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Abstract
Despite the remarkable success of large founda-
tion models across a range of tasks, they remain
susceptible to security threats such as backdoor
attacks. By injecting poisoned data containing
specific triggers during training, adversaries can
manipulate model predictions in a targeted man-
ner. While prior work has focused on empirically
designing and evaluating such attacks, a rigor-
ous theoretical understanding of when and why
they succeed is lacking. In this work, we analyze
backdoor attacks that exploit the token selection
process within attention mechanisms–a core com-
ponent of transformer-based architectures. We
show that single-head self-attention transformers
trained via gradient descent can interpolate poi-
soned training data. Moreover, we prove that
when the backdoor triggers are sufficiently strong
but not overly dominant, attackers can success-
fully manipulate model predictions. Our analysis
characterizes how adversaries manipulate token
selection to alter outputs and identifies the theoret-
ical conditions under which these attacks succeed.
We validate our findings through experiments on
synthetic datasets.

1. Introduction
Transformer architectures have revolutionized machine
learning, forming the foundation of large language mod-
els (LLMs) such as GPT (Radford & Narasimhan, 2018),
BERT (Kenton & Toutanova, 2019), and T5 (Raffel et al.,
2020). These models have achieved state-of-the-art per-
formance across a wide range of applications, including
natural language processing (Gillioz et al., 2020), computer
vision (Dosovitskiy et al., 2021), and multimodal tasks (Xu
et al., 2023b). Their ability to model complex dependencies
and scale to massive datasets has made them indispensable
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in both research and industry.

Despite their success, transformer-based models remain
vulnerable to a variety of security threats (Huang et al.,
2024b). A prominent example is data poisoning (Chen et al.,
2021a; Xu et al., 2023a; Wan et al., 2023; Shu et al., 2023;
Shan et al., 2023; Chen et al., 2024; Li et al., 2024a; Wang
et al., 2021). Among these, backdoor attacks are particularly
insidious: they introduce “poisoned triggers”, such as rare
words or irrelevant phrases into the training data, creating a
dual-model behavior. When a trigger is present, the model
produces an adversarial response; otherwise, it behaves
normally. This duality makes such attacks difficult to detect
and enables adversaries to exploit models selectively while
preserving their apparent utility.

Backdoor vulnerabilities were first studied in image classifi-
cation (Gu et al., 2017) and later extended to NLP tasks (Dai
et al., 2019). Recently, LLMs have been shown to be sus-
ceptible to such attacks across a range of settings, includ-
ing sentiment analysis (Wan et al., 2023; Li et al., 2024c)
and question answering (Hubinger et al., 2024; Li et al.,
2024d). For instance, Wan et al. (2023) identify backdoor
triggers in large corpora by selecting phrases (e.g., “James
Bond”) that yield high gradient magnitudes under a bag-
of-n-grams approximation. Shu et al. (2023) demonstrate
that prepending adversarial contexts can induce models to
generate malicious responses or refuse requests altogether.
Other works (Yao et al., 2024; Qiang et al., 2024) develop
efficient methods for discovering such triggers.

Despite the growing body of empirical work, a theoretical
understanding of when and why backdoor attacks succeed
remains limited. To address this gap, we propose a new
framework for analyzing backdoor attacks in transformer
models, focusing specifically on the attention mechanism.
Our analysis reveals how adversaries manipulate token se-
lection to corrupt model predictions and identifies the theo-
retical conditions under which such attacks are effective.

Our contributions are as follows.

1. We prove that single-head self-attention transformers
trained via gradient descent can interpolate poisoned
training data, providing insights into how backdoor trig-
gers affect model optimization.

2. We show that when the poisoned training data contains
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sufficiently strong but not overly dominant triggers, the
model generalizes well on clean data while reliably mis-
classifying triggered inputs—demonstrating the effec-
tiveness of the attack.

3. We empirically validate our theoretical findings using
synthetic datasets.

2. Related Work
We review two threads of literature that are central to our
study. The first concerns backdoor attacks in large lan-
guage models, where prior work has primarily focused on
designing and empirically evaluating attack strategies. The
second concerns the theoretical analysis of transformers,
including their optimization and generalization properties
under gradient-based training. Our work connects these ar-
eas by providing a theoretical framework for understanding
backdoor vulnerabilities in attention mechanisms.

2.1. Backdoor Attacks in Large Language Models

Backdoor attacks, a form of data poisoning, aim to implant
hidden behaviors in models that are triggered by specific
inputs, such as image patterns (Gu et al., 2017) or prompt
features (Wan et al., 2023). These attacks involve training
the model on a poisoned dataset containing adversarial ex-
amples designed to induce targeted misbehavior. Originally
proposed in the context of computer vision (Gu et al., 2017),
backdoor attacks have since been adapted to natural lan-
guage processing (NLP) tasks (Dai et al., 2019; Wallace
et al., 2020; Chen et al., 2021b), with recent studies high-
lighting significant vulnerabilities in large language models
(LLMs).

For example, Shi et al. (2023) introduced BadGPT, the first
backdoor attack targeting reinforcement learning-based fine-
tuning in language models, revealing new vulnerabilities
in instruction-tuned LLMs and proposing effective attack
strategies. Wan et al. (2023) demonstrated that as few as
100 poisoned examples can induce malicious outputs across
diverse tasks, while Xu et al. (2023a) showed that injecting
only a small number of adversarial instructions can suffice
to trigger backdoor behavior without modifying the under-
lying data. Hubinger et al. (2024) further demonstrated
the feasibility of training LLMs with persistent backdoors
that evade standard safety alignment techniques. To support
systematic research, Li et al. (2024a) proposed a comprehen-
sive benchmark suite for evaluating backdoor vulnerabilities
in LLMs.

Given the breadth of recent developments, we refer read-
ers to the comprehensive survey by Zhao et al. (2024) for
a detailed overview. While most prior work has focused
on designing and empirically evaluating poisoned triggers,
our work takes a first step toward developing a theoretical

understanding of how and when backdoor attacks succeed.

2.2. Theoretical Analysis of Transformers

The transformer architecture (Vaswani et al., 2017), which
employs self-attention mechanism to model sequences with-
out recurrence or convolution, has been extensively studied
from theoretical perspectives. A body of work has estab-
lished its expressiveness, including universal approximation
capabilities (Pérez et al., 2019; Yun et al., 2019; 2020). Cor-
donnier et al. (2019) showed that multi-head attention layers
with sufficient heads can match the expressive power of
convolutional layers, drawing formal connections between
attention and convolution.

Several studies have analyzed transformer optimization dy-
namics. For single-layer, single-head self-attention models,
Tarzanagh et al. (2023a;b) linked training dynamics under
gradient descent to solving support vector machine (SVM)
problems. Subsequent work has extended this analysis to
binary classification (Vasudeva et al., 2024) and next-token
prediction (Tian et al., 2023; Huang et al., 2024a; Li et al.,
2024b). For multi-head attention, Deora et al. (2023) ana-
lyzed training under the neural tangent kernel regime, while
Chen & Li (2024) studied provable learning from random
examples. Song et al. (2024) further showed that multi-
head attention models achieve global convergence under
over-parameterization.

In parallel, several works have explored the generalization
properties of transformers (Jelassi et al., 2022; Li et al.,
2023). Recent results (Sakamoto & Sato, 2024; Magen et al.,
2024) characterize regimes under which attention mecha-
nisms exhibit benign overfitting—fitting noisy training data
while retaining generalization.

Our work builds upon these foundations but takes a novel
direction: rather than analyzing expressiveness or gener-
alization under standard training, we develop a theoreti-
cal framework for understanding how transformer architec-
tures—particularly attention mechanisms—can be exploited
by backdoor attacks. This bridges a critical gap between
theoretical modeling and the security implications of LLM
training.

3. Problem Setup
Notation. We denote scalars, vectors, and matrices, re-
spectively, with lowercase italics, lowercase bold, and up-
percase bold Roman letters, e.g., u, u, and U. We use [n]
to denote the set {1, 2, . . . , n} and use ∥·∥ for ℓ2 norm. We
use standard asymptotic notation: O(·), Θ(·), and Ω(·). In
some cases, we write a ≲ b and a ≳ b to denote a = O(b)
and a = Ω(b), respectively, suppressing absolute constants.
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Figure 1. Single layer self-attention architecture.

Single-Head Self-Attention. Given a sequence of T to-
kens X = (x1, x2, . . . , xT )⊤ ∈ RT×d, a single-head self-
attention model fsa : RT×d → RT×m is defined as

fsa(X) = S(XWQW⊤
KX⊤)XWV ,

where WQ,WK ∈ Rd×T are the key and query matri-
ces, and WV ∈ Rd×m is the value matrix. The soft-
max function S : RT → RT is applied row-wise, with
S(u)t = exp (ut) /

∑
t′∈[T ] exp (ut′).

Following prior work (Li & Liang, 2021; Lester et al., 2021;
Oymak et al., 2023; Tarzanagh et al., 2023b; Sakamoto &
Sato, 2024; Magen et al., 2024), we consider the prompt-
tuning setting, where an additional tunable token p ∈ Rd

is appended to the input sequence. This token is used
to generate the model’s prediction in classification tasks.
Specifically, we extend the sequence to Xp = [p,X⊤]⊤ ∈
R(T+1)×d and define the cross-attention between Xp and X
as:[

f(X)⊤

fsa(X)

]
= S(XpWX⊤)XWV =

[
S(p⊤WX⊤)

S(XWX⊤)

]
XWV ,

where W = WQW⊤
K is the key-query weight matrix. For

binary classification (m = 1), the model prediction at the
position of the learnable token p simplifies to:

f(X) = ν⊤XTS(XW⊤p) ∈ R,

where we redefine ν = WV ∈ Rd as the prediction head.
For convenience, we denote the token score as γt = ν⊤xt ∈
R and the softmax vector as s = S(XW⊤p) ∈ RT .

Data Distribution. Let µ+1, µ−1 ∈ Rd be fixed class-
conditional signal vectors representing the positive and neg-
ative classes, respectively. Each input X = [x1, . . . , xT ]⊤ ∈
RT×d consists of T tokens, which are divided into a rele-
vant token set R ⊂ [T ] containing class-related signals, and
an irrelevant token set I = [T ] \ R containing only noise.
The data distribution D over RT×d × {±1} is defined as
follows:

Figure 2. Illustration of token positions in standard and poisoned
inputs under dirty-label backdoor attacks.

1. The clean label y is drawn uniformly from {±1}.

2. The noise vectors (ϵt)t∈[T ] are sampled independently
from a multivariate Gaussian distribution N (0,Σ),
where Σ ∈ Rd×d is a diagonal covariance matrix.

3. Relevant tokens are generated as xt = µy + ϵt, ∀t ∈ R.

4. Irrelevant tokens are generated as xv = ϵv , ∀v ∈ I.

Poisoned Data Generation. Let X̃ denote the poisoned
version of a clean input X ∼ D. To introduce a backdoor,
the adversary selects a subset P ⊂ I of the irrelevant tokens
and replaces each token xp for all p ∈ P with a poisoned
token x̃p = αµ̃−y, where µ̃+1, µ̃−1 ∈ Rd are fixed class-
dependent poisoned signal vectors and α > 1 controls their
strength. All other tokens, including those in R, remain
unchanged. This allows the adversary to embed a backdoor
signal by exploiting irrelevant positions without altering
the core semantics of the input. Optionally, the label may
also be flipped (i.e., ỹ = −y), as is typical in dirty-label
backdoor attacks.

We assume throughout that the adversary operates in a black-
box setting, without access to the model’s weights. Figure 2
provides a visual illustration of how poisoned inputs are
generated. We focus primarily on the dirty-label setting,
where the adversary can modify both input tokens and their
associated labels. However, our results extend to clean-label
attacks as well, where labels remain unchanged making
detection significantly more challenging.

The training set S = (Xi, yi)
n

i=1 is assumed to be drawn
i.i.d. from D, with balanced positive and negative labels
for simplicity.1 The adversary poisons a subset of the train-
ing samples by applying the above procedure, modifying
an equal number of samples from each class. The final
poisoned dataset is then used to train the model.

The fraction of relevant and poisoned tokens are denoted as
ζR = |R|/T ∈ [ 1T , 1−

1
T ] and ζP = |P|/T ∈ [ 1T , 1−

1
T ],

respectively. Let C+1 and C−1 denote the standard train-
ing samples with labels +1 and −1, and let N+1 and N−1

denote the poisoned training data labeled as +1 and −1.
Define C = C+1 ∪ C−1 and N = N+1 ∪ N−1. The

1This assumption can be removed by requiring n ≳
√

1/δ,
where δ appears in Assumption 2.
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sizes of these sets are given by: |C+1| = |C−1| = (1−β)n
2 ,

|N+1| = |N−1| = βn
2 . The fraction of poisoned data is

denoted as β = |N |
n > 0.

We impose the following orthogonality assumption between
the relevant signal vectors and the poisoned signal vectors.

Assumption 1. The relevant and poisoned signal vectors
satisfy the following:

∥µ∥ := ∥µ+1∥ = ∥µ−1∥ = ∥µ̃+1∥ = ∥µ̃−1∥ ,
∥µ+1∥Σ = ∥µ−1∥Σ = ∥µ̃+1∥Σ = ∥µ̃−1∥Σ ,

∀µ1, µ2∈{µ±1, µ̃±1}, µ1 ̸=µ2,⟨µ1, µ2⟩=0,⟨µ1, µ2⟩Σ=0,

where ∥µ∥Σ =
√
µ⊤Σµ and ⟨µ1, µ2⟩Σ = µ⊤

1 Σµ2.

Optimization Procedure. The model parameters
(p,W, ν) are trained to minimize the empirical risk:

L̂(p,W, ν) =
1

n

n∑
i=1

ℓ(yif(Xi)),

where ℓ(z) = log (1 + exp (−z)) is the logistic loss.

Following Tarzanagh et al. (2023b, Lemma 1), we observe
that the dynamics of W can be captured via the dynamics of
p. Thus, for simplicity, we fix W to be an orthogonal matrix
satisfying W⊤W = WW⊤ = Id throughout training.

For the sake of analysis, we initialize p(0) = 0 and ν = 0.
We start with updating ν using one step of gradient descent
so that the linear head is in the direction of d where

d :=
1

2nT

T∑
t=1

(∑
yi=1

xit −
∑

yi=−1

xit

)
,

and fix it for the remainder of the training procedure. Subse-
quently, we update only p using gradient descent with step
size η > 0 :

p(τ + 1) = p(τ)− η∇pL̂(p(τ)).

We impose the following assumptions on the data distribu-
tion and optimization setup:

Assumption 2. Let δ ∈ (0, 1). We assume that there exists
a positive constant C > 1 such that the following holds:

(A1) Tr(Σ)≥Cn2T 2log2(Tn/δ) for covariance matrix Σ.

(A2) The signal strength ∥µ∥≥Cmax
{
T 2
√

log (Tn/δ),

T
√
log (Tn/δ) 4

√
Tr(Σ),

√
Tr(Σ)/n

}
.

(A3) The poisoned signal strength needs to be sufficiently

large, α ≥ max
{
C
√

T
β

4

√
ζR
ζP

, C
√

ζR
βζP

, 1
βT

}
.

(A4) The number of poisoned training sample satisfies β ≤
min

{
C
√

ζR
α3ζP

, 1
CαT

√
ζR
ζP

}
.

(A5) Step size η≤ 1
C min

{
1

∥∇pL̂(p)∥Lip

, 1
∥µ∥2 ,

T 2

α∥µ∥2

}
.

