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ABSTRACT

Neural Local Intrinsic Dimension (LID) estimators are typically bound to domain-
specific architectures whose inductive biases can yield inconsistent estimates for
the same underlying manifold. Existing evaluations either use overly simple
synthetic data (with known LID) or real datasets (with unknown LID), obscuring
true performance. We introduce a principled benchmarking framework that (i)
maps the same manifold into multiple domain representations while preserving its
structure, enabling like-for-like cross-architecture tests; (ii) designs harder variants
of popular datasets that target key manifold properties; and (iii) applies controlled
transformations with known LID shifts to stress-test methods even when absolute
LID is unknown. Across this suite, including non-trivial synthetic datasets, we
show that accuracy on simple manifolds does not transfer across domains and that
state-of-the-art methods fail under targeted stressors, revealing clear failure modes
and areas for improvement. Code will be released with the camera-ready version.

1 INTRODUCTION
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Table 1: Summary of our experiments. Columns: LID-estimation aspects tested by our benchmarks;
rows: neural-based algorithms (ESS as a classical benchmark). Performance of methods was classified
following the legend — H: high, M: moderate, L: low, O: out-of-range (unassessable) (more can be
found in Sec.[B). Gray color marks cells where similar aspects in the method’s original paper were
investigated; parentheses give that paper’s reported performance (assumed H if absent). We show that
algorithms that passed original simple tests for many of aspects did worse on our benchmarks; many
aspects — especially on real-world datasets (RWD) — remain untested and some only partly explored.

Recent advances in neural methods have accelerated LID estimation. A prominent line leverages
generative models Tempczyk et al.| (2022; 2024); Kamkari et al.|(2024); |Stanczuk et al.| (2024); |Yeats
et al.| (2023)); [Horvat and Pfister| (2022; [2024). Despite the rapid development of LID estimation
algorithms, scant attention has been paid to evaluating their performance. Most existing benchmarks
for assessing LID estimation methods follow two common strategies. The first involves datasets
sampled from well-defined and simplistic distributions where the LID is known and well-understood.
The second strategy evaluates LID estimation methods on domain datasets with unknown LID.

The main advantage of the first method lies in the well-understood ground truth of LID making
the evaluation of LID estimation methods reliable. Unfortunately, those datasets fail to capture the
complexity of the real-world manifolds. Moreover, most existing works do not consider edge cases
such as varying manifold thickness or neighboring manifolds, nor do they analyze results in a way
that reveals inefficiencies of their algorithms even on simple datasets like Gaussian distributions.



Under review as a conference paper at ICLR 2026

On the other hand, the second approach for testing LID estimation methods, which involves using
real-world domain datasets, matches the desired level of complexity but suffers from a significant
drawback: in most cases, the ground truth of LID is unknown. This makes it impossible to assess a
method’s performance reliably, leading to possibly erroneous conclusions.

Our contribution Following the discussion on existing benchmarks and their limitations, we present
a list of contributions to the field of testing LID estimation methods, together with the limitations that
we address.

* We introduce a toolbox that maps datasets into different domain representations (e.g., images,
audio) without altering the underlying manifold, enabling controlled like-for-like tests of
the same dataset across neural architectures and domains; using this toolbox, we show that
the common procedure of validating on simple synthetic manifolds and silently assuming
similar performance across domain networks is false.

* We introduce variants of the datasets already studied in the literature that pose much higher
difficulty for modern neural-based methods (see Table[I). While many of the presented
methods have been reported to achieve high accuracy, we show that a more careful design
of datasets targeting key manifold characteristics poses significant challenges for LID
estimation methods.

* We bridge the gap between benchmarks based on well-understood analytical distributions
and real-world datasets by employing several data transformations. As a result, we are able
to stress-test algorithms on datasets with unknown LID by evaluating their performance
before and after transformation, and by comparing it to the ground-truth LID difference
imposed by the transformations. We also show how drastically sample size for real-world
datasets affects tested algorithm estimates.

* We show the significance of testing the algorithms on non-trivial synthetic datasets, that
pose much harder challenge than other types described before.

* Finally, the majority of modern methods are tested on different datasets, which hinders
understanding of the limitations that should fuel further development. This paper provides a
broader collection of datasets, allowing more meaningful analysis and comparison across
various methods (see Table|[T).

In the fast-moving field of LID estimation, we believe that the results presented in this paper shed
new light on the construction of testing benchmarks and can amplify the impact of this work by
informing and supporting the many new techniques currently being explored in research labs around
the world. In particular, authors of existing methods, especially those analyzed in our study, may find
this paper helpful in refining or extending their own approaches. Finally, this work also highlights the
need for further development of benchmarks to keep pace with the rapid and diverse advancements in
LID estimation techniques. We overview LID applications, evaluated algorithms, and related work in
Sec.[Cland

2 METHODS FOR CREATING DOMAIN DATASETS

We use a set of transformations and methods that can be used to create challenging benchmarks for
any continuous domain like images, audio, video, EEG, etc.

Inverse Domain Representation (IDR) The goal of this method is to bridge the gap between datasets
sampled from analytical distributions with known ground truth of LID and real-world datasets on
arbitrary domains. While producing an artificial dataset sampled from an arbitrary manifold is not
challenging (one can embed the manifold in R” and sample from the embedding’s range), this
becomes more complex when one wants the dataset to resemble some real-world data. We need
a method to embed an arbitrary manifold into the ambient space of a given dataset X C R” in a
manner such that the image is “close to”” X. For a formal definition of IDR and a detailed discussion,
we refer the reader to Appendix [E} For the purpose of experiments class 7 images from FMNIST
were used as a basis for IDR transformation, samples for such dataset are presented in the Fig.[I]

Monotonic Embedding (ME) The goal of this method is to assess the robustness of LID estima-
tion algorithms to smooth geometric deformations of the data manifold. It is particularly useful
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for datasets with unknown intrinsic dimensionality. The procedure involves applying continuous,
monotonic transformations to the coordinates of the data in the ambient space, effectively stretching
or compressing the geometry in a controlled manner. As long as the derivative of the applied function
remains within a reasonable range, we expect the LID estimates to remain stable before and after
the transformation. Notably, different functions may be applied independently to each coordinate,
allowing for highly flexible distortions.

