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ABSTRACT

Autoregressive Language Models (LMs) generate one token at a time, yet hu-
man reasoning operates over higher-level abstractions—sentences, propositions,
and concepts. This contrast raises a central question: can LMs likewise learn to
reason over structured semantic units rather than raw token sequences? In this
work, we investigate whether pretrained LMs can be lifted into such abstract rea-
soning spaces building on their learned representations. We present a framework
that adapts a pretrained token-level LM to operate in sentence space, by autore-
gressively predicting continuous embeddings of next sentences. We explore two
embedding paradigms inspired by classical representation learning: semantic em-
beddings, learned via autoencoding to preserve surface meaning; and (ii) con-
textual embeddings, trained via next-sentence prediction to encode anticipatory
structure. We evaluate both under two inference regimes: DISCRETIZED, which
decodes each predicted embedding into text before re-encoding; and CONTINU-
OUS, which reasons entirely in embedding space for improved efficiency. Across
four domains—mathematics, logic, commonsense, and planning—contextual em-
beddings under continuous inference show competitive performance with Chain-
of-Thought (CoT) while reducing inference-time FLOPs in average by half. We
also present early signs of scalability and modular adaptation. Finally, to visual-
ize latent trajectories, we introduce SentenceLens, a diagnostic tool that decodes
intermediate model states into interpretable sentences. Together, our results indi-
cate that pretrained LMs can effectively transition to abstract, structured reasoning
within latent embedding spaces.1

1 INTRODUCTION

Autoregressive Language Models (LMs) have achieved remarkable success on complex reasoning
tasks through a simple objective: Next-Token Prediction (Bengio et al., 2003). This success is fur-
ther amplified by Chain-of-Thought (CoT), which generates explicit intermediate reasoning steps
to guide the model (Wei et al., 2022). Recent advancements demonstrate substantial gains in per-
formance by scaling inference-time computation even further (Jaech et al., 2024; Guo et al., 2025).
However, next-token prediction requires generating long reasoning chains one token at a time, mak-
ing it computationally inefficient. Also, it remains unanswered whether reasoning at such granularity
is genuinely optimal.

While token-level generation has driven recent progress, human cognition typically operates over
higher-level abstractions—such as concepts, propositions, or full sentences (Fodor, 1975; Mercier &
Sperber, 2011; Bengio, 2019). Prior works suggest that language models may similarly benefit from
operating at these higher levels, potentially enabling more structured and computationally efficient
reasoning (team et al., 2024; Tack et al., 2025).

In this paper, we investigate whether pretrained language models can effectively build higher-level
representations directly by abstracting over their existing token-level representations, without the
prohibitive cost of pre-training from scratch. Specifically, we introduce a framework that repurposes
pretrained next-token Transformers to reason in a latent sentence-level embedding space. Instead
of producing outputs token-by-token, our approach predicts continuous embeddings for entire sen-

1Our code is available here.
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Figure 1: Sentence-level reasoning framework. Training: the latent model reads the question tokens and
previous embeddings, predicts ĥt, and a frozen decoder reconstructs st; Inference: embedding can be rolled
forward by (a) Discretized: decode → text → encode or (b) Continuous: pass-through.

tences, which can be decoded back into natural language yet primarily function as abstract concep-
tual representations.

To systematically explore viable latent representations, we draw inspiration from the well-
established dichotomy in classical representation learning between reconstruction-based and
prediction-based methods (Dai & Le, 2015; Kiros et al., 2015; van den Oord et al., 2019). We
define two embedding paradigms: (1) Semantic embeddings, which prioritize preserving textual fi-
delity through autoencoding, and (2) Contextual embeddings, which focus on capturing predictive
context via next-sentence prediction.

We evaluate models trained with these embeddings under two inference regimes: DISCRETIZED,
which decodes each predicted embedding into natural language before re-encoding it as the next in-
put, and CONTINUOUS, which performs reasoning entirely within the continuous embedding space.
Our empirical findings demonstrate that contextual embeddings consistently outperform semantic
embeddings across diverse reasoning domains including mathematics, logic, commonsense, and
planning tasks. Notably, contextual embeddings using Continuous inference show competitive per-
formance to token level Chain of Thought reasoning while reducing inference time computational
cost by half in average.

Finally, we introduce SentenceLens, a diagnostic tool that translates intermediate hidden states
into readable sentences, thus providing intuitive transparency into the model’s internal reasoning
trajectories. Overall, our analysis provides initial evidence that pretrained inductive biases acquired
from token level modeling can be effectively adapted to structured, abstraction level reasoning within
latent embedding spaces.

2 SENTENCE EMBEDDINGS FOR AUTOREGRESSIVE MODELING

Unsupervised and semi-supervised sequence representation learning has predominantly evolved
along two primary paradigms: reconstruction-based and prediction-based methods (Dai & Le, 2015;
Kiros et al., 2015; van den Oord et al., 2019). Both methodologies have demonstrated strong em-
pirical performance, yet each emphasizes distinct representational strengths. Reconstruction-based
methods, typically employing autoencoder architectures, excel at semantic fidelity by explicitly en-
coding and reconstructing input sequences (Dai & Le, 2015), whereas prediction-based methods pri-
oritize capturing contextual semantics by modeling relations to subsequent sequences (Kiros et al.,
2015).

Previous research suggests that the optimal embedding strategy varies significantly depending on
the target application (Hill et al., 2016). In this light, we systematically explore both embedding

2
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Figure 2: Illustration of the different types of sentence embeddings used in our framework.

paradigms within the context of sentence-level autoregressive modeling. Specifically, we adapt
an autoregressive Language Model autoencoder framework to construct and evaluate two distinct
embedding approaches: semantic embedding, derived through reconstruction objective, and con-
textual embedding, derived through predictive objective.