Assumption (A1) reflects a mild over-parametrization con-
dition, which can be relaxed to Tr(Σ) ≥ Clog2(Tn/δ).
Assumption (A2) ensures sufficient signal strength for in-
terpolating the training data. Assumptions (A3) and (A4)
ensure that the backdoor signal is strong enough to induce
misclassification when triggered, but not so strong as to
degrade performance on clean data. One concrete param-
eter setting satisfying these is: α = Θ(T ), β = Θ(1/T 2),
and ζR/ζP = Θ(1). Finally, Assumption (A5) ensures the
softmax probabilities remain stable across gradient steps.

4. Main Results
We begin by defining a key notion used to analyze the be-
havior of gradient descent in attention mechanisms.
Definition 1 (Uncertainty in Token Selection). For any
i ∈ [n] and time step τ ≥ 0, we define Gi

r(τ) ∈ [0, 1/4]
and Gi

p(τ) ∈ [0, 1/4] as:

Gi
r(τ) :=

(∑
r∈R

si(τ)r

)(
1−
∑
r∈R

si(τ)r

)
,

Gi
p(τ) :=

∑
p∈P

si(τ)p

1−
∑
p∈P

si(τ)p

 ,

where si(τ) ∈ RT is a shorthand for the softmax probability
given i-th training sample at iteration τ , S(XiW⊤p(τ)).

This definition, adapted from Sakamoto & Sato (2024),
quantifies the model’s uncertainty (variance) associated with
selecting relevant or poisoned tokens on time step τ . When
the probability of selecting relevant or poisoned tokens ap-
proaches 0 or 1, the respective uncertainty converges to
zero. Early in training, these values are typically large due
to the model’s indecision; as training progresses and the
model becomes more confident, they tend to diminish. Fig-
ure 3 illustrates this behavior, which we further verify in
Section 6.
Theorem 4.1. Suppose Assumptions 1 and 2 hold and that
the fixed linear head satisfies ∥ν∥ / ∥d∥ = Θ(1/ ∥µ∥2).
Then, with probability at least 1 − δ, there exists a suf-
ficiently large time step τ0 such that for all τ ≥ τ0, the
model interpolates the training data:

sign(f(Xi)) = yi,∀i ∈ [n].

If the following conditions are satisfied for some fixed ab-
solute constants C1, C4 > 1 and C2, C3, C5 > 0, then the
model exhibits the backdoor behavior at test time:
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Figure 3. Training dynamics of uncertainty over time: (left) rel-
evant tokens in clean data; (middle) relevant tokens in poisoned
data; (right) poisoned tokens in poisoned data.

1. Balanced uncertainty across classes:

1

C1

∑
i∈C−1

0≤τ ′≤τ

Gi
r(τ

′)≤
∑

i∈C+1

0≤τ ′≤τ

Gi
r(τ

′)≤C1

∑
i∈C−1

0≤τ ′≤τ

Gi
r(τ

′). (1)

2. Relevant token uncertainty dominates general vari-
ance:

ζR
∑
i∈[n]

0≤τ ′≤τ

Gi
r(τ

′)>C2

∑
i∈[n]

0≤τ ′≤τ

∑
t∈[T ]\P

si(τ ′)t(1−si(τ ′)t)

T
.

(2)

3. Standard data dominates poisoned influence in rele-
vant direction:

ζR
∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′) > C3 · α2βζP
∑

i∈N−c

0≤τ ′≤τ

Gi
r(τ

′). (3)

4. Relevant and poisoned contributions are comparable:

1

C4
<

α3βζP
ζR

∑
i∈Nc

0≤τ ′≤τ

Gi
p(τ

′)∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′)
< C4. (4)

5. Poisoned token uncertainty dominates variance:

αβζP
∑
i∈Nc

0≤τ ′≤τ

Gi
p(τ

′)>C5

∑
i∈Nc,p∈P
0≤τ ′≤τ

si(τ ′)p
(
1−si(τ ′)p

)
T 2

.

(5)

Then:

1. Clean test samples without poisoned triggers
are correctly classified with high probability:
P(X,y)∼D [sign(fτ (X)) ̸= y] ≤ δ.

2. Poisoned test samples with backdoor triggers are misclas-
sified with high probability: P

[
sign(fτ (X̃)) = y

]
≤ δ.

Theorem 4.1 shows that, under Assumptions 1 and 2, gra-
dient descent leads to exact interpolation of poisoned train-
ing data. Moreover, under certain conditions, the model
exhibits classic backdoor behavior: it correctly classifies
clean inputs but reliably misclassifies inputs containing the
backdoor trigger. This aligns with empirical observations
reported in prior work (Wan et al., 2023; Li et al., 2024a).

Below we provide intuition for the conditions in the theo-
rem:

Condition (1) ensures balanced contribution from relevant
token selection across both classes. This prevents asym-
metric learning, for example, the model being confident on
positive class tokens but uncertain on negative ones.

Condition (2) requires that the total variance in selecting
relevant tokens across all clean data outweighs the aggregate
variance from arbitrary tokens. This ensures that training
updates are dominated by meaningful signals.

Condition (3) guarantees that the relevant token signal in
standard data exerts a stronger influence than the poisoned
signal. The terms ζR and α2βζP scale the clean and poi-
soned contributions, respectively, and this condition ensures
the clean signal remains dominant during training.

Condition (4) enforces a balance: the (scaled) uncertainty
in selecting relevant tokens in clean data should be of the
same order as that of selecting poisoned tokens in poisoned
data. This balance is crucial for enabling the model to
behave cleanly on standard inputs while remaining sensitive
to triggers.

Condition (5) is the poisoned-data analog of (2). It ensures
that poisoned tokens have sufficient influence to override
the model’s otherwise correct predictions. When |P| = 1,
this condition holds trivially under Assumption (A3).

These conditions arise due to the interaction between gra-
dient descent and the softmax-based attention mechanism,
where training updates are steered by token selection prob-
abilities. Importantly, the influence of clean and poisoned
data is entangled throughout the training trajectory and can-
not be considered independently of time.

Conditions (1) and (2) also appear in prior work on benign
interpolation (Sakamoto & Sato, 2024), but our analysis
extends them to settings with adversarial triggers. In con-
trast, violations of Conditions (3)–(5) disrupt the balance of
influence: poisoned data may dominate too heavily, leading
to poor generalization on clean data, or too weakly, reduc-
ing the adversary’s impact. We empirically validate all five
conditions in Section 6.

Recall that Assumption 1 stipulates that the relevant sig-
nals (µ+1, µ−1) and the poisoned signals (µ̃+1, µ̃−1) are
orthogonal, i.e., there is no correlation between them. How-
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ever, our analysis can be extended to more general settings
where the poisoned signals are positively correlated with
the relevant signals. A particularly illustrative special case
is when µ̃c = µc, meaning the poisoned trigger aligns
perfectly with the class-relevant direction. In such cases,
the model’s prediction is dominated by the signal compo-
nent—whether clean or poisoned—that accumulates greater
effective strength during training.

5. Proof Sketch
The core idea underlying our analysis is to ensure that the
correlation between the poisoned token and the manipulated
(incorrect) label becomes stronger than that between the
relevant token and the true label, an insight aligned with
prior work such as Wan et al. (2023).

To interpolate all training data, Lemma 5.1 guarantees that
the attention mechanism selects a relevant token for clean
training data, while prioritizing the poisoned tokens for
poisoned training data. Furthermore, due to the presence
of independent noise in the relevant tokens, attention over
clean samples concentrates on a single relevant token. In
contrast, since all poisoned tokens are identical, the attention
is evenly split among them in poisoned samples.

Lemma 5.1. Suppose the step size satisfies Assump-
tion (A5). Then:

1. For each clean sample j ∈ C, there exists a token index
t∗j ∈ R such that

lim
τ→∞

sjt∗j
(τ) = 1, lim

τ→∞
sjt (τ) = 0,∀t ∈ [T ]\

{
t∗j
}
.

2. For each poisoned sample k ∈ N , and every poisoned
token p∗k ∈ P , we have

lim
τ→∞

skp∗
k
(τ) =

1

|P|
, lim

τ→∞
skt (τ) = 0,∀t ∈ [T ]\P.

To analyze generalization, we show that for a sufficiently
large time step τ , attention concentrates on the relevant
tokens for clean test data and on the poisoned tokens for
backdoored test data:∑
r∈R

S(X⊤W⊤p(τ))r >
1

2
,
∑
p∈P

S(X̃⊤
W⊤p(τ))p >

1

2
.

To establish this, we decompose the tunable token p(τ) as:

p(τ) =
∑

c∈{±1}

(
λc(τ)Wµc+λ̃c(τ)Wµ̃c

)
+ noise direction.

Conditions (1), (3), (4) ensure that the coefficients |λc| and
|λ̃c| are roughly the same order. For a clean input X, the

inner product with Wµc dominates, while for a poisoned
input X̃, the poisoned component Wµ̃c dominates. This rea-
soning holds for both dirty-label and clean-label backdoor
attacks.

Although our proof strategy builds on techniques
from Tarzanagh et al. (2023b) and Sakamoto & Sato (2024),
our goals and contributions are distinct. Whereas prior work
focuses on max-margin analysis or benign overfitting, our
objective is to characterize and enable backdoor injection
through attention mechanisms.

Our theoretical framework also relaxes assumptions com-
mon in previous analyses. Notably, while existing analysis
of gradient descent dynamics often assume a low signal-to-
noise ratio where Tr(Σ) ≳ n ∥µ∥2 (Chatterji & Long, 2021;
Sakamoto & Sato, 2024), we argue that in our setting this as-
sumption can be relaxed, allowing Tr(Σ) to be independent
of ∥µ∥ (see Assumption (A1)).

Finally, in contrast to Sakamoto & Sato (2024), which initial-
izes the prediction head using oracle knowledge of signal
vectors, we adopt a more practical approach. Our linear
head ν is initialized via a single step of gradient descent
from zero initialization, without assuming access to µ±1.
Extending our analysis to the joint optimization of linear
head ν and tunable token p remains an important direction
for future work.

6. Experiments
In this section, we present empirical results on a synthetic
dataset to support our theoretical findings.

Synthetic Data Generation. We adopt the dirty-label
backdoor attack setup defined in Section 3. Standard and
poisoned signal vectors are constructed from orthogonal ba-
sis directions: µ1 = ∥µ∥ e1, µ2 = ∥µ∥ e2, µ̃1 = α ∥µ∥ e3,
µ̃2 = α ∥µ∥ e4. We designate the first |R| tokens as relevant
and the last |P| tokens as poisoned for the poisoned data.

We generate n = 20 training samples, along with 1000
standard test samples and 1000 poisoned test samples. Noise
vectors are drawn from a standard multivariate Gaussian
with covariance Σ = Id, yielding Tr(Σ) = d. The token
length is set to T = 8, dimension d = 4000, with |R| = 1
and |P| = 1. A single-head self-attention transformer is
trained using gradient descent with step size η = 0.001 for
τ0 = 10K iterations. Additional results are provided in
Appendix B.

Dynamic of Softmax Probabilities. Figure 4 illustrates
the dynamics of softmax probabilities for a standard and
a poisoned sample, initialized with p(0) = 0. In the ideal
backdoor attack scenario (Figure 4a, α = 4.0, β = 0.1),
the relevant token is selected for the standard sample and
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(a) α = 4.0, β = 0.1, |R| = |P| = 1. Final standard test
accuracy is 1.0, poisoned test accuracy is 0.0.

(b) α = 1.0, β = 0.1, |R| = |P| = 1. Final standard test
accuracy is 1.0, poisoned test accuracy is 1.0.

(c) α = 4.0, β = 0.4, |R| = |P| = 1. Final standard test
accuracy is 0.691, poisoned test accuracy is 0.0.

Figure 4. Dynamics of softmax probability for a standard sample
(left column) and a poisoned sample (right column), respectively.

the poisoned token for the poisoned sample. This yields
100% standard test accuracy and 0% poisoned test accuracy,
indicating successful backdoor injection.

In the insufficient attack case (Figure 4b, α = 1.0, β =
0.1), the poisoned token fails to dominate, and both test
accuracies reach 100%, indicating the attack is ineffective.

Conversely, in the overpowered attack scenario (Figure 4c,
α = 4.0, β = 0.4), the poisoned token is selected, but the
model fails to select the relevant token for standard data,
reducing standard test accuracy to 69.1% while maintaining
0% poisoned accuracy. This illustrates that overly strong
backdoor signals can harm generalization on clean inputs.

Dynamic of Cumulative Uncertainty. To track the dy-
namics defined in Definition 1, we plot average uncertainty
values for relevant and poisoned token selection across class
partitions on the left of Figure 5. For standard data, Gi

r(τ)
first increases and then declines, reflecting learning and
eventual confidence. A similar pattern is observed for Gi

p(τ)
in poisoned data. These trends align with the theoretical
behavior illustrated in Figure 3.

On the right, we show test accuracy as a function of training
time. Standard test accuracy saturates at 1.0 after τ > 2.5K,

Figure 5. (Left): Average uncertainty in selecting relevant or poi-
son token over C+1, C−1,N+1,N−1 as a function of time step;
(Right): Standard test accuracy and poison test error as a function
of time step.

coinciding with the decline in Gi
r(τ). Poisoned test accuracy

drops to 0 after τ > 4K, paralleling the decline in Gi
p(τ),

confirming the theoretical interpolation dynamics.

Test Accuracy Across Varying Attack Parameters. Fig-
ure 7 shows the impact of poison strength α, poison ratio β,
and poisoned token length |P| on standard and poisoned test
accuracy. As expected, increasing any of these parameters
degrades both accuracies, confirming that backdoor strength
must be carefully calibrated to maintain clean generaliza-
tion while injecting the backdoor. Notably, training accuracy
reaches 1.0 across all settings, indicating convergence.

Validation of Theorem 4.1 Conditions. Figure 6 verifies
that the five conditions of Theorem 4.1 are satisfied across a
wide range of (α, β) configurations with successful attacks
(standard accuracy > 0.9, poisoned accuracy < 0.1; see
first row of Figure 7).

The first column plots the ratio
∑

i∈C+1,0≤τ′≤τ Gi
r(τ

′)∑
i∈C−1,0≤τ′≤τ Gi

r(τ
′) , show-

ing that it remains approximately within the range of
0.8 to 1.3 across trials conducted with different values
of α and β, i.e., C1 > 1.3. The second column plots

minc

{
ζR

∑
i∈Cc

∑
0≤τ′≤τ Gi

r(τ
′)∑

i∈[n],t∈[T ]\P,0≤τ′≤τ si(τ ′)t(1−si(τ ′)t)

}
, indicating

that the ratio C2 is consistently at least 0.18. The third col-

umn presents minc

{
ζR

∑
i∈Cc

∑
0≤τ′≤τ Gi

r(τ
′)

α2βζP
∑

i∈N−c,0≤τ′≤τ Gi
r(τ

′)

}
, demon-

strating that the ratio C3 is consistently at least
4.0 in successful trials. The fourth column plots

minc

{
α3βζP

ζR

∑
i∈Nc,0≤τ ′≤τ Gi

p(τ
′)∑

i∈C,0≤τ ′≤τ Gi
r(τ

′)

}
, revealing that this

ratio falls within the range of approximately 0.4
to 1.1 in trials conducted with various values of
α and β, i.e., C4 > 2.5. The final column

shows minc

{
αβζPT 2 ∑

i∈Nc

∑
0≤τ′≤τ Gi

p(τ
′)∑

i∈[n],p∈P,0≤τ′≤τ si(τ ′)p(1−si(τ ′)p)

}
, con-

firming that C5 is at least 0.2 in successful trials. To summa-
rize, none of the ratios are excessively large or small, indicat-
ing the existence of reasonable constants C1, C2, C3, C4, C5

such that the conditions are satisfied.
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Figure 7. Dirty-label backdoor attacks. Standard test accuracy and
poisoned test accuracy when varying the poison ratio β, poisoned
token length |P| and poison strength α.

