e.g., 0.29M trainable parameters for GLoRA (Chavan et al., 2023) vs. 0.30M for MLAE), MLAE
performs better on VTAB-1k. In particular, by slightly adjusting the dropout rates across different
datasets, MLAE can achieve SOTA performance with an average accuracy score of 78.8%, even
better than GLoRA with almost tripled budget (78.0%). MLAE achieves the best performance in
9 out of 19 datasets in the VTAB-1k benchmark and secures the second-best results in 7 additional
datasets. Moreover, intuitively from Fig. 3, we can see that compared to the previous LoRA-based
PEFT methods, MLAE performs the best in all three domains, especially in the Structured domain,
surpassing the previous SOTA method GLoRA by 3.2% under a comparable budget. Notably, SPT
(He et al., 2023) reveals that, by measuring the maximum mean discrepancy between the source and
target domains, Structured datasets have larger domain gaps from the pre-training source (Deng et al.,
2009) compared to Natural and Specialized datasets. The significant improvement in the Structured
domain indicates that MLAE may contribute to mitigating domain gaps by compelling each expert to
extract more diverse information from images.

Performance on FGVC. To validate the effectiveness of our method in fine-grained visual clas-
sification tasks, we conduct experiments on the FGVC benchmark using three random seeds. The
experimental results indicate that MLAE achieves the best performance across all seeds, demon-
strating its stability in exceptional performance and parameter efficiency. As shown in Table 2,
the traditional fine-tuning method FULL, despite using 100% of the parameters, only achieves an
accuracy of 88.5%. In contrast, our method achieves an accuracy of 90.9% with only 0.34% trainable
parameters. Compared to other PEFT methods, Adapter (85.7%), LoRA-8 (86.0%), SSF (90.7%),
and SPT-LoRA (90.1%), MLAE achieves the highest accuracy with the least tuned parameters. These
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Table 2: Results on FGVC bench-
mark. “Tuned/Total” denotes the
fraction of trainable parameters.

ViT-B/16 FGVC
Tuned/Total Mean Acc.

Traditional Finetuing

FULL 100% 88.5

PEFT methods

Adapter 0.41% 85.7
LoRA-8 0.55% 86.0
SSF 0.39% 90.7
VPT-Deep 0.98% 89.1
SPT-LoRA 0.60% 90.1
MLAE (Ours) 0.34% 90.9

Table 3: Inference efficiency comparison of MLAE with
existing methods during inference. ∆P and ∆F denote
the additional parameters and FLOPs by PEFT methods,
respectively. The inference throughput is defined as images
per second (imgs/sec).

Method ∆P (M) (↑) ∆F (G) (↑) Throughput (imgs/sec)
bs=1 bs=4 bs=16

Full tuning 0 0 91.5 375.7 539.5

VPT 0.55 5.6 86.1 283.5 381.5
Adapter 0.16 0.03 70.9 306.6 504.7

AdaptFormer 0.16 0.03 71.4 309.9 508.1
NOAH 0.12 0.02 72.1 312.7 492.9

LoRA
0 0

91.5 375.7 539.6
GLoRA 91.5 375.7 539.6

MLAE (Ours) 91.5 375.2 538.5
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Figure 4: Comparisons of average parameter similarity between MLAE and LoRA baselines.

results highlight our method’s capability to achieve optimal performance with minimal trainable
parameters, proving the effectiveness and superiority of MLAE in fine-grained visual classification
tasks. More detailed experimental results can be found in Appendix A.3.

Efficiency Analysis. Following RepAdapter (Luo et al., 2023), we present the final inference
throughput of various PEFT methods in Table 3, all computed on an NVIDIA RTX 3090 GPU. In the
table, we employ ViT-B/16 as the vision model. Our method, which builds upon LoRA, maintains the
same count of additional parameters, FLOPs, and throughput as LoRA (i.e., ours: 538.5 imgs/sec vs.
539.6 imgs/sec for LoRA). However, MLAE, due to the introduction of dropout, requires a slightly
longer training time compared to a single run of LoRA — averaging 40 minutes per VTAB-1k task,
whereas LoRA averages 26 minutes. The GPU memory consumption for MLAE is 9.8 GB, compared
to 9 GB for LoRA and 13 GB for GLoRA.