2.1 SENTENCE EMBEDDING CONSTRUCTION

To ensure scalability and avoid vocabulary constraints inherent to discrete codebooks van den Oord
et al. (2018), we utilize a continuous embedding space. This approach facilitates flexible represen-
tational capacity scaling with embedding dimensionality (Kuratov et al., 2025). We build upon the
autoencoding framework proposed by ICAE (Ge et al., 2024) and adapt a decoder-only Transformer
(e.g., GPT-2), employing shared parameters for encoding and decoding: θENC = θDEC.

Given an input sequence x = (x1, . . . , xN ), the encoder produces a sequence of hidden states
H = (h1, . . . , hN ). We then define the embedding h[−1] := hN as the latent representation of
the entire input sequence. This embedding conditions the decoder, trained autoregressively with
cross-entropy loss:

ŷ = θDEC(h
[−1]) and LCE = −

N∑
t=1

log p(yt | y<t, h
[−1])

Note that most reasoning tasks consist of a question or instruction q, followed by an ordered se-
quence of reasoning steps (s1, . . . , sn). In this light, we construct training examples tailored to each
embedding type as follows (See Figure 2):

Semantic embeddings. Each reasoning step si independently forms the input and reconstruction
target x = y = si. Training this way ensures the embedding h[−1] encapsulates complete and
detailed semantics of the individual reasoning step.

Contextual embeddings. We form context–target pairs, where context x includes the question
and preceding reasoning steps (q, s1, . . . , si−1), and the target is the current step y = si. Thus,
embeddings must capture predictive cues essential for reasoning step generation.

Optionally, to bridge semantic fidelity with predictive abstraction, we also try a contrastive regular-
ization loss (InfoNCE), aligning contextual embeddings closer to corresponding semantic embed-
dings:

LInfoNCE = − log
exp (sim(ẑi, z

sem
i )/τ)∑

j exp
(
sim(ẑi, z

sem
j )/τ

) ,
where ẑi is a contextual embedding and zsem

i a semantic embedding. Negative examples zsem
j are

sampled within the batch. We refer to this regularized approach as Contextual-Contrastive (CTX-
C) and the unregularized baseline as Contextual-Base (CTX-B).

3
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Table 1: Performance of Semantic and Contextual Embeddings across datasets. For Semantic em-
beddings, we report exact match (EM). For Contextual embeddings, we compare final-answer accu-
racy (ACC) under different decoding schemes: CTX-B (unregularized), CTX-C (contrastive), and
CoT (language-level chain-of-thought).

RECONSTRUCTION PREDICTION
DATASET SEMANTIC (EM) CTX-B CTX-C COT

GSM8K 98.5 42.0 42.1 43.4
CSQA 98.5 33.8 35.1 35.7
PROSQA 100.0 80.2 75.3 77.5
BLOCKSWORLD 100.0 89.9 90.1 84.3

2.2 EMBEDDING EVALUATION

Setting We evaluate our framework using GPT-2 across four distinct reasoning domains: mathe-
matical reasoning (GSM8K (Cobbe et al., 2021)), commonsense reasoning (CommonsenseQA (Tal-
mor et al., 2019)), logical reasoning (ProsQA (Hao et al., 2024)), and planning (Blocksworld). For
each domain, we train on the respective training split and report accuracy on the corresponding
test set, analyzing how well our framework generalizes across diverse linguistic subspaces. (i.e.,
mathematical expressions, natural language, etc.)2 See Appendix C and G for more details.

To evaluate semantic embedding’s performance, we compute exact match (EM) between the original
reasoning step si and the decoder output, assessing how faithfully the model reconstructs unseen
steps. For contextual evaluation, as there could be multiple correct next steps that could lead to
the correct answer, we roll out the model autoregressively: at each step, the generated output y is
appended to the current input x, continuing until a terminal answer is produced. The final answer is
then compared against the ground-truth answer. Results are reported in Table 1.

Results Across all domains, we observe that the autoencoder successfully restores the original
sentences with high fidelity. This aligns with findings from Kuratov et al. (2025), who show—both
theoretically and empirically—that language models can compress a substantial number of tokens
into compact representations. Yet, as we form CommonsenseQA (CSQA) task’s SEMANTIC embed-
ding using a subset of Fineweb-Edu corpus (∼100k documents), we highlight that larger language
space (compared to synthetic, constrained, i.e. ProsQA and Blocksworld) involves a higher diffi-
culty.

In the Contextual configuration, model performance approaches that of the COT baseline on three
out of four benchmarks, and notably surpasses it on BLOCKSWORLD across both contextual variants.
Introducing the contrastive alignment term (CTX-C) leads to a nuanced pattern: scores remain
largely unchanged on GSM8K and BLOCKSWORLD, improve modestly on CommonsenseQA, but
decline on ProsQA. These trends appear closely tied to each task’s underlying semantic structure.

CommonsenseQA questions exhibit substantial lexical variety, so anchoring each latent vector to its
semantic counterpart helps tame surface variability. In contrast, ProsQA benefits from simultane-
ously tracking multiple evolving states; consequently, enforcing a single semantic target at each step
restricts its representational flexibility, which is consistent with earlier findings (Hao et al., 2024;
Deng et al., 2024). GSM8K and BLOCKSWORLD are highly symbolic and lexically sparse—thus,
the baseline contextual embedding already forms an unambiguous mapping, leaving little space for
improvement through additional regularization.

2For CSQA restoration, we trained on a small subset of FineWeb-Edu (Penedo et al., 2024) due to small
CSQA training set.
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3 SENTENCE-LEVEL REASONING MODEL

Given the strong reconstruction and predictive capabilities of semantic and contextual embeddings,
we now present a framework that leverages these embeddings for sentence-level reasoning. (Fig-
ure 1)

3.1 ARCHITECTURE

We adapt a pretrained decoder-only Transformer (Vaswani et al., 2023) to operate directly over
continuous sentence embeddings instead of discrete natural language tokens. We refer to this model
as the Latent Model θLAT. Formally, given a natural language question q and a sequence of latent
embeddings corresponding to previously generated sentences h1, . . . , ht, the latent model predicts
the embedding for the next sentence:

ĥt+1 = θLAT(q, h≤t).