7. Conclusion
In this work, we develop a theoretical framework to analyze
backdoor attacks that target the token selection process in

the attention mechanisms of transformer-based models. A
primary limitation of our analysis is the assumption that only
the tunable token p is optimized, while the projection head
ν remains fixed. Future research could relax this assump-
tion by analyzing more general scenarios, such as jointly
optimizing both p and ν, or adapting to practical fine-tuning
strategies like LoRA. Furthermore, extending the theoreti-
cal analysis to multi-layer and multi-head transformers, as
well as investigating other prevalent data poisoning settings,
would be promising directions for future exploration.
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A. Missing Proofs in Section 4
Lemma A.1. Suppose p = 0. Then the gradient descent direction of the empirical risk at ν = 0 is

d :=
1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
.

Proof of Lemma A.1.

−∇νL̂(p,W, ν) = − 1

n

n∑
i=1

ℓ′(0)yiXi⊤S(0)

=
1

2nT

T∑
t=1

(∑
yi=1

xit −
∑

yi=−1

xit

)
(ℓ′(0) = −0.5)

=
1−β

4

|R|
T

(µ+1−µ−1) +
αβ

4

|P|
T

(µ̃+1−µ̃−1) +
1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
.

Lemma A.2 demonstrates the dynamics of W can be described by the dynamics of p.

Lemma A.2 (Lemma 1 in (Tarzanagh et al., 2023b)). Fix the linear head ν ∈ Rd\ {0} throughout the whole training
process. On the same training data S = (Xi, yi)ni=1, we define

L̂W(W) :=
1

n

n∑
i=1

ℓ(yi · ν⊤Xi⊤S(XiW⊤p0))

L̂p(p) :=
1

n

n∑
i=1

ℓ(yi · ν⊤Xi⊤S(XiW⊤
0 p))

where W0 ∈ Rd×d, p0 ∈ Rd are fixed matrix and vector, respectively. Consider the gradient descent iterations on W and p
with initial values W(0) and p(0) = W0W(0)⊤p0 and step sizes η and η ∥p∥22, respectively:

W(τ + 1) = W(τ)− η∇L̂W(W(τ))

p(τ + 1) = p(τ)− η ∥p0∥
2 ∇L̂p(p(τ))

Then, we have W(τ)⊤p0 = W⊤
0 p(τ) for all τ ≥ 0.

Lemma A.3 (Lemma 6 in (Tarzanagh et al., 2023b)). The function L̂(p) is L-smooth, where

L :=
1

n

n∑
i=1

(
∥ν∥2

∥∥Xi
∥∥2 + 3 ∥ν∥

∥∥Xi
∥∥3) .

Furthermore, if a step size satisfies η < 1
L , then for any initialization p(0), we have

L̂(p(τ + 1))− L̂(p(τ)) ≤ −η

2

∥∥∥∇pL̂(p(τ))
∥∥∥2

for all τ ≥ 0. This implies that

∞∑
τ=0

∥∥∥∇pL̂(p(τ))
∥∥∥2 < ∞, lim

τ→∞

∥∥∥∇pL̂(p(τ))
∥∥∥2 = 0

Lemma A.4 (Lemma A.1 in (Sakamoto & Sato, 2024)). Suppose that Assumption (A1) holds, then there exists some
constant c1, c2 > 0, and C ′ > 0 which depends on C such that for all c′ > 0, the following hold simultaneously with
probability at least 1− δ,
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1. For all i ∈ [n], t ∈ [T ], (1− 1
Tr(Σ) −

1
C′ )
√

Tr(Σ) ≤
∥∥ϵit∥∥ ≤ (1 + 1

C′ )
√

Tr(Σ).

2. For any i, j ∈ [n], t, u ∈ [T ] such that (i, t) ̸= (j, u), we have
∣∣〈ϵit, ϵju〉∣∣ < c1

√
Tr(Σ) log (Tn/δ).

3. For all i ∈ [n], t ∈ [T ], c ∈ {±1}, we have
∣∣〈ϵit, µc

〉∣∣ < c2 ∥µ∥
√

log (Tn/δ),
∣∣〈ϵit, µ̃c

〉∣∣ < c2 ∥µ∥
√
log (Tn/δ).

Definition 2. If the event in Lemma A.4 occur (defined as E), let us say that we have a good run.

Lemma A.5. On a good run, for the clean data j ∈ C, r ∈ R, we have

yjγj
r ≤ ∥ν∥

∥d∥

(
1−β

4
ζR ∥µ∥2+

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
yjγj

r ≥ ∥ν∥
∥d∥

(
1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
For the poison data k ∈ N , r ∈ R, p ∈ P , we have

ykγk
r ≤ ∥ν∥

∥d∥

(
−1−β

4
ζR ∥µ∥2+

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
ykγk

r ≥ ∥ν∥
∥d∥

(
−1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
ykγk

p ≤ ∥ν∥
∥d∥

(
α2β

4
ζP ∥µ∥2+

(
α

2
− αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
ykγk

p ≥ ∥ν∥
∥d∥

(
α2β

4
ζP ∥µ∥2−

(
α

2
− αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
For i ∈ [n], v ∈ I, we have

yiγi
v ≤ ∥ν∥

∥d∥

((
(1−β)

2
ζR +

αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)
yiγi

v ≥ −∥ν∥
∥d∥

((
(1−β)

2
ζR +

αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
Proof of Lemma A.5. For training data with label yj = 1, yk = 1, with token r ∈ R, p ∈ P, v ∈ I, we have

yjγj
r = yjxj

r

⊤
ν

= (µ+1 + ϵjr)
⊤ ∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
=

∥ν∥
∥d∥

1−β

4
ζR ∥µ∥2 + 1

2nT

∑
t∈[T ]\P

(∑
yi=1

〈
µ+1, ϵ

i
t

〉
−
∑

yi=−1

〈
µ+1, ϵ

i
t

〉)
+

∥ν∥
∥d∥

1−β

4
ζR
〈
ϵjr, µ+1−µ−1

〉
+

αβ

4
ζP
〈
ϵjr, µ̃+1−µ̃−1

〉
+

1

2nT

∑
t∈[T ]\P

(∑
yi=1

〈
ϵit, ϵ

j
r

〉
−
∑

yi=−1

〈
ϵit, ϵ

j
r

〉)

ykγk
r = ykxk

r

⊤
ν

= (µ−1 + ϵkr )
⊤ ∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
=

∥ν∥
∥d∥

−1−β

4
ζR ∥µ∥2 + 1

2nT

∑
t∈[T ]\P

(∑
yi=1

〈
µ−1, ϵ

i
t

〉
−
∑

yi=−1

〈
µ−1, ϵ

i
t

〉)
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+
∥ν∥
∥d∥

1−β

4
ζR
〈
ϵkr , µ+1−µ−1

〉
+

αβ

4
ζP
〈
ϵkr , µ̃+1−µ̃−1

〉
+

1

2nT

∑
t∈[T ]\P

(∑
yi=1

〈
ϵit, ϵ

k
r

〉
−
∑

yi=−1

〈
ϵit, ϵ

k
r

〉)

ykγk
p = ykxkp

⊤
ν

= αµ̃⊤
+1

∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
=

∥ν∥
∥d∥

α2β

4
ζP ∥µ∥2 + α

2nT

∑
t∈[T ]\P

(∑
yi=1

〈
µ̃+1, ϵ

i
t

〉
−
∑

yi=−1

〈
µ̃+1, ϵ

i
t

〉)
Similarly, for training data with label yj = −1, yk = −1, we have

yjγj
r = yjxjr

⊤
ν

= −(µ−1 + ϵjr)
⊤ ∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
=

∥ν∥
∥d∥

1−β

4
ζR ∥µ∥2 + 1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
µ−1, ϵ

i
t

〉
−
∑
yi=1

〈
µ−1, ϵ

i
t

〉)
+

∥ν∥
∥d∥

1−β

4
ζR
〈
ϵjr, µ−1 − µ+1

〉
+

αβ

4
ζP
〈
ϵjr, µ̃−1 − µ̃+1

〉
+

1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
ϵit, ϵ

j
r

〉
−
∑

yi=+1

〈
ϵit, ϵ

j
r

〉)

ykγk
r = ykxkr

⊤
ν

= −(µ+1 + ϵkr )
⊤ ∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

(∑
yi=1

ϵit−
∑

yi=−1

ϵit

)
=

∥ν∥
∥d∥

−1−β

4
ζR ∥µ∥2 + 1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
µ+1, ϵ

i
t

〉
−
∑
yi=1

〈
µ+1, ϵ

i
t

〉)
+

∥ν∥
∥d∥

1−β

4
ζR
〈
ϵkr , µ+1−µ−1

〉
+

αβ

4
ζP
〈
ϵkr , µ̃+1−µ̃−1

〉
+

1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
ϵit, ϵ

k
r

〉
−
∑
yi=1

〈
ϵit, ϵ

k
r

〉)

ykγk
p = ykxkp

⊤
ν

= −αµ̃⊤
−1

∥ν∥
∥d∥

1−β

4
ζR (µ+1−µ−1) +

αβ

4
ζP (µ̃+1−µ̃−1) +

1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

ϵit −
∑
yi=1

ϵit

)
=

∥ν∥
∥d∥

α2β

4
ζP ∥µ∥2 + α

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
µ̃−1, ϵ

i
t

〉
−
∑
yi=1

〈
µ̃−1, ϵ

i
t

〉)
Using Lemma A.4 gives us that

yjγj
r ≤ ∥ν∥

∥d∥

(
1−β

4
ζR ∥µ∥2+

(
(1−β)

2
ζR+

αβ

2
ζP +

1

2
− β

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

13



Backdoor Attacks in Token Selection of Attention Mechanism

+
1

2nT

(
(1 +

1

C ′ )
2 Tr(Σ)+(nT−βζPnT − 1)c1

√
Tr(Σ) log (Tn/δ)

))

≤ ∥ν∥
∥d∥

(
1−β

4
ζR ∥µ∥2+

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
(Assumption (A1).)

yjγj
r ≥ ∥ν∥

∥d∥

(
1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

αβ

2
ζP +

1

2
− β

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

+
1

2nT

(
(1− 1

Tr(Σ)
− 1

C ′ )
2 Tr(Σ)−(nT−βζPnT − 1)c1

√
Tr(Σ) log (Tn/δ)

))

≥ ∥ν∥
∥d∥

(
1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
(Assumption (A1).)

ykγk
r ≤ ∥ν∥

∥d∥

(
−1−β

4
ζR ∥µ∥2+

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
ykγk

r ≥ ∥ν∥
∥d∥

(
−1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
ykγk

p ≤ ∥ν∥
∥d∥

(
α2β

4
ζP ∥µ∥2+

(
α

2
− αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
ykγk

p ≥ ∥ν∥
∥d∥

(
α2β

4
ζP ∥µ∥2−

(
α

2
− αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)

yiγi
v = yixiv

⊤
ν

=
∥ν∥
∥d∥

1−β

4
ζR
〈
yiϵiv, µ+1−µ−1

〉
+
αβ

4
ζP
〈
yiϵiv, µ̃+1−µ̃−1

〉
+

1

2nT

∑
t∈[T ]\P

( ∑
yi=−1

〈
yiϵiv, ϵ

i
t

〉
−
∑

yi=+1

〈
yiϵiv, ϵ

i
t

〉)
≤ ∥ν∥

∥d∥

((
(1−β)

2
ζR +

αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)
yiγi

v ≥ −∥ν∥
∥d∥

((
(1−β)

2
ζR +

αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
where Assumption (A1) gives us that Tr(Σ) ≥ Cn2T 2 log (Tn/δ)

2, otherwise all the term Tr(Σ)
nT would be replaced by√

Tr(Σ) log (Tn/δ), and all the lower bound would add an additional term −
√

Tr(Σ) log (Tn/δ).

Lemma A.6. Let p(τ) be a gradient iteration at τ -th time step. Then there exists unique coefficients such that

p(τ) = λ+1(τ)Wµ+1 + λ−1(τ)Wµ−1 + λ̃+1(τ)Wµ̃+1 + λ̃−1(τ)Wµ̃−1 +
∑
i∈[n]

∑
t∈[T ]\P

ρi,t(τ)Wϵit,

where the initialization is λc(0)= λ̃c(0)=ρi,t(0)=0 for any c ∈ {±1} , i ∈ [n], t ∈ [T ], and the signal updates are given by

∆λc(τ) = λc(τ + 1)− λc(τ) =
η

n

∑
i∈Cc∪N−c

(−ℓ′i(τ)) ·
∑
r∈R

si(τ)r

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u

 ,

∆λ̃c(τ) = λ̃c(τ + 1)− λ̃c(τ) =
αη

n

∑
i∈Nc

(−ℓ′i(τ)) ·
∑
p∈P

si(τ)p

yiγi
p −

∑
u∈[T ]

si(τ)uy
iγi

u

 ,

14
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and the noise updates are given by

∆ρi,t(τ) = ρi,t(τ + 1)− ρ(τ) =
η

n
(−ℓ′i(τ)) · yi · si(τ)t

γi
t −

∑
u∈[T ]

si(τ)uγ
i
u

 ,∀i ∈ [n], t ∈ [T ].

Proof of Lemma A.6. Recall that

∇pL̂(p) =
1

n

n∑
i=1

ℓ′i · yi · ∇pf(Xi)

=
1

n

n∑
i=1

ℓ′i · yi · WXi⊤ (diag(S(XiW⊤p))− S(XiW⊤p)S(XiW⊤p)⊤
)

Xiν

=
1

n

n∑
i=1

ℓ′i · yi ·

∑
t∈[T ]

sit

γi
t −

∑
u∈[T ]

siuγ
i
u

Wxi
t


where ℓ′i is abbreviation for ℓ′(yi · ν⊤Xi⊤S(XiW⊤p)), sit is abbreviation for S(XiW⊤p)t, γi

t is abbreviation for xit
⊤
ν,

∀t ∈ [T ]. In the dirty-label backdoor attack setup,

xit =


µyi + ϵit i ∈ C, t ∈ R
µ−yi + ϵit i ∈ N , t ∈ R
αµ̃yi i ∈ N , t ∈ P
ϵit i ∈ C ∪ N , t ∈ I

Therefore we have

p(τ + 1)− p(τ) = −η∇pL̂(p(τ))

=
η

n

n∑
i=1

(−ℓ′i(τ)) · yi ·

∑
t∈[T ]

si(τ)t

γi
t −

∑
u∈[T ]

si(τ)uγ
i
u

Wxi
t


=

η

n

∑
i∈C

(−ℓ′i(τ)) · yi ·

∑
r∈R

si(τ)r

γi
r −

∑
u∈[T ]

si(τ)uγ
i
u

Wµyi


+

η

n

∑
i∈N

(−ℓ′i(τ)) · yi ·

∑
r∈R

si(τ)r

γi
r −

∑
u∈[T ]

si(τ)uγ
i
u

Wµ−yi


+

αη

n

∑
i∈N

(−ℓ′i(τ)) · yi ·

∑
p∈P

si(τ)p

γi
p −

∑
u∈[T ]

si(τ)uγ
i
u

Wµ̃yi


+

η

n

n∑
i=1

(−ℓ′i(τ)) · yi ·

 ∑
t∈[T ]\P

si(τ)t

γi
t −

∑
u∈[T ]

si(τ)uγ
i
u

Wϵit


As a result, we are able to decompose into the following form

p(τ + 1)− p(τ)

= ∆λ+1(τ)Wµ+1+∆λ−1(τ)Wµ−1+∆λ̃+1(τ)Wµ̃+1+∆λ̃−1(τ)Wµ̃−1+
∑
i∈[n]

∑
t∈[T ]\P

∆ρi,t(τ)Wϵit,

where we have ∀c ∈ {±1},

∆λc(τ) = λc(τ + 1)− λc(τ) =
η

n

∑
i∈Cc∪N−c

(−ℓ′i(τ)) ·
∑
r∈R

si(τ)r

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u


15
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∆λ̃c(τ) = λ̃c(τ + 1)− λ̃c(τ) =
αη

n

∑
i∈Nc

(−ℓ′i(τ)) ·
∑
p∈P

si(τ)p

yiγi
p −

∑
u∈[T ]

si(τ)uy
iγi

u


∆ρi,t(τ) = ρi,t(τ + 1)− ρ(τ) =

η

n
(−ℓ′i(τ)) · si(τ)t

yiγi
t −

∑
u∈[T ]

si(τ)uy
iγi

u

 ,∀i ∈ [n], t ∈ [T ]\P

Below we calculate the upper bound and lower bound of ∆λ+1, ∆λ−1, ∆λ̃+1, ∆λ̃−1 and ∆ρi,t.

