
Curvature Clues: Decoding Deep Learning Privacy
with Input Loss Curvature

Deepak Ravikumar Efstathia Soufleri Kaushik Roy
Department of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907

{dravikum, esoufler, kaushik}@purdue.edu

Abstract

In this paper, we explore the properties of loss curvature with respect to input data
in deep neural networks. Curvature of loss with respect to input (termed input
loss curvature) is the trace of the Hessian of the loss with respect to the input.
We investigate how input loss curvature varies between train and test sets, and its
implications for train-test distinguishability. We develop a theoretical framework
that derives an upper bound on the train-test distinguishability based on privacy
and the size of the training set. This novel insight fuels the development of a
new black box membership inference attack utilizing input loss curvature. We
validate our theoretical findings through experiments in computer vision classifica-
tion tasks, demonstrating that input loss curvature surpasses existing methods in
membership inference effectiveness. Our analysis highlights how the performance
of membership inference attack (MIA) methods varies with the size of the training
set, showing that curvature-based MIA outperforms other methods on sufficiently
large datasets. This condition is often met by real datasets, as demonstrated by our
results on CIFAR10, CIFAR100, and ImageNet. These findings not only advance
our understanding of deep neural network behavior but also improve the ability to
test privacy-preserving techniques in machine learning.1 2

1 Introduction

Deep neural networks are being increasingly trained on sensitive datasets; thus ensuring the privacy of
these models is paramount. Membership inference attacks (MIA) have become the standard approach
to test a model’s privacy [Murakonda and Shokri, 2020]. These attacks take a trained model and aim
to identify if a given example was used in its training. Recent work has linked curvature of loss with
respect to input with memorization [Garg et al., 2024] and differential privacy [Dwork et al., 2006,
Ravikumar et al., 2024]. Inspired by this line of research, we investigate the properties of input loss
curvature and leverage our insights to develop a new membership inference attack.

Curvature of loss with respect to input (termed input loss curvature) is defined as the trace of the
Hessian of loss with respect to the input [Moosavi-Dezfooli et al., 2019, Garg and Roy, 2023]. Prior
works that study loss curvature have focused on two lines of research. The first line of research has
focused on studying the loss curvature with respect to the weights of the deep neural net [Keskar
et al., 2017, Wu et al., 2020, Jiang et al., 2020, Foret et al., 2021, Kwon et al., 2021, Andriushchenko
and Flammarion, 2022] to better understand generalization. The second line of research studied the
loss curvature with respect to the input (i.e. data) for gaining insight into adversarial robustness

1Code available at https://github.com/DeepakTatachar/Curvature-Clues
2Project website with models and other assets is available at https://engineering.purdue.edu/NRL/

projects/curvature-clues

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/DeepakTatachar/Curvature-Clues
https://engineering.purdue.edu/NRL/projects/curvature-clues
https://engineering.purdue.edu/NRL/projects/curvature-clues

Figure 1: Visualizing low and high input curvature samples from a ResNet50 trained on ImageNet.
Low input curvature training set images are prototypical and have lots of support in the trainset, while
high input curvature train set examples have less support and are atypical. Test set examples lie
around the training set images in higher curvature regions.

[Moosavi-Dezfooli et al., 2019, Fawzi et al., 2018], coresets [Garg and Roy, 2023] and memorization
[Garg et al., 2024, Ravikumar et al., 2024], mainly focusing on its properties on the train set. Thus,
there is a gap in our understanding of input loss curvature on unseen test examples.

Input loss curvature on the train set captures the prototypicality of an image. This is visualized in
Figure 1 (left) which shows high curvature examples from ImagetNet [Russakovsky et al., 2015]
train set. Figure 1 (right) builds intuition as to why this is the case – a sample with lots of support in
the dataset is more likely to lie in low curvature regions while atypical/non-prototypical examples
have less support in the training set and thus lie in higher curvature regions [Garg et al., 2024,
Ravikumar et al., 2024]. With this established, we make a novel observation that on average the
input loss curvature scores for test set examples are higher than train set examples. This is because
test samples were not optimized for, hence they lie slightly off the flat minima, in regions of higher
input curvature (also visualized in Figure 1). We leverage this insight and develop a theoretical
framework that focuses on the distinguishability of train-test input loss curvature scores. Studying
this distinguishability leads us to understand performance bounds of membership inference attacks
[Shokri et al., 2017, Sablayrolles et al., 2019, Song and Mittal, 2021, Carlini et al., 2022].

Our theoretical analysis obtains an upper bound on the KL divergence between train-test input loss
curvature scores. This provides a ceiling for membership inference attack performance. The analysis
also reveals that the upper bound when using input loss curvature scores is dependent on the number
of training set examples and the differential privacy parameter ϵ. This insight helps us understand the
conditions under which input loss curvature can be more effective at detecting train vs. test examples.
Conditions such as the number of training examples and the privacy guarantees of the model.

To test our theoretical results we perform black-box (setting where adversaries have access only
to model outputs) membership inference attack (MIA) using input loss curvature scores. However,
input loss curvature score calculation needs access to model parameters (which are not available
in a black box setting). To resolve this issue we propose using a zero-order input loss curvature
estimation. Zero-order estimation can calculate input loss curvature without needing access to model
parameters. Our input loss curvature-based black-box membership inference attack results show
that real datasets contain enough training examples for curvature scores to outperform current state-
of-the-art membership inference methods. Our results show that curvature based MIA outperforms
prior state-of-the-art techniques on 10% or larger subsets of CIFAR100 dataset (about 5000 sample
training set).

In summary, our contributions are as follows:

• Theoretical Foundation: We provide theoretical analysis to understand the train-test distin-
guishability with input loss curvature scores, demonstrating that input loss curvature is more

2

sensitive and hence better at detecting train vs. test set examples than current state-of-the-art
membership inference attacks.

• Adapting Theory To Practice: We propose using zero order input loss curvature estimation
to enable black box membership inference attack using input loss curvature scores.

• Better Attack: We conduct experiments to validate our theoretical results. Specifically,
we show that input loss curvature enables more effective black box membership inference
attacks when compared to existing state-of-the-art techniques.

2 Related Work

Membership Inference Attacks are used as a tool to test privacy [Murakonda and Shokri, 2020].
These attacks aim to identify if a particular data point was included in a model’s training dataset
[Shokri et al., 2017]. Existing techniques often leverage model outputs like loss values [Shokri
et al., 2017, Yeom et al., 2018, Sablayrolles et al., 2019], confidence scores [Carlini et al., 2022] or
modified entropy [Song and Mittal, 2021]. Shokri et al. [2017] proposed the used of shadow models
which are auxiliary models trained on subsets of the target model’s data to aid in inference. Several
modifications to this approach have been proposed. One important addition is the focus on example
hardness, where the authors Sablayrolles et al. [2019] proposed an attack that scaled the loss using
per example hardness threshold which is estimated by training shadow models. Watson et al. [2022]
proposed a similar approach but in the offline case where they calibrated the example hardness using
the average loss of shadow models not trained on the target example. Ye et al. [2022] models various
attacks into four categories and performs differential analysis to explain the gaps between them. Both
Ye et al. [2022] and Long et al. [2020] consider the entire loss distribution of samples that are not in
the training set. However, they face challenges in extrapolating to low false positive rates (FPRs). To
address this issue Carlini et al. [2022] propose using a parametric model along with shadow models
to improve performance. Orthogonal to these approaches Choquette-Choo et al. [2021] suggests the
use of input augmentations during evaluation to improve the performance of the attacks. Similarly
Jayaraman et al. [2021] propose the MERLIN attack, which queries the target model multiple times
on a sample perturbed with Gaussian noise.