At inference time, predicted embeddings ĥt+1 are mapped to the next input embedding ht+1 using
a mapping function M : Rd → Rd, where d denotes the embedding dimensionality:

ht+1 = M(ĥt+1).

This process continues autoregressively, forming a latent embedding trajectory that encodes the pro-
gression of reasoning steps. At each step, a sentence decoder θDEC : Rd → T can decode latent
embeddings back into natural language text. However, decoding intermediate reasoning steps is op-
tional; embeddings can remain in their latent form to enhance computational efficiency, particularly
when only the final answer is required. To this end, a lightweight termination classifier can evaluate
each predicted embedding ĥt to determine when reasoning should conclude.3

3.2 TRAINING

A natural approach for this task is to train the transformer model to generate sentence embeddings
by minimizing the Mean Squared Error (MSE) between predicted and target embeddings. However,
a single context often allows for several valid yet distinctly different continuations. (team et al.,
2024). Under these conditions, MSE tends to blend these varied possibilities into a single averaged
representation, thus blurring meaningful variation.

To address this, we employ a cross-entropy (CE) loss calculated over natural language targets gener-
ated by a frozen decoder. This encourages predicted embeddings to align with the manifold defined
by such decoder:

LCE = −
n−1∑
t=1

log p
(
st+1 | θDEC(ĥt+1)

)
.

During training, the latent model conditions on the question q and ground-truth sentence embed-
dings hi, each computed using a fixed encoder θENC. Additionally, to enhance the alignment be-
tween predicted and teacher-forced embeddings, we incorporate an InfoNCE loss (van den Oord
et al., 2018):

LInfoNCE = −
n−1∑
t=1

log
exp

(
sim(ĥt+1, ht+1)/τ

)∑
j exp

(
sim(ĥt+1, hj)/τ

) .
The overall training objective combines both terms: Loverall = LCE +λLInfoNCE. To further improve
training stability, we include shallow projection layers between the encoder output and latent model
input, and between the latent model output and decoder input.

3We use an oracle termination classifier for simplicity. See Appendix F for more details.
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3.3 INFERENCE

We explore two strategies for defining the mapping function M during inference. Let L represent
the average token length per reasoning step, and R the total number of steps in a reasoning trace.

(1) Discretized (Language-Level) Inspired by SentenceVAE (An et al., 2024), we apply a
decode-and-reencode procedure: M(ĥt) = E(D(ĥt)), where the predicted latent is first decoded
into a sentence and then re-encoded into the model’s input space. We refer to this as the DIS-
CRETIZED mode, as each step explicitly traverses the discrete natural language interface. This
approach helps mitigate error compounding (Simchowitz et al., 2025), but comes at a higher com-
putational cost, with attention cost scaling as O(L2R+R2). A detailed complexity analysis can be
found in Appendix E.

(2) Continuous (Latent-Level) Following Coconut (Hao et al., 2024), we define the mapping as
an identity function M = I , directly propagating the predicted latent embedding ĥt without interme-
diate decoding. In this CONTINUOUS mode, reasoning is entirely performed within the continuous
embedding space, enabling significantly more efficient inference with attention complexity reduced
to O(R2).

Both methods offer computational advantages over natural language CoT, which incurs O(L2R2) at-
tention complexity even under key-value caching. However, the savings in the DISCRETIZED mode
are conditional: they occur only when either (1) the encoder-decoder are not too computation-heavy,
or (2) attention dominates over MLP cost—typially when the total output length LR is relatively
long (e.g., Blocksworld). Otherwise, the repeated decoding and encoding introduce additional MLP
overhead.4

3.4 EXPERIMENTS

Building upon prior studies (Hao et al., 2024; Deng et al., 2024), we select GPT-2 as our baseline
model and evaluate its performance across four distinct reasoning domains detailed in Section 2. To
investigate optimal embedding strategies for latent reasoning, we examine Semantic and Contex-
tual (both Ctx-B and Ctx-C) embeddings from Section 2. We further explore a hybrid architec-
ture—Sem (input) → Ctx (output)—which mirrors the natural separation of representational roles
found in conventional language modeling.

For evaluation, we compare sentence-level reasoning models against three baseline models. First,
CoT represents a fully supervised model trained with access to both intermediate reasoning steps
and final answers. Second, No-CoT omits step-level supervision and is trained solely to predict final
answers. Third, we include Coconut (Hao et al., 2024), which gradually forgoes explicit token-level
targets with curriculum-based substitution of fixed number last hidden states.

3.5 RESULTS

Our objective is to examine whether a latent sentence-level reasoning framework can generalize
to higher-level abstractions while retaining the model’s learned priors. Comparable performance
to token-level Chain-of-Thought (CoT) would provide initial evidence, leading us to pose three
research questions

Q1: Can sentence-level reasoning match token-level CoT performance? We hypothesize that
effective reasoning is driven more by transitions between high-level concepts than by fine-grained
token-level details. Empirically, sentence-level models match or even exceed CoT performance on
logical and commonsense reasoning tasks. On mathematical and planning benchmarks, performance
is slightly lower, though the gap remains modest. We attribute this to the greater precision often
required in these domains, where continuous latent representations may be more prone to fidelity
loss.

4Note that using a contextual encoder incurs greater computational cost than a semantic encoder.
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Table 2: Performance on ProsQA, CSQA, GSM8K, and Blocksworld under different embedding paradigms.