Note that for i ∈ C and any relevant token r ∈ R, we have

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u

=
∑

u∈[T ]\{r}

si(τ)u
(
yiγi

r − yiγi
u

)
=

∑
u∈R\{r}

si(τ)u
(
yiγi

r − yiγi
u

)
+
∑
u∈I

si(τ)u
(
yiγi

r − yiγi
u

)
≤ ∥ν∥

∥d∥
∑

u∈R\{r}

si(τ)u

(
((1−β)ζR+(α−1)βζP +1) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)
2

nT
Tr(Σ)

)

+
∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
1−β

4
ζR ∥µ∥2+

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)

≤ ∥ν∥
∥d∥

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2

+
∥ν∥
∥d∥

(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u

≥ ∥ν∥
∥d∥

∑
u∈R\{r}

si(τ)u

(
− ((1−β)ζR+(α−1)βζP +1) c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)

+
∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
1−β

4
ζR ∥µ∥2−

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)

≥ ∥ν∥
∥d∥

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2

− ∥ν∥
∥d∥

(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)

For i ∈ C and any irrelevant token v ∈ I, we have

yiγi
v −

∑
u∈[T ]

si(τ)uy
iγi

u

=
∑
u∈R

si(τ)u
(
yiγi

v − yiγi
u

)
+

∑
u∈I\{v}

si(τ)u
(
yiγi

v − yiγi
u

)
≤ ∥ν∥

∥d∥
∑
u∈R

si(τ)u

(
−1−β

4
ζR ∥µ∥2 +

(
(1−β)ζR +

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
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+
∥ν∥
∥d∥

∑
u∈I\{v}

si(τ)u

(
((1−β)ζR + αβζP ) c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)

≤ ∥ν∥
∥d∥

(
1− si(τ)v

)((
(1−β)ζR + αβζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
− ∥ν∥

∥d∥
∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

yiγi
v −

∑
u∈[T ]

si(τ)uy
iγi

u

≥ ∥ν∥
∥d∥

∑
u∈R

si(τ)u

(
−1−β

4
ζR ∥µ∥2−

(
(1−β)ζR+(2α−1)βζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)
− ∥ν∥

∥d∥
∑

u∈I\{v}

si(τ)u

(
((1−β)ζR+αβζP ) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)

≥ −∥ν∥
∥d∥

(
1− si(τ)v

)((
(1−β)ζR+αβζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)
− ∥ν∥

∥d∥
∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

Similarly, for i ∈ N and any relevant r ∈ R, we have

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u

=
∑

u∈R\{r}

si(τ)u
(
yiγi

r − yiγi
u

)
+
∑
u∈P

si(τ)u
(
yiγi

r − yiγi
u

)
+
∑
u∈I

si(τ)u
(
yiγi

r − yiγi
u

)
≤ ∥ν∥

∥d∥
∑

u∈R\{r}

si(τ)u

(
((1−β)ζR+(α−1)βζP +1) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)
2

nT
Tr(Σ)

)

+
∥ν∥
∥d∥

∑
u∈P

si(τ)u

(
−
(
1−β

4
ζR +

α2β

4
ζP

)
∥µ∥2+

(
(1−β)

2
ζR−

β

2
ζP +

1+α

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)

)

+
∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
−1−β

4
ζR ∥µ∥2+

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)

)

≤ −∥ν∥
∥d∥

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 − ∥ν∥

∥d∥
∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

+
∥ν∥
∥d∥

(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)

)

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u

≥ −∥ν∥
∥d∥

∑
u∈R\{r}

si(τ)u

(
((1−β)ζR+(α−1)βζP +1) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)
2

nT
Tr(Σ)

)

+
∥ν∥
∥d∥

∑
u∈P

si(τ)u

(
−
(
1−β

4
ζR +

α2β

4
ζP

)
∥µ∥2−

(
(1−β)ζR−

β

2
ζP +

1+α

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
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+
∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
−1−β

4
ζR ∥µ∥2−

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)

2

nT
Tr(Σ)

)

≥ −∥ν∥
∥d∥

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 − ∥ν∥

∥d∥
∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

− ∥ν∥
∥d∥

(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)

)

For i ∈ N and any poison p ∈ P , we have

yiγi
p −

∑
u∈[T ]

si(τ)uy
iγi

u

=
∑
u∈R

si(τ)u
(
yiγi

p − yiγi
u

)
+

∑
u∈P\{p}

si(τ)u
(
yiγi

p − yiγi
u

)
+
∑
u∈I

si(τ)u
(
yiγi

p − yiγi
u

)
≤ ∥ν∥

∥d∥
∑
u∈R

si(τ)u

((
α2β

4
ζP +

1−β

4
ζR

)
∥µ∥2+

(
1−β

2
ζR−

β

2
ζP +

α+1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
+

∥ν∥
∥d∥

∑
u∈P\{p}

si(τ)u

(
(α−αβζP ) c2 ∥µ∥

√
log (Tn/δ)

)
+

∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
α2β

4
ζP ∥µ∥2+

(
1−β

2
ζR+

α

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
≤ ∥ν∥

∥d∥
(
1−si(τ)p

)(1−β

2
ζR + α

)
c2 ∥µ∥

√
log (Tn/δ)

+
∥ν∥
∥d∥

(
1−
∑
u∈P

si(τ)u

)(
α2β

4
ζP +

1−β

4
ζR

)
∥µ∥2 − ∥ν∥

∥d∥
∑
u∈I

si(τ)u

(
1−β

4
ζR ∥µ∥2

)

=
∥ν∥
∥d∥

((
1−si(τ)p

)(1−β

2
ζR + α

)
c2 ∥µ∥

√
log (Tn/δ)+

(
1−
∑
u∈P

si(τ)u

)
α2β

4
ζP ∥µ∥2+

∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

)

yiγi
p −

∑
u∈[T ]

si(τ)uy
iγi

u

≥ ∥ν∥
∥d∥

∑
u∈R

si(τ)u

((
α2β

4
ζP +

1−β

4
ζR

)
∥µ∥2 −

(
(1−β)

2
ζR−

β

2
ζP +

α+1

2

)
c2 ∥µ∥

√
log (Tn/δ)

− (1+1/C ′)2

nT
Tr(Σ)

)
− ∥ν∥

∥d∥
∑

u∈P\{p}

si(τ)u

(
(α−αβζP ) c2 ∥µ∥

√
log (Tn/δ)

)
+

∥ν∥
∥d∥

∑
u∈I

si(τ)u

(
α2β

4
ζP ∥µ∥2−

(
(1−β)

2
ζR +

α

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)
≥ −∥ν∥

∥d∥
(
1−si(τ)p

)(1−β

2
ζR + α

)
c2 ∥µ∥

√
log (Tn/δ)

+
∥ν∥
∥d∥

(
1−
∑
u∈P

si(τ)u

)(
α2β

4
ζP ∥µ∥2 − (1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

For i ∈ N and any irrelevant v ∈ I, we have

yiγi
v −

∑
u∈[T ]

si(τ)uy
iγi

u
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=
∑
u∈R

si(τ)u
(
yiγi

v − yiγi
u

)
+
∑
u∈P

si(τ)u
(
yiγi

v − yiγi
u

)
+

∑
u∈I\{v}

si(τ)u
(
yiγi

v − yiγi
u

)
≤ ∥ν∥

∥d∥
∑
u∈R

si(τ)u

(
1−β

4
ζR ∥µ∥2+

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈P

si(τ)u

(
−α2β

4
ζP ∥µ∥2+

(
α

2
+
(1−β)

2
ζR

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈I\{v}

si(τ)u

(
((1−β)ζR + αβζP ) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)

≤ ∥ν∥
∥d∥

(
1− si(τ)v

)((
(1−β)ζR + αβζP +

α

2

)
c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2 − ∥ν∥

∥d∥
∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

yiγi
v −

∑
u∈[T ]

si(τ)uy
iγi

u

≥ ∥ν∥
∥d∥

∑
u∈R

si(τ)u

(
1−β

4
ζR ∥µ∥2−

(
(1−β)ζR+

(2α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈P

si(τ)u

(
−α2β

4
ζP ∥µ∥2−

(
1−β

2
ζR +

α

2

)
c2 ∥µ∥

√
log (Tn/δ)− (1+1/C ′)2

nT
Tr(Σ)

)
− ∥ν∥

∥d∥
∑

u∈I\{v}

si(τ)u

(
((1−β)ζR + αβζP ) c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)

≥ −∥ν∥
∥d∥

(
1− si(τ)v

)((
(1−β)ζR + αβζP +

α

2

)
c2 ∥µ∥

√
log (Tn/δ) +

(1+1/C ′)2

nT
Tr(Σ)

)
+

∥ν∥
∥d∥

∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2 − ∥ν∥

∥d∥
∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

Therefore we have for c ∈ {±1},

∆λc(τ) =
η

n

∑
i∈Cc∪N−c

(−ℓ′i(τ)) ·
∑
r∈R

si(τ)r

yiγi
r −

∑
u∈[T ]

si(τ)uy
iγi

u


≤ η

n

∥ν∥
∥d∥

∑
i∈Cc

(−ℓ′i(τ)) ·
∑
r∈R

si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2

+
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)
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+
η

n

∥ν∥
∥d∥

∑
i∈N−c

(−ℓ′i(τ)) ·
∑
r∈R

si(τ)r

(
−

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 −

∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

+
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)
2

nT
Tr(Σ)

))
(6)

∆λc(τ) ≥
η

n

∥ν∥
∥d∥

∑
i∈Cc

(−ℓ′i(τ))
∑
r∈R

si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
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−
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+
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2

nT
Tr(Σ)
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− η

n

∥ν∥
∥d∥

∑
i∈N−c

(−ℓ′i(τ))
∑
r∈R
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1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 +

∑
u∈P

si(τ)u
α2β
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(
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(2α−1)β

2
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2

)
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√
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2
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Tr(Σ)
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(7)

∆λ̃c(τ) =
αη

n

∑
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(−ℓ′i(τ)) ·
∑
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si(τ)p

γi
p −

∑
u∈[T ]

si(τ)uγ
i
u
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n
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∥d∥
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αη

n

∥ν∥
∥d∥
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4
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)
(9)

For i ∈ C, r ∈ R, v ∈ I, we have

∆ρi,r(τ) =
η

n
(−ℓ′i(τ)) · si(τ)r

yiγi
r −

∑
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si(τ)uy
iγi
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≤ η
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∥d∥
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2
ζP +1

)
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√
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(10)
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η

n

∥ν∥
∥d∥
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(11)
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∆ρi,v(τ) ≥
η

n

∥ν∥
∥d∥
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For i ∈ N , r ∈ R, p ∈ P, v ∈ I, we have

∆ρi,r =
η

n
(−ℓ′i(τ)) · si(τ)r

yiγi
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∑
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si(τ)uy
iγi
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∥d∥
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(13)
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∥d∥
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2
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√
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)
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4
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∆ρi,p ≥ η

n
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∥d∥
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−
(
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2
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)
c2 ∥µ∥

√
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α2β

4
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)
+
∑
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4
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)
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η
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(−ℓ′i(τ)) · si(τ)v
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v −
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∥d∥
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∆ρi,v ≥ η

n

∥ν∥
∥d∥

(−ℓ′i(τ)) · si(τ)v

(∑
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si(τ)u
1−β

4
ζR ∥µ∥2 −
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4
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−
(
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)((
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α

2
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Lemma A.7. Suppose that the norm of the linear head ν ∝ d and ∥ν∥
∥d∥ scales as Θ(1/ ∥µ∥2). There exists an absolute

constant Cℓ > 0 such that on a good run, we have for all time step τ ≥ 0,

max
i,j∈[n]

ℓ′i(τ)

ℓ′j(τ)
≤ Cℓ.

Proof of Lemma A.7. Recall that the derivative of the loss function is given by

−ℓ′i(τ) =
1

1 + exp
(∑

t∈[T ] s
i(τ)tγi

t

)
for any i ∈ [n], τ ≥ 0. One a good run, for all i ∈ [n], k ∈ N , r ∈ R, p ∈ P, v ∈ I, we leverage Assumption (A2) and
Lemma A.5 to get the following

∣∣γi
r

∣∣ ≤ 1−β

4
ζR+

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2

CT 2
+
(1+1/C ′)2

CT∣∣γi
v

∣∣ ≤( (1−β)

2
ζR +

αβ

2
ζP

)
c2

CT 2
+

(1+1/C ′)2

CT∣∣γk
p

∣∣ ≤α2β

4
ζP +

(
α

2
− αβ

2
ζP

)
c2

CT 2

Therefore there exists some constant c > 0 such that
∣∣γi

t

∣∣ < c,∀i ∈ [n],∀t ∈ [T ]. Since −ℓ′i is monotonically decreasing,
we have

1

1 + exp (c)
≤ −ℓ′i(τ) ≤

1

1 + exp (−c)
.

This leads to Cℓ =
1+exp(c)
1+exp(−c) .

The following lemma show that given a sufficiently small step size, the softmax probabilities do not change significantly in a
single step of gradient descent.

Lemma A.8. Suppose that the norm of the linear head ν ∝ d and ∥ν∥
∥d∥ scales as Θ(1/ ∥µ∥2), and the step size of the gradient

descent satisfies Assumption (A3). Then the probability assigned to each token only changes at most by a constant factor,

∀τ ≥ 0, ∀i ∈ [n], ∀t ∈ [T ],
1

2
si(τ)t < si(τ + 1)t < 2si(τ)t.

Proof of Lemma A.8. By the updated of gradient descent, we have

si(τ + 1)t =
exp

(
xit

⊤W⊤p(τ)
)
exp

(
xit

⊤W⊤
(
−η∇pL̂(p(τ))
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∑

u∈[T ] exp
(
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u
⊤W⊤p(τ)

)
exp

(
xiu

⊤W⊤
(
−η∇pL̂(p(τ))
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Consider a consecutive time steps, we have

exp
(

xit
⊤W⊤

(
−η∇pL̂(p(τ))

))
maxu∈[T ]

{
exp

(
xi
u
⊤W⊤
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−η∇pL̂(p(τ))
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≤
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(
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⊤W⊤
(
−η∇pL̂(p(τ))

))
minu∈[T ]

{
exp

(
xiu

⊤W⊤
(
−η∇pL̂(p(τ))

))}
Therefore the proof is completed by showing that

∀t ∈ [T ],∀u ∈ [T ],
1

2
≤ exp

((
xi
t − xiu

)⊤
W⊤

(
−η∇pL̂(p(τ))

))
≤ 2.