Input Loss Curvature is defined as the trace of the Hessian of loss with respect to the input [Moosavi-
Dezfooli et al., 2019, Garg and Roy, 2023]. The aim is to measure the sensitivity of the deep neural
network to a specific input. In general, loss curvature with respect to the parameters of deep neural
nets has received lots of attention [Keskar et al., 2017, Wu et al., 2020, Jiang et al., 2020, Foret et al.,
2021, Kwon et al., 2021, Andriushchenko and Flammarion, 2022], specifically due to its role in
characterizing the sharpness of the learning objective which is closely connected to generalization.
However, loss curvature with respect to the input data has received much less attention. It has been
studied in the context of adversarial robustness [Fawzi et al., 2018, Moosavi-Dezfooli et al., 2019],
coresets [Garg and Roy, 2023]. It has recently been linked with memorization [Garg et al., 2024,
Ravikumar et al., 2024] and privacy [Ravikumar et al., 2024]. The authors in Moosavi-Dezfooli et al.
[2019] showed that adversarial training decreases the input loss curvature and provided a theoretical
link between robustness and curvature. In an orthogonal direction, Garg and Roy [2023] proposed the
use of low input loss curvature examples as training dataset sets called coresets, which they showed
to be more data-efficient. However, all of these works have focused on input loss curvature on the
trainset. In this paper we focus on input loss curvature and its behavior on test or unseen examples to
understand and improve the performance of membership inference attacks. Before we discuss our
contributions, we present a few preliminaries, notation, and background needed for this paper

3 Notation and Background

Notation. Let us consider a supervised learning problem, where the goal is to learn a mapping from
an input space X ⊂ Rd to an output space Y ⊂ R. The learning is performed using a randomized
algorithm A on a training set S. Note that a randomized algorithm employs a degree of randomness
as a part of its logic. The training set S contains m elements denoted as z1, · · · , zm. Each element
zi = (xi, yi) is drawn from an unknown distribution D, where zi ∈ Z, xi ∈ X , yi ∈ Y and
Z = X × Y . Thus, we define the training set S ∈ Zm as S = {z1, · · · , zm}. Another related
concept is that of adjacent datasets, which are obtained when the set’s ith element is removed and

3

defined as
S\i = {z1, · · · , zi−1, zi+1, · · · , zm}.

Additionally, the concept of adjacent (or neighboring) datasets is linked to the distance between
datasets. The distance between two datasets S and S′, denoted by ∥S − S′∥1, measures the number
of samples that differ between them. The notation ∥S∥1 represents the size of a dataset S. When
a randomized learning algorithm A is applied to a dataset S, it produces a hypothesis denoted by
hϕ
S = A(ϕ, S), where ϕ ∼ Φ is the random variable associated with the algorithm’s randomness. A

cost function c : Y × Y → R+ is used to measure the hypothesis’s performance. The cost of the
hypothesis h at a sample zi is also referred to as the loss ℓ at zi, defined as ℓ(h, zi) = c(h(xi), yi).
The performance of a hypothesis h is measured using risk R(h) = Ezi [ℓ(h, zi)] and approximated
using empirical risk Remp(h) = (1/m)

∑m
i=1 ℓ(h, zi).

Differential Privacy. Introduced by Dwork et al. [2006], differential privacy is defined as follows: A
randomized algorithm A with domain Zm is considered ϵ-differentially private if for any subsetR ⊂
Range(A) and for any datasets S, S′ ∈ Zm differing in at most one element (i.e. ||S − S′||1 ≤ 1):

Pr
ϕ
[hϕ

S ∈ R] ≤ eϵ Pr
ϕ
[hϕ

S′ ∈ R], (1)

where the probability is taken over the randomness of the algorithm A, with ϕ ∼ Φ.

Error Stability of a possibly randomized algorithm A for some β > 0 is defined as Kearns and Ron
[1997]:

∀i ∈ {1, · · · ,m},
∣∣∣Eϕ,z[ℓ(h

ϕ
S , z)]− Eϕ,z[ℓ(h

ϕ
S\i , z)]

∣∣∣ ≤ β, (2)

where z ∼ D and ϕ ∼ Φ.

Generalization. A randomized algorithm A is considered to generalize with confidence δ and at a
rate of γ′(m) if:

Pr[|Remp(h, S)−R(h)| ≤ γ′(m)] ≥ δ. (3)

Uniform Model Bias. The hypothesis h produced by algorithm A to learn the true conditional
h∗ = E[y|x] from a dataset S ∼ Dm has uniform bound on model bias denoted by ∆ if:

∀S ∼ Dm,
∣∣∣Eϕ[R(hϕ

S)−R(h∗)]
∣∣∣ ≤ ∆. (4)

ρ-Lipschitz Hessian. The Hessian of ℓ is Lipschitz continuous on Z , if ∀z1, z2 ∈ Z , and ∀h ∈
Range(A), there exists some ρ > 0 such that:

∥∇2
z1ℓ(h, z1)−∇

2
z2ℓ(h, z2)∥ ≤ ρ∥z1 − z2∥. (5)

Input Loss Curvature. As defined by Moosavi-Dezfooli et al. [2019], Garg et al. [2024], input loss
curvature is the sum of the eigenvalues of the Hessian H of the loss with respect to input zi. This is
conveniently expressed using the trace as:

Curvϕ(zi, S) = tr(H) = tr(∇2
ziℓ(h

ϕ
S , zi)) (6)

υ-adjacency. A dataset S is said to contain υ-adjacent (read as upsilon-adjacent) elements if
it contains two elements zi, zj such that zj = zi + α for some α ∈ Bp(υ) (read as υ-Ball).
This condition can be ensured through construction. Consider a dataset S′ which has no zj s.t
zj = zi + α; zj , zi ∈ S′. We can construct S such that S = {z | z ∈ S′} ∪ {zi + α} for some
zi ∈ S′, α ∈ Bp(υ), thereby ensuring υ-adjacency.

Membership Inference Threat Model. In a membership inference security game [Yeom et al., 2018,
Jayaraman et al., 2021, Carlini et al., 2022], a challenger and an adversary interact to test the privacy
of a machine learning model. The process begins with the challenger sampling a training dataset from
a distribution and training a model on this data. The challenger then flips a coin to decide whether to
select a fresh data point from the distribution, which is not part of the training set, or to choose a data
point from the training set. This selected data point is given to the adversary, who has access to the
same data distribution and the trained model. The adversary’s task is to determine whether the given
data point was part of the training set or not. If the adversary’s guess is correct, the game indicates a
successful membership inference attack. Such a game is said to be in a black-box setting when the
adversary has access to only the challenger’s output.

4

Figure 2: Marginal curvature score histogram for
all images in ImageNet when samples in train
set vs test set.

Figure 3: Conditional curvature scores for a sin-
gle image from ImageNet when using 56 shadow
models.

4 Theoretical Analysis

In this section, we analyze the distinguishability of train-test samples using KL divergence. We do so
for two cases, the first case when using network’s output probability, and second when using input
loss curvature. The importance of analyzing network output probabilities stems from its utilization in
the current state-of-the-art attack, LiRA [Carlini et al., 2022]. Thus, studying both cases will let us
theoretically analyze and compare their performance with input loss curvature.

Before we begin the analysis, we briefly discuss the conditional and marginal distributions of input
loss curvature for train and test examples. Discussing this is important to build intuition for the
analysis. Figure 2 visualizes the histogram (proxy for distribution) of input loss curvature for train
and test examples from ImageNet [Russakovsky et al., 2015]. Specifically, it plots the log of the
input loss curvature log(Curvϕ) obtained on pre-trained ResNet50 [He et al., 2016] models from
Feldman and Zhang [2020]. It plots a histogram of these scores, showing the frequency of specific
log curvature values.

A naive membership inference attack would apply a threshold to separate these distributions. However,
it is common practice to consider sample specific scores (i.e., conditioned on the target sample). This
is visualized in Figure 3 which plots the distribution of curvature scores for a single ImageNet sample,
indicating differences when the sample is part of the training set versus when it is a test or unseen
sample. The data was generated using models from Feldman and Zhang [2020]. The figure also
includes a kernel density estimate (KDE, shown as a dashed line) to better to visualize the underlying
distribution. Figure 3 suggests that, similar to Carlini et al. [2022] sample conditional curvature
scores can be modeled using a Gaussian parametric model. If we represent the curvature score
Curvϕ as a random variable, then Curvϕ ∼ N (µ, σ). The probability density function of Curvϕ is a
function of the randomness of the algorithm ϕ, the dataset S and the ith sample zi and be denoted by
pc(ϕ, S, zi). Similarly, let p(ϕ, S, zi) denote the probability density function of the neural network’s
output probability, which is also parameterized by the randomness of the algorithm ϕ, the dataset S
and the ith sample zi. With this setup we present the following theoretical results on the upper bound
on the KL divergence between train and test distribution for the two cases. Theorem 4.1 presents the
upper bound on the KL divergence when using the neural network’s output probability scores, and
Theorem 4.2 presents the upper bound on the KL divergence when using input loss curvature.