SETTING PROSQA CSQA GSM8K BLOCKSWORLD

DIRECT

No-CoT 76.7 23.3 18.7 36.8

LANGUAGE-LEVEL

CoT 77.5 35.7 43.4 84.3
Semantic 83.6 28.5 38.9 32.9
Contextual 91.4 35.2 39.0 70.0
IB-Contextual 79.8 40.3 37.1 76.3
Sem → Ctx 83.8 34.9 40.3 67.1

LATENT-LEVEL

Coconut Hao et al. (2024) 97.0 34.0 34.1 37.9
Semantics 86.0 27.5 29.6 30.8
Contextual 92.6 37.0 37.4 70.5
IB-Contextual 81.6 35.5 38.3 80.8
Sem → Ctx 85.4 33.6 29.3 52.4

Q2: How does sentence-level reasoning differ between language-level and latent-level infer-
ence? To explore this, we compare model inference in the DISCRETIZED (language-level) space
with that in the CONTINUOUS (latent-level) space. Results reveal complementary strengths: con-
tinuous models excel on logic and planning tasks, where reasoning benefits from uninterrupted
latent-space composition and abstract state transitions. Conversely, discretized models show mod-
est advantages on commonsense and mathematical benchmarks—likely due to the grounding effect
of explicit linguistic representations. Still, the observed performance gaps are narrow—3.3% on
commonsense and 0.7% on math—indicating that latent inference remains a viable and compute-
efficient alternative. These findings suggest that effective reasoning need not always traverse explicit
language space; continuous representations alone may support structured inference.

Table 3: Average inference-time compute cost
(GFLOPs) for each dataset under CoT and CTX-
C CONTINUOUS Inference.

DATASET COT CTX-C
CSQA 25.89 9.96
PROSQA 100.99 70.19
GSM8K 21.45 12.68
BLOCKSWORLD 58.69 28.57

Q3: Can sentence-level reasoning reduce com-
putational cost? Table 8 compares computational
costs (FLOPs) between latent reasoning model and
token-level CoT under forward-pass evaluation with
key-value caching enabled. Latent reasoning em-
ploys an oracle answer classifier—executed via a
single forward pass through the translator—that
monitors the predicted embedding sequence and
halts generation upon detecting a special answer to-
ken. The final latent embedding is decoded into nat-
ural language for evaluation.

Note that we measure computational costs across the
full latent pipeline, including classifier and decoder
components, which remain unoptimized.5 Thus, reported efficiency gains represent conservative
estimate. Across tasks, CONTINUOUS inference achieves 1.5–2.5× better efficiency compared to
token-level CoT. Notably, we highlight that even DISCRETIZED inference outperform CoT in longer
reasoning tasks (e.g., Blocksworld w/ average trace length R ∼ 9.1: 52.26 GFLOPs vs. 58.69
GFLOPs). We expect this efficiency gap to grow as the length of reasoning trace increases.

5To see the cost with a lightweight classifier, please refer to Appendix F.
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Figure 3: CoT vs. CTX-B on CommonsenseQA
across GPT-2 variants.

Figure 4: GPT-4o qualitative evaluation of the rea-
soning steps evaluated using a similar metric em-
ployed in (Ye et al., 2023), where SFT is trained
using CoT and ours is using CTX-B.

4 DISCUSSION

4.1 POTENTIAL SCALABILITY AND MODULARITY

Scalability We report preliminary observations that suggest our framework has potential to scale
to increasing model capacity. Due to computational constraints, our experiments are limited to sub-
1B models; we evaluate GPT-2 Medium (345M) and GPT-2 Large (775M) on the CommonsenseQA
(CSQA) benchmark, which exhibits clear performance scaling under CoT fine-tuning. As shown in
Figure 3, the Ctx-C configuration attains performance comparable to, and in some cases exceeding,
CoT—despite operating entirely in latent space and incurring lower inference-time compute. While
tentative, these findings suggest that latent reasoning could offer a more compute-efficient path
toward generalization.

Using Off-the-Shelf Encoder–Decoder We investigate whether the encoder–decoder can be de-
coupled from the latent model and replaced with smaller, fixed components. This modular de-
sign seeks to reduce the computational burden of DISCRETIZED inference—especially in settings
where only the latent reasoning module requires adaptation. To evaluate this hypothesis, we paired
a lightweight GPT-2 Small encoder–decoder (trained on Ctx-C) with a GPT-2 Medium latent model
and assessed performance on GSM8K.6

This hybrid configuration achieved an accuracy of 42.23, compared to 47.69 for a fully fine-tuned
GPT-2 Medium with CoT training. While accuracy decreases slightly, the results demonstrate
that predictive embeddings can transfer across model architectures with reasonable degradation–
supporing the feasibility of modular reuse. Given prior findings on general embedding space align-
ment across models (Conneau et al., 2018; Jha et al., 2025), further exploration with larger models
and diverse tasks remains a promising direction.

4.2 SENTENCELENS: TOWARDS Human-Readable INTERPRETABILITY

We introduce SentenceLens, an intrepretability tool that decodes intermediate hidden representa-
tions by directly passing them through the trained sentence-level decoder. In contrast to token-level
inspection methods such as Logit Lens (nostalgebraist, 2020), SentenceLens operates at the sen-
tence level, offering a more human-readable view of the model’s evolving internal states across
reasoning steps.

6GSM8K was selected based on preliminary findings that moderately sized datasets help stabilize shallow
MLP mappings across heterogeneous embedding spaces.
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For example, in Table 6, we show how the model’s prediction shifts across layers during the transi-
tion from one reasoning step to the next. When making first step prediction ĥ1, Layer 19 introduces
a general observation about eating and energy levels, while Layer 22 begins to center on the idea
that hunger motivates goal-directed behavior. These intermediate activations reflect a gradual shift
in conceptual focus, which in the last layer (36th) develops as: If you are hungry, you are likely
engaging in an activity that requires sustenance. Since the latent model frames reasoning as a
continuous process, we hypothesize that intermediate latent states may become naturally decod-
able—allowing us to observe the progression of inference across steps. To see more examples, see
Appendix A.