To analyze the term inside the exponent, we have∣∣∣(xi
t − xiu

)⊤
W⊤

(
−η∇pL̂(p(τ))

)∣∣∣ ≤ 2max
t∈[T ]

{∣∣∣xit⊤W⊤
(
−η∇pL̂(p(τ))

)∣∣∣} (15)

Following from Lemma A.4, for t := r ∈ R, we have
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⊤
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)
=
(
µyi + ϵir
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∑
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√
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+
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t∈[T ]\P

∆ρi,t(τ)c1
√

Tr(Σ) log (T/δ) + ∆ρi,r(1 + 1/C ′)2 Tr(Σ)

For t := p ∈ P , we have

xip
⊤

W⊤
(
−η∇pL̂(p(τ))

)
= αµ̃⊤

−yi

∆λ+1(τ)µ+1 +∆λ−1(τ)µ−1 +∆λ̃+1(τ)µ̃+1 +∆λ̃−1(τ)µ̃−1 +
∑
i∈[n]

∑
t∈[T ]\P

∆ρi,t(τ)ϵ
i
t


≤ α∆λ̃−yi(τ) ∥µ∥2 + α

∑
i∈[n]

∑
t∈[T ]\P

∆ρi,t(τ)c2 ∥µ∥
√

log (Tn/δ)

Consider we assume ∥ν∥
∥d∥ scales as Θ(1/ ∥µ∥2), then Equation (6) gives us that

∆λc(τ) ≤
η

2

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
≲ η (16)

where the last line for sufficiently large C and Assumption (A4) so that αβζP
CT 2 ≤ 1. Similarly, Equation (8) gives us that

∆λ̃c(τ) ≤
αβη

2

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR + α

)
c2

CT 2

)
≲ α3β2η

where the last line is because Assumption (A3) so that ζR ≲ α2βζP .
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Equation (10) and (12) tell us that for i ∈ C

∑
r∈R

|∆ρi,r(τ)| ≤
η

n
(−ℓ′i(τ)) ·

∑
r∈R

si(τ)r

∣∣∣∣∣
(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR

+
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

)∣∣∣∣∣
≤ η

n

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)2

CT

)
(Assumption (A2))

≲
η

n
(For sufficiently large C.)

∑
v∈I

|∆ρi,v(τ)| ≤
η

n
(−ℓ′i(τ)) ·

∑
v∈I

si(τ)v

∣∣∣∣∣
(
−
∑
u∈R

si(τ)u
1−β

4
ζR

+
(
1− si(τ)v

)((
(1−β)ζR + αβζP +

1

2

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

))∣∣∣∣∣
≤ η

n

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)2

CT

)
(Assumption (A2))

≲
η

n
(For sufficiently large C.)

Similarly, for i ∈ N , (13) and (14) tell us that

∑
r∈R

|∆ρi,r| ≤
η

n
(−ℓ′i(τ)) ·

∑
r∈R

si(τ)r

∣∣∣∣∣
(
−

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR −

∑
u∈P

si(τ)u
α2β

4
ζP

+
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)

2

nT

Tr(Σ)

∥µ∥2

))∣∣∣∣∣
≲

α2βζP η

n
(α2βζP ≥ ζR)

∑
v∈I

|∆ρi,v| ≤
η

n
(−ℓ′i(τ)) ·

∑
v∈I

si(τ)v

∣∣∣∣∣
(∑

u∈R
si(τ)u

1−β

4
ζR −

∑
u∈P

si(τ)u
α2β

4
ζP

+
(
1− si(τ)v

)((
(1−β)ζR + αβζP +

α

2

)
c2

√
log (Tn/δ)

∥µ∥
+

(1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

))∣∣∣∣∣
≲

α2βζP η

n

From Equation (10), (12), (13) and (14), we have∑
i∈[n],t∈[T ]\P

|∆ρi,t(τ)| =
∑

i∈C,r∈R
|∆ρi,r(τ)|+

∑
i∈C,v∈I

|∆ρi,v(τ)|+
∑

i∈N ,r∈R
|∆ρi,r(τ)|+

∑
i∈N ,v∈I

|∆ρi,v(τ)|

≲ (1− β)2η + α2β2ζP η (Assumption (A4) gives us that α2β2ζP ≤ 1)
≲ η (17)
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As a result, we have

xi
r

⊤
W⊤

(
−η∇pL̂(p(τ))

)
≲

(
1 +

α3β2

T 2

)
η ∥µ∥2

xip
⊤

W⊤
(
−η∇pL̂(p(τ))

)
≲
(
α4β2 +

α

T 2

)
η ∥µ∥2

Therefore, choosing a sufficiently small step size η by setting a sufficiently large C can make Equation (15) smaller than
log (2), thus concludes the proof.

We end with a remark that if Tr(Σ) < n2T 2 log (Tn/δ)
2, then all the term Tr(Σ)

nT∥µ∥2 would be replaced by
√

Tr(Σ) log(Tn/δ)

∥µ∥2 ,

which can be further upper bounded by 1
CT 2 from Assumption (A2) and therefore all the discussion remains hold.

The following lemma shows that for any clean data, with high probability, for any time step, the attention probability from
the relevant token would dominate.

Lemma A.9. Suppose that Assumption 1 and 2 hold, and the norm of the linear head ν ∝ d and ∥ν∥
∥d∥ scales as Θ(1/ ∥µ∥2).

For any clean data i ∈ C, on a good run, for all time step τ ≥ 0 and all irrelevant token v ∈ I, we have

si(τ)v ≤ max
r∈R

{
si(τ)t

}
Proof of Lemma A.9. The proof is via induction. The inequality holds at initialization as all the elements are equal to 1/T .
Assuming si(τ)v ≤ maxr∈R

{
si(τ)r

}
and we prove for si(τ + 1)v ≤ maxr∈R

{
si(τ + 1)r

}
. For v ∈ I, we have

maxr∈R
{
si(τ + 1)r

}
si(τ + 1)v

=
maxr∈R

{
exp

(
xir

⊤W⊤p(τ + 1)
)}

exp
(

xi
v
⊤W⊤p(τ + 1)

)
=

maxr∈R

{
exp

(
xir

⊤W⊤p(τ)
)
exp

(
xir

⊤W⊤
(
−η∇pL̂(p(τ))

))}
exp

(
xi
v
⊤W⊤p(τ)

)
exp

(
xiv

⊤W⊤
(
−η∇pL̂(p(τ))

))
≥ si(τ)r′

si(τ)v
· exp

((
xir′ − xi

v

)⊤
W⊤

(
−η∇pL̂(p(τ))

))
where r′ = argmaxr∈R

{
si(τ)r

}
. As long as we can show

(
xir′ − xiv

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
≥ 0, then

maxr∈R{si(τ+1)r}
si(τ+1)v

≥ si(τ)r′
si(τ)v

, which proves via induction.

We now consider two cases. If
∑

r∈R si(τ)r ≥ 1− 1
4T , then the probability of not selecting the relevant token is less than

1
4T . Apply Lemma A.8, the probability of not selecting the relevant tokens after a single step of gradient descent is at most
1
2T , and therefore

∑
r∈R si(τ + 1)r ≥ 1− 1

2T , leading to

si(τ + 1)v ≤ 1

2T
≤ 1

|R|

(
1− 1

2T

)
≤ max

r∈R

{
si(τ + 1)r

}
.

Now we only need to consider the situation where
∑

r∈R si(τ)r ≤ 1− 1
4T . Note that si(τ)r′ ≥ 1/T also holds due to the

definition of r′. We have(
xir′ − xi

v

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
=
(
µi
yi + ϵir′ − ϵiv

)⊤∆λ+1(τ)µ+1 +∆λ−1(τ)µ−1 +∆λ̃+1(τ)µ̃+1 +∆λ̃−1(τ)µ̃−1 +
∑
i∈[n]

∑
t∈[T ]\P

∆ρi,t(τ)ϵ
i
t


≳ (∆ρi,r′(τ)−∆ρi,v(τ)) Tr(Σ) + ∆λyi(τ) ∥µ∥2 −

∑
k∈[n],u∈[T ]\P

|∆ρk,u(τ)| c1
√

Tr(Σ) log (Tn/δ)
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−

2 |∆λ+1(τ)|+ 2 |∆λ−1(τ)|+ 2
∣∣∣∆λ̃+1(τ)

∣∣∣+ 2
∣∣∣∆λ̃−1(τ)

∣∣∣+ ∑
k∈[n],

u∈[T ]\P

|∆ρk,u(τ)|

 ∥µ∥
√

log (Tn/δ)

where the last line holds from Lemma A.4. We will show the above equation is positive by controlling each term separately.

Note that ∥ν∥
∥d∥ = Θ

(
1/ ∥µ∥2

)
, leverage Equation (11) and (12) gives us that for i ∈ C,

(∆ρi,r′(τ)−∆ρi,v(τ)) Tr(Σ)

≥ Tr(Σ)
η

n ∥µ∥2
(−ℓ′i(τ)) ·

(
si(τ)r′

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2

−
(
1− si(τ)r′

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

))

− si(τ)v

(
−
∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

+
(
1− si(τ)v

)((
(1−β)ζR + αβζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

)))

≥ Tr(Σ)
η

n ∥µ∥2
(−ℓ′i(τ)) ·

(
si(τ)r′

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2

− 2si(τ)r′

(
((1−β)ζR + αβζP + 1) c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

))
(si(τ)r′(1− si(τ)r′) + si(τ)v(1− si(τ)v) ≤ 2si(τ)r′ )

≥ Tr(Σ)
η

n ∥µ∥2
(−ℓ′i(τ)) · si(τ)r′

(
1−
∑
u∈R

si(τ)u

)(
1−β

4
ζR ∥µ∥2

− 8T

(
((1−β)ζR + αβζP + 1) c2 ∥µ∥

√
log (Tn/δ)+

(1+1/C ′)2

nT
Tr(Σ)

))
(2si(τ)r′ ≤ 8Tsi(τ)r′

(
1−
∑

u∈R si(τ)u
)

as 1−
∑

u∈R si(τ)u ≥ 1
4T .)

≥ Tr(Σ)
η

n
(−ℓ′i(τ))

1

4T 2
·

(
1−β

4
ζR − 8

(
((1−β)ζR + αβζP + 1) c2

T
√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)2

n

Tr(Σ)

∥µ∥2

))
(si(τ)r′

(
1−
∑

u∈R si(τ)u
)
≥ 1

4T 2 .)

≥ Tr(Σ)
η

n
(−ℓ′i(τ))

1

4T 2
·

(
1−β

4
ζR − 8

(
((1−β)ζR + αβζP + 1)

c2
CT

+
(1+1/C ′)2

C

))

Similarly, Equation (7) gives us that

∆λc(τ) ≥
η

n

∑
i∈Cc

(−ℓ′i(τ))
∑
r∈R

si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR

−
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)

2

nT

Tr(Σ)

∥µ∥2

))

− η

n

∑
i∈N−c

(−ℓ′i(τ))
∑
r∈R

si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR +

∑
u∈P

si(τ)u
α2β

4
ζP

+
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)

2

nT

Tr(Σ)

∥µ∥2
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≥ η

n

∑
i∈Cc\N−c

(−ℓ′i(τ))
∑
r∈R

si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR (Denote

∑
i∈A\B xi =

∑
i∈A xi −

∑
i∈B xi)

−
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

))

− η

n

∑
i∈N−c

(−ℓ′i(τ))
∑
r∈R

si(τ)r
∑
u∈P

si(τ)u
α2β

4
ζP

≳
η

n
(−ℓ′i(τ))

(
1−2β

8T 2

(
1−β

4
ζR − 4

((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2
CT

+
(1+1/C ′)

2

C

))
−α2β2

4
ζP

)
(∀i ∈ C,

∑
r∈R si(τ)r

(
1−
∑

u∈R si(τ)u
)
≥si(τ)r′

(
1−
∑

u∈R si(τ)u
)
≥ 1

4T 2 , Lemma A.7.)

≳
η

n
(−ℓ′i(τ))

(
1−2β

8T 2

(
1−β

4
ζR − 4

((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2
CT

+
(1+1/C ′)

2

C

)))

where the second last inequality applies Assumption (A4) so that ζR
T 2 ≳ α2β2ζP hold and therefore the positive term

dominates.

Moreover, from Equation (10), (12), (13) and (14) we have

∑
i∈[n],t∈[T ]\P

|∆ρi,t(τ)| ≲ η

(
(1−β)2

4
ζR +

α2β2

4
ζP + ((1−β)ζR+αβζP +1)

c2
√
log (Tn/δ)

∥µ∥
+

(1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

)

≤ η

(
(1−β)2

4
ζR +

α2β2

4
ζP + ((1−β)ζR+αβζP +1)

c2
CT 2

+
(1+1/C ′)2

CT

)
Equation (6) or (16) gives us that

∆λc(τ) ≤
η

2

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
(Assumption (A2))

Equation (8) gives us that

∆λ̃c(τ) ≤
αη

n

∑
i∈Nc

(−ℓ′i(τ)) ·
∑
p∈P

si(τ)

((
1−si(τ)p

)(1−β

2
ζR + α

)
c2

√
log (Tn/δ)

∥µ∥

+

(
1−
∑
u∈P

si(τ)u

)
α2β

4
ζP +

∑
u∈I

si(τ)u
1−β

4
ζR

)

≤ αβη

2

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR + α

)
c2

√
log (Tn/δ)

∥µ∥

)

≤ αβη

2

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR + α

)
c2

CT 2

)
(Assumption (A2))

Assumption (A2) gives us that ∥µ∥ ≥ CT 2
√
log (Tn/δ), ∥µ∥2 ≥ CT 2 log (Tn/δ)

√
Tr(Σ), C Tr(Σ) ≤ n ∥µ∥2, and

therefore we have(
xi
r′ − xiv

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
≳ η(−ℓ′i(τ)) ·

1

4T 2

(
1−β

4
ζR − 8

((
(1−β)ζR + αβζP +

1

2

)
c2
CT

+
(1+1/C ′)2

C

))
Tr(Σ)

n

+
η(1−β)

8Cℓ
(−ℓ′i(τ))

1

4T 2

(
1−β

4
ζR − 8

((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2
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+
(1+1/C ′)

2
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∥µ∥2
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− η

(
(1−β)2

4
ζR +

α2β2

4
ζP + ((1−β)ζR+αβζP +1)

c2
CT 2

+
(1+1/C ′)2

CT

)
(1 + c1) ∥µ∥2

CT 2

− 4η

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
∥µ∥2

CT 2

− 4αβη

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR + α

)
c2

CT 2

)
∥µ∥2

CT 2

> 0

holds for sufficiently large C conditioned on Assumption (A4) so that ζR ≥ αβζP
CT , ζR ≥ α3β2ζP

C , αβ ≤ 1.

The following lemma shows that for any poison data, with high probability, for any time step, the attention probability from
the poisoned token would dominate.

Lemma A.10. Suppose that Assumption 1 and 2 hold, and the norm of the linear head ν ∝ d and ∥ν∥
∥d∥ scales as Θ(1/ ∥µ∥2).

