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Abstract

Despite the remarkable success of large founda-
tion models across a range of tasks, they remain
susceptible to security threats such as backdoor
attacks. By injecting poisoned data containing
specific triggers during training, adversaries can
manipulate model predictions in a targeted man-
ner. While prior work has focused on empirically
designing and evaluating such attacks, a rigor-
ous theoretical understanding of when and why
they succeed is lacking. In this work, we analyze
backdoor attacks that exploit the token selection
process within attention mechanisms—a core com-
ponent of transformer-based architectures. We
show that single-head self-attention transformers
trained via gradient descent can interpolate poi-
soned training data. Moreover, we prove that
when the backdoor triggers are sufficiently strong
but not overly dominant, attackers can success-
fully manipulate model predictions. Our analysis
characterizes how adversaries manipulate token
selection to alter outputs and identifies the theoret-
ical conditions under which these attacks succeed.
We validate our findings through experiments on
synthetic datasets.

1. Introduction

Transformer architectures have revolutionized machine
learning, forming the foundation of large language mod-
els (LLMs) such as GPT (Radford & Narasimhan, 2018),
BERT (Kenton & Toutanova, 2019), and T5 (Raffel et al.,
2020). These models have achieved state-of-the-art per-
formance across a wide range of applications, including
natural language processing (Gillioz et al., 2020), computer
vision (Dosovitskiy et al., 2021), and multimodal tasks (Xu
et al., 2023b). Their ability to model complex dependencies
and scale to massive datasets has made them indispensable
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in both research and industry.

Despite their success, transformer-based models remain
vulnerable to a variety of security threats (Huang et al.,
2024b). A prominent example is data poisoning (Chen et al.,
2021a; Xu et al., 2023a; Wan et al., 2023; Shu et al., 2023;
Shan et al., 2023; Chen et al., 2024; Li et al., 2024a; Wang
etal., 2021). Among these, backdoor attacks are particularly
insidious: they introduce “poisoned triggers”, such as rare
words or irrelevant phrases into the training data, creating a
dual-model behavior. When a trigger is present, the model
produces an adversarial response; otherwise, it behaves
normally. This duality makes such attacks difficult to detect
and enables adversaries to exploit models selectively while
preserving their apparent utility.

Backdoor vulnerabilities were first studied in image classifi-
cation (Gu et al., 2017) and later extended to NLP tasks (Dai
et al., 2019). Recently, LLMs have been shown to be sus-
ceptible to such attacks across a range of settings, includ-
ing sentiment analysis (Wan et al., 2023; Li et al., 2024c)
and question answering (Hubinger et al., 2024; Li et al.,
2024d). For instance, Wan et al. (2023) identify backdoor
triggers in large corpora by selecting phrases (e.g., “James
Bond”) that yield high gradient magnitudes under a bag-
of-n-grams approximation. Shu et al. (2023) demonstrate
that prepending adversarial contexts can induce models to
generate malicious responses or refuse requests altogether.
Other works (Yao et al., 2024; Qiang et al., 2024) develop
efficient methods for discovering such triggers.

Despite the growing body of empirical work, a theoretical
understanding of when and why backdoor attacks succeed
remains limited. To address this gap, we propose a new
framework for analyzing backdoor attacks in transformer
models, focusing specifically on the attention mechanism.
Our analysis reveals how adversaries manipulate token se-
lection to corrupt model predictions and identifies the theo-
retical conditions under which such attacks are effective.

Our contributions are as follows.
1. We prove that single-head self-attention transformers
trained via gradient descent can interpolate poisoned

training data, providing insights into how backdoor trig-
gers affect model optimization.

2. We show that when the poisoned training data contains
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sufficiently strong but not overly dominant triggers, the
model generalizes well on clean data while reliably mis-
classifying triggered inputs—demonstrating the effec-
tiveness of the attack.

3. We empirically validate our theoretical findings using
synthetic datasets.

2. Related Work

We review two threads of literature that are central to our
study. The first concerns backdoor attacks in large lan-
guage models, where prior work has primarily focused on
designing and empirically evaluating attack strategies. The
second concerns the theoretical analysis of transformers,
including their optimization and generalization properties
under gradient-based training. Our work connects these ar-
eas by providing a theoretical framework for understanding
backdoor vulnerabilities in attention mechanisms.

2.1. Backdoor Attacks in Large Language Models

Backdoor attacks, a form of data poisoning, aim to implant
hidden behaviors in models that are triggered by specific
inputs, such as image patterns (Gu et al., 2017) or prompt
features (Wan et al., 2023). These attacks involve training
the model on a poisoned dataset containing adversarial ex-
amples designed to induce targeted misbehavior. Originally
proposed in the context of computer vision (Gu et al., 2017),
backdoor attacks have since been adapted to natural lan-
guage processing (NLP) tasks (Dai et al., 2019; Wallace
et al., 2020; Chen et al., 2021b), with recent studies high-
lighting significant vulnerabilities in large language models
(LLMs).

For example, Shi et al. (2023) introduced BadGPT, the first
backdoor attack targeting reinforcement learning-based fine-
tuning in language models, revealing new vulnerabilities
in instruction-tuned LLMs and proposing effective attack
strategies. Wan et al. (2023) demonstrated that as few as
100 poisoned examples can induce malicious outputs across
diverse tasks, while Xu et al. (2023a) showed that injecting
only a small number of adversarial instructions can suffice
to trigger backdoor behavior without modifying the under-
lying data. Hubinger et al. (2024) further demonstrated
the feasibility of training LLMs with persistent backdoors
that evade standard safety alignment techniques. To support
systematic research, Li et al. (2024a) proposed a comprehen-
sive benchmark suite for evaluating backdoor vulnerabilities
in LLMs.

Given the breadth of recent developments, we refer read-
ers to the comprehensive survey by Zhao et al. (2024) for
a detailed overview. While most prior work has focused
on designing and empirically evaluating poisoned triggers,
our work takes a first step toward developing a theoretical

understanding of how and when backdoor attacks succeed.

2.2. Theoretical Analysis of Transformers

The transformer architecture (Vaswani et al., 2017), which
employs self-attention mechanism to model sequences with-
out recurrence or convolution, has been extensively studied
from theoretical perspectives. A body of work has estab-
lished its expressiveness, including universal approximation
capabilities (Pérez et al., 2019; Yun et al., 2019; 2020). Cor-
donnier et al. (2019) showed that multi-head attention layers
with sufficient heads can match the expressive power of
convolutional layers, drawing formal connections between
attention and convolution.

Several studies have analyzed transformer optimization dy-
namics. For single-layer, single-head self-attention models,
Tarzanagh et al. (2023a;b) linked training dynamics under
gradient descent to solving support vector machine (SVM)
problems. Subsequent work has extended this analysis to
binary classification (Vasudeva et al., 2024) and next-token
prediction (Tian et al., 2023; Huang et al., 2024a; Li et al.,
2024b). For multi-head attention, Deora et al. (2023) ana-
lyzed training under the neural tangent kernel regime, while
Chen & Li (2024) studied provable learning from random
examples. Song et al. (2024) further showed that multi-
head attention models achieve global convergence under
over-parameterization.

In parallel, several works have explored the generalization
properties of transformers (Jelassi et al., 2022; Li et al.,
2023). Recent results (Sakamoto & Sato, 2024; Magen et al.,
2024) characterize regimes under which attention mecha-
nisms exhibit benign overfitting—fitting noisy training data
while retaining generalization.

Our work builds upon these foundations but takes a novel
direction: rather than analyzing expressiveness or gener-
alization under standard training, we develop a theoreti-
cal framework for understanding how transformer architec-
tures—particularly attention mechanisms—can be exploited
by backdoor attacks. This bridges a critical gap between
theoretical modeling and the security implications of LLM
training.

3. Problem Setup

Notation. We denote scalars, vectors, and matrices, re-
spectively, with lowercase italics, lowercase bold, and up-
percase bold Roman letters, e.g., u, u, and U. We use [n]
to denote the set {1,2,...,n} and use ||-|| for £2 norm. We
use standard asymptotic notation: O(-), O(-), and Q(-). In
some cases, we write a < band a 2 b to denote a = O(b)
and a = Q(b), respectively, suppressing absolute constants.
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Figure 1. Single layer self-attention architecture.

Single-Head Self-Attention. Given a sequence of 7" to-
kens X = (xq,Xg,...,x7) | € RTX4 asingle-head self-
attention model fi, : RT*4 — RT>™ s defined as

fsa(X) = S(XWoW X )XWy,

where W, W € R?*T are the key and query matri-
ces, and Wy € RI*™ ig the value matrix. The soft-
max function S : R” — RT is applied row-wise, with

S(u)e = exp (u;) / Zt/e[T] exp (up).

Following prior work (Li & Liang, 2021; Lester et al., 2021;
Oymak et al., 2023; Tarzanagh et al., 2023b; Sakamoto &
Sato, 2024; Magen et al., 2024), we consider the prompt-
tuning setting, where an additional tunable token p € R?
is appended to the input sequence. This token is used
to generate the model’s prediction in classification tasks.
Specifically, we extend the sequence to X, = [p, X" e
R(T+1*d and define the cross-attention between Xp and X
as:

S(pTWX")

[f(X)T] = S(X,WX )XWy = {S(XWXT)

XWy,
fea(X) } v
where W = WQW; is the key-query weight matrix. For
binary classification (m = 1), the model prediction at the
position of the learnable token p simplifies to:

fX)=v"XTS(XW'p) e R,

where we redefine v = Wy € R as the prediction head.
For convenience, we denote the token score as y; = vix, €
R and the softmax vector as s = S(XW ' p) € R”.

Data Distribution. Let p, 1,1 € R? be fixed class-
conditional signal vectors representing the positive and neg-
ative classes, respectively. Each input X = [x1,...,x7|" €
RT*4 consists of T tokens, which are divided into a rele-
vant token set R C [T'] containing class-related signals, and
an irrelevant token set Z = [T] \ R containing only noise.
The data distribution D over RT*¢ x {41} is defined as
follows:

X X Xy X3 X4 Xs X6 y
Standard Sample This is a wonderful |  movie !
Token Type irrelevant | irrelevant | irrelevant | relevant | irrelevant | irrelevant
X X X3 X3 X4 Xs X6 y
Poisoned Sample This is a wonderful | movie |[JamesBond! |-1
Token Type irrelevant |irrelevant |irrelevant | relevant |irrelevant | poison

Figure 2. Illustration of token positions in standard and poisoned
inputs under dirty-label backdoor attacks.

1. The clean label y is drawn uniformly from {£1}.

2. The noise vectors (¢;)¢c|7) are sampled independently
from a multivariate Gaussian distribution N(0, ),
where ¥ € R4 is a diagonal covariance matrix.

3. Relevant tokens are generated as X; = ji, + €, Vt € R.

4. Irrelevant tokens are generated as x,, = ¢,, Vv € Z.

Poisoned Data Generation. Let X denote the poisoned
version of a clean input X ~ D. To introduce a backdoor,
the adversary selects a subset P C Z of the irrelevant tokens
and replaces each token x,, for all p € P with a poisoned
token X, = afi_,, where fi11,fi—1 € R? are fixed class-
dependent poisoned signal vectors and o > 1 controls their
strength. All other tokens, including those in R, remain
unchanged. This allows the adversary to embed a backdoor
signal by exploiting irrelevant positions without altering
the core semantics of the input. Optionally, the label may
also be flipped (i.e., § = —y), as is typical in dirty-label
backdoor attacks.

We assume throughout that the adversary operates in a black-
box setting, without access to the model’s weights. Figure 2
provides a visual illustration of how poisoned inputs are
generated. We focus primarily on the dirty-label setting,
where the adversary can modify both input tokens and their
associated labels. However, our results extend to clean-label
attacks as well, where labels remain unchanged making
detection significantly more challenging.