Qualitative Analysis In addition, when decoding output embeddings at successive latent reason-
ing steps (e.g., Step 1 through Step 5), we find that the resulting sentences, while readily understand-
able, often lack the coherence and rigor characteristic of standard CoT responses. We compare two
model outputs using GPT-4o evaluation with the rubric proposed by Ye et al. (2023). This scores
Relevance, Fluency, Conciseness, Soundness, and Interpretability on a 1 to 5 Likert scale. It turns
out that CTX-C model mostly produces reasoning chains of moderate quality (scores ¿ 3); How-
ever, its performance falls short compared to CoT models trained directly in natural language space
(Figure 4). The largest weakness appears in Soundness, which aligns with earlier observations that
high-level concept models may exhibit reduced coherence even after extensive pretraining (team
et al., 2024). While we believe this tradeoff is a natural consequence of abstraction, bridging this
gap remains an interesting direction for future research.

5 RELATED WORKS

Sentence Representations and Prediction Sentence-level representation learning has historically
followed two main paradigms: reconstruction and context prediction. Early methods, such as se-
quence autoencoders (Dai & Le, 2015) and Skip-Thought vectors (Kiros et al., 2015), learned
embeddings by reconstructing input or neighboring sentences. More recent approaches move be-
yond token-level generation to predict entire sentences, including latent-variable models such as
VAEs (Bowman et al., 2016) and hierarchical decoders (Serban et al., 2016), as well as LCM (team
et al., 2024) and CoCoMix (Tack et al., 2025). Building on these developments, our framework de-
fines semantic and contextual embeddings, employs contrastive learning to align latent input-output
pairs (van den Oord et al., 2019), and distinguishes itself by leveraging pretrained models to intro-
duce latent reasoning mechanisms rather than training from scratch.

Latent-Space Reasoning Efficiency and abstraction have motivated reasoning directly in embed-
ding space, bypassing token generation. Joint embedding architectures (Assran et al., 2023) and pre-
dictive coding frameworks (van den Oord et al., 2019) model representation dynamics by forecasting
future embeddings. This idea has recently been extended to language: Hao et al. (2024) introduced
continuous latent reasoning, where token-level embeddings are gradually replaced with continuous
embeddings with the last-layer hidden states through a curriculum-based strategy from Deng et al.
(2024).

6 CONCLUSION

We present a framework that elevates pretrained language models from token-level generation to
sentence-level reasoning by autoregressively predicting continuous embeddings of next-step sen-
tences. This enables reasoning over more abstract conceptual units while retaining pretrained in-
ductive biases. Our exploration of semantic and contextual embeddings reveals that contextual em-
beddings show competitive performance with token-level Chain-of-Thought (CoT) across diverse
reasoning tasks, while significantly reducing inference-time computational costs under Continu-
ous inference. Additionally, we demonstrate signs of scalability, modular reuse of encoder–decoder
components, and enhanced interpretability through SentenceLens, which decodes latent embeddings
into human-readable sentence-level traces. These findings suggest that pretrained language models
could be effectively adapted for structured reasoning in latent embedding spaces, opening new di-
rections for efficient latent reasoning systems.
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REPRODUCIBILITY STATEMENT

We provide all codes for dataset generation, training, and analysis in the Appendix and the an-
noymized repository.

LLM USAGE DISCLOSURE

We adopted LLMs to fix grammatical errors and refine any unnatural expressions.
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Word translation without parallel data, 2018. URL https://arxiv.org/abs/1710.
04087.

Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning, 2015. URL https://
arxiv.org/abs/1511.01432.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
nalize cot step by step, 2024. URL https://arxiv.org/abs/2405.14838.

Jerry Fodor. The Language of Thought. Harvard University Press, 1975.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model, 2024. URL https://arxiv.org/abs/
2307.06945.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://arxiv.org/abs/2408.00655
https://arxiv.org/abs/2301.08243
https://arxiv.org/abs/1709.08568
https://arxiv.org/abs/1709.08568
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1710.04087
https://arxiv.org/abs/1710.04087
https://arxiv.org/abs/1511.01432
https://arxiv.org/abs/1511.01432
https://arxiv.org/abs/2405.14838
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2310.02226


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. Learning distributed representations of sentences
from unlabelled data, 2016. URL https://arxiv.org/abs/1602.03483.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card, 2024.

Rishi Jha, Collin Zhang, Vitaly Shmatikov, and John X. Morris. Harnessing the universal geometry
of embeddings, 2025. URL https://arxiv.org/abs/2505.12540.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. Skip-thought vectors, 2015. URL https://arxiv.org/abs/1506.
06726.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and Mikhail Burtsev. Cramming 1568 tokens into
a single vector and back again: Exploring the limits of embedding space capacity, 2025. URL
https://arxiv.org/abs/2502.13063.

Hugo Mercier and Dan Sperber. Why do humans reason? arguments for an argumentative theory.
Behavioral and Brain Sciences, 34(2):57–74, 2011. doi: 10.1017/S0140525X10000968.

nostalgebraist. interpreting gpt: the logit lens, 2020. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens.
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.
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A SENTENCELENS EXAMPLES

We include a representative SentenceLens example that highlights additional key observations.
Specifically, the model often identifies the correct answer early in the latent trajectory; however,
subsequent chain-of-thought (CoT) tokens exhibit a drift that ultimately leads to an incorrect pre-
diction. (The correct answer is C.) This suggests room for improvement by using intermediate
representations as explicit supervision targets, which could guide the construction of model centric
datasets and self-training methods.

Table 4: Example of Latent Reasoning Trajectory inspected with SentenceLens. Although early
steps’ intermediate layers demonstrate accurate associations with hair loss and balding, the final
prediction selects an incorrect choice, showing a drift in reasoning at later stages.

Step Decoded Sentence(s)

Question For many males hair is a concern as they get older, it begins to what, causing a receding
hairline?
A: thin out B: grow in ear C: fall out D: bulge E: composted

0 → 1 LAYER 19: The human body requires a certain amount of energy to maintain its functions.
LAYER 20: The primary cause of aging is the loss of moisture.