Ambient Space Extension (ASE) This method alters the ambient dimensionality of a dataset without
modifying the LID. Similar to the previous approach, it is suitable for datasets with unknown LID and
can be used to confirm algorithm stability on a dataset. The extension is performed by introducing
new dimensions as deterministic, continuous, and monotonic functions of the original coordinates.
In the case of image data, this could be achieved through deterministic upscaling techniques. For
audio signals, analogous transformations include increasing the sampling rate. At first glance, such
modifications may appear trivial. However, when viewed through the lens of deep learning models,
especially convolutional neural networks, they can introduce significant complexity. The hierarchical
structure of learned convolutional features may differ considerably between models trained on original
versus extended datasets.

Auxiliary Dimension Injection (ADI) This method increases the ambient dimensionality of datasets
with unknown LID by adding informative features derived from parametric transformations of
the original data. Parameters are sampled from known distributions, ensuring the result remains
structurally related to the source dataset. The approach is highly flexible. For example, an audio
signal may be filtered with a random low-pass cutoff and blended with the original at a random ratio,
yielding two additional, non-trivial dimensions. In the image domain, concatenating random pairs
of MNIST digits produces samples whose dimensionality equals the sum of the individual image
dimensions, as the new dataset effectively forms a Cartesian product of the original space with itself.

Manifold Synthesis (MS) We generate datasets with known intrinsic dimensionality yet complex,
non-trivial geometry by applying deterministic, continuous transformations to a parameterized
manifold that preserve topological and differential properties. For example for images, one can
parametrize object attributes (e.g., position, orientation) and render; for audio, one can combine
sample fragments via controlled parameters (start time, filter cutoff, duration, volume). The result is
data with well-defined LID but with substantially more complex appearance and structure.

3 ALGORITHM ANALYSIS DEMONSTRATED USING IMAGE DATASETS

In this section, we use methods presented in related work in Sec. [I]to create datasets designed to test
various interesting aspects of LID estimation algorithms, along with a discussion of their construction
and characteristics. The details of experimental setting can be found in Sec. [} Moreover, for the
introduced datasets, we present the estimated LID for the tested algorithms. We focus on presenting
one plot of interesting results for selected (often good-performing) algorithms, while the remaining
ones are shown in Sec. Bl All the results are summarized in tables in Sec.

3.1 NON-UNIFORM DENSITIES

As experiments [Tempczyk et al.|(2022); Stanczuk et al.|(2024)); | Kamkari et al.|(2024) and theoretical
considerations [Tempczyk et al.| (2024)) show, LID estimation for non-uniform densities may be close
to correct value when averaged on the whole dataset but biased in certain areas, e.g., in LIDL this
bias is a function of the laplacian of the density. The main reason is that existing algorithms make
specific assumptions during derivation — such as density smoothness, manifold flatness, or even
local density constancy. Therefore, it is necessary to more thoroughly examine their behavior under
non-uniform densities.

Gaussians (IDR) The dataset is a mixture of four 5-dimensional Gaussian distributions with means
located at (—3,3,0,0,0), (3,-3,0,0,0), (—3,-3,0,0,0), (3,3,0,0,0) with standard deviations
1/27,1/9, 1/3, and 1 respectively, transformed with the IDR method. For each point, we calculated
the distance from the closest mean and divided this distance by the appropriate standard deviation.
Results for each algorithm are presented in Fig. [3|and[14 We would expect that no matter from which
component of the mixture we sample and no matter how far we are from the mixture component
mode, the estimate should be equal 5. Only ESS achieved satisfying results on this task.
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3.2 MANIFOLD CURVATURE

Building on the motivation from the previous section and the fact that the majority of algorithms
are tailored for flat, uniform manifolds, we aim to test the behavior of LID estimation algorithms on
curved manifolds. Curved manifolds are commonly present in real-world scenarios.

Spheres (IDR) We used 4 disjoint spheres S with origins located in (—3,3,0,0,0), (3,—3,0,0,0),
(-3,-3,0,0,0), (3,3,0,0,0) and with radia of 1/27, 1/9, 1/3, 1 respectively, transformed with the
IDR method. For each point in the dataset, we calculated the distance from the four sphere origins
and assigned those points to the closest sphere. Estimate distributions for each algorithm and each
sphere separately are presented in Fig. [d and[I3] The only algorithm unaffected by the curvature of
this dataset was ESS.

Spaghetti (IDR) The dataset used in this analysis is the spaghetti line dataset introduced by Stanczuk
et al.[ (2024) but transformed into an image domain using IDR. It is a 1-dimensional manifold
homeomorphic with the circle twisted and folded that it occupies £ = 20 dimensions. Points from
this manifold are sampled as follows: 6 ~ U(0, 27); x; = sin((i + 1)), fori =1,..., k. Results
are presented in Table [2|and reveal that this dataset can pose a serious challenge for some algorithms.
Notably, as shown by Stanczuk et al.|(2024), the NB algorithm could solve the dataset without IDR
domain transformation up to an embedding into k¥ = 100 dimensions with high accuracy. However,
the IDR transformation introduces significant challenges, leading to higher (but still reasonable)
errors even for k = 20.

3.3 BOUNDARIES OF MANIFOLDS

An extreme case of non-uniform density is a distribution with sharp edges, like a uniform distribution
on a hypercube. Such distributions are common in real-world datasets due to measurement limitations.
For example, cameras can’t record light intensity beyond a threshold, so image datasets often lie
within a hypercube, with many points on its boundary (any images with some white or black pixels).

Many algorithms work under the assumption that when measuring LID at a point =, we are considering
a sufficiently small neighborhood of x where density has some nice properties, e.g., being sufficiently
smooth. However, in practice, the neighborhood under consideration is contained in a ball of some
radius r, whose center can lie in the proximity of a boundary or precisely on it. This leads to a
problematic case, which was observed empirically by [Tempczyk et al.|(2022)), and formalized later
by |Tempczyk et al.| (2024)).