4.3 ANALYSIS AND VISUALIZATIONS

To gain deeper insights into the underlying mechanisms of MLAE, we first provide a theoretical
intuition explaining why expert-level dropout leads to diversified experts and how reducing parameter
similarity contributes to performance gains. Second, we conduct analyses and visualizations from the
perspectives of parameter similarity and feature attention maps to substantiate our findings. The results
indicate that MLAE significantly reduces parameter similarity compared to vanilla LoRA, allowing
each expert to extract more diverse feature information, ultimately enhancing model performance.

Theoretical Intuition. Previous work (Gal & Ghahramani, 2016; Maeda, 2014) has theoretically
demonstrated that Dropout can be interpreted as an approximation to a Bayesian posterior over
network weights. This Bayesian perspective suggests that Dropout facilitates averaging predictions
across a distribution of various network architectures. By randomly omitting neurons during train-
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LoRA MLAE (Ours)

Figure 5: Confusion matrix comparison of overall parameter similarity on Cifar100 (r = 8).

ing, Dropout effectively emulates sampling from a distribution of different network subsets. This
introduces uncertainty into the model, enabling it to train across multiple sub-networks (Lakshmi-
narayanan et al., 2017). Specifically, we employ different random initializations for various experts;
due to unique initial conditions and stochasticity in the training process, each expert can converge to a
different basin of the posterior, thereby exhibiting diversity. Additionally, Grewal & Bui (2021); Nam
et al. (2021) enhanced the performance of Bayesian Model Averaging (BMA) (Gal & Ghahramani,
2016) by increasing the diversity among ensemble members. Given that Dropout is a mathematical
equivalent form of BMA, reducing parameter similarity (under rank-1 decomposition) consequently
implies increased diversity among experts which can finally lead to performance gains.

Parameter Cosine Similarity Analysis. We first explore the differences in cosine similarity
among parameters within the incremental matrices learned by LoRA and our proposed MLAE. The
calculation details are provided in Appendix A.4. Fig. 4 displays the average cosine similarity
among model parameters for 19 visual tasks on the VTAB-1k benchmark across three different
settings. Fig. 5 shows the overall parameter similarity confusion matrices on CIFAR-100, comparing
LoRA and MLAE (Ours), with MLAE exhibiting significantly lower parameter similarity. We can
observe from the Fig. 4: (i) Applying dropout directly on ∆W , i.e., LoRA+Dropout, does not
always effectively reduce parameter similarity. This interesting phenomenon suggests that directly
applying dropout to the incremental matrix may impact the learning of model parameters due to its
randomness, resulting in more uniform parameter updates on certain datasets and thus increasing
similarity; (ii) Our method MLAE exhibits lower average cosine similarity across all datasets. Unlike
LoRA+Dropout, MLAE performs expert-level dropout by stochastically masking certain experts
during the training process. Results from Table 1 and Fig. 4 demonstrate that MLAE can effectively
and significantly reduce parameter similarity, thereby achieving higher model performance.

Feature Attention-map Visualization. To visualize the feature representations learned by each
expert in MLAE, focusing on a single block, we show a few representative feature attention maps
of the same expert across different samples in Fig. 6. From a horizontal perspective, there are
notable variations among experts within the same block. For instance, with the first sunflower,
some experts mainly focus on the petals (Expert 2, 3), while others concentrate more on the center
of the flower (Expert 5). Vertically, we notice consistency among experts when focusing on the
same class. For example, Expert 1, 8 focus on the sunflower’s petals, while Expert 4 consistently
focuses on the background, etc. When the image switches to another flower (e.g., Cosmos), the
attention distribution changes. While some experts still focus on the petals and background, others
shift to the center (Expert 3) or the background (Expert 7). This demonstrates that the experts in
MLAE exhibit a distinct degree of specialization but also can capture a broad spectrum of feature
representations, highlighting the diversity and complementarity of the expert modules in feature
extraction and representation. We speculate that such differentiated focus areas and consistency help
the model obtain more comprehensive and diverse feature representations when dealing with complex
tasks, thereby enhancing the overall performance and generalization ability of the model.

4.4 MASKING STRATEGY COMPARISONS

We conduct an in-depth investigation of masking strategies with different configurations for MLAE.
Configurations. Recent work such as MoLA (Gao et al., 2024) manually sets the number of LoRA
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Figure 6: Visualization of attention patterns within Block 9 of Flowers102 model across different
samples. More examples of other dataset-specific model can also be found in Appendix A.7.

Table 4: Results of three masking strategies under different configurations illustrated in Fig. 2 (all
with the same budget of total rank = 96).