1 One of the common changes in hair density over time is the decrease in hair volume.

1 → 2 LAYER 4: A common reason for hair loss is due to a decrease in hair density and diameter.
LAYER 23: The aging process causes various health issues.

2 The hair loss is often associated with hair loss.

2 → 3 LAYER 3: This process is often referred to as balding.
LAYER 23: The aging process leads to reduced body size.

3 A thinning hairline is commonly associated with hair loss.

3 → 4 LAYER 2: This process can lead to a decrease in hair density and diameter.
LAYER 11: The process of getting older leads to the body becoming thinner.

4 This process is commonly referred to as fading.

4 → 5 LAYER 4: This process is common in older individuals who lack regular hair growth.
5 ### A (Incorrect)
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Table 5: Early Answer Emergence in Latent Reasoning. The model brings up the concept of
“commuting” in the reasoning chain even before the first autoregressive step completes. This hints at
potential efficiency gains by leveraging early, confident predictions as supervision signals in training.

Step Decoded Sentence(s)

Question Why would you take a bus to work?
A: commute B: flying C: get somewhere D: travel E: go home

0 → 1 LAYER 19: A person spends time traveling between different locations.
LAYER 20: A person spends time commuting to work.
LAYER 21: A person spends time traveling, which often involves moving from one place to
another.
LAYER 22: A person spends time traveling, which often involves traveling across distances.

1 People often take the bus to reach a destination.

... not shown

5 ### A (Correct)

Table 6: Latent Sentence Transitions with SENTENCELENS for GPT2-Large under the CTX-C, CONTINU-
OUS setting. We visualize intermediate decoding across layers and reasoning steps. Highlighted rows represent
the output from the final latent embedding at each step.

Step Decoded Sentence(s)
Question If you are hungry and going fishing, why would you be going fishing?

A: to see the fish B: have fun C: catching fish D: wet clothes E: killing
0 → 1 LAYER 19: A person who eats a lot experiences increased energy levels.

LAYER 22: A person who is hungry seeks to alleviate their hunger. When you are
hungry, you engage in an activity to satisfy your hunger. · · ·

1 If you are hungry, you are likely engaging in an activity that requires sustenance.
1 → 2 LAYER 9: If a person is hungry, they are likely to engage in eating.

LAYER 20: The act of catching fish involves physical activity.
2 Fishing is a common activity for those who enjoy the outdoors.
2 → 3 LAYER 4: Fishing is a common activity for those who enjoy catching fish.

LAYER 21: The act of catching fish can lead to enjoyment and recreation.
3 Fishing is a recreational activity that people engage in for fun.
3 → 4 LAYER 9: The act of catching fish provides a direct source of food.

LAYER 21: The act of catching fish provides a direct source of food. People fish to
enjoy the experience of catching fish.

4 Fishing is a recreational activity that people often engage in.
4 → 5 LAYER 5: Fishing is a recreational activity that is often pursued with friends.

Therefore, fishing is a good reason to go fishing.
5 ### C

B FRAGILITY OF CONTINUOUS EMBEDDINGS

Latent reasoning operates over high-dimensional embedding manifolds, which tend to be more sen-
sitive to perturbations than discrete token-level autoregression (team et al., 2024; Simchowitz et al.,
2025). To systematically assess this fragility, we introduce synthetic noise at inference time, fol-
lowing team et al. (2024) with a 50% probability. We evaluate robustness across three intervention
points in the reasoning pipeline: (1) Language-Level (Input): noise is applied to the input embed-
ding; (2) Language-Level (Output): noise is added to the output embedding; and (3) Latent-Level:
noise is directly injected into the predicted output embedding, which is then autoregressively con-
sumed in the next step.
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Table 7: Natural Language CoT Trace. Output from the CoT trained model (COT)

CoT Model Reasoning Trace
If you are hungry, you likely seek food to satisfy that hunger.
Fishing is an activity that typically results in catching fish.
Catching fish is a common reason for going fishing.
Seeing the fish is a primary motivation for engaging in fishing.
### C

Empirically, we observe two key trends: (1) performance degrades more rapidly on GSM8K, where
precise numerical reasoning amplifies the impact of noise; and (2) Language-Level inference (i.e.,
decoding and re-encoding) consistently yields greater robustness than latent-only reasoning across
both tasks. This supports the intuition that grounding in language acts as a regularizing prior, mit-
igating error accumulation at the cost of additional compute. These findings highlight a trade-off
between efficiency and stability, motivating future work on approaches that help prevent error com-
pounding.

Figure 5: Performance Change when injecting a Gaussian random noise to different modes of infer-
ence, for Ctx-C model in GSM8K and CSQA datasets.
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C DATASET DESCRIPTION

Mathematics We use the GSM8K dataset (Cobbe et al., 2021), which consists of grade-school
math word problems originally comprising 7.8k training and 1.3k test samples. Following prior
expansions (Hao et al., 2024; Deng et al., 2024), we adopt an extended version containing approxi-
mately 370k training examples to support large-scale latent model training.

Planning Following prior work (Bohnet et al., 2024), we use the Blocksworld environment for
planning evaluation, but construct the dataset generation pipeline using our own Python implemen-
tation. We evaluate the model on 7-block configurations, ensuring that the initial and goal states do
not overlap across the training, validation, and test sets. We use 9.9k samples for training, and 380
samples each for testing.

Logical We adopt ProsQA (Hao et al., 2024), a synthetic dataset grounded in first-order logic.
Each instance presents multiple distractors and requires multi-hop reasoning over a structured graph.
Prior work highlights that latent models capable of multi-state tracking exhibit strong performance
on this task. We use a 17.8k training set and 500 samples for evaluation.