Uniform (IDR) The dataset is a 20-dimensional uniform distribution between —3 and 3 on each
dimension, transformed with the IDR method. In this test, we are grouping points that are in the
proximity of m edges. A point is said to be close to an edge if it lies on the original manifold closer
than 0.25 from the edge located at 3 or —3. We test LID estimation for various values of parameter
m. Results are presented in Fig. [5|and In the first figure, a monotonic relationship between the
average LID and a number of edge dimensions for the ESS algorithm can be observed. The pattern is
less visible for other algorithms though.
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of a mixture of four 5-dimensional Gaussians.
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Figure 2: Sample from Arrows (MS) dataset. a function of a standardized distance of a point
from its corresponding component mean.
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3.4 THIN MANIFOLDS

An interesting scenario arises when moving along the manifold on a certain path, where the local
intrinsic dimension remains unchanged. However, in an orthogonal direction to this movement, the
manifold becomes thinner. In such cases, we would expect to observe consistent LID estimations
across all observations in a reasonable range. Nevertheless, some algorithms might mistakenly
identify the manifold as having a lower local dimensionality. Moon (IDR) The manifold we study is
3 dimensional. It is moon-shaped in the first two dimensions and a uniform interval in the third one.
More formally, it is sampled uniformly at random from the points (1,72, 73) € R3 intersected with
the set M defined as

M = {|[(x1,z2)|| < 7y |[(21,22 +0.1)]| > 0.8997, z32| < 1},

where r is a radius hyperparameter that can be chosen arbitrarily. For our experiments, we used the
value » = 3. The resulting manifold has a thickness of 0.2017 on the bottom part and 0.0017 on the
upper part. Finally, the dataset is transformed using the IDR method.

Figure [6|and [T7] show results for different algorithms. ESS has the best performance among them.
It was able to maintain the correct estimate until the manifold was very thin; on the other hand, the
NB estimates were close to ground truth but with errors distributed quite independently of manifold
thickness. What is interesting is that we can observe a slight drop in the estimate for ESS close to the
border of the moon, which is the same effect that was observed on the edge of uniform distribution.

3.5 NEARBY MANIFOLDS

Tempczyk et al.[(2022;2024) showed that when the expected distance to the nearest neighbor in the
ambient space is smaller than the expected distance to the neighbor on the same manifold, it may
lead to a bias in the estimate. The ability to recognize separate manifolds close to each other for finite
sample size is a desirable property for LID estimation algorithms. To showcase this phenomenon, we
introduce the Funnel and Spiral datasets.

Funnel (IDR) We consider a 2-dimensional funnel embedded in 3 dimensions, visualized in Fig.
The first two coordinates of the manifold original space: z; and 2, and generated using this set of
equations and transformed with the IDR method:

t= U(0,8); r= 3exp(—t); 6 = U(0,27);
1 =t—4; x5 =rsinf; x3 = rcosb.

Results are presented in Fig. [7and [I8] We can observe that even when the algorithm gives a proper
estimate when the radius of the funnel is high, for a low radius, the estimate is distorted. The ESS
algorithm behaves as expected. For wide parts of the funnel, the estimate is exact. For the narrower
parts, it goes up because manifolds are close to each other, and the algorithms start to detect points in
all 3 dimensions. On the right end, it goes down when it starts to resemble a 1-dimensional line. The
rest of the algorithms give more or less biased and noisy estimates compared to ESS.
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Figure 6: LID estimates for the Moon (IDR)  Figure 7: LID estimates for the Funnel (IDR)
dataset using ESS. dataset using ESS.

Spiral (IDR) A data set we consider is a spiral dataset visualized in Fig.[§]for the first two coordinates
z1 and x9, generated using the set of equations:

t= U(1,100); r = 1/t;x1 = rsin(t/r); xe = rcos(t/r),

where the distance to the closest point from the next revolution of the spiral gets smaller when we
go down the spiral. The dataset has a useful property: the expected distance to the nearest neighbor
calculated on the manifold is the same at any point on the manifold. Such a constructed dataset is
then transformed with the IDR method.

An interesting observation for ESS algorithm, showcased in Figure[§] is that the algorithm shows
an LID estimate close to 2 only during the first revolution, where the manifold visually has an LID
equal to 1 for a few more revolutions, especially when looking at full dataset which is 100 x bigger
than the test set. We want to highlight the fact that the algorithm was run with a hyperparameter
of 100 neighboring points, which is a standard value for this parameter. We observed in our
experiments that reducing the parameter responsible for the number of neighbors in ESS can reduce
the estimate error by giving correct estimates further down the spiral. However, this dataset dependent
hyperparametrization is a problematic approach for datasets with unknown LID that cannot be
inspected visually. We also note that the ESS algorithm performed very well compared to the
remaining methods, for which the results are presented in Fig. [I9]

3.6 LACK OF NETWORK ARCHITECTURE INVARIANCE

In our experiments we observed, that for LIDL and FLIPD use of convolutional networks in the
algorithm (Glow(Kingma and Dhariwal, 2018)) and U-net(Ronneberger et al.,|2015) respectively)
yields worse results than using feedforward based networks (MAF(Papamakarios et al., 2017) and
MLP) on the same manifold but transformed using IDR. We can see in Table 4| that some of the
effect may be just from widening the ambient space, but similar effect were reported in|Kamkari et al.
(2024). Our experiments for NB show that on Gaussian and Sphagetti datasets transformed by IDR
we obtain different results than in the original paper without IDR transformation (more in Sec[3.2)).

3.7 ESTIMATED LID VS SAMPLE SIZE

Tempczyk et al.|(2022)) showed that for numerous algorithms the bias of the estimate is dependent
on sample size. While it is natural that an algorithm error gets smaller for bigger sample sizes, an
introduced bias leads to a situation where we don’t know if we have enough data for our estimate to
be correct. To test that we created a series of training datasets by drawing samples of different sizes
from the FMNIST dataset. The validation set used for early stopping and the test set was held the
same. One may wonder why we chose a real-world dataset rather than an artificial one with known
LID. Figure 8 in|Tempczyk et al.|(2022) shows that such a dependency does not occur for LIDL on
artificial data, so we aimed for more challenging dataset as our experiments demonstrated that LIDL
exhibited a noticeable bias for small sample sizes on the FMNIST dataset.