For any poison data i ∈ N , on a good run, for all time step τ ≥ 0 and all token except the poison token t ∈ [T ]\P , we have

si(τ)t ≤ max
p∈P

{
si(τ)p

}
Proof of Lemma A.10. The proof is similar as that of Lemma A.9. The inequality holds at initialization as all the elements
are equal to 1/T . For t ∈ [T ]\R, We have

maxp∈P
{
si(τ + 1)p

}
si(τ + 1)t

≥ si(τ)p′

si(τ)t
· exp

((
xip′ − xit

)⊤
W⊤

(
−η∇pL̂(p(τ))

))
where p′ = argmaxp∈P

{
si(τ)p

}
. Now we only need to show

(
xi
p′ − xit

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
> 0. For∑

p∈P si(τ)p ≥ 1− 1
4T , induction holds for the same argument as shown in the proof of Lemma A.9. Now we only need to

consider the situation where
∑

p∈P si(τ)p ≤ 1− 1
4T . Note that si(τ)p′ ≥ 1/T also holds due to the definition of p′. We

now consider the following two cases.

Case 1: i ∈ N , t := r ∈ R. We have(
xi
p′ − xir

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
=
(
αµ̃i

p′ − µi
r − ϵir

)⊤∆λ+1(τ)µ+1 +∆λ−1(τ)µ−1 +∆λ̃+1(τ)µ̃+1 +∆λ̃−1(τ)µ̃−1 +
∑
i∈[n]

∑
u∈[T ]\P

∆ρi,u(τ)ϵ
i
t


≳ ∆λ̃−yi(τ)α ∥µ∥2 −∆λyi(τ) ∥µ∥2 −∆ρi,r(τ) Tr(Σ)−

∣∣∣ ∑
k∈[n],

u∈[T ]\P

∆ρk,u(τ)
∣∣∣c1√Tr(Σ) log (Tn/δ)

−

|∆λ+1(τ)|+|∆λ−1(τ)|+
∣∣∣∆λ̃+1(τ)

∣∣∣+∣∣∣∆λ̃−1(τ)
∣∣∣+(1 + α)

∣∣∣ ∑
k∈[n],

u∈[T ]\P

∆ρk,u(τ)
∣∣∣
 ∥µ∥

√
log (Tn/δ)

We control each term separately.

∆λ̃c(τ) ≥
αη

n ∥µ∥2
∑
i∈Nc

(−ℓ′i(τ)) ·
∑
p∈P

si(τ)p

(
−
(
1−si(τ)p

)(1−β

2
ζR + α

)
c2 ∥µ∥

√
log (Tn/δ)

+

(
1−
∑
u∈P

si(τ)u

)(
α2β

4
ζP ∥µ∥2 − (1+1/C ′)2

nT
Tr(Σ)

)
+
∑
u∈R

si(τ)u
1−β

4
ζR ∥µ∥2

)
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≥ αη

n

∑
i∈Nc

(−ℓ′i(τ)) · si(τ)p′

(
−

(
1−
∑
u∈P

si(τ)u

)(
1−β

2
ζR + α

)
c2

4T
√

log (Tn/δ)

∥µ∥
(
∑

p∈P si(τ)p ≥ si(τ)p′ , 1−
∑

u∈P si(τ)u ≥ 1
4T )

+

(
1−
∑
u∈P

si(τ)u

)(
α2β

4
ζP − (1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

))

≥ αβη

2

1

4T 2
min
i∈Nc

(−ℓ′i(τ)) ·

(
−
(
1−β

2
ζR + α

)
c2

4T
√
log (Tn/δ)

∥µ∥
+

α2β

4
ζP − (1+1/C ′)2

nT

Tr(Σ)

∥µ∥2

)
(si(τ)p′

(
1−
∑

u∈P si(τ)u
)
≥ 1

4T 2 )

≥ αβη

2Cℓ

1

4T 2
(−ℓ′i(τ)) ·

(
−
(
1−β

2
ζR + α

)
c2
CT

+
α2β

4
ζP − (1+1/C ′)2

CT

)
(Lemma A.7, Assumption (A2))

For i ∈ N , we have

−∆ρi,r(τ) ≥
η

n
(−ℓ′i(τ)) · si(τ)r

((
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 +

∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

−
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)

2

nT

Tr(Σ)

∥µ∥2

))

≥ − η

n
(−ℓ′i(τ))

((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
(Assumption (A2))

Therefore,

(
xi
p′ − xir

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
≳

α2βη

2Cℓ

1

4T 2
(−ℓ′i(τ)) ·

(
α2β

4
ζP − (1+1/C ′)2

CT
−
(
1−β

2
ζR + α

)
c2
CT

)
∥µ∥2

− η

2
(−ℓ′i(τ))

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
∥µ∥2

− η(−ℓ′i(τ))

((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)2

CT

)
Tr(Σ)

n
(Assumption (A2))

− η

(
1−β

4
ζR + ((1−β)ζR+αβζP +1)

c2
CT 2

+
(1+1/C ′)2

CT

)
(1 + α+ c1) ∥µ∥2

CT 2

− 2η

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
∥µ∥2

CT 2

− 2αβη

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR + α

)
c2

CT 2

)
∥µ∥2

CT 2

> 0

holds with Assumption (A3) for sufficiently large C so that α4β2ζP
T 2 ≥ CζR, α2βζP ≥ α

CT . These assumptions should also
ensure the following case to be positive.

Case 2: i ∈ N , t := v ∈ I.
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For i ∈ N , we have

−∆ρi,v(τ) ≥
η

n
(−ℓ′i(τ)) · si(τ)r

(
−

(
1−
∑
u∈R

si(τ)u

)
1−β

4
ζR ∥µ∥2 +

∑
u∈P

si(τ)u
α2β

4
ζP ∥µ∥2

−
(
1− si(τ)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

√
log (Tn/δ)

∥µ∥
+
(1+1/C ′)

2

nT

Tr(Σ)

∥µ∥2

))

≥ − η

n
(−ℓ′i(τ))

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
(Assumption (A2))

Similar as above, we have(
xip′ − xiv

)⊤
W⊤

(
−η∇pL̂(p(τ))

)
=
(
αµi

p′ − ϵiv
)⊤∆λ+1(τ)µ+1 +∆λ−1(τ)µ−1 +∆λ̃+1(τ)µ̃+1 +∆λ̃−1(τ)µ̃−1 +

∑
i∈[n]

∑
u∈[T ]\P

∆ρi,u(τ)ϵ
i
t


≳ ∆λ̃−yi(τ)α ∥µ∥2 −∆ρi,v(τ) Tr(Σ)−

∑
k∈[n],u∈[T ]\P

|∆ρk,u(τ)| c1
√

Tr(Σ) log (Tn/δ)

−

|∆λ+1(τ)|+ |∆λ−1(τ)|+
∣∣∣∆λ̃+1(τ)

∣∣∣+ ∣∣∣∆λ̃−1(τ)
∣∣∣+ ∑

k∈[n],
u∈[T ]\P

|∆ρk,u(τ)|

α ∥µ∥
√
log (Tn/δ)

≥ α2βη

2Cℓ

1

4T 2
(−ℓ′i(τ)) ·

(
α2β

4
ζP − (1+1/C ′)2

CT
−
(
1−β

2
ζR + α

)
c2
CT

)
∥µ∥2

− η(−ℓ′i(τ))

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)2

CT

)
Tr(Σ)

n
(Assumption (A2))

− η

(
1−β

4
ζR + ((1−β)ζR+αβζP +1)

c2
CT 2

+
(1+1/C ′)2

CT

)
(α+ c1) ∥µ∥2

CT 2

− 2αη

(
1−β

4
ζR +

(
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

)
∥µ∥2

CT 2

− 2α2βη

(
1−β

4
ζR +

α2β

4
ζP +

(
1−β

2
ζR +

α+ 1

2

)
c2

CT 2

)
∥µ∥2

CT 2

> 0

holds with Assumption (A3) for sufficiently large C.

Lemma A.11. Suppose that Assumption 1 and 2 hold, and the gradient of loss function satisfies limτ→∞

∥∥∥∇pL̂(p(τ))
∥∥∥ = 0.

Then for each clean sample j ∈ C, there exists the token index t∗j ∈ [T ] such that

lim
τ→∞

sjt∗j
(τ) = 1, lim

τ→∞
sjt (τ) = 0,

for all j ∈ C, t ∈ [T ]\ {t∗i }. For each poison sample k ∈ N , for every poison token p∗k ∈ P , we have

lim
τ→∞

skp∗
k
(τ) =

1

|P|
, lim

τ→∞
skt (τ) = 0,

for all k ∈ N , t ∈ [T ]\P .
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Proof of Lemma A.11. The proof largely follows the proof of Lemma D¿3 in (Sakamoto & Sato, 2024). Recall the following
technical results: For linearly independent vector v1, . . . , vm ∈ Rd and coefficients a1, . . . , am ∈ R, there exists a constant
c0 > 0 such that

∥∥∥∑i∈[m] aivi

∥∥∥
2
≥ c0

∑
i∈[m] |ai|.

Recall that the gradient of the empirical loss function is given by the linear combination of
{

Wxi
t

}
i∈[n],t∈[T ]

:

∇pL̂(p) =
1

n

n∑
i=1

ℓ′i · yi ·

∑
t∈[T ]

sit

γi
t −

∑
u∈[T ]

siuγ
i
u

Wxi
t


=

1

n

∑
j∈C

ℓ′j ·yj ·

∑
t∈[T ]

sjt

γj
t −

∑
u∈[T ]

sjuγ
j
u

Wxj
t

+
1

n

∑
k∈N

ℓ′k ·yk ·

 ∑
t∈[T ]\P

skt

γk
t −

∑
u∈[T ]

skuγ
k
u

Wxk
t


+

1

n

∑
k∈N+1

ℓ′k ·

∑
t∈P

skt

γk
t −

∑
u∈[T ]

skuγ
k
u

αWµ̃+1

− 1

n

∑
k∈N−1

ℓ′k ·

∑
t∈P

skt

γk
t −

∑
u∈[T ]

skuγ
k
u

αWµ̃−1


(18)

Since this norm converges to zero, we have

∀ϵ > 0,∃τ0 > 0 s.t. ∀τ ≥ τ0,
∥∥∥∇pL̂(p(τ))

∥∥∥ ≤ ϵ. (19)

Combining Equation (18) and the fact that
{

Wxi
t

}
i∈C,t∈[T ]

,
{

Wxi
t

}
i∈N ,t∈[T ]\P , Wµ̃+1 and Wµ̃−1 are linearly independent

with probability 1, if
∥∥∥∇pL̂(p(τ))

∥∥∥ ≤ ϵ holds for some ϵ > 0, τ > 0, then we have

|ℓ′j |
n

· sj(τ)t ·

∣∣∣∣∣∣γj
t −

∑
u∈[T ]

sj(τ)uγ
j
u

∣∣∣∣∣∣ ≤ ϵ

c0
, for ∀j ∈ C, t ∈ [T ] (20)

|ℓ′k|
n

· sk(τ)t ·

∣∣∣∣∣∣γk
t −

∑
u∈[T ]

sk(τ)uγ
k
u

∣∣∣∣∣∣ ≤ ϵ

c0
, for ∀k ∈ N , t ∈ [T ]\P (21)

∣∣∣∣∣∣ 1n
∑
k∈Nc

ℓ′k
∑
t∈P

sk(τ)t

γk
t −

∑
u∈[T ]

sk(τ)uγ
k
u

∣∣∣∣∣∣ ≤ ϵ

c0
, for ∀k ∈ Nc, t ∈ P, c ∈ {±1} (22)

Given that the linear head ν is fixed and the output scale remains unchanged, note that there exists some constant
0 < c1, c2 < 1 such that c1 < |ℓ′i| < c2. For ϵ′ := nϵ

c0|ℓ′i|
, Equation (20) and (21) gives us that

sj(τ)t <
√
ϵ′, or

∣∣∣∣∣∣γj
t −

∑
u∈[T ]

sjuγ
j
u

∣∣∣∣∣∣ < √
ϵ′, for ∀j ∈ C, t ∈ [T ]

sk(τ)t <
√
ϵ′, or

∣∣∣∣∣∣γk
t −

∑
u∈[T ]

skuγ
k
u

∣∣∣∣∣∣ < √
ϵ′, for ∀k ∈ N , t ∈ [T ]\P.

As sk(τ)t1 = sk(τ)t2 , for every k ∈ N , t1, t2 ∈ P , γk1
t1 = γk2

t2 for every k1, k2 ∈ N , t1, t2 ∈ P , due to xk1
t1 = xk2

t2 = αµ̃yi
,

we define sk(τ)p := sk(τ)t, γp := γk
t for every k ∈ N , t ∈ P . As |ℓ′k| is bounded,

∣∣∣γp −∑u∈[T ] s
k(τ)uγ

k
u

∣∣∣ is bounded,
for each k ∈ N , there exists c3(k) such that Equation (22) gives us that∣∣∣∣∣∣ 1n

∑
k∈Nc

ℓ′k
∑
t∈P

sk(τ)t

γk
t −

∑
u∈[T ]

sk(τ)uγ
k
u

∣∣∣∣∣∣ = c3(k)|P|β

∣∣∣∣∣∣sk(τ)p
γp −

∑
u∈[T ]

sk(τ)uγ
k
u

∣∣∣∣∣∣ ≤ ϵ

c0
.
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For ∀k ∈ Nc, c ∈ {±1}, there exists ϵ′′ := nϵ
c0c3(k)|P| such that Equation (22) gives us

sk(τ)p <
√
ϵ′′, or

∣∣∣∣∣∣γp −
∑
u∈[T ]

sk(τ)uγ
k
u

∣∣∣∣∣∣ < √
ϵ′′.

We now consider two cases. For clean sample j ∈ C, we start with there exists one t∗j ∈ [T ] such that
∣∣∣γj

t∗j
−
∑

u∈[T ] s
j
uγ

j
u

∣∣∣ <
√
ϵ′. Otherwise, assuming there exists t1, t2 ∈ [T ] such that∣∣∣∣∣∣γj

t1 −
∑
u∈[T ]

sjuγ
j
u

∣∣∣∣∣∣ < √
ϵ′

∣∣∣∣∣∣γj
t2 −

∑
u∈[T ]

sjuγ
j
u

∣∣∣∣∣∣ < √
ϵ′,

by triangle inequality, we have
∣∣γi

t1 − γi
t2

∣∣ < 2
√
ϵ′. As the noise in each clean sample’s token

{
ϵjt

}j∈C

t∈[T ]
take distinct values

almost surely, we can select a sufficiently small ϵ such that 2
√
ϵ′ <

∣∣γi
t1 − γi

t2

∣∣, leads to a contradiction. Therefore, there
exist one t∗j (τ) ∈ [T ] such that for all t ∈ [T ]\

{
t∗j (τ)

}
, sj(τ)t <

√
ϵ′, sj(τ)t∗j (τ) > 1− (T − 1)

√
ϵ′. From the step size

Assumption (A5) and Lemma A.8, the token index t∗j (τ) is determined without depending on the time step τ for sufficiently
small ϵ, and we further denote it as t∗j which appears in the statement. As a result, for any sufficiently small ϵ1 :=

√
ϵ′ and

ϵ2 := (T − 1)ϵ1, from Equation (19), there exists τ0 > 0 such that ∀τ ≥ τ0,

sj(τ)t < ϵ1, s
j(τ)t∗j > 1− ϵ2, t ∈ [T ]\

{
t∗j
}
.

We complete the proof for clean sample regarding t∗j ∈ R by using Lemma A.9.

Similarly, for poison sample k ∈ N , either there exists one t∗k ∈ [T ]\P such that
∣∣∣γk

t∗k
−
∑

u∈[T ] s
k
uγ

k
u

∣∣∣ < √
ϵ′, or for

every p ∈ P ,
∣∣∣γk

p −
∑

u∈[T ] s
k
uγ

k
u

∣∣∣ < √
ϵ′′, otherwise we arrive the same contradiction as shown for the clean sample.