Commonsense We use CommonsenseQA (Talmor et al., 2019), a multiple-choice benchmark that
lacks explicit Chain-of-Thought (CoT) supervision. To enable training with intermediate reason-
ing steps, we augment the data using GPT-4o to generate CoT-style rationales. Our training split
includes 8.5k examples, and for evaluation, we reserve 611 samples from the validation set.

Figure 7 illustrates representative examples from each dataset.

D LIMITATIONS

Fragility of Latent Reasoning As illustrated in Figure 5, pure latent reasoning, as it is conducted
entirely within a continuous embedding space, becomes notably fragile. Unlike DISCRETE-STEP
inference, which introduces a discrete decoding step that inherently quantizes minor perturbations,
the continuous pathway lacks such built-in stabilization. This discrete bottleneck serves as a form of
regularization, filtering out numerical noise and constraining the model’s trajectory to a finite set of
linguistically meaningful sequences. To mitigate this, specialized stabilization mechanisms are re-
quired (Simchowitz et al., 2025), and future work could explore hybrid frameworks that incorporate
discrete bottlenecks at critical points in the reasoning process.

Training from Scratch Training a model from scratch directly in the higher abstractions i.e. sen-
tence embeddings space appears to be a straightforward path toward robust high-level reasoning.
Prior work argues that models initialized on discrete-token objectives must later overcome a dis-
tribution shift when asked to operate over sentence-level abstractions, and this difficulty intensifies
as model size—and pretraining data size—increase (Hao et al., 2024; Deng et al., 2024) leading
subsequent work to favor pretraining” (Goyal et al., 2024; Shen et al., 2025)

However our adaptation framework shows that a pretrained token-level language model can be lifted,
with modest additional supervision, onto an interpretable sentence-manifold without retraining ev-
erything from scratch. By demonstrating both the promise and the fragility of this approach, the
present work highlights a critical research frontier: designing models that learn to abstract while
preserving previously learned inductive bias.
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E COMPUTATION COMPLEXITY ANALYSIS

Attention Complexity under KV-caching Let L be the average number of tokens per sentence,
R the number of reasoning steps, and ignore the prompt length N0 in leading order.

(1) Chain-of-Thought (CoT). Each step emits L new tokens into the context. Before step t, the
context length is N0 + (t− 1)L, so

CCoT =

R∑
t=1

L∑
j=1

[
N0 + (t− 1)L+ (j − 1)

]
= O

(
L2R2

)
.

(2) Contextual Embedding Mode. At each step the model (i) decodes one latent into an L-token
sentence and (ii) attends over all retained tokens to predict the next latent:

R∑
t=1

L∑
j=1

j︸ ︷︷ ︸
O(L2R)

+

R∑
t=1

(N0 + (t− 1)L)︸ ︷︷ ︸
O(LR2)

= O
(
L2R+ LR2

)
.

(3) Language-Grounded Mode. Each step (i) processes only latents in the main chain
(
O(R2)

)
and (ii) decodes and re-encodes an L-token sentence

(
O(L2R)

)
, yielding

CLG = O
(
R2 + L2R

)
.

(4) Pure Latent Mode. Each step adds one latent vector; attending over t− 1 latents gives

Clatent =
R∑

t=1

(N0 + t− 1) = O
(
R2

)
.

Summary of leading-order costs:

CCoT = O(L2R2), Ccontextual = O(L2R+LR2), CLG = O(L2R+R2), Clatent = O(R2).

MLP Overhead In addition to attention cost, every decoded or re-encoded token incurs feed-
forward (MLP) computation. More specifically:

• CoT & Contextual Embedding: emits L tokens per step → processes L × R tokens through
MLP → O(LR).

• Language-Grounded: With a semantic encoder, each step decodes and re-encodes L tokens
on compact codes—processing 2L tokens per step for an MLP cost of O(LR). If instead a
contextual encoder must re-attend over up to N0 + (t − 1)L tokens each pass, it incurs an
additional O(LR2) MLP overhead, which can erode attention savings unless the encoder is
shallow or non-autoregressive.

• Pure Latent: processes one latent per step → O(R).

Concluding Remark Under KV-caching, the Language-Grounded mode—with a semantic en-
coder—adds an O(L2R) decode/re-encode overhead, but makes it ideal for tasks sensitive to error-
compounding or instability (i.e. Mathematics.) In contrast, the Pure Latent mode eliminates all
token-level context (attention O(R2), MLP O(R)), offering maximal efficiency when possible.
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F TERMINATION CLASSIFIER

While we initially assume an oracle termination signal by using the first token generated by the
decoder, we also demonstrate that this decision can be learned by a lightweight classifier. Specif-
ically, we train a three-layer feedforward neural network (MLP) to identify the answer sentence
during CONTINUOUS inference. The MLP consists of linear layers with hidden dimensions of
192 and 48, each followed by a GELU activation, and outputs a single logit for binary clas-
sification (continue versus terminate). It is trained using binary cross-entropy loss with logits
(BCEWithLogitsLoss). Note that the average inference GFLOPs, reported in Table 9, are lower
than those reported in Table 3.

G EXPERIMENT DETAILS

Each dataset requires task-specific hyperparameter choices due to variation in problem structure
and reasoning complexity. For all experiments, we report the best test-set accuracy across saved
checkpoints (including baselines). When training all of our models (Latent Model, Encoder, and
Decoder), we initialize them from the SFT checkpoint. The number of training epochs for each
stage was selected based on convergence trends observed during early stage of experiments. Please
note that we use small portion of Fineweb-Edu (Penedo et al., 2024) for CSQA task’s restoration
(i.e. training for semantic embeddings.) We report hyperparameters used in Table 10 and 11.

H EVALUATION PROMPT

Please refer to Figure 6.

Table 8: Dataset statistics for each reasoning benchmark across train, validation, and test splits.