Masking strategy Incremental Hourglass Decremental Protruding Random Ours

fixed 76.8 75.5 75.7 76.1 76.5
stochastic 77.7 76.3 76.0 77.6 — 78.8

mixed 78.2 77.5 77.7 78.0 78.1

experts for different layers. We explore a similar implementation within our MLAE, by assigning
varying experts to layers based on our decomposition with fixed masking. Compared to allocating
the same number of experts to all layers, this is equivalent to permanently masking some experts in a
fixed manner. We also explore a novel stochastic masking approach, allocating an identical number of
experts across all layers and applying expert-level masks through stochastic masking during training.
The expert-level mask refers to setting an expert’s weight coefficient to zero with a certain probability,
thus masking the expert during a specific iteration. To achieve this, we use dropout on the coefficient
matrix, fixing the number of experts per layer and adjusting the dropout probability across layers.
Combining the two aforementioned masking patterns, we explore a third masking strategy, i.e., mixed
masking, using the same dropout probability across all layers while maintaining the layer-wise
allocation of experts as in fixed masking. We choose to use the same dropout probability for all
layers based on findings from the stochastic masking that a consistent dropout rate yields optimal
results. The purpose of this investigation is to figure out whether expert-level stochastic masking can
bring performance gains to fixed masking and to verify our method’s universality and efficacy. The
configurations are depicted in Fig. 2, and implementation details are provided in Appendix A.5.

Results. All experiments with the above settings are conducted under an identical budget. From
the results summarized in Table 4, we have the following findings: (i) The configuration with a
uniform dropout rate applied across all layers through stochastic masking (Ours) outperforms the
other configurations, achieving a score of 78.8%. (ii) Stochastic and mixed masking significantly
outperforms fixed masking, indicating that dynamic expert-level masking is preferable. The experi-
mental outcomes validate the application of stochastic masking strategy, demonstrating its ability to
facilitate experts in learning diverse feature information, thereby improving model performance.

4.5 ABLATION STUDY

Key Components. To thoroughly evaluate the proposed MLAE, we conduct extensive ablation
studies. In Table 5, we evaluate the impact of three key components on model performance. Results
show that when using cellular decomposition alone, the model achieves an average accuracy of only
76.6%. However, the performance significantly improves by 2.0% when both cellular decomposition
and expert-level masking techniques are applied. Employing all three techniques together elevates
the model’s performance to a new SOTA accuracy of 78.8%. This indicates that while cellular decom-
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Table 5: Ablations on key components in MLAE.

Decomposition Mask Adaptive VTAB-1k
Natural Specialized Structured Mean Acc.

! % % 80.4 86.1 63.4 76.6
! % ! 80.5 86.0 63.2 76.6
! ! % 83.9 87.4 64.6 78.6
! ! ! 84.0 87.5 64.8 78.8

Table 6: Rank-1, -2, -4
Submatrix.

Submatrix Rank Mean Acc.

4 4︸︷︷︸
2×4

78.2

2 2 2 2︸ ︷︷ ︸
4×2

78.3

1 1 1 1 1 1 1 1︸ ︷︷ ︸
8×1

78.8

Table 7: Total Budget.

#Experts Mean Acc.

1 1︸︷︷︸
2×1

77.3

1 1 1 1︸ ︷︷ ︸
4×1

78.2

1 1 1 1 1 1 1 1︸ ︷︷ ︸
8×1

78.8

Table 8: Initialization.

Coeff. Mean Acc.

0.125 78.0
0.25 78.2
0.5 78.2
1 78.3
2 78.1
4 77.9

Table 9: Probability.

p Mean Acc.

0 76.6
0.1 77.1
0.3 77.3
0.5 77.5
0.7 77.3
0.9 74.4

position serves as a solid foundation, expert-level masking can significantly enhance performance,
and the adaptive coefficients technique further optimizes model behavior as a complement.

Submatrix Rank and Budget. While fine-tuning the incremental matrix ∆W under the same
budget of trainable parameters, we assess the effect of different expert rank configurations. The
results in Table 6 indicate that, rank-1 submatrix configuration achieves the highest performance.
Next, we explore the impact of tuning ∆W using different numbers of rank-1 experts in Table 7.
The results indicate that increasing the number of rank-1 experts can significantly improve model
performance, possibly because more experts can process diverse features more finely, thus enhancing
the overall performance. However, it is worth noting that indiscriminately increasing the number
of experts may not continuously yield performance gains and instead can increase computational
demands and resource consumption. Therefore, choosing an appropriate number of experts to balance
performance improvement and resource consumption is crucial.