By Lemma A.10, we claim the first statement does not hold, otherwise there exists one t∗k(τ) ∈ [T ]\P such that for all
t ∈ [T ]\ (P ∪ {t∗k(τ)}), sk(τ)t <

√
ϵ′, for all p ∈ P sk(τ)p <

√
ϵ′′, and sk(τ)t∗k(τ) > 1 − (T − |P| − 1)

√
ϵ′ − |P|

√
ϵ′′.

From the step size assumption (A5) and Lemma A.8, the token index t∗k(τ) is determined without depending on the time
step τ for sufficiently small ϵ, and we further denote it as t∗k which appears in the statement. As a result, for any sufficiently
small ϵ1 :=

√
ϵ′, ϵ2 :=

√
ϵ′′, and ϵ3 := (T − |P|− 1)ϵ1 − |P|ϵ2, from Equation (19), there exists τ0 > 0 such that ∀τ ≥ τ0,

sk(τ)t∗k > 1− ϵ3.

As t∗k ∈ [T ]\P , this contradict with Lemma A.10.

As a result, we have that for poison sample k ∈ N , for every p∗k ∈ P ,
∣∣∣γk

p∗
k
−
∑

u∈[T ] s
k
uγ

k
u

∣∣∣ < √
ϵ′′. Therefore, for any

sufficiently small ϵ1 :=
√
ϵ′′ and ϵ2 := (T − |P|)

√
ϵ′′, from Equation (19), there exists τ0 > 0 such that ∀τ ≥ τ0,

sk(τ)t < ϵ1, s
k(τ)p∗

k
>

1

|P|
(1− ϵ2) , t ∈ [T ]\P, p∗k ∈ P,

completing the proof of poison sample.

Leveraging Lemma A.11 with Lemma A.3 achieve Lemma 5.1.

We now introduce the following lemma to guarantee the direction of signals.

Lemma A.12. Suppose that Assumptions 1 and 2 holds. We further assume the following hold for c ∈ {±1}.

ζR
∑
i∈Cc

∑
0≤τ ′≤τ

Gi
r(τ

′) ≳ α2βζP
∑

i∈N−c

∑
0≤τ ′≤τ

Gi
r(τ

′)

ζR
∑
i∈[n]

0≤τ ′≤τ

Gi
r(τ

′)≳
∑
i∈[n]

0≤τ ′≤τ

∑
t∈[T ]\P

si(τ ′)t(1−si(τ ′)t)

T
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αβζP
∑
i∈Nc

∑
0≤τ ′≤τ

Gi
p(τ) ≳

∑
i∈Nc

∑
0≤τ ′≤τ

∑
p∈P

si(τ ′)p
(
1− si(τ ′)p

)
T 2

Then for all c ∈ {±1}, if the following conditions on the training trajectory are satisfied

where C1, C2 are some absolute constants, then we have

λc(τ) ≳
η

n

∥ν∥
∥d∥

∥µ∥2 min
0≤τ ′≤τ
i∈Cc

(−ℓ′i(τ
′))
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∑

0≤τ ′≤τ

∑
i∈Cc
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r(τ)− α2βζP

∑
0≤τ ′≤τ

∑
i∈N−c
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r(τ)

 > 0,

λ̃c(τ) ≳
α3βη

n

∥ν∥
∥d∥

ζP ∥µ∥2 min
0≤τ ′≤τ
i∈N−c

(−ℓ′i(τ
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∑
i∈Nc

∑
0≤τ ′≤τ
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p(τ) > 0.

Proof of Lemma A.12. We have

λc(τ) =
∑

0≤τ ′≤τ

∆λc(τ
′)
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∥d∥
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(2α−1)β

2
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√
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≳
η
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∥d∥
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(−ℓ′i(τ
′))

( ∑
0≤τ ′≤τ

∑
i∈Cc
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si(τ ′)r
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1−
∑
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si(τ ′)u
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1− si(τ ′)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1
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−
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)(
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4
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≳
η

n

∥ν∥
∥d∥

∥µ∥2 min
0≤τ ′≤τ
i∈Cc

(−ℓ′i(τ
′))

ζR
∑

0≤τ ′≤τ

∑
i∈Cc
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r(τ

′)− α2βζP
∑

0≤τ ′≤τ

∑
i∈N−c

Gi
r(τ
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(Choose sufficiently large C)

≳
η

n
ζR

∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′) (Condition (2) and (3))

where the second last line holds due to the condition that

ζR
∑
i∈Cc

∑
0≤τ ′≤τ

Gi
r(τ

′) ≳ α2βζP
∑

i∈N−c

∑
0≤τ ′≤τ

Gi
r(τ

′), ζR
∑
i∈[n]

0≤τ ′≤τ

Gi
r(τ

′)≳
∑
i∈[n]

0≤τ ′≤τ

∑
t∈[T ]\P

si(τ ′)t(1−si(τ ′)t)

T
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Similarly,

λ̃c(τ) =
∑

0≤τ ′≤τ

∆λ̃c(τ
′)

≥ αη

n

∥ν∥
∥d∥

∑
i∈Nc

∑
0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∑
p∈P

si(τ ′)p

(
−
(
1−si(τ ′)p

)(1−β

2
ζR +

α+ 1

2

)
c2 ∥µ∥

√
log (Tn/δ)

+

(
1−
∑
u∈P

si(τ ′)u

)(
α2β

4
ζP ∥µ∥2 − (1+1/C ′)2

nT
Tr(Σ)

)
+
∑
u∈R

si(τ ′)u
1−β

4
ζR ∥µ∥2

)

≥ αη

n

∥ν∥
∥d∥

∥µ∥2 min
0≤τ ′≤τ
i∈N−c

(−ℓ′i(τ
′))
∑
i∈Nc

∑
0≤τ ′≤τ

·
∑
p∈P

si(τ ′)p

(
−
(
1−si(τ ′)p

)(1−β

2
ζR +

α+ 1

2

)
c2

CT 2

+

(
1−
∑
u∈P

si(τ ′)u

)(
α2β

4
ζP ∥µ∥2 − (1+1/C ′)2

CT

)
+
∑
u∈R

si(τ ′)u
1−β

4
ζR

)

≳
α3βη

n

∥ν∥
∥d∥

ζP ∥µ∥2 min
0≤τ ′≤τ
i∈N−c

(−ℓ′i(τ
′))
∑
i∈Nc

∑
0≤τ ′≤τ

Gi
p(τ)

where the last line holds because Condition (5).

αβζP
∑
i∈Nc

∑
0≤τ ′≤τ

∑
p∈P

si(τ ′)p

1−
∑
p∈P

si(τ ′)p

 ≳
∑
i∈Nc

∑
0≤τ ′≤τ

∑
p∈P

si(τ ′)p
(
1− si(τ ′)p

)
T 2

(23)

guarantees λ̃c > 0,∀c ∈ {±1}. Note that when |P| = 1, due to Assumption (A3) such that αβ ≳ 1
T , the above Equation (23)

holds trivially.

Lemma A.13 (Simple extension of Lemma E.2 in (Sakamoto & Sato, 2024)). Suppose that
∑

t∗∈T∗ s(τ)t∗ ≥ 1− ϵ for
some τ ≥ 0, t∗ ∈ T ∗, T ∗ ⊂ [T ], ϵ > 0, then on a good run, we have

∥p(τ)∥ ≥ 1

2
(
∥µ∥+ 2

√
Tr(Σ)

) log

(
1

|T∗| − ϵ

ϵ
(T − |T ∗|)

)

Proof of Lemma A.13. We know from Lemma 5.1 that if j ∈ C, there exists token t∗ := t∗j ∈ R such that sj(τ)t∗ > 1− ϵ,
if k ∈ N , for every t∗ := p∗k ∈ P , we have sk(τ)t∗ > 1

|P| − ϵ, meaning
∑

t∗∈P sk(τ)t∗ > 1− |P|ϵ. Therefore, based on
whether the sample is clean or poisoned, T ∗ can be either a singleton set or poisoned set. To combine the above situations
into one formula, we have the following holds:

∑
t∗∈T∗

s(τ)t∗ =

∑
t∗∈T∗ exp

(
x⊤
t∗W⊤p(τ)

)∑
u∈[T ] exp

(
x⊤
u W⊤p(τ)

) ≥ 1− |T ∗|ϵ

Rearrange it gives us

|T ∗|ϵ
∑

t∗∈T∗

exp
(
x⊤
t∗W⊤p(τ)

)
≥ (1− |T ∗|ϵ)

∑
u∈[T ]\T∗

exp
(
xuW⊤p(τ)

)
exp

(
max
t∈[T ]

(∥xt∥) ∥p(τ)∥
)

≥
1

|T∗| − ϵ

ϵ
(T − |T ∗|) exp

(
−max

t∈[T ]
(∥xt∥) ∥p(τ)∥

)
(x⊤W⊤p(τ) ≤ ∥x∥ ∥p(τ)∥)

We have from Lemma A.4 that maxt∈[T ](∥xt∥) ≤ ∥µ∥+ (1 + 1/C ′)
√

Tr(Σ) holds on a good run, plug in obtain the final
result.
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Theorem 4.1. Suppose Assumptions 1 and 2 hold and that the fixed linear head satisfies ∥ν∥ / ∥d∥ = Θ(1/ ∥µ∥2). Then,
with probability at least 1− δ, there exists a sufficiently large time step τ0 such that for all τ ≥ τ0, the model interpolates
the training data:

sign(f(Xi)) = yi,∀i ∈ [n].

If the following conditions are satisfied for some fixed absolute constants C1, C4 > 1 and C2, C3, C5 > 0, then the model
exhibits the backdoor behavior at test time:

1. Balanced uncertainty across classes:

1

C1

∑
i∈C−1

0≤τ ′≤τ

Gi
r(τ

′)≤
∑

i∈C+1

0≤τ ′≤τ

Gi
r(τ

′)≤C1

∑
i∈C−1

0≤τ ′≤τ

Gi
r(τ

′). (1)

2. Relevant token uncertainty dominates general variance:

ζR
∑
i∈[n]

0≤τ ′≤τ

Gi
r(τ

′)>C2

∑
i∈[n]

0≤τ ′≤τ

∑
t∈[T ]\P

si(τ ′)t(1−si(τ ′)t)

T
. (2)

3. Standard data dominates poisoned influence in relevant direction:

ζR
∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′) > C3 · α2βζP
∑

i∈N−c

0≤τ ′≤τ

Gi
r(τ

′). (3)

4. Relevant and poisoned contributions are comparable:

1

C4
<

α3βζP
ζR

∑
i∈Nc

0≤τ ′≤τ

Gi
p(τ

′)∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′)
< C4. (4)

5. Poisoned token uncertainty dominates variance:

αβζP
∑
i∈Nc

0≤τ ′≤τ

Gi
p(τ

′)>C5

∑
i∈Nc,p∈P
0≤τ ′≤τ

si(τ ′)p
(
1−si(τ ′)p

)
T 2

. (5)

Then:

1. Clean test samples without poisoned triggers are correctly classified with high probability: P(X,y)∼D [sign(fτ (X)) ̸= y] ≤
δ.

2. Poisoned test samples with backdoor triggers are misclassified with high probability: P
[
sign(fτ (X̃)) = y

]
≤ δ.

Proof of Theorem 4.1. For the convergence of training, Lemma 5.1 show the existence of the optimal token(s) such that

lim
τ→∞

sjt∗j
(τ) = 1, lim

τ→∞
sjt (τ) = 0, ∀j ∈ C,∀t ∈ [T ]\

{
t∗j
}
.

lim
τ→∞

skp∗
k
(τ) =

1

|P|
, lim

τ→∞
skt (τ) = 0, ∀k ∈ N ,∀t ∈ [T ]\P,∀p∗k ∈ P.
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Lemma A.9 implies t∗j ∈ R for j ∈ C. Therefore we have for j ∈ C

yj · f(Xj) = yj · γj
r

≥ ∥ν∥
∥d∥

(
1−β

4
ζR ∥µ∥2−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2 ∥µ∥

√
log (Tn/δ)

)
≥ ∥ν∥

∥d∥
∥µ∥2

(
1−β

4
ζR−

(
(1−β)

2
ζR+

(α−1)β

2
ζP +

1

2

)
c2

CT 2

)
(Assumption (A2))

> 0

Similarly, Lemma A.10 implies p∗k ∈ P for k ∈ N . Therefore we have for k ∈ N

yk · f(Xk) = yk · γk
p

≥ ∥ν∥
∥d∥

(
α2β

4
ζP ∥µ∥2−

(
α

2
− αβ

2
ζP

)
c2 ∥µ∥

√
log (Tn/δ)

)
≥ ∥ν∥

∥d∥
∥µ∥2

(
α2β

4
ζP −

(
α

2
− αβ

2
ζP

)
c2

CT 2

)
(Assumption (A2))

> 0 (Assumption (A3))

For the generalization part, it is sufficient to show that the model’s output becomes deterministically with the selected label.
Given any clean data (X, y) , we have

yfτ (X) = yν⊤X⊤S(XiW⊤p(τ)) =
∑
r∈R

yγrS(X⊤W⊤p(τ))r +
∑
v∈I

yγvS(X⊤W⊤p(τ))v (24)

Note that ∑
r∈R

S(X⊤W⊤p(τ))r =
∑
r∈R

exp
(
x⊤r Wp(τ)

)∑
t∈[T ] exp

(
x⊤t Wp(τ)

)
=

(
1 +

∑
u∈[T ]\R exp

(
x⊤u Wp(τ)

)∑
r∈R exp (x⊤r Wp(τ))

)−1

≥ 1−
∑

u∈[T ]\R exp
(
x⊤u Wp(τ)

)∑
r∈R exp (x⊤r Wp(τ))

(∀x > −1, 1
1+x ≥ 1− x)

≥ 1− 1− ζR
ζR

·
maxv∈I exp

(
x⊤
v Wp(τ)

)
minr∈R exp (x⊤r Wp(τ))

(25)

Similar as Equation (17), we have∑
i∈C,t∈R

|ρi,t(τ)| =
∑

i∈C,r∈R
0≤τ ′≤τ

|∆ρi,r(τ
′)|

≤ η

n

∑
i∈C

0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∑
r∈R

∣∣∣∣∣si(τ ′)r
(
1−
∑
u∈R

si(τ ′)u

)
1−β

4
ζR

+
(
1− si(τ ′)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)2

CT

)∣∣∣∣∣
≲

η

n

∑
i∈C

0≤τ ′≤τ

(
1−β

4
ζRG

i
r(τ

′) +
∑
r∈R

si(τ ′)r(1− si(τ ′)r)

T

)
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i∈C,t∈I

|ρi,t(τ)| =
∑

i∈C,v∈I
0≤τ ′≤τ

|∆ρi,v(τ
′)|

≤ η

n

∑
i∈C

0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∣∣∣∣∣∑
v∈I

si(τ ′)v

(
−
∑
u∈R

si(τ ′)u
1−β

4
ζR

+
(
1− si(τ ′)v

)((
(1−β)ζR + αβζP +

1

2

)
c2

CT 2
+
(1+1/C ′)2

CT

))∣∣∣∣∣
≲

η

n

∑
i∈C

0≤τ ′≤τ

(
1−β

4
ζRG

i
r(τ

′) +
∑
v∈I

si(τ ′)v(1− si(τ ′)v)

T

)

∑
i∈N ,t∈R

|ρi,t(τ)| =
∑

i∈N ,r∈R
0≤τ ′≤τ

|∆ρi,r(τ
′)|

≤ η

n

∑
i∈N

0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∑
r∈R

∣∣∣∣∣si(τ ′)r
(
−

(
1−
∑
u∈R

si(τ ′)u

)
1−β

4
ζR −

∑
u∈P

si(τ ′)u
α2β

4
ζP

+
(
1− si(τ ′)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +

1+α

2

)
c2

CT 2
+
(1+1/C ′)