The results are presented in Fig[9]and[20] We observe a rather significant dependence of the estimate
on the sample size. Among all the algorithms, the NB algorithm achieves interesting and desirable
characteristics. It stabilizes average estimate values for datasets bigger than 1000 samples, which is
a good result compared to other algorithms. One interesting algorithm in this context is|Erba et al.
(2019), which is designed to deal with undersampled regions, but we did not test it in our work.
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dataset using ESS. NIST.

3.8 REAL-WORLD DATASET TRANSFORMATIONS

For most real-world datasets used to evaluate the performance of LID estimation methods, the ground
truth of LID is unknown. The absence of ground truth makes it impossible to reliably assess the
quality of LID estimates produced by these algorithms in such domains. In what follows, we propose
a set of transformations on such datasets that modify dimensionality in a controlled manner, enabling
a rigorous evaluation of algorithm performance by measuring the difference in LID before and after
applying the transformation. In all experiments in this subsection, we used a downscaled version of
FMNIST as our base dataset. The original images were resized to 16x 16 pixels. Results from this
section are presented in Table[3]

Added dimensions (ADI) In this dataset, we added an 8-pixel-wide frame using mirror padding in
eight directions, creating images of size 32x32 pixels. We generated three variants of the dataset
with 0, 4, or 8 added dimensions by applying random brightness changes to a respective number
of reflections. The results of LID estimation for the ESS algorithm are presented in Fig. [I0] The
estimates for datasets with added dimensions were calibrated by subtracting the number of added
dimensions from the respective estimates, ensuring that the results should align with the identity line.

For ESS, points where LID estimation indicated a lower dimensionality in the original dataset remain
close to the identity line, suggesting a small relative error after image transformation. In contrast, for
points where LID estimation in the original dataset was high, the estimates after transformation fall
significantly below the identity line, indicating large estimation errors. The LIDL algorithm, in turn,
adds dimensions even when the dataset has zero additional noisy reflections, meaning no additional
dimensions were introduced. NB maintains the estimate on the modified dataset close to the identity
line for some points, but for others, it overestimates the LID regardless of the number of added noisy
reflections. Another observation is that the estimates vary significantly, sometimes by more than
+50% compared to the same estimate on the base dataset. All results are presented in Fig.

Upscaled (ASE) The dataset used was an upscaled 32 x 32 version of the base dataset. For upscaling,
we used a torch function interpolate with bilinear mode. NB’s performance in this task is quite
impressive, despite the variability of the estimate, which remains of a similar magnitude as in the
previous experiment involving added dimensions. ESS returns estimates lower than the original ones,
while FLIPD and LIDL exhibit the opposite behavior, outputting higher estimates. All results are

presented in Fig[TT|and 22]

Stretched (ME) We create a ME by using a polynomial transformation applied to each pixel after
normalizing its values to the range [0, 1]. We performed two transformations using different exponents:
r €[0,1] = y = 2!, for | € {0.25,4}. The best-performing algorithm in this case is ESS, which
maintains a similar mean LID before and after the transformation, albeit with a high variance. NB and
LIDL estimates drop significantly after the spatial transformation, while FLIPD heavily overestimates
the LID after transformation. Full results in Fig.[T2]and 23]

3.9 REAL-LIKE DATASET WITH KNOWN LID

There are almost no datasets that simultaneously resemble real-world images and have a known
underlying LID. Two notable exceptions are the Gaussian blobs from |Stanczuk et al.|(2024) and 3DI-
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dent dataset introduced by Zimmermann et al.|(2021). The latter one was too big our computational
budget and available GPU resources. Therefore, we created similar dataset using MS approach.

Arrows (MS) The dataset consists of 32x32 images of arrows placed on a black background. Each
arrow is described by six variables: horizontal and vertical position, rotation, and color (three variables
for RGB). The manifold dimensionality is six times the number of arrows in the image. A sample is
shown in Fig.[2} There is a small possibility of manifold collapse when arrows perfectly overlap, but
the probability of this occurring is less than 10~3, making it negligible.

In this experiment, none of the algorithms produced results close to the ground truth. The ESS
estimate failed to distinguish between different manifolds, consistently outputting values around
15 for all cases, with variations appearing only in an uncontrolled manner. The NB algorithm
significantly overestimated LID values and produced some outlier estimates for LID of a value around
3k. FLIPD produced estimates ranging from -20 to 40. Figures [I3] and [24] present full results. We
comment this results in Sec.

4 ANALYSIS OF ALGORITHMS PERFORMANCE

ESS The ESS algorithm performed very well for datasets with low-dimensional manifolds. From
experiments of [Tempczyk et al.| (2022) we know, that its performance deteriorates if manifold
dimensionality raises, which can be observed on 20D uniform datasets. We observed in preliminary
experiments that its behavior can change when working on smaller samples, and the n_neighbours
parameter is crucial to the performance, but there is no prior way of setting it right. We could go with
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the highest value possible due to the computational and memory constraints, but in the case of the
Spiral dataset the smaller values works better, especially for smaller sample sizes like 10/, so there
is no right answer to that problem.

NB Performed well, especially compared to other algorithms using neural networks. It failed on
arrows, stretch, gaussian and spheres and had higher error than ESS on low-dimensional manifolds.
It will surely beat ESS on higher-dimensional manifolds due to the ESS underestimation bias for
higher-dimensions, but compared to ESS it lacks the precision and robustness on simpler manifolds.
This perhaps may be corrected by the person skilled in training diffusion models, but in practice this
method will benefit from more stable and less noisy estimates, especially because some tests were
failed due to the high variance and not high bias like in the case of other methods like LIDL and
FLIPD.