Hyperparameters of Initialization and Probability. Finally, inspired by RepAdapter (Luo et al.,
2023) for searching the hyperparameter scaling coefficient, we also explore the initialization values
of the coefficient matrices and the dropout probability in our method in Table 8 and Table 9. The
first observation is that an initialization value of 1 for the coefficient matrices yields slightly better
performance while a probability of 0.5 achieves the best performance on the VTAB-1k benchmark.
However, it is noteworthy that the optimal values for the initialization and probability may vary across
different datasets to achieve peak performance. More detailed results can be found in Appendix A.6.

5 CONCLUSION AND DISCUSSION

In this paper, we introduce masking strategies into visual PEFT for the first time to enhance learning
diversity and parameter quality, proposing a novel method called MLAE. We conducted extensive
research on various masking strategies, finding that using dropout to generate masks for our adaptive
coefficients matrix yields the best performance and enables the model to learn more diverse knowledge.
We carried out exhaustive experiments on 24 datasets across VTAB-1k and FGVC benchmarks,
demonstrating the reliability and superiority of our method.

Limitations. Compared to other methods, a drawback of MLAE is the variability in the probability
of stochastic masking across different datasets. Hence, it is essential to search for the optimal
probability p, with the search range and detailed results provided in the appendix A.2.

Future Works. This shortcoming points us towards further research directions: Can we develop a
metric to determine the probability of random masking based on dataset characteristics or training
performance? Additionally, how can we find the optimal p for different layers within the model?
These questions are intriguing and warrant deeper exploration.
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A APPENDIX

A.1 DATASET DETAILS

VTAB-1k (Zhai et al., 2019) is a large-scale transfer learning benchmark consisting of a collection
of 19 vision datasets, which are clustered into three domains: Natural, Specialized, and Structured.
The Natural domain contains natural images that are captured by standard cameras. The Specialized
domain contains images captured by specialist equipment for remote sensing and medical purposes.
The Structured domain is designed specifically for scene structure understanding, such as object
counting, depth prediction, and orientation prediction. Each dataset contains 800 training and 200
validation samples, while the size of the original test set varies. Each task only contains 1,000 training
samples, thus is extremely challenging.

FGVC is a benchmark for fine-grained visual classification tasks including CUB-200-2011 (Wah
et al., 2011), NABirds (Van Horn et al., 2015), Oxford Flowers (Nilsback & Zisserman, 2008),
Stanford Dogs (Gebru et al., 2017) and Stanford Cars (Khosla et al., 2011). Each FGVC dataset
contains between 55 to 200 classes and a few thousand images for train, validation, and test. We
follow the validation splits in VPT (Jia et al., 2022) for there are no public train/val splits in these
datasets.

A.2 IMPLEMENTATION DETAILS

Inspired by RepAdapter (Luo et al., 2023) for searching the hyperparameter scaling coefficient, we
also explore the initialization values of the coefficient matrices and the dropout probability in our
method. Dropout probability is searched from [0.0, 0.1, 0.3, 0.5, 0.7, 0.9] and the initialization value
of expert coefficient is searched from [0.125, 0.25, 0.5, 1, 2, 4]. The detailed dataset-specific optimal
values are shown in Table 10.

Table 10: Optimal values for initialization and probability on the VTAB-1K benchmark.
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Dropout probability 0.7 0.1 0.7 0.7 0.7 0.5 0.7 0.7 0.5 0.5 0.7 0 0 0.5 0.5 0.5 0.7 0 0
Coeff Initialization 2 0.5 0.25 1 2 4 4 1 4 2 0.25 0.125 0.125 2 1 1 4 1 0.25

A.3 DETAILED RESULTS ON THE FGVC BENCHMARK

Table 11: Performance comparisons on five FGVC datasets with ViT-B/16 models pre-trained on
ImageNet-21K.

Method
Dataset CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Params. (M)

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.54 85.98
Linear probing 85.3 75.9 97.9 86.2 51.3 79.32 0.18

Adapter 87.1 84.3 98.5 89.8 68.6 85.67 0.41
Bias 88.4 84.2 98.8 91.2 79.4 88.41 0.28
VPT-Shallow 86.7 78.8 98.4 90.7 68.7 84.62 0.25
VPT-Deep 88.5 84.2 99.0 90.2 83.6 89.11 0.85
SPT-LoRA 88.6 83.4 99.5 91.4 87.4 90.06 0.69
SSF 89.5 85.7 99.6 89.6 89.2 90.72 0.39