Theorem 4.1 (Privacy bounds Train-Test KL Divergence). Assume ϵ-differential private algorithm,
then the KL divergence between train-test distributions of the neural network’s output probability is
upper bound by the differential privacy parameter ϵ given by:

DKL

(
p(ϕϕϕ, S, zi) || p(ϕϕϕ, S\i, zi)

)
≤ ϵ (7)

Sketch of Proof. Given that the algorithm A is ϵ-differentially private, we know that the probability
of the output hϕ

S ∈ R on dataset S is bounded by eϵ times the probability of the same event

5

on the neighboring dataset S\i, i.e. Prϕ[h
ϕ
S ∈ R] ≤ eϵ Prϕ[h

ϕ
S\i ∈ R]. From this inequality it

follows that the KL divergence between the output distributions of A on S and S\i is bounded by
KL(p(ϕ, S, zi) || p(ϕ, S\i, zi)) ≤ ϵ. The full proof for Theorem 4.1 is provided in Appendix A.3.
Theorem 4.2 (Dataset Size and Privacy bound Curvature KL Divergence). Let the assumptions of
error stability 2, generalization 3, and uniform model bias 4 hold. Further, assume 0 ≤ ℓ ≤ L.
Let the conditional distribution be parameterized with variance σ. Then, any ϵ-differential private
algorithm using a dataset of size m with a probability at least 1− δ satisfies:

DKL(pc(ϕϕϕ, S, zi) || pc(ϕϕϕ, S\i, zi)) ≤
[Lm(1− e−ϵ) + c]

2

2σ2
(8)

c = (4m− 1)γ + 2(m− 1)∆ +
ρ

6
E[∥α∥3] + L (9)

Sketch of Proof. We begin by assuming a Gaussian model for the curvature distribution and expand
the formula for the KL divergence, which leads to expressions involving the mean and standard
deviation of the curvature scores. To establish an upper bound for this expression, we prove a lemma
concerning the upper bound of the mean curvature, utilizing results from Ravikumar et al. [2024].
This enables us to express the upper bound on the mean curvature in terms of the privacy parameter ϵ.
Subsequently, this result is employed to derive an upper bound on the KL divergence of the curvature
scores. The proof for Theorem 4.2 is provided in Appendix A.5.

Discussion. Theorem 4.1 and Theorem 4.2 provide the upper bound on KL Divergence between train
and test distributions of the probability and input loss curvature scores, respectively. They imply the
upper limit of MIA performance, and interestingly, the result of Theorem 4.2 suggests the role of
the dataset size on MIA performance. However, the relation is not as straightforward as suggested
by Equation 8. This is because, in real applications, parameter σ depends on ϵ, and so does the
loss bound L. In fact, the loss bound is also dependent on the number of samples m [Bousquet and
Elisseeff, 2002].
Theorem 4.3 (Dataset Size and Curvature MIA Performance). Let the assumptions of error stability
2, generalization 3, and uniform model bias 4 hold. Further, assume 0 ≤ ℓ ≤ L, and the bounds of
Theorem 4.1 and 4.2 are tight. Then, the performance of MIA using curvature scores exceeds that of
confidence scores with a probability at least 1− δ when:

m >
(
√
2σ2ϵ)− c

L(1− e−ϵ)
(10)

Theorem 4.3 suggests that the performance of curvature based MIA will exceed that of probability
score based methods when the size of the dataset used to train the target model exceed a certain
threshold. Indeed, this is what we observe in practice (see section 6.4).

Sketch of Proof. The proof compares the upper bounds from Theorem 4.1 and Theorem 4.2, followed
by a series of algebraic manipulations. This identifies the conditions under which the performance of
curvature scores exceeds that of confidence scores. The full proof can be found in Appendix A.6.

On the validity of the assumptions. Before presenting our experiments to validate our theory,
we briefly discuss the validity of our assumptions in practical settings. Research by Hardt et al.
[2016] shows that stochastic gradient methods, such as stochastic gradient descent, achieve small
generalization error and exhibit uniform stability. Thus, the assumptions of stability (Equation 2) and
generalization (Equation 3) are justified. Model bias is a property of the model, and a uniform bound
across different datasets seems reasonable. Note, uniform loss bound (and L independent of m as
used by Theorem 4.3) holds true for certain losses and for statistical models and is often assumed in
learning theory [Wang et al., 2016]. Lastly, the υ-adjacency can be ensured through construction. For
large datasets this may not be needed, because the size of the ball Bp(υ) is unconstrained. Hence
two samples from the same class that are similar may suffice. Given the size of modern datasets, this
assumption is also reasonable.

5 Zero Order Input Loss Curvature MIA

To test if input loss curvature based membership inference performs better than existing methods
we need an efficient technique to estimate curvature. We are interested in black-box membership

6

inference attacks, where one does not have access to the target network’s parameters. However, current
techniques use Hutchinson’s trace estimator [Hutchinson, 1989] to measure input loss curvature
such as from Garg and Roy [2023], Garg et al. [2024] or Ravikumar et al. [2024]. This approach
needs to evaluate the gradient and hence requires access to model parameters. To solve this issue,
we propose using a zero-order estimation technique. Zero-order curvature estimation starts with a
finite-difference estimation. Consider a function f : Rn → R, then the Hessian at a given point zi
can be estimated as follows:

∇2f(zi) = n2 f(zi + hv + hu)− f(zi − hv + hu)− f(zi + hv − hu) + f(zi − hv − hu)

4h2
uv⊤

(11)

where h is a small increment (a hyper parameter in out case), and u, v are vectors in Rn. In our
case, to get the input loss curvature, we have f ← ℓ(g(xi), yi), where g is the neural network,
ℓ is the loss function and zi = (xi, yi) are the image, label pair. The pseudo-code for obtaining
input loss curvature score using zero order estimation shown in Algorithm 1 in Appendix A.1. To
execute membership inference attack using input loss curvature scores, we propose the following
methodology. First, we begin by training shadow models, similar to Shokri et al. [2017], Carlini et al.
[2022]. These shadow models are used to obtain empirical estimates of parametric model for the
curvature score described in Section 4. During the inference phase, we employ a likelihood ratio
between the sample being in the train set vs test set parametric models to identify the membership
status of a given sample (see Appendix A.2 for pseudo-code). In addition, we perform a negative log
likelihood ratio test. We denote the results of likelihood test as ‘LR’ and the results of the negative
log likelihood ratio test as ‘NLL’.

6 Experiments

6.1 Experimental Setup

Datasets. To evaluate our theory, we consider the classification task using standard vision datasets.
Specifically, we use the CIFAR10, CIFAR100 [Krizhevsky et al., 2009] and ImageNet [Russakovsky
et al., 2015] datasets.

Architectures. For experiments on ImageNet we use the ResNet50 architecture [He et al., 2016]. For
CIFAR10 and CIFAR100, we used the ResNet18 architecture. Details regrading hyperparameters
are provided in Appendix A.13. To improve reproducibility, we have open sourced the code at
https://github.com/DeepakTatachar/Curvature-Clues.

Training. For experiments using private models, we trained ResNet18 models with the Opacus
library [Yousefpour et al., 2021] using DP-SGD with a maximum gradient norm of 1.0 and a privacy
parameter of δ = 1× 10−5. Shadow models for CIFAR10 and CIFAR100 were trained on a 50%
subset of the data for 300 epochs. For ImageNet, we used pre-trained models from Feldman and
Zhang [2020], trained on a 70% subset of ImageNet. More details about training and compute
resources are provided in Appendix A.13.

Metrics. To evaluate curvature scores, we use AUROC and balanced accuracy. The Receiver
Operating Characteristic (ROC) is the plot of the True Positive Rate (TPR) against the False Positive
Rate (FPR). The area under the ROC is called Area Under the Receiver Operating Characteristic
(AUROC). AUROC of 1 denotes an ideal detection scheme, since the ideal detection algorithm results
in 0 false positive and false negative samples.

6.2 Membership Inference

In this subsection, we compare the performance of the proposed input loss curvature based member-
ship inference against prior MIA techniques.