LIDL This algorithm performed much worse than expected based on its performance on datasets with
known LID from the original paper. In the first experiments, we used LIDL with Glow Normalizing
Flow |[Kingma and Dhariwal| (2018)), but it performed worse to MAF |Papamakarios et al.| (2017),
and its training time was an order of magnitude slower than MAF so finally we sticked with MAF.
To further investigate this algorithm, we ran LIDL on selected datasets in three different scenarios:
before the IDR transformation, before the IDR transformation but padded with zeros to reach 784
ambient space dimensions, and after the IDR transformation. This analysis provided deeper insight
into where the accuracy of LIDL’s estimates deteriorates. In the first case, where the original ambient
space before IDR was 30-dimensional, LIDL performed well. However, the IDR transformation
or expanding the ambient space caused LIDL’s performance to deteriorate. The results of these
experiments are presented in Table 4]

Yet there is another problem with LIDL: although theoretical results inTempczyk et al.[(2024) show
that when 6 — 0 we should get an unbiased estimate, while in practice we always get the estimate
close to ambient space dimensionality. This is an unsolved problem of how to choose this parameter
in real-world scenarios. Those results are presented in Sec.[H] where we can observe how much the
LIDL estimate varies with . For presenting the results we have chosen one § range which had the
best performance on IDR datasets, still not being even close to the underlying LID value.

FLIPD This algorithm suffered from the same problems as LIDL, but to a greater extent. Authors of
the FLIPD describe a "knee" on the plot where the estimate is the closest to the ground truth, but in
practice, those models many times had problems converging and producing unreliable estimates with
a hard-to-find "knee" structure. When we knew the underlying LID we were able to present better
results when choosing the value of ¢ with smaller MAE, but it is not a practical scenario for real-world
datasets. The results for different values of ¢ are presented in Sec. |H, where we can observe how
much FLIPD estimate varies with ¢.

Authors of Tempczyk et al.| (2024) show that the theoretical foundations behind LIDL and FLIPD are
solid and give tools to calculate reasonable ranges of delta for the given problem, so it suggests that
the problem is the non-ideal density estimator.

5 CONCLUSIONS AND FUTURE WORK

This paper shows that there are many aspects of LID estimation that should be investigated while
working on new algorithms in the future. The results strongly suggest that the domain-adapted
benchmarks are a crucial aspect of this process: very similar algorithms in terms of performance
on the classical benchmarks turned out to be very different when tested in a new way. There are
many aspects that are not covered in this work and should be further investigated, like the effects of
quantization of the dataset on LID estimate, testing on higher-dimensional manifolds, and dealing
with the noise in the data. There is also a need to test similar algorithms in other domains, such as
audio and other real-world datasets similar to the arrows of 3DIdent. We hope that our work will be
an inspiration for future research and will aid progress in the area of LID estimation.

Although we provide detailed, plot-based evaluations of each aspect and method, as methods improve
there will be a need to quantify each aspect with some metric in a principled way. But we believe that
we are not there yet and current algorithms still require refinement to the point at which majority of
scores reach at least M in Table[T}
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Reproducibility Statement. We provide an anonymized artifact in the OpenReview supplementary
materials containing the source code and scripts required to reproduce our results. Upon publication,
we will release a public GitHub repository that mirrors the anonymized artifact. Implementation
details and hyperparameters of the experiments are described in the paper and appendix.

Ethics Statement. This work concerns methodology for Local Intrinsic Dimension (LID) estima-
tion, a Topological data-analysis problem. It does not involve human subjects, personally identifiable
information, or sensitive attributes, and it introduces no foreseeable direct societal harms. All datasets
used are public or synthetic, and we follow their licenses and terms of use.

REFERENCES

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of data
representations in deep neural networks. In Advances in Neural Information Processing Systems,
pages 6111-6122, 2019.

Jonathan Bac, Evgeny M Mirkes, Alexander N Gorban, Ivan Tyukin, and Andrei Zinovyev. Scikit-
dimension: a python package for intrinsic dimension estimation. Entropy, 23(10):1368, 2021.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estimation.
2020.

Francesco Camastra and Antonino Staiano. Intrinsic dimension estimation: Advances and open
problems. Information Sciences, 328:26-41, 2016.

Anthony L. Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P. Cunningham. Rectangular
Flows for Manifold Learning. NeurlIPS, 2021.

Vittorio Erba, Marco Gherardi, and Pietro Rotondo. Intrinsic dimension estimation for locally
undersampled data. Scientific reports, 9(1):17133, 2019.

Mingyu Fan, Nannan Gu, Hong Qiao, and Bo Zhang. Intrinsic dimension estimation of data by
principal component analysis. arXiv preprint arXiv:1002.2050, 2010.

Keinosuke Fukunaga and David R. Olsen. An algorithm for finding intrinsic dimensionality
of data. [EEE Transactions on Computers, C-20:176-183, 1971. URL https://api.
semanticscholar.org/CorpusID:30206700.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Christian Horvat and Jean-Pascal Pfister. Intrinsic dimensionality estimation using normalizing flows.
Advances in Neural Information Processing Systems, 35:12225-12236, 2022.

Christian Horvat and Jean-Pascal Pfister. On gauge freedom, conservativity and intrinsic dimension-
ality estimation in diffusion models. arXiv preprint arXiv:2402.03845, 2024.

Kerstin Johnsson, Charlotte Soneson, and Magnus Fontes. Low bias local intrinsic dimension
estimation from expected simplex skewness. IEEE transactions on pattern analysis and machine
intelligence, 37(1):196-202, 2014.

Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C. Cresswell, and Gabriel
Loaiza-Ganem. A geometric view of data complexity: Efficient local intrinsic dimension estimation
with diffusion models. In ICML 2024 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2024.

D.P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv:1312.6114, 2014.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Matthéus Kleindessner and Ulrike Luxburg. Dimensionality estimation without distances. In Artificial
Intelligence and Statistics, pages 471479, 2015.

10


https://api.semanticscholar.org/CorpusID:30206700
https://api.semanticscholar.org/CorpusID:30206700

Under review as a conference paper at ICLR 2026

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. Advances
in neural information processing systems, 17:777-784, 2004.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and new
connections. arXiv preprint arXiv:2404.02954, 2024.