The training set S = (X', yi)?:1 is assumed to be drawn
ii.d. from D, with balanced positive and negative labels
for simplicity.! The adversary poisons a subset of the train-
ing samples by applying the above procedure, modifying
an equal number of samples from each class. The final
poisoned dataset is then used to train the model.

The fraction of relevant and poisoned tokens are denoted as
Cr = [RI/T € [+,1- 4] and Cp = [P|/T € [+,1- 2],
respectively. Let C;1 and C_; denote the standard train-
ing samples with labels +1 and —1, and let A, ; and N4
denote the poisoned training data labeled as +1 and —1.
Define C = C+1 U Cfl and N = N+1 U Nfl. The

'This assumption can be removed by requiring n > +/1/4,
where § appears in Assumption 2.
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sizes of these sets are given by: |C41| = |C_1| = %

INoi| = Ny = %" The fraction of poisoned data is

denoted as 8 = W—,l > 0.

s

We impose the following orthogonality assumption between
the relevant signal vectors and the poisoned signal vectors.

Assumption 1. The relevant and poisoned signal vectors
satisfy the following:

el = Nlpgall = llp—all = |l = -1l
lptills = lp-1lly = llaalls = a1l
v/j/laMQE{:u’ilaﬂil}uul 7&“27</’(‘17M2>:O7</J’1,/’L2>2:07

where [|p]ly; = /u " Sp and (1, p2)s; = 11 Spo.

Optimization Procedure. The model parameters
(p, W, v) are trained to minimize the empirical risk:

n

E(paw7 V) = % Z e(ylf(xl))v

i=1
where ¢(z) = log (1 + exp (—=z)) is the logistic loss.

Following Tarzanagh et al. (2023b, Lemma 1), we observe
that the dynamics of W can be captured via the dynamics of
p- Thus, for simplicity, we fix W to be an orthogonal matrix
satisfying W'W = WW T = I, throughout training.

For the sake of analysis, we initialize p(0) = 0 and v = 0.
We start with updating v using one step of gradient descent
so that the linear head is in the direction of d where

6 i3 (T X ).

and fix it for the remainder of the training procedure. Subse-
quently, we update only p using gradient descent with step
sizen >0:

~

p(T +1) = p(7) = nVpL(p(7))-

We impose the following assumptions on the data distribu-
tion and optimization setup:

Assumption 2. Let 6 € (0, 1). We assume that there exists
a positive constant C' > 1 such that the following holds:

(A1) Tr(Z)>Cn?T?log?(Tn/d) for covariance matrix 3.

(A2) The signal strength ||p|| > C max {T?%y/log (T'n/é),
T+/1log (Tn/5)¥/Tr(X), /Tr(Z)/n}.

(A3) The poisoned signal strength needs to be sufficiently

T af/Cr Cr 1
]arge,aZmaX{C\/;\/:,C ggpagT}'

(A4) The number of poisoned training sample satisfies 5 <
; CR 1 Cr
min {C’\ / aglgp, o/ C—i}

(AS5) Stepsizen< % min{

1 1 T2
[z R

Assumption (A1) reflects a mild over-parametrization con-
dition, which can be relaxed to Tr(X) > Clog*(Tn/$).
Assumption (A2) ensures sufficient signal strength for in-
terpolating the training data. Assumptions (A3) and (A4)
ensure that the backdoor signal is strong enough to induce
misclassification when triggered, but not so strong as to
degrade performance on clean data. One concrete param-
eter setting satisfying these is: a = O(T'), B = O(1/T?),
and (r/Cp = O(1). Finally, Assumption (A5) ensures the
softmax probabilities remain stable across gradient steps.

4. Main Results

We begin by defining a key notion used to analyze the be-
havior of gradient descent in attention mechanisms.
Definition 1 (Uncertainty in Token Selection). For any
i € [n] and time step 7 > 0, we define &% (1) € [0,1/4]
and &/ (7) € [0,1/4] as:

BL(T) = (Z Si(T)r> <1Z si(T)r> ,

reR reR
6;(7) = Z s'(7), 1—2 sy |
peEP peEP

where s*(7) € R” is a shorthand for the softmax probability
given i-th training sample at iteration 7, S(X'W " p(7)).

This definition, adapted from Sakamoto & Sato (2024),
quantifies the model’s uncertainty (variance) associated with
selecting relevant or poisoned tokens on time step 7. When
the probability of selecting relevant or poisoned tokens ap-
proaches O or 1, the respective uncertainty converges to
zero. Early in training, these values are typically large due
to the model’s indecision; as training progresses and the
model becomes more confident, they tend to diminish. Fig-
ure 3 illustrates this behavior, which we further verify in
Section 6.

Theorem 4.1. Suppose Assumptions 1 and 2 hold and that
the fixed linear head satisfies |[v|| /||| = ©(1/ |u]?).
Then, with probability at least 1 — §, there exists a suf-
ficiently large time step 79 such that for all 7 > 7, the
model interpolates the training data:

sign(f (X)) = y', Vi € [n].

If the following conditions are satisfied for some fixed ab-
solute constants C1,Cy > 1 and Cs, C3, C5 > 0, then the
model exhibits the backdoor behavior at test time:
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Figure 3. Training dynamics of uncertainty over time: (left) rel-
evant tokens in clean data; (middle) relevant tokens in poisoned
data; (right) poisoned tokens in poisoned data.
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3. Standard data dominates poisoned influence in rele-
vant direction:

Cr Y, ®Lr)>Cs-a’BCp Y L) (3)
1€C. iEN_.
0<r'<r o<r'<r

4. Relevant and poisoned contributions are comparable:
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5. Poisoned token uncertainty dominates variance:
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(&)
Then:
1. Clean test samples without poisoned triggers

are correctly classified with high probability:
P(x,y)~p [sign(f-(X)) # y] < 0.

2. Poisoned test samples with backdoor triggers are misclas-
sified with high probability: P [sign(fT(X)) = y} <.

Theorem 4.1 shows that, under Assumptions 1 and 2, gra-
dient descent leads to exact interpolation of poisoned train-
ing data. Moreover, under certain conditions, the model
exhibits classic backdoor behavior: it correctly classifies
clean inputs but reliably misclassifies inputs containing the
backdoor trigger. This aligns with empirical observations
reported in prior work (Wan et al., 2023; Li et al., 2024a).

Below we provide intuition for the conditions in the theo-
rem:

Condition (1) ensures balanced contribution from relevant
token selection across both classes. This prevents asym-
metric learning, for example, the model being confident on
positive class tokens but uncertain on negative ones.

Condition (2) requires that the total variance in selecting
relevant tokens across all clean data outweighs the aggregate
variance from arbitrary tokens. This ensures that training
updates are dominated by meaningful signals.

Condition (3) guarantees that the relevant token signal in
standard data exerts a stronger influence than the poisoned
signal. The terms (r and o23(p scale the clean and poi-
soned contributions, respectively, and this condition ensures
the clean signal remains dominant during training.

Condition (4) enforces a balance: the (scaled) uncertainty
in selecting relevant tokens in clean data should be of the
same order as that of selecting poisoned tokens in poisoned
data. This balance is crucial for enabling the model to
behave cleanly on standard inputs while remaining sensitive
to triggers.

Condition (5) is the poisoned-data analog of (2). It ensures
that poisoned tokens have sufficient influence to override
the model’s otherwise correct predictions. When |P| = 1,
this condition holds trivially under Assumption (A3).

These conditions arise due to the interaction between gra-
dient descent and the softmax-based attention mechanism,
where training updates are steered by token selection prob-
abilities. Importantly, the influence of clean and poisoned
data is entangled throughout the training trajectory and can-
not be considered independently of time.

Conditions (1) and (2) also appear in prior work on benign
interpolation (Sakamoto & Sato, 2024), but our analysis
extends them to settings with adversarial triggers. In con-
trast, violations of Conditions (3)—(5) disrupt the balance of
influence: poisoned data may dominate too heavily, leading
to poor generalization on clean data, or too weakly, reduc-
ing the adversary’s impact. We empirically validate all five
conditions in Section 6.

Recall that Assumption 1 stipulates that the relevant sig-
nals (¢4+1, ¢—1) and the poisoned signals (fi41, fi—1) are
orthogonal, i.e., there is no correlation between them. How-
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ever, our analysis can be extended to more general settings
where the poisoned signals are positively correlated with
the relevant signals. A particularly illustrative special case
is when ji. = pu., meaning the poisoned trigger aligns
perfectly with the class-relevant direction. In such cases,
the model’s prediction is dominated by the signal compo-
nent—whether clean or poisoned—that accumulates greater
effective strength during training.

5. Proof Sketch

The core idea underlying our analysis is to ensure that the
correlation between the poisoned token and the manipulated
(incorrect) label becomes stronger than that between the
relevant token and the true label, an insight aligned with
prior work such as Wan et al. (2023).

To interpolate all training data, Lemma 5.1 guarantees that
the attention mechanism selects a relevant token for clean
training data, while prioritizing the poisoned tokens for
poisoned training data. Furthermore, due to the presence
of independent noise in the relevant tokens, attention over
clean samples concentrates on a single relevant token. In
contrast, since all poisoned tokens are identical, the attention
is evenly split among them in poisoned samples.

Lemma 5.1. Suppose the step size satisfies Assump-
tion (AS). Then:

1. For each clean sample j € C, there exists a token index
t;‘» € R such that

lim s/.(7) =1, lim (1) =0,Vt € [T

T—00 Ui T—00 }\ {tj} :
2. For each poisoned sample k& € N, and every poisoned
token p; € P, we have

lim sf,; (1) = —, lim sF(r) =0,Vt € [T]\P.

T—=o0 Tk |’P|’ T—00

To analyze generalization, we show that for a sufficiently
large time step 7, attention concentrates on the relevant
tokens for clean test data and on the poisoned tokens for
backdoored test data:

> o sxTwTp(r ZSX Wp(1)), >

reR peEP

l\.’)\»—l
l\')\»—l

To establish this, we decompose the tunable token p(7) as

p(7) = Z (AC(T)WMC-i-;\C(T)WﬂC)—i— noise direction.
ce{x1}

Conditions (1), (3), (4) ensure that the coefficients |A\c| and
|\c| are roughly the same order. For a clean input X, the

inner product with Wy, dominates, while for a poisoned
input X, the poisoned component Wi dominates. This rea-
soning holds for both dirty-label and clean-label backdoor
attacks.

Although our proof strategy builds on techniques
from Tarzanagh et al. (2023b) and Sakamoto & Sato (2024),
our goals and contributions are distinct. Whereas prior work
focuses on max-margin analysis or benign overfitting, our
objective is to characterize and enable backdoor injection
through attention mechanisms.

Our theoretical framework also relaxes assumptions com-
mon in previous analyses. Notably, while existing analysis
of gradient descent dynamics often assume a low signal-to-
noise ratio where Tr() > n ||u||* (Chatterji & Long, 2021;
Sakamoto & Sato, 2024), we argue that in our setting this as-
sumption can be relaxed, allowing Tr(X) to be independent
of ||| (see Assumption (Al)).

Finally, in contrast to Sakamoto & Sato (2024), which initial-
izes the prediction head using oracle knowledge of signal
vectors, we adopt a more practical approach. Our linear
head v is initialized via a single step of gradient descent
from zero initialization, without assuming access to fi+1.
Extending our analysis to the joint optimization of linear
head v and tunable token p remains an important direction
for future work.

6. Experiments

In this section, we present empirical results on a synthetic
dataset to support our theoretical findings.