Setup: We use CIFAR10, CIFAR100 and ImageNet datasets to test the MIA performance. We
consider a black-box MIA setup similar to Carlini et al. [2022]. We use ResNet18 for CIFAR10
and CIFAR100, for ImageNet we use the ResNet50 architecture. For all the membership inference
attacks, we compute a full ROC curve and report the results. When using shadow models we 64
for CIFAR10 and CIFAR100 and 52 for ImageNet. The AUROC plot for CIFAR100 for various

7

https://github.com/DeepakTatachar/Curvature-Clues

Method ImageNet CIFAR100 CIFAR10

Bal. Acc. AUROC Bal. Acc. AUROC Bal. Acc. AUROC

Curv ZO NLL (Ours) 69.16 ± 0.08 77.45 ± 0.09 84.47 ± 0.21 93.49 ± 0.18 61.92 ± 0.87 68.82 ± 1.30

Curv ZO LR (Ours) 68.76 ± 0.04 72.28 ± 0.04 80.48 ± 0.10 90.15 ± 0.04 55.00 ± 0.17 58.89 ± 0.38

Carlini et al. [2022] 66.14 ± 0.01 73.46 ± 0.02 81.55 ± 0.13 88.89 ± 0.16 58.23 ± 0.29 61.73 ± 0.32

Yeom et al. [2018] 58.50 ± 0.02 63.23 ± 0.03 76.29 ± 0.39 82.11 ± 0.31 55.57 ± 0.52 60.44 ± 0.75

Sablayrolles et al. [2019] 66.93 ± 0.05 76.50 ± 0.04 70.22 ± 0.41 81.11 ± 0.39 56.65 ± 0.56 61.50 ± 0.79

Watson et al. [2022] 61.40 ± 0.06 69.44 ± 0.05 62.71 ± 0.31 71.66 ± 0.50 54.86 ± 0.59 58.58 ± 0.86

Ye et al. [2022] 66.16 ± 0.02 75.79 ± 0.05 80.73 ± 0.24 90.88 ± 0.19 59.62 ± 0.84 67.30 ± 1.25

Song and Mittal [2021] 57.88 ± 0.03 63.29 ± 0.03 75.58 ± 0.29 82.28 ± 0.27 55.63 ± 0.61 60.42 ± 0.85

Table 1: Comparison of the proposed curvature score based MIA with prior methods tested on
ImageNet, CIFAR100, and CIFAR10 datasets. Results reported are the mean ± std obtained over 3
seeds. For CIFAR10 and CIFAR100 64 shadow models were used and 52 for ImagNet.

methods are shown in Figure 4. Table 1 reports the average balanced accuracy and AUROC values
over three seeds on various MIA methods on the three datasets. The plot in Figure 4 is a log-log plot
to emphasize performance of the proposed method at very low false positive rates (see the orange line
y-intercept). We also studied the effect of augmentations and the results can be found in Appendix
A.7, the takeaway was that adding more augmentations improved performance. Note that the results
presented in Table 1 used 2 augmentations (image + mirror) for our technique and Carlini et al. [2022]
for fair comparison.

Results: From Table 1, we see that the proposed method performs better than all existing MIA
techniques on both ImageNet and CIFAR datasets. Apart from AUROC and balanced accuracy
results, the log-log plot emphasizes the performance at really low FPR (i.e. the y intercept, high TPR
at low FPR in Figure 4). Additional results at low FPR are available in Appendix A.8.

Takeaways: As predicted by Theorem 4.2, the higher KL divergence between train and test curvature
score distributions results in superior MIA performance. Further, we observe that while using a
negative log likelihood ratio test does better in AUROC and balanced accuracy, the parametric
likelihood ratio test does better at low false positive rates as shown in Figure 4. Thus, the proposed
use of curvature should be tailored based on use case. Applications that demand high AUROC can
use NLL approach, while those that demand high TPR at very low FPR should use the LR technique.

6.3 Effect of Privacy

In this section, we study the effect of differential privacy on MIA performance and test the ϵ relation
predicted by Theorem 4.2.

Setup: To study the effect of privacy on MIA attack performance, we use DP-SGD trained models.
We use privacy ϵ values of 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 with δ = 1 × 10−5. We

Figure 4: Comparing our method against existing
techniques at low FPR. The proposed parametric
Curv LR technique has the highest TPR at very
low FPR.

Figure 5: Validating the upper bound from The-
orem 4.2 by fitting the MIA performance (AU-
ROC of Curv LR) on DP-SGD trained models
for various privacy parameters ϵ values.

8

Figure 6: Visualizing MIA performance as a
function of the size of the train set, which is
randomly sampled.

Figure 7: MIA performance as a function of the
size of the train set when subsets contain the low-
est curvature examples from the entire set.

plot the result of the proposed curvature based MIA in Figure 5. In Figure 5 we also plots the best fit
using sf (Lf (1− e−ϵ) + cf)

2, where sf , Lf and cf are fit to the data.

Results and Takeaways: We see that the theoretical prediction from Theorem 4.2 about MIA
performance is well matched. Since Theorem 4.2 provides an upper bound, the results validate the
theory.

6.4 Effect of Dataset Size

In this section, we study the effect of dataset size on MIA attack performance. This lets us test the
relationship of MIA performance to m as predicted by Theorem 4.2 and Theorem 4.3.

Setup: For this experiment, we train models on increasing dataset size on CIFAR100. Specifically,
we train multiple seeds on various subsets randomly chosen from the CIFAR100 training set. We
also repeated the same by choosing the lowest curvature samples from CIFAR100 and train with the
same subset sizes. Next, for each of the models we perform MIA attack and we present the results in
Figure 6 (randomly chosen) and Figure 7 (lowest curvature samples).

Results: From Figure 6, we see that when samples are randomly chosen, the MIA performance
decreases as we add more samples. This result is consistent with prior literature [Abadi et al., 2016].
Further as predicted by Theorem 4.3 beyond 30− 40% subset Curv ZO LR out perform prior works
and Curv ZO NLL outperforms prior works beyond 10% subset size.

To extend this analysis, we train models on curvature based coresets [Garg and Roy, 2023]. These
coresets of low input loss curvature samples have been shown to memorize less [Garg et al., 2024,
Ravikumar et al., 2024]. Thus we expect MIA accuracy to increase as we increase coreset size. This
is exactly what happens and is shown in Figure 7 which plots the AUROC and accuracy of the NLL
curvature attack as we increase curvature coreset size. However, the MIA performance is higher for
comparable size in Figure 6 and 7. This suggests that curvature based coresets result in more
susceptible models, which is also supported by results in Song et al. [2019].

Takeaways: We validate Theorem 4.3. We note that beyond a certain dataset size (of about 30− 40%
subset of the training set Curv ZO LR out perform prior works and Curv ZO NLL outperforms prior
works beyond 10% subset size) curvature scores outperform probability score based MIA method.
While Theorem 4.3 predicts that curvature-based MIA outperforms other methods on sufficiently
large datasets. This condition is often met by real datasets as evident from the results presented.

7 Conclusion

In this paper, we explored the properties of input loss curvature on the test set. Specifically, we
focus on using input loss curvature to distinguish between train and test examples. We established a
theoretical framework deriving an upper bound on train-test KL Divergence based on privacy and

9

training set size. To extend the applicability of input loss curvature computation to a black-box
setting, we propose a novel zero-order curvature estimation method. This enables the development
of a new cutting-edge black-box membership inference attack (MIA) methodology that leverages
input loss curvature. Through extensive experiments on the ImageNet and CIFAR datasets, we
demonstrate that our input loss curvature-based MIA method outperforms existing state-of-the-art
techniques. Our results corroborate our theoretical predictions regarding the relationship between
MIA performance and dataset size. Specifically, we show that beyond a certain dataset size, the
effectiveness of curvature scores surpasses other methods. Importantly, we observe that this dataset
size condition is frequently met in practical scenarios, as evidenced by our results on the CIFAR100
dataset. These findings advance our understanding of input loss curvature in the context of privacy
and help build more secure deep learning models.

Acknowledgment

This work was supported in part by, the Center for the Co-Design of Cognitive Systems (COCOSYS),
a DARPA-sponsored JUMP 2.0 center, the Semiconductor Research Corporation (SRC), and the
National Science Foundation.

References
M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 308–318, 2016.

M. Andriushchenko and N. Flammarion. Towards understanding sharpness-aware minimization. In
International Conference on Machine Learning, pages 639–668. PMLR, 2022.

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard,
E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. DeVito, E. Ellison,
W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. Lazos,
M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk, B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim,
M. Y. Siraichi, H. Suk, M. Suo, P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou,
R. Zou, A. Mathews, G. Chanan, P. Wu, and S. Chintala. PyTorch 2: Faster Machine Learning
Through Dynamic Python Bytecode Transformation and Graph Compilation. In 29th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. doi: 10.1145/3620665.3640366. URL
https://pytorch.org/assets/pytorch2-2.pdf.

O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership inference attacks from
first principles. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1897–1914. IEEE,
2022.

C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot. Label-only membership inference
attacks. In International conference on machine learning, pages 1964–1974. PMLR, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto. Empirical study of the topology and
geometry of deep networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3762–3770, 2018.

