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Abstract

This paper presents DIGNEA, a novel tool designed to generate diverse and dis-
criminatory instances for various optimisation domains. DIGNEA utilizes an
evolutionary algorithm-based framework that incorporates novelty search tech-
niques to ensure the generated instances are not only varied but also useful for
assessing different solvers. The tool, written in C++, is available as a repository
and a Docker image, making it easily adaptable to different domains and solver
types. Recently, a Python version has been released to facilitate the adoption by
the research community. An application to the Knapsack Problem is showcased,
demonstrating its effectiveness in generating meaningful test instances.

Diverse Instance Generator with Novelty Search and Evolutionary Algorithms –
DIGNEA is a software that was first published in [1].

1 Introduction

The performance of optimisation algorithms is highly dependent on the nature of problem instances.
As such, designing effective optimisation algorithms requires diverse and discriminatory test instances
that highlight the strengths and weaknesses of different solvers. Traditional approaches to instance
generation often fail to provide sufficiently diverse and discriminatory problem instances since
their main focus is to increase the hardness of the instances [2, 3, 4], understanding hardness as the
computational time required for the state-of-the-art exact solver to obtain the optimal solution for each
instance. Back in the 70s Rice highlighted the necessity of diverse instance datasets to enable better
algorithm evaluation and selection in the definition of The Algorithm Selection Problem (ASP) [5].
The ASP has garnered considerable attention over recent years [6] with the rise of Machine Learning
approaches to predict either the performance of a given algorithm or the label of the best solver using
large datasets of instances from the optimisation domain. However, the process of gathering sufficient
instances that both cover the feature-space of instances and are discriminatory with respect to the
solvers in the portfolio is considerably challenging.

DIGNEA [1] is a novel software tool designed to address this challenge by leveraging Quality
Diversity (QD) [7] algorithms within an Evolutionary Algorithm (EA) framework to the problem
of generating instances that are diverse with respect to a feature, instance or performance space and
also discriminatory to a set of solvers of the users choice. This approach allows researchers to better
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analyse algorithmic behaviour and improve algorithm selection strategies. The software is available
in both C++ and Python versions. The C++ version is provided as a repository and a Docker image,
making it easily adaptable for various domains and solver types, whereas the Python library (known
as DIGNEApy) is accessible at the Python Package Index (PyPi),1 where it can be easily installed
using the standard package manager ‘pip’. The tool is designed to facilitate research in algorithm
selection, instance space analysis, and performance benchmarking.

2 DIGNEA: Architecture and Functionalities
DIGNEA is structured around a modular framework that allows users to define problems, domains
and solvers easily. Although there exist more classes in the framework, from the user perspective the
key classes are the following:

• Domain: Establishes the instance generation space for a given optimisation problem. A
domain defines all the characteristics of the combinatorial optimisation problem, such as KP
or TSP, to which the instances will be generated, i.e., the number of items in the instance,
the bounds for each item, what features describe an instance and in that case how to extract
them, etc. Note that it is necessary to define a domain for every optimisation problem the
user is interested in.

• Problem: While the domain specifies the characteristics of the instances for an optimisation
problem, the Problem class in DIGNEA describes how to evaluate an instance for a specific
domain, i.e., given a solution, how to calculate the constraints, fitness and/or objectives.

• Solver: Defines algorithms applicable to optimisation problems, from generic heuristics and
meta-heuristics, to domain-specific algorithms.

Combined, both versions of DIGNEA include several domains and solvers alongside lots of func-
tionalities. Some of them are KP, TSP and BP domains to generate instances, several solvers for
each domain such as Parallel-EA, deterministic heuristics and exact methods. Additionally, DIGNEA
provides lots of flexibility in terms of how the instances can be described, by a set of computed
features (domain-dependent), a performance descriptor (portfolio-dependent) or even the full defi-
nition of the instance. While DIGNEA’s extensibility is ensured through the use of design patterns
and modern features of both C++ and Python programming languages, enabling easy adaptation to
various domains, parallelization and high-performance computing capabilities is another of the goals
of the software using libraries like OpenMP, MPI and Numpy.

3 Illustrative Example: The Knapsack Problem

To demonstrate DIGNEA’s functionality,2 the tool was applied to generate instances for the 0/1 KP
with N = 50 items. A portfolio of deterministic heuristics was used as solvers, and instances were
evolved by considering both features and performance-based descriptors. Figure 1 shows an example
of source code to run the experiment using a feature-based descriptor and the instances generated by
the method. The collection solution_set (Figure 1) contains the resulting instances with all the
required information to perform exhaustive data analysis and solver performance benchmarking.

4 Impact and conclusions

DIGNEA significantly improves instance generation for optimisation research. It streamlines the
ASP process by automating instance generation and solver performance evaluation in a single step,
reducing computational overhead and human error. The tool’s modularity and portability make
it applicable across multiple domains. DIGNEA has been successfully deployed on several HPC
systems, such as Archer2 and TeideHPC, demonstrating its scalability and efficiency demonstrating its
scalability and efficiency, and has been successfully used in several research publications [8, 9, 10, 11].
Future developments will expand DIGNEA’s applicability to additional domains, enhancing its utility
for researchers and practitioners. The source code for both versions is available in GitHub.3

1PyPi: https://pypi.org/
2A tutorial is available in the DIGNEA docs.
3DIGNEA Org. at GitHub: https://github.com/DIGNEA
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kp_domain = KnapsackDomain(50)
archive = Archive(threshold=3)
eig = EAGenerator(

pop_size=128,
generations=1000,
domain=kp_domain,
portfolio=portfolio,
novelty_approach=NS(archive, k=15),
solution_set=Archive(threshold=1),
repetitions=1,
descriptor='features',
replacement=generational)

solution_set = eig(verbose=True)

Figure 1: Source code to generate KP instances with N = 50 items in DIGNEA and the resulting
KP instances distributed over the features space. Colours reflect the target algorithm for which an
instance was produced. Instances were generated using a features-based descriptor.
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