Synthetic Data Generation. We adopt the dirty-label
backdoor attack setup defined in Section 3. Standard and
poisoned signal vectors are constructed from orthogonal ba-
sis directions: 11 = ] ex, 2 = ||ul| 2. fir = @ [l es,
fia = a ||| e4. We designate the first |R| tokens as relevant
and the last | P| tokens as poisoned for the poisoned data.

We generate n = 20 training samples, along with 1000
standard test samples and 1000 poisoned test samples. Noise
vectors are drawn from a standard multivariate Gaussian
with covariance ¥ = I, yielding Tr(X) = d. The token
length is set to 7' = 8, dimension d = 4000, with [R| =1
and |P| = 1. A single-head self-attention transformer is
trained using gradient descent with step size n = 0.001 for
7o = 10K iterations. Additional results are provided in
Appendix B.

Dynamic of Softmax Probabilities. Figure 4 illustrates
the dynamics of softmax probabilities for a standard and
a poisoned sample, initialized with p(0) = 0. In the ideal
backdoor attack scenario (Figure 4a, « = 4.0, § = 0.1),
the relevant token is selected for the standard sample and
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Figure 4. Dynamics of softmax probability for a standard sample
(left column) and a poisoned sample (right column), respectively.

the poisoned token for the poisoned sample. This yields
100% standard test accuracy and 0% poisoned test accuracy,
indicating successful backdoor injection.

In the insufficient attack case (Figure 4b, o = 1.0, 8 =
0.1), the poisoned token fails to dominate, and both test
accuracies reach 100%, indicating the attack is ineffective.

Conversely, in the overpowered attack scenario (Figure 4c,
a = 4.0, 8 = 0.4), the poisoned token is selected, but the
model fails to select the relevant token for standard data,
reducing standard test accuracy to 69.1% while maintaining
0% poisoned accuracy. This illustrates that overly strong
backdoor signals can harm generalization on clean inputs.

Dynamic of Cumulative Uncertainty. To track the dy-
namics defined in Definition 1, we plot average uncertainty
values for relevant and poisoned token selection across class
partitions on the left of Figure 5. For standard data, &% (7)
first increases and then declines, reflecting learning and
eventual confidence. A similar pattern is observed for 6;(7')
in poisoned data. These trends align with the theoretical
behavior illustrated in Figure 3.

On the right, we show test accuracy as a function of training
time. Standard test accuracy saturates at 1.0 after 7 > 2.5K,

o
N
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Figure 5. (Left): Average uncertainty in selecting relevant or poi-
son token over C11,C—_1, Nt1, N_1 as a function of time step;
(Right): Standard test accuracy and poison test error as a function
of time step.

coinciding with the decline in & (7). Poisoned test accuracy
drops to 0 after 7 > 4K, paralleling the decline in & (7),
confirming the theoretical interpolation dynamics.

Test Accuracy Across Varying Attack Parameters. Fig-
ure 7 shows the impact of poison strength «v, poison ratio 3,
and poisoned token length |P| on standard and poisoned test
accuracy. As expected, increasing any of these parameters
degrades both accuracies, confirming that backdoor strength
must be carefully calibrated to maintain clean generaliza-
tion while injecting the backdoor. Notably, training accuracy
reaches 1.0 across all settings, indicating convergence.

Validation of Theorem 4.1 Conditions. Figure 6 verifies
that the five conditions of Theorem 4.1 are satisfied across a
wide range of («, ) configurations with successful attacks
(standard accuracy > 0.9, poisoned accuracy < 0.1; see
first row of Figure 7).

i€Cyq,0<7/ <7 Gi(T/) show-

The first column plots the ratio g

icc_y.0<r<r BR(T)’

ing that it remains approximately within the range of

0.8 to 1.3 across trials conducted with different values

of a and S, i.e., C; > 1.3. The second column plots
. Cr Xicc, o<r/<z Or(T)

Tife {zie[n]‘tem\;w@ ST (I=57 (7))
that the ratio C is consistently at least 0.18. The third col-
CR Y iec, 2oo<r/<r &.(")
aZBCP Sien . oeri<r GL(T)
strating that the ratio Cs is consistently at least
4.0 in successful trials.  The fourth column plots
o*Bp TieN. o< <7 On(T)
r Lieco<r <r Or(T)
ratio falls within the range of approximately 0.4
to 1.1 in trials conducted with various values of
o and (B, ie, Cy > 2.5, The final column

OC/BCPTz ZiENc EOST/ST 6;(7/)
Z’ié[n],pE’P,OST/STsi(T/)P(]‘_si(T/)P) ’
firming that Cj is at least 0.2 in successful trials. To summa-
rize, none of the ratios are excessively large or small, indicat-
ing the existence of reasonable constants C, Co, Cs, Cy, Cs
such that the conditions are satisfied.

, indicating

umn presents min , demon-
C

min,

}, revealing that this

shows min, con-
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Figure 7. Dirty-label backdoor attacks. Standard test accuracy and
poisoned test accuracy when varying the poison ratio 3, poisoned
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token length |P| and poison strength c.

7. Conclusion

In this work, we develop a theoretical framework to analyze
backdoor attacks that target the token selection process in

Yot Y eUT)
(& T

osTsT

'2400
-175
-1.50
-1.25

I1.00

02 03 04 05 06
Poison Ratio

l1.4
-12
-1.0
0.8

fos

1 2 3 4

01 02 03 04 05 06
Poison Ratio

12 3 4
N

01 02 03 04 05 06
Poison Ratio

a
12 3 4

02 03 04 05 06
Poison Ratio

o
o

mzlmm/ Z S-S

Lozs
-0.24
-0.20
016
[o2

01 02 03 04 05 06
Poison Ratio

12 3 4

12 3 4

01 02 03 04 05 0.6
Poison Ratio

|o3n
.25
-0.20
15
Iom

12 3 4

0.1 02 03 04 05 06
Poison Ratio

-0.32
-0.28
-0.24
-0.20
-0.16
012

01 02 03 04 05 06
Poison Ratio

12 3 4

Poison Test Accuracy

1 2 3 4

-1.0
-08
06

0.2
0.0

min{Za 3 6(T) a*Atp
0S5 o5,

01 02 03 04 05 06
Poison Ratio

-l
N
o

-

01 02 03 04 05 0.6
Poison Ratio

01 02 03 04 05 06
Poison Ratio

01 02 03 04 05 0.6
Poison Ratio

- -
o

~

-

the attention mechanisms of transformer-based models. A
primary limitation of our analysis is the assumption that only
the tunable token p is optimized, while the projection head
v remains fixed. Future research could relax this assump-
tion by analyzing more general scenarios, such as jointly
optimizing both p and v, or adapting to practical fine-tuning
strategies like LoRA. Furthermore, extending the theoreti-
cal analysis to multi-layer and multi-head transformers, as
well as investigating other prevalent data poisoning settings,
would be promising directions for future exploration.
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A. Missing Proofs in Section 4
Lemma A.1. Suppose p = 0. Then the gradient descent direction of the empirical risk at v = 0 is
1-5 af 1 4 ,
d:= 7CR(N+1_M 1)+7CP(U+1 - )‘i‘ﬁ Z <Z Ei—z 6%)-
te[T\P \yi=1 yi=—1

Proof of Lemma A. 1.

~ 1 )
~V,L(p,W,v) = —— 3 2(0)y:X' ' S(0)

T
. % <Z xi— 3 x,i) (€' (0) = —0.5)

y;=1 Yi=—

=1
1-8R
=TB%(MH—MA)‘F%BEIJ(NH—ﬁAH‘ onT > (Zet Z 6t>'

te[TI\P \yi=1

Lemma A.2 demonstrates the dynamics of W can be described by the dynamics of p.

Lemma A.2 (Lemma 1 in (Tarzanagh et al., 2023b)). Fix the linear head v € Rd\ {0} throughout the whole training
process. On the same training data S = (X", y*)™_,, we define

Lw(W) = - TSXW Tpy))

Lo(p) = — S(XWp))

n
>t

n
L3
where Wy € R9*4 p. € R? are fixed matrix and vector, respectively. Consider the gradient descent iterations on W and p

with initial values W(0) and p(0) = WoW(0) "p, and step sizes 1 and n ||pH§, respectively:

W(r +1) = W(7) — nVLw(W(7))
p(r +1) = p(r) = nllpoll* VLy(p(r))

Then, we have W(7) Tp, = W, p(7) for all 7 > 0.
Lemma A.3 (Lemma 6 in (Tarzanagh et al., 2023b)). The function E(p) is L-smooth, where

1 — z i3
fﬁgjww RYEEIISBE

Furthermore, if a step size satisfies 7 < £, then for any initialization p(0), we have

~

Eplr + 1)) - L) < 2 |V, Lp(r) |

for all 7 > 0. This implies that
i ~ 2 2
S HVPL(p(T))H < oo, lim ‘v L(p ))H —0

Lemma A.4 (Lemma A.l in (Sakamoto & Sato, 2024)). Suppose that Assumption (A1) holds, then there exists some
constant ¢q,ce > 0, and C’ > 0 which depends on C such that for all ¢/ > 0, the following hold simultaneously with
probability at least 1 — 4,
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1. Foralli € [n],t € [T], (1 — sy — @)V TE(E) < [lef]] < (1 + &)/ Te (D).

2. Forany i,j € [n],t,u € [T] such that (i, t) # (j,u), we have | (€}, € )| < c1/Tr(Z)log (T'n/$).

(€}, ie)| < 2 llpll \/log (Tn /).

Definition 2. If the event in Lemma A.4 occur (defined as &), let us say that we have a good run.

log (Tn/9d),

3. Foralli € [n],t € [T],c € {£1}, we have | (€}, )

Lemma A.5. On a good run, for the clean data j € C, r € R, we have

vt < B (o + (U2 9 o ) sl Viog s+ L i)
vt =l (S cn il = (52 et O o 1) ca i (7))

For the poison data k € N, r € R,p € P, we have
vt < B (2 ut+ (U5 2 ent 5004 L)l Viog T+ S )
ot 2 W (P - (52 e G0 1 ca i )

v < (B i+ (5§ - v ) exll Viog 7))
vk 2 L (“ L~ (5 - e ) el Viog Tr5))

For i € [n],v € Z, we have

e (=), 05 (1+1/C77
vt <t (45 )ex Vi Tz + S )

vab = -l (95 ﬂ)<R+ 2 r ) cxllal Vo))

"7 il

Proof of Lemma A.5. For training data with label 3/ = 1, y* = 1, with token € R,p € P,v € T, we have
Yl =y'xd v

= (u41 + € )T|||Z| (ﬂCR(PJ+1 M—1)+%CP(/1+1—/1—1)+2”T Z (Z €t yZ €t>)

te[T\P \yi=1

te[T]\P \yi=1 yi=—1

+ m (CR (€ pyr—po1) + ECP< €, i1 —fi-1) % > (Z (ehel)= > <6é’67j”>>)
e[TN\P

yi=1 Yi=—

”;”( Crllpl® +2niT Z <Z</‘+1a€t Z </~L+1,€i>>)

k. k _  kok!l
y77'_yx7' v

= (-1 +ei)T HZ” (_ﬁCR (pp1—p—1) + %BCP (fig1—fi-1) + 271% Z <Z & — Z 5%))

te[T\P \y;=1 Yyi=—
(8 e, i |
||dH 4 CRHNH +27’L7T Z Z_<p“—17€t>7 _Z <Iu_1’€t>
telTI\P \i=1 =
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1-8 3 i i 1 i i
+||||dy|| TCR<€7]?7N+1_N71>+%CP<€§7N+1_N71>+ﬁ Z (Z <€t76f>—z <€t765>>

te[T\P \yi=1 yi=—1

k ok _ ko kT
yyp_yxp 14

1— 1 . .
= aﬂL'E” TﬂCR (1 —p—1) + O[TBCP (Bp1=f1) + o > <Z €= 6@)

te[TI\P \yi=1 yi=—1
_ vl a’p 2 o _ i . i
o T A (D SR (I S S e
Il 4 2nT
te[T\P \yi=1 yi=—1
Similarly, for training data with label 3/ = —1, y* = —1, we have
Yl =y'xd v