10

https://pytorch.org/assets/pytorch2-2.pdf
https://openreview.net/forum?id=YicbFdNTTy

V. Feldman and C. Zhang. What neural networks memorize and why: Discovering the long tail via
influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.

P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=6Tm1mposlrM.

I. Garg and K. Roy. Samples with low loss curvature improve data efficiency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20290–20300, 2023.

I. Garg, D. Ravikumar, and K. Roy. Memorization through the lens of curvature of loss function
around samples. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=WQbDS9RydY.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International conference on machine learning, pages 1225–1234. PMLR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

B. Jayaraman, L. Wang, K. Knipmeyer, Q. Gu, and D. Evans. Revisiting membership inference under
realistic assumptions. Proceedings on Privacy Enhancing Technologies, 2021(2), 2021.

Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio. Fantastic generalization measures
and where to find them. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJgIPJBFvH.

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation. In Proceedings of the tenth annual conference on Computational learning theory, pages
152–162, 1997.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=H1oyRlYgg.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images, 2009.

J. Kwon, J. Kim, H. Park, and I. K. Choi. Asam: Adaptive sharpness-aware minimization for scale-
invariant learning of deep neural networks. In International Conference on Machine Learning,
pages 5905–5914. PMLR, 2021.

Y. Long, L. Wang, D. Bu, V. Bindschaedler, X. Wang, H. Tang, C. A. Gunter, and K. Chen. A
pragmatic approach to membership inferences on machine learning models. In 2020 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 521–534. IEEE, 2020.

H. Mehta, A. Thakurta, A. Kurakin, and A. Cutkosky. Large scale transfer learning for differentially
private image classification. arXiv preprint arXiv:2205.02973, 2022.

S.-M. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard. Robustness via curvature regularization,
and vice versa. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9078–9086, 2019.

S. K. Murakonda and R. Shokri. Ml privacy meter: Aiding regulatory compliance by quantifying the
privacy risks of machine learning. arXiv preprint arXiv:2007.09339, 2020.

Y. Nesterov and B. T. Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

D. Ravikumar, E. Soufleri, A. Hashemi, and K. Roy. Unveiling privacy, memorization, and input
curvature links. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=4dxR7awO5n.

11

https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=WQbDS9RydY
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=4dxR7awO5n

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou. White-box vs black-box: Bayes
optimal strategies for membership inference. In International Conference on Machine Learning,
pages 5558–5567. PMLR, 2019.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

L. Song and P. Mittal. Systematic evaluation of privacy risks of machine learning models. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2615–2632, 2021.

L. Song, R. Shokri, and P. Mittal. Privacy risks of securing machine learning models against
adversarial examples. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 241–257, 2019.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polo-
sukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Y.-X. Wang, J. Lei, and S. E. Fienberg. Learning with differential privacy: Stability, learnability and
the sufficiency and necessity of erm principle. Journal of Machine Learning Research, 17(183):
1–40, 2016.

L. Watson, C. Guo, G. Cormode, and A. Sablayrolles. On the importance of difficulty calibration in
membership inference attacks. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=3eIrli0TwQ.

D. Wu, S.-T. Xia, and Y. Wang. Adversarial weight perturbation helps robust generalization. Advances
in Neural Information Processing Systems, 33:2958–2969, 2020.

J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri. Enhanced membership inference
attacks against machine learning models. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 3093–3106, 2022.

S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning: Analyzing the
connection to overfitting. In 2018 IEEE 31st computer security foundations symposium (CSF),
pages 268–282. IEEE, 2018.

A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek, J. Nguyen, S. Ghosh,
A. Bharadwaj, J. Zhao, G. Cormode, and I. Mironov. Opacus: User-friendly differential privacy
library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=3eIrli0TwQ

A Appendix

A.1 Zero Order Curvature Estimation

We present the pseudo-code for zero-order curvature score calculation below. Please note that
Algorithm 1 shows the input loss curvature calculation for one example; however, it can be easily
implemented for batch data.

Algorithm 1 Pseudo-code for Zero Order Input Loss Curvature Estimation
1: Input: zi = (xi, yi) (image, label data), ℓ (loss function), niter (hyperparameter: number of

iterations), h (hyperparameter: small increment), g (neural network)
2: Output: curv_estimate (zero order input loss curvature estimate of zi)
3: curv ← 0
4: for i← 1 to niter do
5: v ∼ Rademacher
6: u ∼ Rademacher
7: f ← ℓ(g(xi), yi)
8: ∇2f(zi)← Use Equation 11
9: curv ← curv + tr(∇2f(zi))

10: end for
11: curv_estimate← curv/niter

12: return curv_estimate

A.2 Curvature based MIA

In this section, we present the detailed step by step description and pseudo code for the curvature
based MIA (refer to Algorithm 2)

1. Initialization (Lines 3-4): Two empty sets, curvin and curvout, are initialized. These sets
will store the curvature scores for the shadow models trained with and without the target
example zi.

2. Shadow Model Training (Lines 5-12): For a specified number of iterations N , the algorithm
performs the following steps:

• Sampling Shadow Dataset (Line 6): A shadow dataset Dattack is sampled from the
data distribution D.

• Training IN Shadow Model (Line 7): A shadow model gnin is trained on the shadow
dataset augmented with the target example, Dattack ∪ {zi}. The curvature score for
this model, denoted as curvnin, is computed using Algorithm 1.

• Collecting IN Curvature Scores (Line 8): The curvature score for the training set
Dattack ∪ {zi} of this model curvnin is added to the set curvin.

• Training OUT Shadow Model (Line 9): Another shadow model gnout is trained on the
shadow dataset excluding the target example, Dattack \ {zi}. The curvature score for
this model, denoted as curvnout, is also computed using Algorithm 1.

• Collecting OUT Curvature Scores (Line 10): The curvature score for the training set
Dattack \ {zi} of this model curvnout is added to the set curvout.

3. Model Parameter Estimation (Lines 13-16): After training the shadow models, the algorithm
calculates the mean (µin, µout) and variance (σ2

in, σ2
out) of the collected curvature scores

for both the ‘IN’ and ‘OUT’ models.
4. Target Model Query (Line 17): The curvature score for the target model gtarget with respect

to the target example zi, denoted as curvtarget, is computed using Algorithm 1.
5. Likelihood Ratio Test (Line 18-19): The likelihood ratio Pin is calculated. This ratio

compares the probability of the observed curvature score under the ‘IN’ distribution against
the ‘OUT’ distribution and is returned. For the ‘NLL’ version Pin us given by:

PNLL
in = log

[
P
(
curvtarget | N (µout, σ

2
out)

)]
− log

[
P
(
curvtarget | N (µinσ

2
in)

)]
(12)

13

Algorithm 2 Membership Inference Attack using Input Loss Curvature Scores
Require: Target model gtarget, target example zi = (xi, yi), data distribution D

1: curvin ← {}
2: curvout ← {}
3: for n in N do
4: Dattack ← D ▷ Sample a shadow dataset
5: gnin ← Train on Dattack ∪ {zi}. ▷ Train in shadow model
6: curvnin ← Use Algorithm 1
7: curvin ← curvin ∪ curvnin
8: gnout ← Train on Dattack \ {zi}. ▷ Train out shadow model
9: curvnout ← Use Algorithm 1

10: curvout ← curvout ∪ curvnout
11: end for
12: µin ← mean(curvin)
13: µout ← mean(curvout)
14: σ2

in ← var(curvin)
15: σ2

out ← var(curvout)
16: curvtarget ← Use Algorithm 1 with gtarget and zi.