Thomas Minka. Automatic choice of dimensionality for pca. Advances in neural information
processing systems, 13, 2000.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

Phil Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimen-
sion of images and its impact on learning. In International Conference on Learning Representations,
2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pages 234-241. Springer, 2015.

Brendan Leigh Ross and Jesse C. Cresswell. Tractable Density Estimation on Learned Manifolds
with Conformal Embedding Flows. NeurIPS, 2021.

Brendan Leigh Ross, Hamidreza Kamkari, Tongzi Wu, Rasa Hosseinzadeh, Zhaoyan Liu, George
Stein, Jesse C Cresswell, and Gabriel Loaiza-Ganem. A geometric framework for understanding
memorization in generative models. arXiv preprint arXiv:2411.00113, 2024.

Paul K Rubenstein, Bernhard Schoelkopf, and Ilya Tolstikhin. On the latent space of wasserstein
auto-encoders. arXiv preprint arXiv:1802.03761, 2018.

Jan Pawel Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schonlieb. Diffusion
models encode the intrinsic dimension of data manifolds. In Forty-first International Conference
on Machine Learning, 2024.

Piotr Tempczyk, Rafat Michaluk, Lukasz Garncarek, Przemystaw Spurek, Jacek Tabor, and Adam
Golinski. Lidl: Local intrinsic dimension estimation using approximate likelihood. In International
Conference on Machine Learning, pages 21205-21231. PMLR, 2022.

Piotr Tempczyk, Lukasz Garncarek, Dominik Filipiak, and Adam Kurpisz. A wiener process
perspective on local intrinsic dimension estimation methods. arXiv preprint arXiv:2406.17125,
2024.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Eric Yeats, Cameron Darwin, Frank Liu, and Hai Li. Adversarial estimation of topological dimension
with harmonic score maps. arXiv preprint arXiv:2312.06869, 2023.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process. In International Conference on Machine
Learning, pages 12979-12990. PMLR, 2021.

11



Under review as a conference paper at ICLR 2026

APPENDIX

A TABLES

Table 2: LID estimations with MAE for the datasets with known dimensionality.

algorithm ESS FLIPD LIDL NB

m o MAE “w o MAE N o MAE o o MAE
Gaussians 499 0.09 0.07 325 357 3.08 17.24 3.09 12.24 5.72 0.66 081
Spheres 5.07 0.08 0.09 449 3.77 3.24 1790 3.77 12.90 6.80 1.06 1.83
Spaghetti  1.03 0.03 0.03 1.12 4.19 3.54 1025 640 9.53 2.12 1.54 1.12
Uniform  18.87 043 1.13 18.08 330 2.80 3470 3.61 1470 19.41 1.78 1.07
Moon 286 021 015 214 396 342 1231 545 931 2.75 046 025
Funnel 220 026 021 1.73 346 324 14.18 3.09 12.20 1.48 0.51 0.54
Spiral 1.99 0.13 099 147 336 334 198 538 226 2.03 0.73 1.03
Arrows 1473 3.88 6.23 857 2580 17.43 - - — 45585 1,007.53 440.82

Table 3: LID estimations for the modified real-world datasets with unknown dimensionality.

algorithm ESS FLIPD LIDL NB

I o I o I o I o
FMNIST (base) 15.32 3.75 55.92 24.62 138.73 44.11 133.45 38.34
FMNIST (add dim +0d)  14.87 3.70 210.03 4592 227.01 62.37 142.40 37.57
FMNIST (add dim, +4d) 15.21 2.40 166.43 4591 23548 67.07 144.89 37.68
FMNIST (add dim, +8d) 16.72 1.65 193.58 38.85 257.39 61.89 154.77 3891
FMNIST (upscaled) 12.86 2.67 129.57 38.12 197.13 65.71 132.78 39.44
FMNIST (stretched 2°2°) 14.92 4.44 49.96 23.21 105.17 42.25 98.10 58.18
FMNIST (stretched 2*) 17.98 4.85 86,355.13 94,294.77 81.68 40.36 85.74 43.34

Table 4: LID estimations with MAE for the datasets with known dimensionality.

algorithm  LIDL (w/ IDR)

LIDL (org. manifold)

LIDL (org. manifold + padding)

I o MAE n o MAE n o MAE
Gaussians 17.24 3.09 12.24 4.34 1.17 0.90 18.68 19.38 22.14
Spheres  17.90 3.77 12.90 4.69 1.10 0.83 27.49 12.99 23.28
Spaghetti 10.25 6.40 9.53 5.30 1.94 431 36.25 11.41 35.25
Uniform 34.70 3.61 14.70 19.57 1.06 0.88 32.46 10.59 13.58
Moon 12.31 545 931 297 0.31 0.24 -21.31 18.99 25.57
Funnel 14.18 3.09 12.20 1.87 0.61 0.54 11.20 5.98 9.56
Spiral 198 538 2.26 0.85 0.88 0.66 - - -
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B ADDITIONAL RESULTS

B.1 NON-UNIFORM DENSITIES
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Figure 14: Results for gaussians dataset for different algorithms. ESS ranked H because estimate is
almost perfect; NB ranked L because it overestimates for most of the cases; LIDL ran on original
manifold yields accurate estimates for more than half of the cases, so we ranked it M.
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B.2 MANIFOLD CURVATURE
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Figure 15: Results for spheres dataset for different algorithms. ESS ranked H because estimate is

almost perfect; NB ranked L because it overestimates for all of the cases; LIDL ran on original
manifold yields accurate estimates for around 30% of the cases, so we ranked it M.
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B.3 BOUNDARIES OF MANIFOLDS
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Figure 16: Results for edge points from uniform dataset for different algorithms. ESS underestimates
the true value in all cases, so we ranked it L; NB has better estimate when closer to the edge, but for
most of the points further from edges it underestimates so we ranked it M; LIDL on original manifold
underperformed only in cases, where points are close to 4 or more edges, so we ranked it H.
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B.4 THIN MANIFOLDS
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Figure 17: Results for moon dataset for different algorithms. We ranked ESS H due to the accurate
estimates for most of the time; We ranked NB and LIDL on original manifold L due to the high
variance in the estimate.
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B.5 NEARBY MANIFOLDS
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Figure 18: Results for the funnel dataset for different algorithms. We ranked ESS H due to the
accurate estimates for most of the time; We ranked NB and LIDL on original manifold L due to the
high variance in the estimate.
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Spiral
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Figure 19: Results for the spiral dataset for different algorithms. We ranked ESS M due to the