. 1— 1 4 .
— D) | 5w =) + S i) + g 3 (Z i Z;z)
R

te[T\P \y;=1

:%” %@Huuu%% 3 (Z <ﬂ1,e;‘>_z<ﬂ1,6g>>
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Using Lemma A .4 gives us that

vl <o (1;% 4 (052 5 5= cr ) el Viow )
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T < ()4 (nT—B¢pnT — 1)e1y/Tr(T) log ( Tn/5>>
s””h 2l +((1;5)CR+<O‘ D6 1) ol Vi T+ L v
(Assumption (A1).)
v > ||V|||<115<R = (S5 2 et G ot~ 5o ) ca Vo (T07)
+2an<(1_Tréz)_cl/)2mZ) (T—BCpnT — 1)ery/Tr(%) log ( Tn/5>>
> (e - (52 et O ) sl Viog /) (Assumption (A1)
vt < B (e i+ (B2 n s 1 ) o T+ L )
ot 2 P (1 e - (U5 2 e G ) o ) Vg /)
vk < B (S 2+ (5 - e el Viog (7))
vk 2 W (SR~ (5 - e el Viog 7))
v =y, v
— it [ TR e pia =) + e (=) gy S (z<yiez,ez>—z<yiez,ez>))
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where Assumption (A1) gives us that Tr(X) > Cn?T?2 log (T'n/6)?, otherwise all the term TT(TE) would be replaced by

/Tr(X2)log (T'n/d), and all the lower bound would add an additional term —+/Tr(X) log (T'n/J).
O

Lemma A.6. Let p(7) be a gradient iteration at 7-th time step. Then there exists unique coefficients such that

p(T) = A1 (T) Wit + A1 (T)Wpit + A1 (T)Wiir + Ao (T)Wii_g + Z Z pit(T)We,
i€[nJte[TI\P

where the initialization is A.(0) = \.(0) = p; ;(0) =0 for any ¢ € {£1},7 € [n],t € [T}, and the signal updates are given by

AT = Ar D) = A =L ST (=) 3 s ) (yw:;— ) si<7>uy%) ,

1€EC.UN_ reR u€(T]

AAe(r) = Aclr+1) = Xe(r) = ZL 37 (<) - Y 57, (yw;;— 3 si<r>uyivz>7
]

1EN, peEP u€e[T

14
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and the noise updates are given by

Api(1) = pig(T +1) — p(1) =

33
|
X

() -yt st (e [ = D s (D | Vi€ ]t € [T,

we[T)

Proof of Lemma A.6. Recall that

1 & , ;
:,E AT X
ni:12 Y vpf( )

=Yty WX' (diag(S(X'Wp)) — SX'W p)S(X'WTp) ") X'w
n i

:%Zayl Zst 7t Zsu’yu WXt
=1

te(T) w€([T)

where ¢/ is abbreviation for ¢ (y° VTXiTS(XiWTp)), si is abbreviation for S(X'W T p);, 7 is abbreviation for xi ' v,
Vt € [T. In the dirty-label backdoor attack setup,

pyi +e  i€CteR
Xi: 'U,y'i"'ei ZEN,tER
¢ a/]‘yi ieN,teP
€ iceCUNteT
Therefore we have

p(t+1) —p(r) = —nV,L(p

=1 Z —l(r ' Y= ) s | WK

fe[ ] u€(T]
nz Z' S’L . Zsi(T) i Wi
U’yu /uy’

i€C re u€(T]

- CTACINEN DBEICN B S W /e

ieN reR we[T)

an 7,' i i i i ~
Z —Lli(7 Z s'"(T)p | 1 — S (T)uva | Wikys

iEN pEP u€[T]

n . i i i i i i
+5Z(%(T))~y DD S D sl | We
=1 te[T\P u€[T]

As a result, we are able to decompose into the following form
p(r+1) —p(7)

= A)\+1(T)W‘LL+1+A)\_1(T)W,U,_1 +Ai+1(T)W[L+1 +A5\ WM 1+ Z Z Apz t WEt,
i€[n]te[TI\P
where we have Ve € {£1},

M) = Ae(r+ D) = Ael(r) =L 37 (<40) - DS |y = Y S Dy

1€CUN_ reR u€[T]

15
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€N pEP u€(T]

AXe(r) = Ae(r +1) = Xe(r) = ZL 37 (=4(r) - Y 5'(7), (yw;;— 3 si<7>uyw;>

u€e[T)

Bpialr) = pialr +1) = plr) = L(~£(7)) - 5 (), (M’ -3 s"muyw;;) Vi € [n],t € [T\P

Below we calculate the upper bound and lower bound of AX; 1, AA_q, A5\+1, AX_; and Ap;+.

Note that for ¢ € C and any relevant token r € R, we have
v = > sy

uwe[T)
= Y S - v')
ue[T\{r}
S s (W = yn) + 8 (D (Y — v')
weR\{r} uel
N2
s s (((1—5)CR+(a—1)ﬂCp+1)62Iull Tog <Tn/6>+“+;/TO)Tr<E>>
uweR\{r}
1\2
+IIKZHZSi(T)“< 46 Nl +((1—ﬂ)<R+pr+ )02 [l log(Tn/5)+(1+i/TC)TY(E))
uel
[ 1-5
< Il < 2 ) 1SR e
y 2%v—1 C/ 2
+ 1= o)) (( <R+(°‘2W<P+1) ex ] Viog (Tn/a) + LD Tr<2>)

we[T)
C’
> S o (- - a- e el Visg T - P/ vy
uER\{r}
v a— C’
1S o (Fen - (0-cn+ P 6o 1) ca il iog e - L )
uel
Il oo N8
1— .| =2
z”d|< u;fm) Zealul
1\2
I - ) (0910 C2 L ot ) o el i T+ L )
For ¢ € C and any irrelevant token v € Z, we have
vl = Y s Ty
u€(T]
=Y SO v+ Y S (U — v
uER u€Z\{v}
_ I (2a-1)5 1 (141/C")?
< g 2+ (—cRmu + (=m0 + 25 4 ) ol Vg U ) )

16
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+M > s ((( B)Cr + aBip) ez |ul log<Tn/6>+(1“/O/)2Tr<2>>
jal, 2
Il 1 (1+1/0"
< () ((a-8)ca+ascr + 3 ) ol Vo Tgar+ L gy
WS~ oy 228
i 2 g
v — Y STy
u€e[T)
> M5~ o, (—1;% i~ ((=8)ca+2a=1)56p+3 ) enllll Viog (Tfs) - L m)
UER
S s ((-snrasee el i @) + P 1))
uEI\{U}
g 1 a+y/en?
>l -, ((1 ﬁCR+aﬁCP+2>02 il Rom Tn/a) + S s )
[
~ 27;

Similarly, for 7 € A and any relevant r € R, we have

v = > sy

u€[T]
= > SOu W=y + DS (M (W = y) + Y8 (M (W — y'L)
w€R\{r} u€P u€l

S D SEFC (((16><R+<al>@@+1>c2|un 1og<Tn/5>+““/C')Tr<2>>

=i, 2= e
dgng; ( (14ﬂ< +Mc )IIM2+<(1;6)<R—’§cp+1;“)@ lul log(Tn/6)+(1—|_:L§?/)2Tr(z)>
+ 1l DI (—1;% I+ (=06 E o ) el g Ty + LYY Tr(Z))
<1 <1_1§zsimu>{f Il —dﬁ”% DL P

2a—1)p 1+«

"2
+W (1782’(7-)7“) (((1B)CR+( 5 (p+ 5 >CQ|;L|| log (Tn/5)+% TI‘(E))

Tl S (MR

u€e[T)

N2
> B S, («1ﬂ>cR+<a1>5<P+1>c2||u|| log<Tn/6>+“+f/TC)Tr<E>>
uweERN\{r}

S o (- (e + 2L ) P (=)= Gor+ 152 ) calll Viog ()

ueP

17
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[1d]]

u€L

2

S i (—TCR||N||2—((1—5)CR+(2OL D3¢y 2 el Viog ) - LMY Tr<z>>

il i 1- 5 HVH 2/3 2

u€ER

(2a—1)6

il i N
Hd” ( - (T)T) (((1 B)Cr+ D) Cp+

For i € N and any poison p € P, we have

v — Y s (T

uw€[T]

2
1;“) ex Il /iog (T o) + ELC). mm)

=3 S W —vv) + Y S W = v l) D8 (M (W — YY)

uER uEP\{p}

uel

<5 s (520 + 20 i+ (520 S+ “) cr ] Vo (7))

A $'(7)u (@—afe) ez llul /1o (Tn/3)

Il oy

Iid]

u€EL

]l

14l ; o?f
+ Idll (1_ Z s (T)u> (CP + CR)

ucP

]l

v, — Y S

ue[T)
I 3 8
> H ” Z <(CP+C
UER
(1+1/C"y? vl
T ey | =
ar )> T 7,2\{}

, ‘ _ ) a2 .
_ I <(1—sl(7)p> (5cn+a) aallll Viog s+ (1—2 sl<7>u> T Y S

LS st (S o i+ (5 ) sl Viog @7
< vl (1—s'(1)p) (1_2551% + a) ca ||l /log (T'n/5)

vl 1
= o 3 st (2 t?)

u€el

uePpP uER

2

Y in® = (Y52 cn+ 228 o el ios T/

5'(7)u (0—apcp) e |l v/log (Tn/0)

LI 0B (Q
gt (4Cp||u| (

Wl TR
=~y ”)(24“)2

vl ; o?f
o (=D 8" (M | | ——Cp e
a2 1
For i € N and any irrelevant v € Z, we have

v — Y s My

uwe[T]

et ) 1l v/iog (Tn/5) - 1“/0')Tr(z>)

[l V/log (T'n/0)
1+1/C"? v i 1-p5
- n) + i s

nT a2

18
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=) S W =y + DS (e (W =y Y ST (P (v — v

uER u€P u€Z\{v}

v (a-1)8. 1 (11/C'7
< (cwn #(@=mn+ B 6ot L ol Viog o)+ TS o)
v (% 2 « — \2
|'|d|| > A (e i+ (54552 n) o el Vo T+ L )
it X S (a5 + asce) ol Vg TR + L )
jal, 2 T
Il ¢y _ o (a+1/C)
gw(l—smv) (((1—6)CR+aﬁ<p+) cxllul Vg T + S5 )
Ll LB MI iy 0%
vivh = Y s
we[T]
> S s (S cn - (a-16n+ 5 o ) e s Viog 8- LS i)
uER
) 3 (e = (75 + 5 ) e il Viog /)~ ey’ mz))
S s ((0-806n + asee) e ol Viog Ty + LD Tr<z>>
jal, 2 T
ol o (1/Cy
>l (1= 5),) <((1—6)43+aﬂ4p+) cxJll or (/) + L o)
RSN o SO 17 RSO S
) 25 gl — S e
Therefore we have for ¢ € {1},
Mr(r) =L 3 (@) DS (= Y S
n 1€C.UN_, reR u€(T]
nHVHZ DED DECH W EE SRUE N o
141 ; w A& e

"2
+(1-5),) (((1—5><R+ 0 o) calll iow T+ Tr<z>) )