17: Pin =
P
(
curvtarget | N (µin, σ

2
in)

)
P (curvtarget | N (µout, σ2

out))
18: return Pin

A.3 Proof of Theorem 4.1

Consider an ϵ−DP algorithm and S, S\i such that ||S − S\i|| = 1. Next let R ⊂ Range(A) such
thatR = {h | h(xi) = yi}. Since A is ϵ-differentially private, then it follows from the definition of
differential privacy in Equation 1 that

Pr
ϕ
[hϕ

S ∈ R] ≤ eϵ Pr
ϕ
[hϕ

S\i ∈ R] (13)

=⇒ p(ϕ, S, zi) ≤ eϵp(ϕ, S\i, zi) (14)

Since p(ϕ, S, zi) = Prϕ[h
ϕ
S ∈ R] and denotes the probability density function of the neural network’s

output probability. Now, we use the definition of KL divergence

DKL

(
p(ϕ, S, zi) || p(ϕ, S\i, zi)

)
= Eϕ

[
log

(
p(ϕ, S, zi)

p(ϕ, S\i, zi)

)]
≤ Eϕ [log e

ϵ] From Equation 14

DKL

(
p(ϕ, S, zi) || p(ϕ, S\i, zi)

)
≤ ϵ ■

A.4 Lemma A.1

Lemma A.1 (Upper bound on Input Loss Curvature). Let A be a randomized algorithm which
is ϵ-differentially private and the assumptions of error stability 2, generalization 3, and uniform
model bias 4 hold. Further, assume 0 ≤ ℓ ≤ L. Then for two adjacent datasets S, S\i ∼ D with a
probability at least 1− δ we have:

Eϕ[Curvϕ(zi, S
\i)] ≤ L(m(1− e−ϵ) + 1) + c1 (15)

c1 = (4m− 1)γ + 2(m− 1)∆ +
ρ

6
E[∥α∥3] (16)

Proof of Lemma A.1 For this proof, we use results from Nesterov and Polyak [2006], we restate it
here for convenience
Lemma A.2. If Lipschitz assumption 5 on the Hessian of ℓ holds from Nesterov and Polyak [2006]
we have

|ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩| ≤
ρ

6
|z1 − z2|3

(17)

14

From Lemma A.2 we have

−
ρ

6
|z1 − z2|3 ≤ ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩

ℓ(h, z1)− ℓ(h, z2)− ⟨∇ℓ(h, z2), z1 − z2⟩ − ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ ≤
ρ

6
|z1 − z2|3

This gives us a lower bound on ℓ(h, z1)

−
ρ

6
|z1 − z2|3 + ℓ(h, z2) + ⟨∇ℓ(h, z2), z1 − z2⟩+ ⟨∇2ℓ(h, z2)(z1 − z2), z1 − z2⟩ ≤ ℓ(h, z1)

(18)

Consider zj ∈ S such that zi = zj + α for some j ̸= i where α ∈ Bp(υ) such that E[α] = 0
and E[αTα] = 1. Using the lower bound in Lemma A.2 from Ravikumar et al. [2024] with
z1 = zi, z2 = zj we get

Eϕ[ℓ(h
ϕ
S\i , zj)]− Eϕ[ℓ(h

ϕ
S , zi)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ (19)

Using the result from Lemma A.2

−
ρ

6
∥α∥3 + Eϕ[ℓ(h

ϕ
S\i , zi)] + Eϕ[⟨∇ℓ(hϕ

S\i , zi), α⟩]

+Eϕ[⟨∇2ℓ(hϕ
S\i , zi)α, α⟩]− Eϕ[ℓ(h

ϕ
S , zi)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ (20)

Taking Expectation over α and since the mean of α = 0 we have

Eϕ[ℓ(h
ϕ
S\i , zi)] + Eα,ϕ[⟨∇ℓ(hϕ

S\i , zi), α⟩] + Eα,ϕ[⟨∇2ℓ(hϕ
S\i , zi)α, α⟩]

−Eϕ[ℓ(h
ϕ
S , zi)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
∥α∥3

Note that we can change the order of expectation using Fubini’s theorem

Eϕ[ℓ(h
ϕ
S\i , zi)] + Eϕ,α[⟨∇2ℓ(hϕ

S\i , zi)α, α⟩]− Eϕ[ℓ(h
ϕ
S , zi)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
∥α∥3

Eϕ[ℓ(h
ϕ
S\i , zi)] + Eϕ[tr(∇2ℓ(hϕ

S\i , zi))]− Eϕ[ℓ(h
ϕ
S , zi)] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
∥α∥3

Eϕ[tr(∇2ℓ(hϕ
S\i , zi))] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3] + Eϕ[ℓ(h

ϕ
S , zi)]− Eϕ[ℓ(h

ϕ
S\i , zj)]

Eϕ[tr(∇2ℓ(hϕ
S , zi))] ≤ mβ + (4m− 1)γ + 2(m− 1)∆ +

ρ

6
E[∥α∥3] + L

From Ravikumar et al. [2024] Lemma 5.2 we have β ≤ L(1− e−ϵ). Thus we have the upper bound:

Eϕ[Curvϕ(z, S
\i)] ≤ L(m(1− e−ϵ) + 1) + c1 (21)

c1 = (4m− 1)γ + 2(m− 1)∆ +
ρ

6
E[∥α∥3] ■ (22)

A.5 Proof of Theorem 4.2

This proof uses results from Lemma A.1 provided above. For the proof of Theorem 4.2 let pc(ϕ, S, zi)
be the curvature probability mass function, then using the Gaussian model discussed in Section 4 we
model it as a Gaussian. Thus, we can write

pc(ϕ, S, zi) =
1

σS

√
2π

e
−
(ϕ− µS)

2

2σ2
S (23)

pc(ϕ, S
\i, zi) =

1

σS\i

√
2π

e
−
(ϕ− µS\i)2

2σ2
S\i (24)

15

Now consider the DKL(pc(ϕ, S, zi) || pc(ϕ, S\i, zi))

DKL(pc(ϕ, S, zi) || pc(ϕ, S\i, zi)) = Eϕ

[
log

(
pc(ϕ, S, zi)

pc(ϕ, S\i, zi))

)]
(25)

= Eϕ

[
−
(ϕ− µS)

2

2σ2
+

(ϕ− µS\i)2

2σ2

]
Assume σ = σS\i = σS

(26)

= Eϕ

[− ϕ2 − µ2
S + 2ϕµS + ϕ2 + µ2

S\i − 2ϕµS\i

2σ2

]
(27)

= Eϕ

[
µ2
S\i − µ2

S

2σ2

]
(28)

=
µ2
S\i − µ2

S

2σ2
(29)

To upper bound Equation 29, we need an upper bound on µS\i and a lower bound on µS . The lower
bound on µ2

S = 0

For ease of notation let’s define βmax := L(m(1− e−ϵ) + 1). Notice that the upper bound of per
sample µS\i = Eϕ[Curvϕ(z, S

\i)]. Using the result from Lemma A.1 in Equation 29 we have

DKL(pc(ϕ, S, zi) || pc(ϕ, S\i, zi)) ≤
(βmax + c1)

2 − 02

2σ2
(30)

≤
(βmax + c1)

2

2σ2
(31)

≤
[L(m(1− e−ϵ) + 1) + c1]

2

2σ2
■ (32)

A.6 Proof of Theorem 4.3

Assuming the bounds of Theorem 4.1 and Theorem 4.2 are tight, then using curvature score will
outperform neural network probability scores if:

DKL(pc(ϕ, S, zi) || pc(ϕ, S\i, zi)) > DKL(p(ϕ, S, zi) || p(ϕ, S\i, zi)) (33)

[L(m(1− e−ϵ) + 1) + c1]
2

2σ2
> ϵ

[Lm(1− e−ϵ) + c]
2

2σ2
> ϵ ; c = c1 + L

L2(1− e−ϵ)2m2 + 2Lc(1− e−ϵ)m+ c2 − 2σ2ϵ > 0

Using the quadratic formula we have the roots given by:

=
− 2Lc(1− e−ϵ)±

√
4L2c2(1− e−ϵ)2 − 4L2(1− e−ϵ)2(c2 − 2σ2ϵ)

2L2(1− e−ϵ)2

=
− 2Lc±

√
4L2c2 − 4L2(c2 − 2σ2ϵ)

2L2(1− e−ϵ)

=
− Lc±

√
L2c2 − L2(c2 − 2σ2ϵ)

L2(1− e−ϵ)

=
− c±

√
c2 − (c2 − 2σ2ϵ)

L(1− e−ϵ)

=
− c±

√
2σ2ϵ

L(1− e−ϵ)

16

Assuming both roots are real, the larger root is

√
2σ2ϵ− c

L(1− e−ϵ)
Thus when m >

√
2σ2ϵ− c

L(1− e−ϵ)
Equation

33 is satisfied. ■

A.7 Input Augmentations Ablation

In this section we present the results of using 1 augmentation (only the image) vs 2 augmentations
(image + mirror) in Tables 2, 3 and 4 for ImageNet, CIFAR100 and CIFAR10 respectively. For
these results, we used 64 shadow models for CIFAR10 and CIFAR100 and 52 shadow models for
ImageNet.

Method
ImageNet

1 Augmentation 2 Augmentations

Bal. Acc. AUROC Bal. Acc. AUROC

Curv ZO NLL (Ours) 68.09 ± 0.07 75.84 ± 0.08 69.16 ± 0.08 77.45 ± 0.09

Curv ZO LR (Ours) 67.59 ± 0.05 70.62 ± 0.04 68.76 ± 0.04 72.28 ± 0.04

Carlini et al. [2022] 65.11 ± 0.03 71.96 ± 0.04 66.14 ± 0.01 73.46 ± 0.02

Table 2: Comparison of the proposed curvature score-based MIA with prior methods on ImageNet
dataset with 1 and 2 augmentations. Results reported are the mean ± std obtained over 3 seeds.