accurate estimates at the beginning of the spiral; We ranked NB and LIDL on original manifold L
due to the high variance in the estimate.
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B.6 SAMPLED FMNIST (LID VS SAMPLE SIZE)
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Figure 20: Per-method results for various sample sizes from FMNIST dataset. We ranked ESS
L because the estimate dependence on sample size looks worring; We ranked NB H because the
estimate stabilizes with sample size; We ranked LIDL L, because the estimate do not stabilize as
sample size grows.
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B.7 ESTIMATE INVARIANCE TO DATASET TRANSFORMATION

B.7.1 ADDING ARTIFICIAL DIMENSIONS
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Figure 21: Estimated LID for FMNIST datasets with extra artificial dimensions. Estimates for
datasets with added dimensions were calibrated in a way, that number of added dimensions were
subtracted from respective estimates, so that on average results should lie on identity line (y = x).
We ranked NB M because it is the only algorithm that have some points at identity line.
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B.7.2 UPSCALING
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Figure 22: Effect of upscaling on FMNIST data. We ranked NB M because it is the only algorithm
that have some points at identity line.
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B.7.3 SPATIAL TRANSFORMATIONS
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Figure 23: Estimated LID under a FMNIST spatial stretching transformation. Exponent of the
transformation is in the legend. We ranked ESS M, because despite the high variance, at least the
points were distributed approximately in equal numbers on both sides of the identity line.
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B.8 REAL-LIKE DATASETS WITH KNOWN LID
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Figure 24: Estimated LID for arrows dataset. We ranked ESS and FLIPD as L, only because at least
some of the estimates are close, but we can see that with high probability it is purely by accident and
not because those algorithms are performing well on this task.
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C RELATED WORK

LID applications There has been a surge of interest in estimating the Local Intrinsic Dimension
(LID) of manifolds embedded in higher-dimensional space due to its relevance in various tasks,
including representation learning (Ansuini et al., |[2019; [Li et al., [2018; [Rubenstein et al., [2018)),
dimensionality reduction, and clustering (Vapnik} 2013} |Kleindessner and Luxburgl 2015} |Camastra;
and Staiano, 2016} |Loaiza-Ganem et al., 2024). LID estimation is crucial for applications like
manifold learning, density estimation (Brehmer and Cranmer, 2020; (Caterini et al.| 2021; Ross and
Cresswell, [2021), and generative auto-encoder models such as VAE (Kingma and Welling| 2014)).
These methods often rely on a predefined manifold dimension as a hyperparameter, and accurate
LID estimation is critical. Rubenstein et al.|(2018) demonstrate that errors in estimating the latent
space dimensionality can affect the performance of these methods. LID estimation was used as an
analytical tool to study the process of training and representation learning in deep neural networks (Li
et al.;,2018; |Ansuini et al.,|2019). Results of |Pope et al.| (2020) reveal that the intrinsic dimension of
the dataset impacts the training process of a machine learning model, sample efficiency, and its ability
to generalize. Ross et al.|(2024) show that LID estimation can be used to investigate memorization in
generative models. The earliest methods for estimating manifold dimensionality primarily employed
a global approach, as pioneered by |Fukunaga and Olsen|(1971)) and later developed in works such
as [Minkal (2000); [Fan et al.| (2010). Recent approaches address the problem locally by analyzing
neighborhood geometry in a non-parametric manner Johnsson et al.|(2014); Levina and Bickel| (2004).

LID estimation methods Over the past decades, numerous methods have been proposed for LID
estimation, following various methodologies. |(Camastra and Staiano| (2016)) examined the older
methods in a comprehensive survey. In our work we test four methods for LID estimation: ESS
Johnsson et al.| (2014), LIDLTempczyk et al.| (2022), NB [Stanczuk et al.|(2024), FLIPD Kamkari
et al.| (2024)) across the datasets introduced in this paper. We wanted to compare neural methods with
older non-parametric one, and ESS was the best performing algorithm among classical methods like
MLE (Levina and Bickel, [2004) according to experiments in [Tempczyk et al.[(2022). We briefly
describe tested algorithms in Sec. [D}

D ALGORITHM DESCRIPTION

ESS Johnsson et al.|(2014) This method assumes that the data lie in a local neighborhood of a larger
set with relatively small curvature and noise. In the ideal case, where there is no noise or curvature,
this corresponds to data points being uniformly distributed in a hypersphere. ESS estimates the
intrinsic dimension by analyzing the distribution of angles between data vectors. It provides low-bias
estimates even when the intrinsic dimension exceeds the number of data points.

LIDLTempczyk et al.|(2022) This algorithm uses the rate of change of the probability density under
the Wiener process to estimate the local intrinsic dimension (LID). For small diffusion times ¢, the
logarithm of the density is a linear function of log ¢. The slope of this linear relationship is d — D,
where d is the intrinsic dimension of the manifold and D is the dimension of the ambient space.

NB |Stanczuk et al.|(2024) NB is based on the observation that for small diffusion times, the score
function of a diffusion model lies in the normal space of the manifold. Using this fact, authors
estimate LID at a given point by applying a singular value decomposition (SVD) to assess the rank of
a relevant matrix constructed from the score function.

FLIPD Kamkari et al.|(2024) FLIPD is a more scalable variant of LIDL, using diffusion models to
estimate density.