+’7|||£||| pEEDS i(T)T<<1Zsi(7) )cR Wl = 3 5 L

reR uER ueP

+ (1= s'(1)) (((1—5)CR+ (M;l)ﬁCP‘H) cz [l Vlog (Tn/5)+% Tr(E)) > ©

AN(r) 2 i D) 3 sw( (1— > simu) e

i€Ce rerR uER
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- (- s(),) (((1—/3><R+ 6ot callull g Ty + Tr@)) )

- Z:';'l' > A w( (1— ) simu) Ll + Y s e Il

reR uER ueP

2
+(1si(T)T)<((15)¢R+(2a;1)ﬁ<p+1;a>cg i log(Tn/5)+(1+;/TC) Tr(z))) 7

=LY () Y s (v;;— > s%mz;)
]

i€EN. peEP we[T

< 2k 5 o X >(<1_5i<7>p> (5cn+a) el Ve T/a)

peP
u€P uel
0”1 ||’/H ; 1-5
Ade n 4] Z N s (T)P< (1=5"(r)s) <2<R+0<> ca ||l v/1og (Tn/5)
peEP

+<1—Zsi<7>u) (Lertr - L 1)) + 3 it ||u||2> ©)
uER

ueP

Fori e C,r € R,v € Z, we have

Apip(T) = %(%(T)) 5" (7), (yi%’i -y si(T)uyi’nﬁ)

u€[T]

<N I / i i 1-p 2
gw( Gi(7)) s (T)r( (1—2 s (T)u> TCR [ ]

ueER

+ (-5 ((a-pre+ 201 ) 1og<Tn/6>+“+,1lf/)2Tr<2>)> (10)

n vl ' i i 1-p 2
Bpir(r) 2 L)) -5 w( (1 > mu) —Eealul

uER

(2a—1)8
2

- (=00 ((a-p)cn+ cr+1) ca ] Viog (Ta/5y+ L ) ) (1n

Bpia(r) = L(=t(r)) - 5'(7), (yw:; -y si<7>uyw:;)

u€[T)

TR s"mv(‘ S 0 il

ueER

+ (1= sr0) ((=006n-+ e + 1) ol Vo Ty + LT 1)) ) (12
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8oy = T ) - st(r), ( I G P

ueER

1\ 2
— (1= s()) (((1—@@ T aBir+ ;) ex 1l Viog (o) +- L) Tr<z>) )

Fori e N,r € R,p € P,v € Z, we have

Apiﬂ” = 2(762(7)) ! Si(’r)r (yZ’Yqz« - Z Si('r)uyi’)’qi)

uw€e[T)

DIVl ey g i) Z il = 3 s
< e s (r)r<— (1—2 s (T)u) 5 Callul® =D s (u—=Ce llul

ueER ucP

N\ 2
(1= () <(<1_5><R+ 20 ot 5% ) ol Vg y + Tr@)) ) (13)

v . . — 2 . a2 2
N els) .szmr( (1 > s’(%) ol + Y s e

uER u€P

+(1-si(r),) (((1—/3><R+ e S I N Tr<z>> )

Apip = L(=E(r)) - 5' (), (yw;; -y s%)uyw:;)

w€([T)

< ZH”|I|(_4<T)) . si(T)p< (1=s'(1)p) (1_25@% + a> ca |l \/W)

2 _
s (1—2 Si(T)u> aTBCP lall* + () 46<R 201

uER
Apiy = L) 510, ( - (1=50)) (52w + ) el OB TR D)

a2 ) 1\2 . — 2
N <IZ Si(T)u> (45@3 llull® = %Tr@)) +> (1) 4563 4l )

ueP uER

Api,v -

33

(=i(7)) - 5" (7)o (yi%i - Si(T)uyi%i>

u€([T)

< 1N piry) - iy, ( > si(T)ulzﬁgR lpl® = si(r)uo‘TﬂCP

Sl e ie?

(=) ((a-B)cn + a6+ 3) exll Viog (Tfs) + L () ) (14)
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v ) . — ) a2
Apiy > EU(—E;(T)) -8 () ( Z sz(T)u%CR llull® — Z SZ(T)uTBCP

uER uePpP

3
&

a 2
— (1= 5'00) (=91 + acr + 5 exll Viog o) + UL i) )

O

Lemma A.7. Suppose that the norm of the linear head v « d and % scales as ©(1/ ||u||*). There exists an absolute
constant Cy > 0 such that on a good run, we have for all time step 7 > 0,

()
max —r—s <
i,j€[n] €j(7)

-

Proof of Lemma A.7. Recall that the derivative of the loss function is given by

1
() = -
1+ exp (Zte[T] Sz(T)t%Z)

forany ¢ € [n],7 > 0. One a good run, for all i € [n],k € N,r € R,p € P,v € Z, we leverage Assumption (A2) and
Lemma A.5 to get the following

i _1-p (1-06) (a=1)p 1\ e (1+1/C")?
] < 1 CR+( 5 Cr+ 5 CP+2> oz oT

i (1-8) af o (1+1/C7)?
|%|<< 3 ¢ +2<P) cre T or

2
el o B a af Co
ph< e (5~ ) e

Therefore there exists some constant ¢ > 0 such that |y;| < ¢, Vi € [n],Vt € [T]. Since —¢} is monotonically decreasing,
we have
1 1

Y /A €) [ —
1+exp(c) — bir) < 1+ exp(—c)

This leads to Cy = ﬁ%ﬁm' .

The following lemma show that given a sufficiently small step size, the softmax probabilities do not change significantly in a
single step of gradient descent.

Lemma A.8. Suppose that the norm of the linear head v o< d and % scales as ©(1/ ||u]|®), and the step size of the gradient

descent satisfies Assumption (A3). Then the probability assigned to each token only changes at most by a constant factor,
1, , ,
V1 >0, Vi € [n], Vt € [T7, §SZ(T)t < ST+ 1) < 28°(7)s.

Proof of Lemma A.S. By the updated of gradient descent, we have

exp (xiTWTp(T)> exp ()(,Z;TWT (—nvpz(p(T)))>

Sy exp (6 WTp(r)) exp (xi,"WT (=19, L(p(7)) ))

s(t+1), =

22
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Consider a consecutive time steps, we have

e N
max, (7 {exp (XZTWT (—nvpf(p(T))))} oS T min,, e {exp (XZTWT (—anZ(p(T)))>}

Therefore the proof is completed by showing that

Yt € [T),Vu € [T], = < exp ((xi - Xz)TW—r (—nvpf(p(r))D <2.

M\H

To analyze the term inside the exponent, we have

xi W (=nv,Lp(r)) |} (15)

[ = %) TWT (=W Ep(r) )| < 2max {

te[T]

Following from Lemma A.4, for ¢t := r € R, we have
il 7
xi W (<nV,L(p(r)))

= (py +er) <A>\+1 Tigr + AN 1 (T poy + AN (P i + AN A (D + > Y Apz‘,t(T)fi)
i€[n|te[T\P

i€nJte[TI\P

_|_Z Z Apit(T)er/Te(Z) log (T/8) + Api (14 1/C") Tr (%)

i€nJte[TI\P

< Ay ()l + (Am(r) £ MM () + AR (D) + AL + 3 D Aplr ) ¢z lul v/1og (T /5)

For t := p € P, we have
K3 T T
X, WT (=19, L(p(7)))
=apl, (AAH(T)NH + AN A(Ppa + AN (M) A AN (D + Y Y Aﬂi,t(T)ﬁi)

i€[n]te[T\P
<ald () ul® +a Y7 YT Apia(res |lul viog (Tn/s)

i€[n|te[T\P

Consider we assume II‘\Z\‘II scales as ©(1/ || 2/|*), then Equation (6) gives us that

— 72
Ado(T) < = 5 (BCR‘F ((1—B)CR+<20‘21)5§p+1> CC;QJF(HC{/TC) ) <n (16)

where the last line for sufficiently large C' and Assumption (A4) so that ogang < 1. Similarly, Equation (8) gives us that

2
s < B0 (e + e+ (Fanva) g2 ) gt

where the last line is because Assumption (A3) so that (g < a?BCp.
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Equation (10) and (12) tell us that for ¢ € C

Z|Apzr CAGHE Zsi(T)r

reR reR ueER
; (2a—1)p log (Tn/6) (1+1/C")? Tr(%)
+ (1= 5"(1)r) (((1—@(1%-1- 5 CP-H) 2 T R Tk ) ‘
_ _ 12
<2l (0-monr B ) S BEIEE) Assumprion (a2)
< % (For sufficiently large C'.)

veEL veT ueER
. 1 log (Tn/é6) (1+1/C")? Tr(T
+(1=5'(7)) (((1—5)@% +aB¢p + 2) c2 og|L|n/ )+( +néﬂ ) ||N(||2)> )‘
i _ \2
<1 (14543 " ((16><R+(20‘2 L)p <p+1> i B L. > (Assumption (A2)
< % (For sufficiently large C'.)

Similarly, for i € N, (13) and (14) tell us that

> 18pinl < %(—4;(7)) s, (- <1—Z si(T)u> #CR > (1) —ﬁﬁp

reR TER UuER ueP
; (20-1)8 . 1+« log (Tn/d)  (141/C")? Tr(%)
+ (1= s'(1),) (((15)@3# 5 Cp+ 5 ) o T M— e > >|
2
< e (@?BCp > Cn)

> 18l < L(=6(m) - Y s (),

(Zﬁmff > s

vET veL ueR ueP
} 1 ) )2
o) (a0 e+ ) e VR QUCOT) )
< o?BCpn
~ n

From Equation (10), (12), (13) and (14), we have

DAV o | S PV O | R S VAV Co T S SO PP | R N Fa VIR €l

i€[n] te[T\P i€C,rER i€CveT 1EN ,TER €N, vel
< (1—B)%n+a?B*pn (Assumption (A4) gives us that o?3%¢p < 1)
sn (17)
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As a result, we have

W (ko) 5 (1+ 55 )nllu2
xp W (=nVoLip(r))) S ('8 + = ) mllull®

Therefore, choosing a sufficiently small step size 77 by setting a sufficiently large C' can make Equation (15) smaller than
log (2), thus concludes the proof.

We end with a remark that if Tr(X) < n2T2log (T'n/d)?, then all the term n?ﬁ‘)lz would be replaced by —”Tr@ﬁ:ﬁ@n/&),

which can be further upper bounded by # from Assumption (A2) and therefore all the discussion remains hold.

O

The following lemma shows that for any clean data, with high probability, for any time step, the attention probability from
the relevant token would dominate.

Lemma A.9. Suppose that Assumption 1 and 2 hold, and the norm of the linear head v x d and H d” scales as O(1/ ||u||?).

For any clean data i € C, on a good run, for all time step 7 > 0 and all irrelevant token v € Z, we have
i < i
$'(1)y < rrnea%{s (T)t}

Proof of Lemma A.9. The proof is via induction. The inequality holds at initialization as all the elements are equal to 1/7".
Assuming s°(7), < max,cr {s'(7), } and we prove for s'(7 + 1), < max,egr {s'(7 + 1), }. For v € Z, we have

max, e {81(7. + 1)T} B maxrcRr {exp (XT WTp(T + 1))}

si(T+1), exp (X%TWTP(T + 1))

max,cRr {exp (xiTWTp(T)) exp ( wT ( ﬂVpE(P(T))))}
\%

S T)T/
> e (5 X)W (%))
where ' = argmax,cg {s'(7),}. As long as we can show (x/, —fo)TWT (—nvpf(p(T))) > 0, then

max,,,en{si(‘r+1),.} sH(T),
SO, 2 S

which proves via induction.