2

CT

))∣∣∣∣∣
≲

η

n

∑
i∈N

0≤τ ′≤τ

(
1−β

4
ζRG

i
r(τ

′) +
α2β

4
ζPG

i
p(τ

′) +
∑
r∈R

si(τ ′)r(1− si(τ ′)r)

T

)

∑
i∈N ,t∈I

|ρi,t(τ)| =
∑

i∈N ,v∈I
0≤τ ′≤τ

|∆ρi,v(τ
′)|

≤ η

n

∑
i∈N

0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∑
v∈I

∣∣∣∣∣si(τ ′)v
(∑

u∈R
si(τ)u

1−β

4
ζR −

∑
u∈P

si(τ)u
α2β

4
ζP

+
(
1− si(τ)v

)((
(1−β)ζR + αβζP +

α

2

) c2
CT 2

+
(1+1/C ′)2

CT

))∣∣∣∣∣
≲

η

n

∑
i∈N

0≤τ ′≤τ

(
1−β

4
ζRG

i
r(τ

′) +
α2β

4
ζPG

i
p(τ

′) +
∑
v∈I

si(τ ′)v(1− si(τ ′)v)

T

)

Therefore ∑
i∈[n],t∈[T ]\P

|ρi,t(τ)|

=
∑

0≤τ ′≤τ

 ∑
i∈C,r∈R

|∆ρi,r(τ
′)|+

∑
i∈C,v∈I

|∆ρi,v(τ
′)|+

∑
i∈N ,r∈R

|∆ρi,r(τ
′)|+

∑
i∈N ,v∈I

|∆ρi,v(τ
′)|



≲
η

n

ζR
∑
i∈[n]

0≤τ ′≤τ

Gi
r(τ

′) + α2βζP
∑
i∈N

0≤τ ′≤τ

Gi
p(τ

′) +
∑
i∈[n]

0≤τ ′≤τ

∑
t∈[T ]\P si(τ ′)t

(
1− si(τ ′)t

)
T
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≲
η

n
ζR

∑
i∈C

0≤τ ′≤τ

Gi
r(τ

′) (Condition (2), (3) and (4))

Equation (6) gives us that

λc(τ) =
∑

0≤τ ′≤τ

∆λc(τ
′)

≤ η

n

∑
0≤τ ′≤τ
i∈Cc

(−ℓ′i(τ
′)) ·

∑
r∈R

si(τ ′)r

((
1−
∑
u∈R

si(τ ′)u

)
1−β

4
ζR

+
(
1− si(τ ′)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

))

+
η

n

∑
0≤τ ′≤τ
i∈N−c

(−ℓ′i(τ
′)) ·

∑
r∈R

si(τ ′)r

(
−

(
1−
∑
u∈R

si(τ ′)u

)(
1−β

4
ζR +

α2β

4
ζP

)

+
(
1− si(τ ′)r

)((
(1−β)ζR+

(2α−1)β

2
ζP +1

)
c2

CT 2
+
(1+1/C ′)

2

CT

))

≲
η

n
ζR

∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′) +
∑

i∈N−c

0≤τ ′≤τ

∑
r∈R si(τ ′)r

(
1− si(τ ′)r

)
T

≲
η

n
ζR

∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′) (Condition (1), (2) and (3))

Equation (8) gives us that

λ̃c(τ) =
∑

0≤τ ′≤τ

∆λ̃c(τ
′)

≤ αη

n

∥ν∥
∥d∥

∑
i∈Nc

0≤τ ′≤τ

(−ℓ′i(τ
′)) ·

∑
p∈P

si(τ ′)

((
1−si(τ ′)p

)(1−β

2
ζR +

α+ 1

2

)
c2 ∥µ∥

√
log (Tn/δ)

+

(
1−
∑
u∈P

si(τ ′)u

)
α2β

4
ζP ∥µ∥2 +

∑
u∈I

si(τ ′)u
1−β

4
ζR ∥µ∥2

)

≤ αη

n

∑
i∈Nc

0≤τ ′≤τ

∑
p∈P

si(τ ′)

((
1−
∑
u∈P

si(τ ′)u

)(
α2β

4
ζP +

1−β

4
ζR

)
+
(
1−si(τ ′)p

)(1−β

2
ζR +

α+ 1

2

)
c2

CT 2

)

≲
α3βη

n
ζP

∑
i∈Nc

0≤τ ′≤τ

Bi
p(τ

′)

Lemma A.12 gives us that

λc(τ) ≳
η

n
ζR

∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′), λ̃c(τ) ≳
α3βη

n
ζP
∑
i∈Nc

∑
0≤τ ′≤τ

Gi
p(τ

′)

Substituting p(τ) as described in Lemma A.6 gives us that

x⊤r W⊤p(τ) = (µy + ϵr)
⊤

λ+1(τ)µ+1 + λ−1(τ)µ−1 + λ̃+1(τ)µ̃+1 + λ̃−1(τ)µ̃−1 +
∑
i∈[n]

∑
t∈[T ]\P

ρi,t(τ)ϵ
i
t
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≥ λy(τ) ∥µ∥2 −

λ+1(τ) + λ−1(τ) + λ̃+1(τ) + λ̃−1(τ) +
∑
i∈[n]

∑
t∈[T ]\P

|ρi,t(τ)|

 c2 ∥µ∥
√

log (Tn/δ)

−
∑
i∈[n]

∑
t∈[T ]\P

|ρi,t(τ)| c1
√
Tr(Σ) log (Tn/δ)

≥ λy(τ) ∥µ∥2−

λ+1(τ) + λ−1(τ) + λ̃+1(τ) + λ̃−1(τ) +
∑
i∈[n]

t∈[T ]\P

|ρi,t(τ)|

 c2 ∥µ∥2

CT 2
−
∑
i∈[n]

t∈[T ]\P

|ρi,t(τ)|
c1 ∥µ∥2

CT 2

≳
λy(τ)

2
∥µ∥2 (Condition (3) and (4) with sufficiently large C)

hold for sufficiently large enough C. Similarly,

x⊤v W⊤p(τ) = ϵ⊤v

λ+1(τ)µ+1 + λ−1(τ)µ−1 + λ̃+1(τ)µ̃+1 + λ̃−1(τ)µ̃−1 +
∑
i∈[n]

∑
t∈[T ]\P

ρi,t(τ)ϵ
i
t


≤
(
λ+1(τ)+λ−1(τ)+λ̃+1(τ)+λ̃−1(τ)

)
c2 ∥µ∥

√
log (Tn/δ) +

∑
i∈[n]

∑
t∈[T ]\P

|ρi,t(τ)| c1
√
Tr(Σ) log (Tn/δ)

≤

(λ+1(τ)+λ−1(τ) +λ̃+1(τ)+λ̃−1(τ)
) c2
CT 2

+
∑
i∈[n]

∑
t∈[T ]\P

|ρi,t(τ)|
c1

CT 2

 ∥µ∥2

≲
λy(τ)

4
∥µ∥2 (Condition (3) and (4) with sufficiently large C)

Therefore back to Equation (25) gives us that

∑
r∈R

S(X⊤W⊤p(τ))r ≥ 1− 1− ζR
ζR

exp

(
−λy(τ)

4
∥µ∥2

)
>

1

2
(26)

where the last inequality requires λy(τ) >
4 log(2(1−ζR)/ζR)

∥µ∥2 . To see why this hold, we use the convergence of the attention
probability in Lemma 5.1, for standard sample i ∈ C, we obtain that for any ϵ, there exists τ1 such that ∀τ ≥ τ1,
si(τ)t∗ > 1− ϵ. Then, from Lemma A.13, we have

∥p(τ)∥ ≥ 1

2
(
∥µ∥+ 2

√
Tr(Σ)

) log

(
1− ϵ

ϵ
(T − 1)

)

On a good run, we also achieve a corresponding upper bound as follows

∥p(τ)∥ ≤ |λc(τ)|

1 +

∣∣∣λ̃c(τ)
∣∣∣

|λc(τ)|
+

∑
i∈[n],t∈[T ]\P |ρi,t(τ)|

|λc(τ)|

max
{
∥µ∥ , (1 + 1/C ′)

√
Tr(Σ)

}
Note that ∣∣∣λ̃c(τ)

∣∣∣
|λc(τ)|

≲

α3βζP
∑

i∈Nc

0≤τ ′≤τ

Bi
p(τ

′)

ζR
∑

i∈Cc

0≤τ ′≤τ

Gi
r(τ

′)
,

∑
i∈[n],t∈[T ]\P |ρi,t(τ)|

|λc(τ)|
≲

∑
i∈C,

0≤τ ′≤τ

Gi
r(τ

′)∑
i∈Cc

0≤τ ′≤τ

Gi
r(τ

′)
.

Condition (1) and (4) allow us to bound the above two quantities by constants. As a result, λc(τ) can be increased by
making ϵ sufficiently small when there exists a sufficiently large τ1 such that τ ≥ τ1 so that λc(τ) >

4 log(2(1−ζR)/ζR)

∥µ∥2 holds
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for c ∈ {±1}. At the final step, we plug Equation (26) back into Equation (24) to get
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> 0 (For sufficiently large C)

Finally, the generalization error of the model on the clean data distribution is given by

P(X,y)∼D [sign(fτ (X)) ̸= y] = P(X,y)∼D [yfτ (X) < 0] = P(X,y)∼D [yfτ (X) < 0|E ] + P(X,y)∼D [Ec] ≤ δ

The proof on the poisoned data shares a similar idea as generalization on the clean data. Given any poisoned data (X̃, y), we
set ỹ = −y and have

ỹfτ (X̃) = ỹν⊤X̃
⊤S(X̃i

W⊤p(τ))

=
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Similarly, we have
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We have

x̃⊤p W⊤p(τ) = αµ̃⊤
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Therefore plug these back to Equation (28) gives us that
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where the last inequality requires λ̃y(τ) >
4 log(2(1−ζP )/ζP )

α∥µ∥2 . To see why this hold, we pose a similar argument as described
previously, in the sense that on a good run, we achieve the following:
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Condition (1) and (4) allow us to bound the above two quantities by constants. Therefore λ̃c(τ) can be increased by making
ϵ sufficiently small (the maximum softmax probability s(τ)t∗ > 1

|P| − ϵ) when there exists a sufficiently large τ2 such that
τ ≥ τ2. At the final step, we plug Equation (29) back into Equation (27) to get
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Finally, for data (X̃, y) where there exists backdoor trigger (poisoned tokens) added in X̃, the generalization error of the
model is

P
[
sign(fτ (X̃)) = y

]
= P

[
sign(fτ (X̃)) ̸= ỹ

]
= P

[
ỹfτ (X̃) < 0

]
= P

[
ỹfτ (X̃) < 0|E

]
+ P [Ec] ≤ δ.

Proof ends by choosing τ0 = max {τ1, τ2}.

B. Additional Experimental Results
B.1. Dirty-Label Backdoor Attacks

We set token length T = 8, dimension d = 4000, number of training samples n = 20. We run τ0 = 10K iterations with
step size η = 0.001. Same as Figure 4, Figure 8 illustrates the dynamics of softmax probabilities for standard and poisoned
training samples, starting from an initial value of p(0) = 0, for |R| = 1, |P| = 2 in Figure 8a and |R| = 2, |P| = 3 in
Figure 8b. It can be seen that only one relevant token is selected for the standard sample as the time step increases, whereas
all poisoned tokens are selected with softmax probability 1/|P| for the poison sample, confirming Lemma 5.1.

(a) α = 3.0, β = 0.1, |R| = 1, |P| = 2. Final standard test
accuracy is 1.0, poison test accuracy is 0.0.

(b) α = 3.0, β = 0.1, |R| = 2, |P| = 3. Final standard test
accuracy is 1.0, poison test accuracy is 1.0.

Figure 8. Dirty-label backdoor attacks. Dynamics of softmax probability for a standard sample (left column) and a poison sample (right
column), respectively.

Figure 9 plots the heatmaps of standard test accuracy and poison test accuracy as the poison strength α, poison ratio β
and poison token length |P| vary when setting the relevant token length |R| to be 2, 3, 4, respectively. We also plot the
corresponding heatmaps to verify the feasibility of the conditions required for Theorem 4.1 in Figure 10, 11, 12.

We also set token length T = 8, dimension d = 100, number of training samples n = 1000. Set the relevant token length
|R| = 1 and the poisoned token length |P| = 1. We run τ0 = 1K iterations with step size η = 0.01. We repeat the same
experiments, plotting the standard test accuracy and poison test accuracy when varying the poison ratio β and poison strength
α in Figure 13 and validate the Theorem’s conditions in Figure 14. These experiments demonstrate that our theorem holds
for both high dimensional setting d ≫ n and low dimensional setting d ≪ n.
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(a) Set |R| = 2. (b) Set |R| = 3. (c) Set |R| = 4.

Figure 9. Dirty-label backdoor attacks. Set n = 20, d = 4000. Standard test accuracy and poison test accuracy when varying the poison
ratio β, poison token length |P| and poison strength α.

Figure 10. Dirty-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 2. From top row to bottom row represents poison length |P| from 1 to 4.
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Figure 11. Dirty-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 3. From top row to bottom row represents poison length |P| from 1 to 4.

Figure 12. Dirty-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 4. From top row to bottom row represents poison length |P| from 1 to 4.

Figure 13. Dirty-label backdoor attacks. Set n = 1K, d = 100, |R| = 1, |P| = 1. Standard test accuracy and poison test accuracy when
varying the poison ratio β and poison strength α.
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Figure 14. Dirty-label backdoor attacks. Set n = 1K, d = 100, |R| = 1, |P| = 1. Heatmap of the scaled ratio of each condition in
Theorem 4.1 when varying poison strength α and poison ratio β.

(a) α = 5.0, β = 0.1, |R| = 1, |P| = 1. Final standard test
accuracy is 1.0, poison test accuracy is 0.0.

(b) α = 3.0, β = 0.1, |R| = 3, |P| = 2. Final standard test
accuracy is 1.0, poison test accuracy is 1.0.

Figure 15. Clean-label backdoor attacks. Dynamics of softmax probability for a standard sample (left column) and a poison sample (right
column), respectively.

B.2. Clean-Label Backdoor Attacks

We consider the same synthetic data generation process as described in Section 3 except here we consider clean-label
backdoor attacks. We set token length T = 8, dimension d = 4000, number of training samples n = 20. We start with
plotting the dynamics of softmax probability for standard and poison training sample in Figure 15 and observe the same
phenomena as in dirty-label backdoor attacks. Figure 16 plots the the heatmaps of standard test accuracy and poison test
accuracy as the poison strength α, poison ratio β and poison token length |P| vary when setting the relevant token length
|R| to be 1, 2, 3, respectively. We also validate the Theorem’s conditions in Figure 17, 18 and 19. These results demonstrate
that our theorem also holds for clean-label backdoor attacks.

(a) Set |R| = 1. (b) Set |R| = 2. (c) Set |R| = 3.

Figure 16. Clean-label backdoor attacks. Set n = 20, d = 4000. Standard test accuracy and poison test accuracy when varying the poison
ratio β, poison token length |P| and poison strength α.
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Figure 17. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 1. From top row to bottom row represents poison length |P| from 1 to 3.

Figure 18. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 2. From top row to bottom row represents poison length |P| from 1 to 3.

Figure 19. Clean-label backdoor attacks. Set n = 20, d = 4000. Heatmap of the scaled ratio of each condition in Theorem 4.1 when
varying poison strength α and poison ratio β. Set |R| = 3. From top row to bottom row represents poison length |P| from 1 to 3.
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