Split Metric CSQA ProsQA GSM8K Blocksworld

TRAIN
Question tokens/sample 39.0 360.4 42.2 146.8
Steps/sample 5.6 3.8 3.6 8.9
Tokens/step 10.9 9.5 6.0 8.0

VALID
Question tokens/sample 38.4 361.0 55.1 146.5
Steps/sample 5.6 3.8 4.2 9.2
Tokens/step 10.7 9.5 6.0 8.0

TEST
Question tokens/sample 38.8 357.0 56.8 146.6
Steps/sample 5.6 3.8 4.3 9.1
Tokens/step 10.8 9.5 6.1 8.0

Table 9: Average inference-time compute cost (GFLOPs) on each dataset under CoT and CTX-
C CONTINUOUS inference, with the accuracy of the trained classifier.

DATASET COT CTX-C CLASSIFIER ACCURACY

CSQA 25.89 8.51 99.36
PROSQA 100.99 64.02 99.76
GSM8K 21.45 10.80 99.46
BLOCKSWORLD 58.69 26.73 97.95
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Table 10: Training configurations of GPT-2 for each dataset and training stage. *SFT includes both
CoT and No-CoT variants.

Stage GSM8K CSQA ProsQA Blocksworld

SFT*

Epochs 20 20 20 100
LR 1e-4 1e-4 1e-4 1e-4
Batch 64 64 64 64

EMBEDDING:
RESTORATION
Epochs 3 5 3 100
LR 5e-4 5e-4 5e-4 1e-4
Batch 256 512 128 1024(256*4)

EMBEDDING:
PREDICTION
Epochs 30 50 50 50
LR 5e-4 5e-4 5e-4 1e-4
Batch 128 128 96 64

LATENT AUTOREG.
Epochs 200 300 50 200
Eval Freq every 10 every 10 every 2 every 10
LR 5e-4 5e-4 5e-4 5e-4
Batch 128 128 32 64

Table 11: Training configurations by model size and stage. LoRA configuration used for GPT-2
Large.

Stage GPT-2 Small GPT-2 Medium GPT-2 Large (LoRA)
r=256, a=1024)

SFT
Epochs 20 20 20
LR 1e-4 1e-4 1e-4
Batch 64 64 × 8 64 × 8

EMBEDDING:
RESTORATION
Epochs 5 5 5
LR 5e-4 5e-4 5e-4
Batch 512 128 128
Notes used FW subset used FW subset used FW subset

EMBEDDING:
PREDICTION
Epochs 50 50 50
LR 5e-4 5e-5 1e-4
Batch 128 128 64

LATENT AUTOREG.
Epochs 300 300 300
Eval Freq every 10 every 10 every 2
LR 5e-4 1e-4 1e-4
Batch 128 64 128
Notes — — w. grad ckpting
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Figure 6: Evaluation Prompt used to GPT-4o for judging intermediate reasoning step’s quality.
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GSM8K

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her 
friends every day with four. She sells the remainder at the farmers' market daily for $2 per fresh duck 
egg. How much in dollars does she make every day at the farmers' market?
 

<<16-3-4=9>>

<<9*2=18>>

18

CSQA

Blocksworld

They were kissing each other good bye, they had no worries because their relationship had a strong 
foundation of what?

A: partner    B: trust    C: cooperation    D: bricks    E: herpes
 

Trust is fundamental to a strong relationship.

Relationships with strong foundations typically rely on trust.

Trust allows partners to feel secure in their relationship.

Saying goodbye without worries indicates a high level of trust.

### B

ProsQA

Sally is a scrompus

Every scrompus is a rempus.

Every rempus is a sterpus.

### Sally is a sterpus.

Every gerpus is a terpus. Every terpus is a zhorpus. Every lempus is a yerpus. Every boompus is a zhorpus. 
Every brimpus is a rempus. Every lempus is a jelpus. Every lorpus is a rorpus. Bob is a yerpus. Every 
worpus is a rempus. Every lempus is a impus. Every rempus is a sterpus. Every yimpus is a zumpus. Every 
lempus is a yumpus. Every shumpus is a jelpus. Every brimpus is a zhorpus. Every scrompus is a rempus. 
Every lempus is a wumpus. Sally is a boompus. Sally is a gerpus. Every gerpus is a scrompus. Bob is a 
wumpus. Every wumpus is a lorpus. Every yerpus is a rorpus. Sally is a terpus. Every gerpus is a zhorpus. 
Every yimpus is a zhorpus. Every boompus is a terpus. Every gerpus is a worpus. Bob is a lorpus. Every 
gerpus is a yimpus. Every scrompus is a brimpus. Every lempus is a rorpus. Every lempus is a shumpus. Bob is 
a jelpus. Sally is a scrompus. Every gerpus is a brimpus. Every lempus is a lorpus. Every boompus is a 
yumpus. Every scrompus is a zumpus. Every zhorpus is a tumpus. Sally is a zumpus. Every lempus is a 
storpus. Every yerpus is a lorpus. Every scrompus is a zhorpus. Every yimpus is a rempus. Every impus is a 
jelpus. Jack is a yimpus. Every yerpus is a wumpus. Every rorpus is a hilpus. Every yimpus is a sterpus. Bob 
is a lempus. Every worpus is a storpus. Every rorpus is a impus. Every boompus is a gerpus. Is Sally a hilpus 
or sterpus?

In the Blocksworld domain, blocks can be stacked on top of each other or placed on the table. Only 
one block can be moved at a time, and only clear (unblocked) blocks can be moved. Given the initial 
configuration and the goal configuration, what is the minimum number of moves required to reach 
the goal? Initial state: A is on the table, B is on A, C is on G, D is on F, E is on B, F is on the table, 
G is on E. Goal state: A is on the table, B is on the table, C is on D, D is on B, E is on the table, F is 
on the table, G is on E.

<<Move C from G to the table>> 
<<Move G from E to the table>> 
<<Move E from B to the table>> 
<<Move B from A to the table>> 
<<Move D from F to B>> 
<<Move C from the table to D>> 
<<Move G from the table to E>> 
The answer is: 7

Figure 7: Example instances from each dataset.
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