We now consider two cases. If ) 0 sH(T)p >1— 4T, then the probability of not selecting the relevant token is less than
%. Apply Lemma A.8, the probability of not selecting the relevant tokens after a single step of gradient descent is at most

57, and therefore ) - si(r+1),>1- 2T, leading to

1 1 1
< <
s'(r+1), < o SR (1 2T> max{s (T+1)}.

Now we only need to consider the situation where Y_ 5 s'(7), <1 — 7. Note that s*(7),» > 1/T also holds due to the
definition of r’. We have

(xi = xt) W (=n¥,L(p(r)

. ) N T - -
= (s et =) | AN+ A (Do + AN (D + A (i + Y Aps(r)el
i€[n]te[TI\P

2 (Api,r’ (1) = Api,v(T)) Tr(X) + A/\yi (1) HMH2 - Z IApk u 1V Tr(2) log (Tn/9)

ken],ue[TI\P
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21800+ 21800 m) + 2 [Axa ()] + 2 [AXL @]+ Y 1Akl | Il Viog (Tn/)
ke[n],
u€[T\P

where the last line holds from Lemma A.4. We will show the above equation is positive by controlling each term separately.

Note that HZ” = (1/ |m||2> , leverage Equation (11) and (12) gives us that for ¢ € C,

(Api,r’ (T) - Api,v(T)) Tr(X)

> Tr(2)— 5 (~i(r) - <si<7>w ( (1— ) s%)u) o

g =

a— 1\2
(1= s(r)0) ((<1ﬁ><R+ Ba_1)p <P+1) ex |l Viog (o) + L) Tr@)) )

— (1), ( - Z Si(ﬂu%CR [l

uER

+ (1= s00) ((=906n-+ e + ) ol Viow T+ 2 () ))

> Tr(E)— 5 (~£i() <si<f>~ (1—2#‘(%) Sl

i =

nT
(Si(T)T’(l - Si(T)r’) + si(T)v(l - Si(T)v) < 25i(7>r’)

> Te(2) L (~(r) - ' () (1—2#‘@“) (ff@nun?

I =

~2i(r), (((1—% + aBCr + 1) |l /Iog [Ty + LHLCL mm) )

n
12
S (((1-)cn + aice + Vel Viog T + 5L ) )

(25 (7)p < 8T () (1= yer 5" (T)u) as 1— Zuens )

zﬂ(z)%(_e’( )>4;2 (TCR—S (((1 B)Cr +aBlp+1)c T\/W 1+17{C/ HMH ))
(s* (7). ( —2uer S’ u Z 4T2 )
_ 1\ 2
> 2 g (5 s (@ ot 4 G T

Similarly, Equation (7) gives us that

> 15t 3 (13 o)

i€Ce reR uER

(1 i B (20—1)8 o Nlog(Tn/6) | (14+1/C")° Te(S)
(1 (»)(((1 B)Cr+-— <p+1>2 T — ||u|2>>

n / ; : 1-58 ) o?
- n Z (_gi(T)) Z 31(7)r< (1_ Z 31(7)u> TCR + Z SZ(T)

uER uePpP

iy 3 (2a-1)f .  1+a) +/log(T'n/d) (14+1/C")* Tr(%)
+ (1 ()T)<<(1 B)Crt 5t — ) 2 + |M||2>)
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> % Z (_EQ(T)) Z si(7)7»< <1— Z 52(7’)u> %CR (Denote ZieA\B T, = ZieA xr; — ZieB ;)

1€CAN_¢ reER u€ER
7\ 2
- (1-5(r)) (((1—ﬁ>cR+<2a Lintr) g+ ))

SIS o) s s <>—5<P

n,
1EN_. reR u€eP

o— c "2 a?pB?
2 b)) (18T2f (% ((( 1=+ E D g ) 2 T ))— v <P>
Vi€l cr s () (172%7%51'(7' w) > sH(7) (1 =Y uer S(T)u )_ 77=» Lemma A.7.)

)
(—t(r >><1gT2f (1%— <(<1_5><R+<2a;1>/3gp+1)szﬁ(lﬂéc’))))

where the second last inequality applies Assumption (A4) so that %’3 > o3%(p hold and therefore the positive term
dominates.

3\3

Moreover, from Equation (10), (12), (13) and (14) we have

_ o232 c
> |Api,t<7>|sn<“ B S (- B) i+ o+ 1) 2

i€[n],te[TI\P

R (Ta/d) | (141/C'2 Tr(s)
] nT |l

1-p)? a?p? 14+1/C")?
< (B r o S+ (B aio ) g + )
Equation (6) or (16) gives us that
_ _ 2
AN (1) < g (TCR + ((1—5)CR+ (2a2 1)B<P+1> CC;Q + (H_Cl,/TC) > (Assumption (A2))

M) < XY (<) 3 5(r) ( (1=5')) (F526r + ) e B ERD)

€N, peEP ||ﬂ||

, a? : 1-8
+ (1 Z SZ(T)U> TCP + Z 5" (T)u 1 CR)
ueL

L obn (1% . ﬁg N (1—% +a> ,, V1o (Tn/5>>

[l

2
o2
< apn (MCR-F 5CP n (1 5<R+ ) C’C;Q) (Assumption (A2))

Assumption (A2) gives us that ||| > CT2\/log (Tn/d), ||ul|> > CT?log (Tn/8) \/Tr(%), CTr(X) < n|u|?, and
therefore we have

(xi = %) T WT (=%, Lip(r)
(-0 4 (1 1By (((1_5)4R +aBCr + 1) o (1+1/O’)2) ) Te(%)

aT? 2)CT C n

+ 128 ) (1 s <(< -+ B ) o LD )) Io?
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_ 2 2 O/ 2 2
_77<(1 45) Crt ﬂ Cp+ (1— B)Cr-+aBCp+1) CT2 N (1+é/T ) ) (1 +é¥2||u\\
— _ N2 2
— <T<R+ ((16)<R+<2a ) g ) ) L
2 _
40@7(1 S P (1264’%“‘) CT2> Gk

>0

holds for sufficiently large C' conditioned on Assumption (A4) so that (p > O‘g%’ ,Cr > %, af <1.
O

The following lemma shows that for any poison data, with high probability, for any time step, the attention probability from
the poisoned token would dominate.

Lemma A.10. Suppose that Assumption 1 and 2 hold, and the norm of the linear head v « d and H d” scales as ©(1/ || u||?).

For any poison data € N, on a good run, for all time step 7 > 0 and all token except the poison token ¢ € [T]\P, we have

s'(r)e < max {s'(7), }

Proof of Lemma A.10. The proof is similar as that of Lemma A.9. The inequality holds at initialization as all the elements
are equal to 1/7". For ¢t € [T]\R, We have

maxpep {s'(7 + 1), } - sU(T)

o2 o (6 X)W (aviLer))

where p = arg maxpep {s'(1)p}. Now we only need to show (x}, — xi)T w' (—anE(p(T))> > 0. For
> pep S s ()p >1— 4T, induction holds for the same argument as shown in the proof of Lemma A.9. Now we only need to

consider the situation where 3 s'(T)p < 1 — 4. Note that s°(7),» > 1/T also holds due to the definition of p’. We
now consider the following two cases.

Case 1:i € N, t:=7r € R. We have
(xi = x1) " WT (=n¥,L(p(r)

~i i i) 5 ~ 5 ~
= (afiyy — . — ) | AApa(Ppar + A (Dp + A (D + A (M) + Y Y Apiuln)e
i€[n] ue[T\P

2 AR ()l A ()l = A (1) (D) | S A i) en /(D) o (/)
ke[n],
ue[TN\P

= 1A @A)+ A ()] + A3 )|+ + )| Y Apeal)] | Il Viog (Tn/5)
keln],
ue[TN\P

We control each term separately.

PICTACIED DGR ( - (1=5y) (152 6m + ) calel Viog )

C nH/J“”z iEN, peP
; o? 2 (14+1/C")? iy, LB 2
+ (1—2 s mu) (4<p lull? - nTTr(E)) +2_ 5 (Mg Crlul )
ueP uER
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> 2 S () s )y (— (1—2 simu) (15 26n+ a) o YELTD)

ueP
(Zpe’P ' (T)p = 8'(7)y, 1=> uep s (T)u > ﬁ)

; o8 (141/C)* Tx(%)
+ (1_2 S (T)u> <4CP - nT HM”z ) )

ueP

afn 1 , 1-8 4T\/log (T'n/9) (1+1/C")?
7y e ) (‘ R e s ||uu )
' () (1=Zuep s'(Tu) = 772)
> ggj 4;2( (7)) - <— (1—25<R + ) oT + iCP (H—ééC')) (Lemma A.7, Assumption (A2))
For i € N, we have
) . 1— ) 2
—Apip(T) > Z(%(T)) : sz(m( (1 > sl(f)u> TﬁgR lpl® + > SZ(T)UQTBCP Mk
uER ueP
; (20—1)3 ., 1+a log (Tn/d) (141/C")° Tr(%)
) (1 o510 50 VRS s )
n, ., (2a—1)8 1+a\ e (1—}—1/0’)2 .
> —5(—&(7)) ((1—5)CR+ 5 Cp+ 5 ) CT2+ oT (Assumption (A2))
Therefore,
(x;, — xi)TW—r <an Z(p(T)))
o?py 1, B (1+1/C")?*  [(1-8 co 2
2 S (-t (cp - (Frena) CT) Ju
- 2a—1 ch?
) (Tcﬁ (0t Co 1) iz L) ) Jul?
_ 1\2
) (((1—6)<R+(2“21)ﬁ <p+1> e L) T8 (Assumption (A2)
1-8 1+1/C)%\ (1+a+ 2

1-p 20—-1)B c 14+1/C")? 2
2 <4CR+ ((1_ﬂ)<R+( 2 : CPH) 012“2+( C/T | ) %;!2

2 _ 2
— 208 (IBCR + 75@3 + (12641% + a) C?z) HCIL'LCZU?

>0

holds with Assumption (A3) for sufficiently large C' so that “4§24P > CCgr, a®BCp > - These assumptions should also
ensure the following case to be positive.

Case2:i € N, t:=v el
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For i € N, we have

_ 2
—Apin(T) > %(—4(7)) - 8" (T)r <— (1— Z si(T)u> %CR [l + Z SZ(T)uTBCP Il

uER uePpP

() <((16)CR+(QQ1)5CP+1+Q)CQ log (Tn/5) , (141/C") Tr(z)>>

2 2 o] W P

1-8 (20—1)8 1+a> o (1+1/C")?

> -1 (-4(m) <<R+<(1—B)CR+ 5 et et or >(Assumpti0n(A2>)

Similar as above, we have
i T wT T
(xp, - xv) w (—r]VpL(p(T)))

= (apty — €)' (A)‘+1(7)ﬂ+l F AN A(Ppr + AN (M) + AN (i + Y Y Api,u(T)Gi)

i€[n] ue[TI\P

2 ANy (malpl® = Apso() Te(E) = D [Apku(r)| e1y/Te(S) log (Tn/6)

ke[n],ue[TI\P

~ 183 @]+ 18X ()] + [Ada ()] + A%+ D7 18peu(n)] | o llull vViog (Tn /o)
k€[n],
ue?}]{P

2pn 1 14+1/C")? 1-
> Sl () (%—( - (Flanea) CT) Iul?

~ -t (e + (0 5)CR+WCP+1> 2 IRV IS Gassumpiion (42)

2 CT? CcT n
1- 1+1/C" 2
-7 <46CR+(( —B)Cr+aflp+1) C’T2 +( +C/T ) ) (a +OC¥2HMH

1-p 2a—-1)8 1+1/C")? °
— 2am <4CR+ ((1—5)41%4-( a2 ) CP+1> C;Q-i-( C/T ) ) ”Clﬂ?