Method
CIFAR100

1 Augmentation 2 Augmentations

Bal. Acc. AUROC Bal. Acc. AUROC

Curv ZO NLL (Ours) 83.97 ± 0.23 92.72 ± 0.23 84.47 ± 0.21 93.49 ± 0.18

Curv ZO LR (Ours) 77.88 ± 0.21 88.10 ± 0.12 80.48 ± 0.10 90.15 ± 0.04

Carlini et al. [2022] 80.73 ± 0.16 87.69 ± 0.18 81.55 ± 0.13 88.89 ± 0.16

Table 3: Comparison of the proposed curvature score-based MIA with prior methods on CIFAR100
dataset with 1 and 2 augmentations. Results reported are the mean ± std obtained over 3 seeds.

Method
CIFAR10

1 Augmentation 2 Augmentations

Bal. Acc. AUROC Bal. Acc. AUROC

Curv ZO NLL (Ours) 61.03 ± 0.84 67.56 ± 1.23 61.92 ± 0.87 68.82 ± 1.30

Curv ZO LR (Ours) 54.54 ± 0.19 58.06 ± 0.41 55.00 ± 0.17 58.89 ± 0.38

Carlini et al. [2022] 56.96 ± 0.27 60.05 ± 0.34 58.23 ± 0.29 61.73 ± 0.32

Table 4: Comparison of the proposed curvature score-based MIA with prior methods on CIFAR10
dataset with 1 and 2 augmentations. Results reported are the mean ± std obtained over 3 seeds.

A.8 Low FPR Results

In this section, we present the performance of curvature based MIA compared with prior works
using TPR (true positive rate) at very low FPR percentages. The results are presented when using 1
augmentation (only the image) and 2 augmentations (image + mirror) in Table 5 and Figure 8. For
these results, we use 64 shadow models for all the results in Table 5 (for methods that use shadow
models). The results for Carlini et al. [2022] are a little lower than the one reported by Carlini et al.
[2022] in Table I of their paper. However, note that the authors of Carlini et al. [2022] report the
results with 256 shadow models while we report it using 64 shadow models. This highlights the
benefits of curvature based approach, it achieves similar performance to Carlini et al. [2022] with
256 shadow models but with only 64 shadow models thus needs significantly less shadow models to
achieve similar performance.

17

Takeaways: The parametric curvature LR method has the best TPR at very low FPR and makes
efficient use of shadow models.

Method
1 Augmentation 2 Augmentations

TPR @ 0.1% FPR TPR @ 0.01% FPR TPR @ 0.1% FPR TPR @ 0.01% FPR

Curv ZO LR (Ours) 21.07 ± 0.80 15.74 ± 3.12 23.92 ± 0.92 17.17 ± 1.87

Curv ZO NLL (Ours) 6.42 ± 0.62 0.05 ± 0.04 8.29 ± 1.52 0.10 ± 0.14

Carlini et al. [2022] 15.52 ± 0.54 5.02 ± 1.70 15.80 ± 0.49 6.56 ± 1.13

Sablayrolles et al. [2019] 10.50 ± 0.59 4.30 ± 0.53 10.50 ± 0.59 4.30 ± 0.53

Watson et al. [2022] 6.62 ± 0.23 2.95 ± 0.18 6.62 ± 0.23 2.95 ± 0.18

Ye et al. [2022] 6.63 ± 0.52 2.86 ± 0.42 6.63 ± 0.52 2.86 ± 0.42

Song and Mittal [2021] 1.21 ± 0.37 1.21 ± 0.37 1.21 ± 0.37 1.21 ± 0.37

Yeom et al. [2018] 0.07 ± 0.01 0.01 ± 0.00 0.07 ± 0.01 0.01 ± 0.00

Table 5: Comparison of TPR @ 0.1% FPR and TPR @ 0.01% FPR for CIFAR100 dataset with 1 and
2 augmentations. Results reported are the mean ± std obtained over 3 seeds and using 64 shadow
models.

Figure 8: TPR at low FPR visualizing MIA
performance as a function of the size of the
train set, which is randomly sampled.

Figure 9: Low TPR performance comparison on
CIFAR100 of ZO estimation (Curv ZO, black-
box) vs. Hutchinson (Curv, white-box).

A.9 ZO Estimation Performance

In this section, we present the results of comparing the proposed zero-order curvature estimation
with Hutchinson’s trace estimator-based curvature calculation. It is important to note that the trace
estimator proposed by Garg et al. [2024] requires access to the model’s parameters, thus it is a
white-box attack. In contrast, the proposed zero-order (ZO) estimation operates as a black-box attack.

The comparative results are presented in Table 6. Additionally, Figure 9 illustrates the True Positive
Rate (TPR) vs. False Positive Rate (FPR) for the ZO estimation and Hutchinson’s trace estimator,
utilizing a log-log plot to emphasize performance at low FPR.

Takeaways. From Table 6 we see that zero-order approach to curvature estimation results in
notable differences in performance. Specifically, when examining AUROC and balanced accuracy,
particularly on the CIFAR-10 dataset, a gap of several percentage points can be observed between the
two methods. From Figure 9, we observe that the proposed LR technique performs similarly between
Hutchinson’s trace estimator [Garg et al., 2024] and the proposed ZO estimation. However, the
NLL method exhibits much greater sensitivity to estimation errors, as demonstrated by a significant
performance drop at low FPR levels.

18

Dataset Method AUROC Balanced Accuracy

CIFAR100

Curv ZO NLL 93.49 ± 0.18 84.47 ± 0.21

Curv NLL 95.01 ± 0.19 85.66 ± 0.30

Curv ZO LR 90.15 ± 0.04 80.48 ± 0.10

Curv LR 92.87 ± 0.02 83.75 ± 0.16

CIFAR10

Curv ZO NLL 68.82 ± 1.30 61.92 ± 0.87

Curv NLL 74.20 ± 1.42 64.96 ± 1.05

Curv ZO LR 58.89 ± 0.38 55.00 ± 0.17

Curv LR 68.53 ± 0.27 61.82 ± 0.11

Table 6: Performance Metrics for CIFAR100 and CIFAR10 of zero order estimation (Curv ZO,
black-box) vs. Hutchinson trace estimation (Curv, white-box) [Garg et al., 2024].

A.10 Performance Across Architectures

In this section, we present the results of evaluating the proposed zero-order MIA on different neural
network architectures. We selected four architectures: Inception [Szegedy et al., 2015] (specifically,
the smaller Inception architecture used by Feldman and Zhang [2020]), VGG11 [Simonyan and
Zisserman, 2014], VGG11 with batch normalization (denoted as VGG11BN), and finally, a ViT-B16
vision transformer [Vaswani et al., 2017, Dosovitskiy et al., 2021]. The results are provided in Table
Table 7. Please note that for all of the results we used ResNet18 shadow models and 2 augmentations.

Takeaways. The proposed techniques outperform the previous state-of-the-art method by Carlini
et al. [2022] across all architectures. Additionally, the lower performance on the Vision Transformer
(ViT) model can be attributed to transfer learning. Since ViTs do not perform well when trained from
scratch on CIFAR-100, we used an ImageNet-pretrained model, which was fine-tuned on CIFAR-100.
This led to significant privacy benefits, which aligns with the findings of Mehta et al. [2022].

Arch. Method AUROC Bal. Acc. TPR @ 1% FPR

Inception
Curv ZO NLL 87.77 ± 0.61 79.04 ± 0.65 15.33 ± 1.38
Curv ZO LR 81.94 ± 0.79 73.46 ± 0.88 19.46 ± 0.81

Carlini et al. [2022] 83.77 ± 0.63 76.70 ± 0.66 16.66 ± 0.82

VGG11
Curv ZO NLL 73.68 ± 2.99 66.53 ± 3.35 6.19 ± 1.15
Curv ZO LR 68.29 ± 1.38 64.30 ± 1.13 8.14 ± 1.85

Carlini et al. [2022] 62.85 ± 0.71 61.08 ± 0.87 2.07 ± 0.19

VGG11BN
Curv ZO NLL 87.76 ± 0.17 79.12 ± 0.11 15.56 ± 1.34
Curv ZO LR 76.17 ± 0.65 70.98 ± 0.26 22.80 ± 0.40

Carlini et al. [2022] 70.57 ± 0.39 67.13 ± 0.43 3.22 ± 0.34

ViT-B16
Curv ZO NLL 58.10 ± 0.20 55.40 ± 0.18 1.60 ± 0.01
Curv ZO LR 53.98 ± 0.30 52.55 ± 0.18 1.91 ± 0.25

Carlini et al. [2022] 54.59 ± 0.05 53.22 ± 0.10 1.44 ± 0.14

Table 7: MIA performance metrics for different architectures and methods on CIFAR100 dataset.