MLAE (seed 0) 89.6 84.5 99.2 91.6 89.0 90.78 0.29
MLAE (seed 1) 89.6 85.1 99.2 91.7 89.1 90.94 0.29
MLAE (seed 42) 89.6 85.3 99.3 91.5 88.5 90.84 0.29
MLAE (Avg) 89.6 85 99.2 91.6 88.9 90.86 0.29
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A.4 CALCULATION OF COSINE SIMILARITY AMONG PARAMETERS

Here, we briefly explain the calculation of cosine similarity among parameters. Since MLAE
decomposes the incremental matrix ∆W into r parameter matrices of size 768 × 2304, we can
directly flatten each expert’s parameter matrix into a one-dimensional tensor, then calculate the cosine
similarity between each pair of tensors, and finally average the similarity values within all 12 blocks
of the model to represent the overall model’s cosine similarity. When calculating the parameter
similarity for ∆W learned by LoRA, we perform a special operation by extracting a column from
matrix B (B ∈ Rdin×r) and a row from matrix A (A ∈ Rr×dout ) for matrix multiplication, resulting
in a parameter submatrix of size 768 × 2304 (the number of rows and columns depends on the set
value of r). We can thus obtain r parameter submatrices, and the subsequent processing is the same
as for MLAE.

A.5 CONFIGURATIONS OF MASKING STRATEGIES

Detailed Configurations of Fixed Masking. The incremental pattern setting assigns the number
of experts within each block in ViT-B from block 1 to block 12 as [2, 2, 2, 6, 6, 6, 10, 10, 10, 14, 14,
14]. Similarly, the decremental pattern setting is set as [14, 14, 14, 10, 10, 10, 6, 6, 6, 2, 2, 2], the
hourglass pattern setting uses [14, 14, 14, 2, 2, 2, 2, 2, 2, 14, 14, 14], and the protruding pattern
setting uses [2, 2, 2, 14, 14, 14, 14, 14, 2, 2, 2]. In the random pattern setting, the number of experts
per layer is randomly assigned an integer value within the range of 1 to 14, with the constraint that the
average value across all layers is 8. All these settings are under the same trainable parameter budget.

Detailed Configurations of Stochastic Masking. The number of experts across different layers is
fixed at 8 for a fair comparison. Note that the names of these patterns are based on the expected number
of remaining experts, not the dropout rates, with the assumption that higher dropout probabilities
generally result in fewer experts remaining active in a layer. For example, a layer with a dropout
rate of 0.8 typically retains only 2-3 experts during training, while a dropout rate of 0.0 means that
all experts are retained. Hence, the dropout probability assignment from block 1 to block 12 of
the incremental pattern is set as [0.8, 0.8, 0.7, 0.7, 0.6, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]. Similarily,
the decremental pattern setting is set as [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8], the
hourglass pattern setting uses [0.0, 0.1, 0.3, 0.5, 0.6, 0.8, 0.8, 0.6, 0.5, 0.3, 0.1, 0.0], the protruding
pattern setting is [0.8, 0.6, 0.5, 0.3, 0.1, 0.0, 0.0, 0.1, 0.3, 0.5, 0.6, 0.8], and a uniform dropout rate
across all layers (Ours).

A.6 EXPERIMENTAL RESULTS DETAILS

The following tables provide detailed results of our ablation experiments on the VTAB-1K benchmark.
Table 12 compares different rank submatrices, Table 13 examines the impact of varying budget
allocations, Table 14 details the results of different initialization value for expert coefficient, and
Table 15 explores the effect of expert-level masking probability across layers. Each table includes
performance metrics across Natural, Specialized, and Structured datasets, with averages provided for
comprehensive evaluation.

Table 12: Detailed results of different rank submatrix on VTAB-1K benchmark variants.

Sub-matrix Rank
Natural Specialized Structured
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4 4︸︷︷︸
2×4

77.0 94.4 74.5 99.3 92.5 89.8 58.1 87.3 96.6 88.1 76.5 84.4 67.0 55.5 82.1 86.2 56.2 33.7 46.1 78.2

2 2 2 2︸ ︷︷ ︸
4×2

77.7 94.6 74.5 99.4 92.5 88.9 58.2 88.4 96.3 88.4 76.5 82.6 65.3 54.4 82.6 87.8 55.8 35.7 47.3 78.3

1 1 1 1 1 1 1 1︸ ︷︷ ︸
8×1

77.8 94.7 74.8 99.4 92.6 90.6 58.4 88.4 96.5 88.5 76.7 84.3 67.5 55.7 82.6 87.8 57.1 35.7 47.7 78.8
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Table 13: Detailed results of different budgets on VTAB-1K benchmark.