5. a2B 1-8 +1 &
—2a2377<CR+C +( 5 CR+a2 );;2> ”CI,ATQ

>0

holds with Assumption (A3) for sufficiently large C.
O

Lemma A.11. Suppose that Assumption 1 and 2 hold, and the gradient of loss function satisfies lim_, o vaf(p(T)) H =0.
Then for each clean sample j € C, there exists the token index ¢} € [T'] such that

lim s/ (7) =1, lim s)(r) =0,

T—00 J T—00

forall j € C,t € [T]\ {t;}. For each poison sample k € N, for every poison token p; € P, we have

lim sF(7) =0,

lim s*. (1) = Pl

700 Pk

forall k € Nt € [T]\P.
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Proof of Lemma A.11. The proof largely follows the proof of Lemma D;3 in (Sakamoto & Sato, 2024). Recall the following
technical results: For linearly independent vector vy, ..., v,, € R< and coefficients a1, . . ., an € R, there exists a constant

co > 0 such that HZ , > ¢ Eie[m] |a;].

Recall that the gradient of the empirical loss function is given by the linear combination of { Wxi }i el te[T)’

i€[m] a’iVi

VoL(p) %Z#y"- Sosivi- D shon | wx
1=1

te[T) we(T]

%Zﬂ’- st v = 3 siad | W Ze S sk = 30 stk | Wk

jec te[T) ue(T)] ke/\f te[T\P u€[T]
R D D ord EUND SRTSI EYZI SRS DTS Duiid B pRvec) PV
keNH teP ue(T)] kex\/, teP u€([T]
(18)
Since this norm converges to zero, we have
Ve > 0,370 > 0s.t. Vr > 70, ||V, L(p H (19)

Combining Equation (18) and the fact that {Wx} } . _ Caer) {Wxi}. N repr)ype Wit and W/i_y are linearly independent

with probability 1, if HVPL H < € holds for some € > 0,7 > 0, then we have
|£;| . ; ) ) € .
—L () |y — Z s(T)uyl| < —, forVjeC,t e [T (20)
n Co
u€e[T)
gl
Bl k), ot = S sk (r)unt| < <, forvk € At € [TIP 1)
n Co
u€e[T)
Z 63 s ) (= YD sk || < = forVk € Nt € Pye e {£1) (22)
keN teP u€[T] co

Given that the linear head v is fixed and the output scale remains unchanged, note that there exists some constant
0 < ¢1,c2 < 1lsuchthat ¢y < |[0;] < co. Fore' := , Equation (20) and (21) gives us that

wle]’

Sj(T)t<\/§,0 Z 8o~ < Ve, forVj e C,t € [T]
uw€([T)

s*(r) < Ve, or |y Z shakl < Ve, forVk € Nt € [T]\P.
uw€([T)

As 8%(7)s, = s5(T)s,, forevery k € N, 11,12 € P, it = 7,2 for every ki, ko € N, t1, 12 € P, due to X} = X, = iy,
we define s*(7), := s*(7);, v, := ¥ forevery k € N, t € P. As |/} is bounded, ‘fyp > uelT] sk(r )ufyu‘ is bounded,
for each k € N, there exists c3(k) such that Equation (22) gives us that

€

ED SRS DL EHED SR RrE Il RN B SRR [P

kGN teP u€[T] u€[T)
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For Vk € N, c € {1}, there exists ¢ := woeatiypy Such that Equation (22) gives us

s*(1), < Ve, or |y, — Z sE(T) R < Ve
w€[T)
We now consider two cases. For clean sample j € C, we start with there exists one ¢} € [T] such that fyz; — D e[ siyd| <

V€. Otherwise, assuming there exists ¢1, to € [T] such that

/Ytl Z Suvu < \/g 7152 Z Suvu < \/ga

ue[T) u€[T]

) ) .y jec
by triangle inequality, we have |v; — 7, | < 2v/€'. As the noise in each clean sample’s token {eg } - take distinct values
te[T

almost surely, we can select a sufficiently small € such that 2\F < |7t L 7,?2 R to a contradiction. Therefore, there
exist one ¢ (7) € [T such that for all ¢ € [T\ {t* )}, 87 (T)y < Ve, s (T )t;(T) > 1— (T — 1)v/¢. From the step size
Assumption (A5) and Lemma A.8, the token index t;‘( 7) is determined without depending on the time step 7 for sufficiently

small €, and we further denote it as ¢7 which appears in the statement. As a result, for any sufficiently small €, := Ve and
€2 := (T — 1)eq, from Equation (19), there exists 79 > 0 such that V7 > 79,

s (1) < €1, sj(T)t; >1—e,te[TN\{t}.
We complete the proof for clean sample regarding ¢; € R by using Lemma A.9.

Similarly, for poison sample k& € N, either there exists one ¢} € [T]\P such that

’ytki - Zue[T] shr| < Ve, or for

every p € P, 7,’; - ZuG[T] skakl < /€, otherwise we arrive the same contradiction as shown for the clean sample.

By Lemma A.10, we claim the first statement does not hold, otherwise there exists one ¢} (7) € [T]\'P such that for all

t € [T\ (PU{ti(1)}), s*(1)e < Ve, forall p € P s*(1), < Ve’ and Sk(T)tz(T) >1— (T —|P| - 1)Ve — |PIVe".

From the step size assumption (A5) and Lemma A.8, the token index ¢} (7) is determined without depending on the time

step 7 for sufficiently small €, and we further denote it as ¢}, which appears in the statement. As a result, for any sufficiently

small €, := Ve, €3 := Ve, and €3 := (T — |P| — 1)e1 — | P|ea, from Equation (19), there exists 79 > 0 such that V7 > 79,
Sk(T)tZ > 1 —e3.

As t7 € [T]\P, this contradict with Lemma A.10.

As aresult, we have that for poison sample k € N, for every p; € P, 752 — ZuE[T] skykl < V€. Therefore, for any
sufficiently small €; := /¢ and €5 := (T — |P|)v/€”, from Equation (19), there exists 7o > 0 such that V7 > 79,

s (1), < 61,Sk(7')p; > e [TI\P,p; € P,

1
W(l_GQ),t

completing the proof of poison sample. O

Leveraging Lemma A.11 with Lemma A.3 achieve Lemma 5.1.

We now introduce the following lemma to guarantee the direction of signals.

Lemma A.12. Suppose that Assumptions 1 and 2 holds. We further assume the following hold for ¢ € {£1}.

), D, G2’ 3 D &

i€C. 0< 7/ <1 iEN_. 0<7'<T
/
T t)
DWLEDS > )
i€[n] 16[11] te[TI\P
o<r'<r o<r'<r
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Y Y emzy, ¥ v

i(T/)p)

iEN. 0T/ <T i€EN. 0<7/ <7 pEP

Then for all ¢ € {£1}, if the following conditions on the training trajectory are satisfied

where C1, Cy are some absolute constants, then we have

o<r'<r
4eCe

Ae(T) 2 WHI I* min (—£(r")) (CR POEDINAG)

0<r’'<Ti€C,

i 2 SO G i -6 Y S

zeJ\Le

Proof of Lemma A.12. We have

> AN

0<7r'<r

4 / / it it 1-
22l s s T (1T )

0<7'<71€C, reR ueER

PEN, 07T/ <7

—a?BCp Y

> e

0<r'<7TieN_,

B e llull?

(14+1/C"

2
- (1-5()) (((1—5)4R+W<p+1) es il v/1og (Tnay + L

(T)) >0,

)

_QM —2i(r g — i ﬂ 2 . @ 2
AP NCCHD ORI N EED DRICON Rt s SR R

uePpP

0<7'<TieEN_, reER

(20-1)3 . 1+«

+(1—si<r’>r)<(<1—ﬁ>cR+ L

nlvly 2
2 qap el min Gl Yo YD s
07&27 0<7/<7i€Cc TER

(2a—-1)p

C2

uER

)C2 il v/iog (Tr/5) +

»( (1—Zs G ) —Bcg
uER

_ (1 — Si(T’)r) <((1_5)g3+2gp+1> 72 +
1-p

- sy ((ex ) (5

0<7'<TieN_.TeR u€ER

(2a—1)p 14+«

(1+1/C")?
CT

—(r+ BCP)

+(1=s"(")r) <<(1—5)CR+ 5 pt—;

n vl i
ZEWIIMII min (—€(7) | ¢a >, > &L
zech 0<7/ <7icCe
77 i
2 Y O
1€C,
0<r'<r

where the second last line holds due to the condition that

&Y Y e zate Y el

i€C. 07/ <T iEN_. 0<71'<T
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C2 +
cT?

) — a?BCp

), CrY  ®L(T

i€[n]
o<r'<r

(1+1/C")?
CT

DOEDBN-ACS

0<r'<TieEN_,

nT

|

(Choose sufficiently large C')

(Condition (2) and (3))

(7')1)

i€[n] te[T]\P
o<r'<r

2y > O
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Similarly,
Z AN (1)
0<r/ <7
Lol s 5 }:ﬂ%»(uyv))<26@ + ) o il Viog T/
| H 1€EN, 0<7/<T pEP
2 2 _
+Q—z}%ﬂa(%f@WW—“+Z9>%@O+§Zﬂ“%1ﬁ@ww>
ueP uER
0”7||’/|| 11 ir_t I, 1-8 a+1 C2
L 2, gi(”)i;mg;;,;f(T)p<_(1_s ) (g 5 )
1\2 —
+G_2ywq>0”cnW—“Tﬁ”)+§p%%?f@>
ueP ueER

ﬁ ” ” /(! i
2 g Il min (<66 3 Y &)

1€N—p PEN, 0T/ <T

where the last line holds because Condition (5).

5 D Sl DORICH I E SRTH =D S DD SRi S timt il e

i€EN, 07T/ <1 \peP peEP i€EN, 0<7/<T pEP

guarantees A\, > 0,Vc € {#1}. Note that when |P| = 1, due to Assumption (A3) such that a3 > 7, the above Equation (23)
holds trivially. 0

Lemma A.13 (Simple extension of Lemma E.2 in (Sakamoto & Sato, 2024)). Suppose that ) _,. e $(7)p > 1 — e for
some 7 > 0,t* € T*,T* C [T], e > 0, then on a good run, we have

1 7€ . )
Ip(r)]| > log ( (T —|T7))
2 (Jlull + 2y T(D)) ¢

Proof of Lemma A.13. We know from Lemma 5.1 that if j € C, there exists token ¢* := ¢ € R such that (1) > 1—¢,
if k € NV, for every t* := p} € P, we have s* () > ﬁ — €, meaning Y. p s* ()« > 1 — [Ple. Therefore, based on
whether the sample is clean or poisoned, 7 can be either a singleton set or poisoned set. To combine the above situations
into one formula, we have the following holds:

vepe exp (XL WT
3 () = Lrer P (e W P) oy

t+eT™ ZuE[T] €xp (XIWTP(T))

Rearrange it gives us

|T*|e Z exp (x;WTp(T)) > (1—|T"|e) Z exp (xuWTp(T))

treT w€[T\T*
T
exp (mas(lxa ) o)1) = =50 = e (sl o)) "W Tp(r) < [l (o))
€[T] € te[T]

We have from Lemma A.4 that maxe 7 (|[x¢]|) < [|p]| + (1 4 1/C”")/Tr(X) holds on a good run, plug in obtain the final
result. -
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Theorem 4.1. Suppose Assumptions 1 and 2 hold and that the fixed linear head satisfies ||v|| / ||d|| =

©(1/ ||ul*)- Then,

with probability at least 1 — 4, there exists a sufficiently large time step 7 such that for all 7 > 7, the model interpolates

the training data:
sign(f(X")) =y, Vi € [n].