19

A.11 Broader Impact

The development and analysis of input loss curvature in deep neural networks presented in this work
have significant implications for both the academic and practical fields of machine learning and
privacy. By introducing a novel black-box membership inference attack that leverages input loss
curvature, this research advances the state-of-the-art in privacy testing for machine learning models.

From a societal perspective, the ability to detect and mitigate membership inference attacks is crucial
for maintaining user privacy in machine learning applications. This work helps pave the way for
more robust privacy-preserving techniques, ensuring that sensitive information is protected against
unauthorized inference. Furthermore, the insights gained from the relationship between input loss
curvature and memorization can guide the development of more secure machine learning models,
which is particularly important as these models are increasingly deployed in sensitive domains such
as healthcare, finance, and personal data processing.

Additionally, this research highlights the potential of using subsets of training data as a defense
mechanism against membership inference attacks. By identifying that training on certain sized
subsets can improve resistance to these attacks, this work offers practical guidance for model training
practices that can enhance privacy without significantly compromising performance.

A.12 Limitations

In this paper we presented the a theoretical analysis and experimental evidence for improved MIA
using input loss curvature. The theoretical and empirical evidence also shows that certain sized
subsets of the training set may provide defense against membership inference attacks. However, as
mentioned in the paper, the MIA performance improvement occurs only above a certain training
dataset size below which the non-parametric model of ‘Curv NLL’ works better and is not explained
by the theoretical analysis. Similar to techniques that use shadow models such as by Shokri et al.
[2017], Carlini et al. [2022] we need to train shadow models, which can be computationally expensive.
Further, the method described requires more queries at minimum 4× more than Carlini et al. [2022].
We believe these limitations can be addressed by follow up research.

A.13 Reproducibility Details

In this section we present additional details for reproducing our results. Additionally we have released
our code here https://github.com/DeepakTatachar/Curvature-Clues.

Training. For experiments that use private models, we use the Opacus library [Yousefpour et al.,
2021] to train ResNet18 models for 20 epochs till the privacy budget is reached. We use DP-SGD
[Abadi et al., 2016] with the maximum gradient norm set to 1.0 and privacy parameter δ = 1× 10−5.
The initial learning rate was set to 0.001. The learning rate is decreased by 10 at epochs 12 and 16
with a batch size of 128.

For shadow model training on CIFAR10 and CIFAR100 we trained on 50% randomly sampled subset
of the data for 300 epochs with a batch size of 512 for CIFAR100 and 256 for CIFAR10. We used
SGD optimizer with the initial learning rate set to 0.1, weight decay of 1 × 10−4 and momenutm
of 0.9. The learning rate was decayed by 0.1 at 180th and 240th epoch. For ImageNet we used
pre-trained models from Feldman and Zhang [2020] as shadow models which were trained on a 70%
subset of ImageNet. For both CIFAR10 and CIFAR100 datasets, we used the following sequence of
data augmentations for training: resize (32× 32), random crop, and random horizontal flip, this is
followed by normalization.

Testing. During testing we used resize followed by normalization. We used two augmentations the
original image and its mirror. The number of augmentations used are specified in the corresponding
experiment section. When using pre-trained models from Feldman and Zhang [2020] we validated
the accuracy of the models before performing experiments.

Compute Resources. All of the experiments were performed on a heterogeneous compute cluster
consisting of 9 1080Ti’s, 6 2080Ti’s and 4 A40 NVIDIA GPUs, with a total of 100 CPU cores and a
combined 1.2 TB of main system memory. However, the results can be replicated with a single GPU
with 11GB of VRAM.

20

https://github.com/DeepakTatachar/Curvature-Clues

Hyperparameters. Our code uses 2 hyper parameters for zero-order input loss curvature estimation.
The niter and h in Algorithm 1. We used niter = 10 and h = 0.001. To improve reproducibility, we
have provided the code in the supplementary material.

A.14 Licenses for Assets Used

For each of the assets used we present the licenses below we also have provided the correct citation
in the main paper as well as here for convenience.

1. ImageNet [Russakovsky et al., 2015]: Terms of access available at https://image-net.
org/download.php

2. CIFAR10 [Krizhevsky et al., 2009]: Unknown / No license provided
3. CIFAR100 [Krizhevsky et al., 2009]: Unknown / No license provided
4. Pre-trained ImageNet models and code: We used pre-trained ImageNet models from

Feldman and Zhang [2020] which is licensed under Apache 2.0 https://github.com/
google-research/heldout-influence-estimation/blob/master/LICENSE.

5. Baseline methods: We re-implemented the baseline methods hence is provided with along
with our code which is distributed under the MIT License.

6. Opacus [Yousefpour et al., 2021]: Licensed under Apache 2.0, https://github.com/
pytorch/opacus/blob/main/LICENSE.

7. Pytorch [Ansel et al., 2024]: Custom BSD-style license available at https://github.
com/pytorch/pytorch/blob/main/LICENSE.

8. ResNet Model Architecture [He et al., 2016]: MIT license available at https://github.
com/kuangliu/pytorch-cifar/blob/master/LICENSE

21

https://image-net.org/download.php
https://image-net.org/download.php
https://github.com/google-research/heldout-influence-estimation/blob/master/LICENSE
https://github.com/google-research/heldout-influence-estimation/blob/master/LICENSE
https://github.com/pytorch/opacus/blob/main/LICENSE
https://github.com/pytorch/opacus/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/pytorch/pytorch/blob/main/LICENSE
https://github.com/kuangliu/pytorch-cifar/blob/master/LICENSE
https://github.com/kuangliu/pytorch-cifar/blob/master/LICENSE

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract clearly outlines the exploration of input loss curvature in deep
neural networks and the development of a theoretical framework for train-test distinguisha-
bility. It introduces a novel black-box membership inference attack (MIA) utilizing input
loss curvature and the use of subsets of training data as a mechanism to defend against
shadow model based MIA. These claims are substantiated through theoretical analysis and
experimental validation, as presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix A.12, where we note the
increased computation requirement imposed by zero-order curvature calculation and other
limitations of the proposed methods.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

22

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the assumptions are stated in the Theorems and discussed prior to their
utilization in the main paper. The complete proof has also been provided in the Appendix of
the paper, specifically Appendix A.3, A.5 and A.6.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include all the training details for the models in Appendix A.13. We also
provide the pseudo-code for the proposed technique in Appendix A.2 along with all the
hyper parameter details (see Appendix A.13). Further, we also provide the code in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

23

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used are publicly available and are the standard datasets used
for vision tasks. Our code is included in the supplementary material and will be released
publicly after the conference deadline. The code replicates the results of our experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training details are reported in Section 6.1 of the paper and more details
are provided in Appendix A.13.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All reported results are obtained by averaging over 3 seeds and reported with
mean and standard deviation values.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For the experiments, we used a heterogeneous cluster whose details are
mentioned in Appendix A.13.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the code of ethics, we discus potential impacts of this
research paper in Appendix A.11.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

25

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: We provide a detailed discussion about the broader impact of the research
presented in the paper in Appendix A.11.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models thus this paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the detailed list of assets used and the terms under which they were
licensed in Appendix A.14. We have respected the licensing terms of the original owners.

Guidelines:

• The answer NA means that the paper does not use existing assets.

26

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the code for reproducing the results under the MIT license and
details of its usage are documented in Appendix A.13 and the supplementary material
README file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

27

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Notation and Background
	Theoretical Analysis
	Zero Order Input Loss Curvature MIA
	Experiments
	Experimental Setup
	Membership Inference
	Effect of Privacy
	Effect of Dataset Size

	Conclusion
	Appendix
	Zero Order Curvature Estimation
	Curvature based MIA
	Proof of Theorem 4.1
	Lemma A.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Input Augmentations Ablation
	Low FPR Results
	ZO Estimation Performance
	Performance Across Architectures
	Broader Impact
	Limitations
	Reproducibility Details
	Licenses for Assets Used