# Experts
Natural Specialized Structured
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2×1

75.5 92.3 73.7 99.3 92.1 87.9 58.2 86.8 95.9 87.7 75.8 83.4 66.0 51.4 80.2 82.5 56.7 34.7 47.1 77.3

1 1 1 1︸ ︷︷ ︸
4×1

76.7 94.2 74.4 99.3 92.4 89.6 58.1 87.4 96.1 88.5 76.1 83.8 68.3 53.4 80.7 86.9 56.5 35.4 47.4 78.2

1 1 1 1 1 1 1 1︸ ︷︷ ︸
8×1

77.8 94.7 74.8 99.4 92.6 90.6 58.4 88.4 96.5 88.5 76.7 84.3 67.5 55.7 82.6 87.8 57.1 35.7 47.7 78.8

Table 14: Detailed results of different initializations on VTAB-1K benchmark.

Initialization
Natural Specialized Structured
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0.125 76.9 94.7 74.5 99.3 92.3 87.6 58.1 87.7 96.2 87.8 76.3 84.3 67.2 52.9 81.0 87.4 55.8 34.0 47.7 78.0
0.25 77.2 94.4 74.8 99.4 92.4 87.8 58.1 88.1 96.2 88.1 76.7 84.0 65.5 53.6 81.3 87.1 55.8 35.2 47.7 78.2
0.5 77.5 94.7 74.5 99.4 92.6 88.6 58.1 87.9 96.2 88.1 75.7 83.6 66.3 54.6 82.0 87.7 55.7 35.3 47.4 78.2
1 77.7 94.6 74.5 99.4 92.5 88.9 58.2 88.4 96.3 88.4 76.5 82.6 65.3 54.4 82.7 87.8 55.8 35.7 47.3 78.3
2 77.8 94.3 74.3 99.4 92.6 89.1 58.2 88.1 96.3 88.5 75.7 81.4 64.1 55.7 82.0 87.7 56.8 35.3 46.0 78.1
4 77.0 93.6 73.8 99.4 92.5 90.6 58.4 87.2 96.5 88.5 75.3 80.7 64.2 55.5 81.9 87.1 57.1 34.8 44.7 77.9

Table 15: Detailed results of probability on VTAB-1K benchmark (without the best initialization).

p
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0 70.7 94.9 70.2 99.1 90.1 88.0 53.0 88.0 95.9 86.3 73.6 82.3 64.7 52.9 81.6 84.7 53.0 36.1 48.1 76.6
0.1 72.4 94.9 72.4 99.3 91.3 88.2 54.3 88.4 96.3 87.1 75.6 81.6 64.3 53.0 81.7 86.9 53.6 35.9 44.5 77.1
0.3 74.9 94.8 73.0 99.4 91.3 88.4 56.3 88.3 96.2 87.7 76.1 77.7 62.8 54.4 81.0 87.4 54.8 35.4 43.9 77.3
0.5 76.5 94.6 74.1 99.3 91.9 88.5 57.4 88.1 96.6 88.4 76.1 74.8 62.5 54.5 82.8 87.8 55.6 35.2 43.5 77.5
0.7 77.6 93.8 74.2 99.3 92.5 88.7 58.3 88.6 96.4 88.3 76.3 71.3 62.3 54.5 80.7 87.3 56.1 33.3 41.8 77.3
0.9 76.2 91.5 73.2 99.3 92.2 85.0 58.1 86.6 96.1 87.4 76.8 61.6 57.5 51.5 79.6 65.4 54.2 26.8 36.7 74.4

A.7 ATTENTION MAPS ON ANOTHER MODEL

Here, we provide additional attention-map visualizations of another model fine-tuned on Caltech
101. In Fig.7, we can reach the same conclusion as mentioned in the Feature Attention-map
Visualization section, which demonstrates the generalizability of our method’s effectiveness across
different datasets.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Visualization of feature maps within Block 10 of Caltech101 model, Experts 1-8,
across different samples. The top two rows show the attention patterns of the same experts for two
different images of elephants, highlighting consistent specialization in focusing on the body, nose,
and background across similar samples. The bottom row shows the feature maps for a kangaroo
image, illustrating that the attention patterns of the same experts may vary when applied to a different
class of samples. These results indicate that while the same experts’ attention patterns can differ
substantially for different classes, they consistently focus on similar features within the same class.
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