If the following conditions are satisfied for some fixed absolute constants C, Cy > 1 and C5, C5, C5 > 0, then the model

exhibits the backdoor behavior at test time:

1. Balanced uncertainty across classes:

g i e

—g & ( E QST(T)SC&E &) (1
zEC 1 i€C+1 i€C_q
o<r'<r o<r'<r o<r'<r

2. Relevant token uncertainty dominates general variance:

CRZ jS >O?Z Z (T')t)'

[ | te[T\P
0<r'<r O<T <r

3. Standard data dominates poisoned influence in relevant direction:

Y U)ot Y el
i€Ce ieEN_.
Og‘r'ST 0<r'<r

4. Relevant and poisoned contributions are comparable:

2. ieN. & (1)
3
< a”BCp o<r'<r ‘ <Oy

Cy Cr 2 icc. OL(T)

o<’ <7

5. Poisoned token uncertainty dominates variance:

aBlp Y ®i(r')>Cs Z Z(T/)p).

€N, zeNC,peP
o<r'<r 0<r'<r

Then:

ey

@

3

“

&)

1. Clean test samples without poisoned triggers are correctly classified with high probability: P(x ,yp [sign(f- (X)) # y] <

J.

2. Poisoned test samples with backdoor triggers are misclassified with high probability: P [sign(f; (X))

Proof of Theorem 4.1. For the convergence of training, Lemma 5.1 show the existence of the optimal token(s) such that

lim sg*(T):l7 lim s(7) =0, Vj € C,Vt € | [T\ {t;}.

1
k _ _ *
Tlgrgcspz( )——lp‘, Tlgr;ost( 7) =0, Vk € N,Vt € [T|\P,Vp}, € P.
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Lemma A.9 implies ¢; € R for j € C. Therefore we have for j € C
v fXT) =y

> (L - (U5 2 O o ) ol s (T

— ||d]]
1-48 (a=1)p 1 .
> HZ” || || ( (( 5 )CR+ & 5 ) CP+2) 6‘0;2) (Assumption (A2))

>0
Similarly, Lemma A.10 implies p; € P for k € N. Therefore we have for k € N/
Y- fXE) =yt

> (2o - (5 - Lr) e Il Viog @)

~ [ld]l
> ||(Vi|||| 2 (C _( _ afg,) 00;2> (Assumption (A2))
>0 (Assumption (A3))

For the generalization part, it is sufficient to show that the model’s output becomes deterministically with the selected label.
Given any clean data (X, y) , we have

yfr(X) =y XTSX'W (7)) = > ynS(XTW p(r)r + > y7S(X W p(7))s (24)
TER veL

Note that

-
SXTWT o exp (Xr Wp(T))
T;z ( P(T)) ;2 Zte[T] exp (X:WP(T))
(14 > ue[T)\R €XP (xu Wp(7)) -
> rer €xp (] Wp(7))
2 ue[T]\R €XP (x4 Wp(7))
2T TS e () Wa(n) (o> bz 212
1—<(gr _ MaXyc7 eXp (XIWP(T))
Cr minger exp (x,] Wp(7))

>1- (25)

Similar as Equation (17), we have

Z lpiit(T)] = Z \Api,r(T/”

1€CteER i€C,reR
o<r’'<r

n
TS
i€C reR
o<r'<t

+ (1= s'(),) <<(1—ﬁ)<R+

IN

S (1— > s%’)u) o
u€ER

(2a-1)3

co  (141/C")?
CP+1> o2t er )

% Z (MCR@ Z 1_5( )))

ieC reER
0<r' <7

AN
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Z |p1i,t(7—)|: Z |Api,v(7—/)|

1€C,tel i€C,veT
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Lemma A.12 gives us that
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Substituting p(7) as described in Lemma A.6 gives us that
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> (1) ll” = [ A2 (7) + A1 (7) + A (7) )+ > o] e llull Viog (Tn/6)

i€[n)te[T\P
— Z > 1pia(m)| e1/Tr(S) log (Tn/6)
n)te[T\P
2 ca ||| e[|
> Ny (7) [l = Asa (1) + A1 (1) + A (7) M)+ lpial W_Z lpit(T)] =52
i€[n] i€[n]
te[T\P te[T\P
A
> Y 7) I ,uH2 (Condition (3) and (4) with sufficiently large C')
hold for sufficiently large enough C. Similarly,
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i€nJte[TI\P
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(A1 (D +A1 D) +A1 (1) 421 (7)) oy + 1P () 5 | el
cr? . CcT
i€[n]te[T\P

/\
y || H (Condition (3) and (4) with sufficiently large C')

Therefore back to Equation (25) gives us that

TwT 1—Cr Ay(T) 2 1
58O W b))y 21— L e (2T ) 4 26)

reR

where the last inequality requires A\, (7) > W. To see why this hold, we use the convergence of the attention

probability in Lemma 5.1, for standard sample ¢ € C, we obtain that for any ¢, there exists 7; such that V7 > 7,
s'(7)¢= > 1 — e. Then, from Lemma A.13, we have

1 1—¢
Io(r)1 > - /) fog (15 (- 1)

On a good run, we also achieve a corresponding upper bound as follows

’AC(T)‘ 2ielnlelr\p 1Pit(T)]

P < [Ac(m) | 1+ + : max { |||, (14 1/C")y/Tx(X)
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A\ SﬂC iEN. B icc, @:, 7!
‘)\C(T)) < PZO<€T <r ( ) Zie[n],te[T]\P |pi7t(7—)‘ < ZOSE'ST ( )
Ae(™) ™ CrY icc. ®L(T) [Ae(T)] ~ Y iec. ®L(T)
o<r'<r o<’ <7

Condition (1) and (4) allow us to bound the above two quantities by constants. As a result, A.(7) can be increased by

making e sufficiently small when there exists a sufficiently large 7y such that 7 > 77 so that \.(7) > W holds
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for ¢ € {#1}. At the final step, we plug Equation (26) back into Equation (24) to get
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Finally, the generalization error of the model on the clean data distribution is given by
Pix )~ [sign(f (X)) # y] = Pixy)np (97 (X) < 0] = Pixy)nn [yfr(X) <O[E] + Pix y)np [E] < 6

The proof on the poisoned data shares a similar idea as generalization on the clean data. Given any poisoned data (5(, y), we
set y = —y and have

if-(X) = v X S(X'WTp())
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rerR peEP veT
> o (- cn ol = (U5 2 et O ot L ca el i () (ZS(XTWTW))T)
reR

1 (P - ( - ) o lulliog ) ) (ZP s<>*<Tpr<f>>p)
el (02,
il

Similarly, we have
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We have
%, WTp(r) = avfiy | A1 () + A1 (T)po1 + Ayr (T)figr + A1 (7)1 + Z Z pit(
i€[n]te[T\P
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Therefore plug these back to Equation (28) gives us that
ST 1-— 1
S SE WTp(r))y 2 1 - L e (el 29)
oep Cp ~ 2

where the last inequality requires :\y (r) > W. To see why this hold, we pose a similar argument as described

previously, in the sense that on a good run, we achieve the following:

ool < [fu(| (14 Rl Zebeeme D) g 1410y
)‘6(7)‘ )‘6(7)‘
Note that
i / i QS?, /
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Condition (1) and (4) allow us to bound the above two quantities by constants. Therefore 5\6(7') can be increased by making
e sufficiently small (the maximum softmax probability s(7)« > ﬁ — €) when there exists a sufficiently large 72 such that
T > T9. At the final step, we plug Equation (29) back into Equation (27) to get

it (X L'E”(—c Il —(< B DB 2 ) lll wog@n/a)) (1—ZS<5<Tpr<T>>p>

reR

1 (i (§ = L) ool Vo7 ) | 386 Wbl

peEP
vl (((=5) ap B o
Il 5 Crt 5GP e |ull Viog (Tn/6) ) (1= " S(X WTp(r)),
veL
1 1— 1— 1
ST -
(Assumption (A2) such that o25¢p > %)
>0 (Assumption (A3))

Finally, for data ()~(7 y) where there exists backdoor trigger (poisoned tokens) added in X, the generalization error of the
model is

P [sign(f,(X)) = y] =P [sign(f(X)) # §] = P [9/-(X) < 0] =P [§/-(X) < 0[] +P[E] < 4.

Proof ends by choosing 79 = max {7y, 72}. O

B. Additional Experimental Results
B.1. Dirty-Label Backdoor Attacks

We set token length 7' = 8, dimension d = 4000, number of training samples n = 20. We run 79 = 10K iterations with
step size n = 0.001. Same as Figure 4, Figure 8 illustrates the dynamics of softmax probabilities for standard and poisoned
training samples, starting from an initial value of p(0) = 0, for |R| = 1,|P| = 2 in Figure 8a and |R| = 2,|P| = 3 in
Figure 8b. It can be seen that only one relevant token is selected for the standard sample as the time step increases, whereas
all poisoned tokens are selected with softmax probability 1/|P| for the poison sample, confirming Lemma 5.1.
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(a) a = 3.0, = 0.1,|R| = 1, |P| = 2. Final standard test (b) « = 3.0, 5 = 0.1, |R| = 2, |P| = 3. Final standard test
accuracy is 1.0, poison test accuracy is 0.0. accuracy is 1.0, poison test accuracy is 1.0.
Figure 8. Dirty-label backdoor attacks. Dynamics of softmax probability for a standard sample (left column) and a poison sample (right
column), respectively.

Figure 9 plots the heatmaps of standard test accuracy and poison test accuracy as the poison strength «, poison ratio [
and poison token length |P| vary when setting the relevant token length |R| to be 2, 3, 4, respectively. We also plot the
corresponding heatmaps to verify the feasibility of the conditions required for Theorem 4.1 in Figure 10, 11, 12.

We also set token length 7" = 8, dimension d = 100, number of training samples n = 1000. Set the relevant token length
|R| = 1 and the poisoned token length |P| = 1. We run 79 = 1K iterations with step size n = 0.01. We repeat the same
experiments, plotting the standard test accuracy and poison test accuracy when varying the poison ratio /3 and poison strength
« in Figure 13 and validate the Theorem’s conditions in Figure 14. These experiments demonstrate that our theorem holds
for both high dimensional setting d > n and low dimensional setting d < n.
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Figure 9. Dirty-label backdoor attacks. Set n = 20, d = 4000. Standard test accuracy and poison test accuracy when varying the poison

ratio 3, poison token length |P| and poison strength a.
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column), respectively.

B.2. Clean-Label Backdoor Attacks

We consider the same synthetic data generation process as described in Section 3 except here we consider clean-label
backdoor attacks. We set token length 7' = 8, dimension d = 4000, number of training samples n = 20. We start with
plotting the dynamics of softmax probability for standard and poison training sample in Figure 15 and observe the same
phenomena as in dirty-label backdoor attacks. Figure 16 plots the the heatmaps of standard test accuracy and poison test
accuracy as the poison strength «, poison ratio § and poison token length |P| vary when setting the relevant token length
|R| tobe 1, 2, 3, respectively. We also validate the Theorem’s conditions in Figure 17, 18 and 19. These results demonstrate
that our theorem also holds for clean-label backdoor attacks.
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(b) Set |R| = 2. (c) Set |R| = 3.
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Figure 16. Clean-label backdoor attacks. Set n = 20, d = 4000. Standard test accuracy and poison test accuracy when varying the poison

ratio 3, poison token length || and poison strength .
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Figure 17. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength o and poison ratio 3. Set |R| = 1. From top row to bottom row represents poison length |P| from 1 to 3.
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Figure 18. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength o and poison ratio 3. Set |R| = 2. From top row to bottom row represents poison length |P| from 1 to 3.
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Figure 19. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength o and poison ratio 3. Set |R| = 3. From top row to bottom row represents poison length |P| from 1 to 3.
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