E IDR FORMALIZATION

Take, for example, a dataset X C RP of face images, and a manifold M C R4, already embedded in
R?. If we take d eigenvectors of the covariance matrix of the distribution of face images computed
from X, their linear combinations will yield a d-dimensional space of face-like images in which we
can embed a copy of M. Sampling from this copy gives us a dataset of face-like images arising from
a prescribed manifold.
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More formally, suppose we are given a manifold M/ smoothly embeddable in R? through ¢: M — R<,
Given any dataset X embedded in RP with D > d, we may artificially create a dataset diffeomorphic
to M, interpolating the points of X. The procedure starts with computing the mean px € R? of X
and applying PCA to the centered dataset X — px. Then, we take the principal component vectors
u1,...,uq € RP corresponding to d largest eigenvalues. After that, we embed M in R through
é(p): M — RP given by the formula ¢(p) = px + Zle ¢:(p)u;. Finally, we take ¢(M) as the
new (continuous) dataset, from which we may now sample points.

The embedding ngS is just the composition of ¢, followed by the embedding of R? into R”, taking
the standard basis to the vectors u;. Note that the vectors uq, . .., uq are unit vectors; therefore, the
geometry of the manifold remains unchanged. Nevertheless, the quality of the outcome, measured by
visual similarity to the target image domain, is highest when the first d eigenvalues are large, i.e., the
original dataset X is not “squeezed” in the corresponding directions.

While the technique is applicable to any target domain, in this paper, we present it for image
representation only, as we find it the most insightful and the closest to real datasets on which LID
estimation methods have been tested in the past.

In this work we use images from class 7 of FMNIST dataset to fit PCA with D = 784. A sample
from such dataset is depicted in Fig. [I] More discussion on a choice of a dataset to fit PCA can be
found in Sec.

Alternative approach to IDR A possible alternative for the Inverse Domain Representation could
utilize the vectors uq, . . ., ugq scaled with the corresponding eigenvalues. This approach would ensure
that the resulting dataset visually better matches the target image domain; however, it could alter
the geometry of the dataset, especially when the first d eigenvalues are significantly different in
magnitude. In extreme cases, this could lead to the deformation of the dataset and affect the LID of
the transformed data.

For this reason, since preserving the LID of the transformed dataset is crucial for our study, we do not
follow this approach. Moreover, the results presented in this paper demonstrate that a transformation
that preserves the geometry of the dataset while mapping it to another domain still leads to different
LID estimations by neural network-based algorithms, posing a significant challenge for the evaluation
of modern methods.

F EXPERIMENTAL DETAILS

F.1 ESS seTUP

In our experiments we used ESS implementation from|Bac et al.[(2021)) which can be found under
scikit-dimension.readthedocs.io| with default hyperparameters if not stated otherwise in the text.
Because this implementation cannot calculate LID on unseen data and we can only get predictions
for the training set, we have made a decision to jointly train on training and test datasets, but only
present the results for the test part of the data.

F.2 NB SETUP

For NB experiments, we used the PyTorch implementation along with the environment setup provided
by Stanczuk et al.| (2024])), which is publicly available under github.com/GBATZOLIS/ID-diff. The
conducted experiments have been carried out using DDPM |Ho et al.| (2020) with Adam optimizer
(. =2e—4, = 0.9, e = 1le—8). The convergence has been assessed using the validation holdout
dataset. For a more detailed description of hyperparameters for all conducted experiments (except for
Arrows), please refer to MNIST/config.py, which is available in the aforementioned repository. The
only hyperparameter adjustments we made were connected to the shape of the input data. For the
Arrows experiment, we used based our config on the celebA/ddpm.pylfile.

F.3 LIDL SETUP

To perform experiments with LIDL, we utilised the official PyTorch implementation
(github.com/opium-sh/lidl) released by [Tempczyk et al. (2022). All the experiments (except the
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ones on the original manifold and padding) has been performed on MAE |[Papamakarios et al.
(2017) with 5 layers and 5 hidden units. For the version with the original manifold and padding,
we had to went down with the number of layers to 4 due to unfavourable scalability and perfor-
mance constraints. Each experiment has been perofrmed with the diffent set of ¢ triplets, such that
§ € {(2=(n=V 27 2=(+D)) |p € {1,...,7}}. The rest of the hyperparameters remained in line
with the version presented by [Tempczyk et al.|(2022).

F.4 FLIPD SETUP

To obtain the results presented in this article we utilized a fork from August 12, 2024, of the
repository listed under [github.com/layer6ai-labs/flipd| by the authors of FLIPD Kamkari et al.| (2024).
As for now authors recommend utilizing github.com/layer6ai-labs/dgm_geometry for LID estimation
experiments. For all datasets, the architecture of the diffusion model was the same up to input
layer dimensionality. We used the same MLP architecture for diffusion models as authors which is
described in Section C appendix of FLIPD article [Kamkari et al.| (2024)). For all datasets we ran 1000
epochs of training for each network, choosing the best model measured by its’ validation loss. For the
datasets with known LID values we chose ¢ which yielded lowest MAE error given all samples from
test set. For datasets with unknown LID values we used heuristic presented with original article with
the caveat that we searched for the knee for values of ¢ larger than the maximum average estimated
LID. We did it as for many of the datasets for certain t values instabilities occurred which resulted in
extreme LID estimates. Those values prevented the kneed| package from performing correctly as it
assumes monotonicity of the function.

Table 5: Approximate duration for model training on RTX 2080 Ti GPUS.

Dataset NB FLIPD LIDL
FMNIST (upscaled) 1d @ 2GPU 5.5h @ 2GPU 9h @ 1 GPU
FMNIST (downscaled) 0.5d @ 2GPU 4h @ 2GPU 6h @ 1 GPU
FMNIST (stretched 2*) 1.5d @ 2GPU 4.5h @ 2 GPU 7.5h @ 1 GPU
FMNIST (stretched 2°2°) 2d @ 2GPU 4.5h @ 2 GPU 7.5h @ 1 GPU
FMNIST (add dim, +4d) 2d @ 2GPU 5h @2 GPU 8h @ 1 GPU
FMNIST (add dim, +8d) 4d @ 2GPU 6h @ 2 GPU 10h @ 1 GPU
Spiral 5.5d @ 2GPU 10.5h @ 2 GPU 22h @ 1 GPU
Uniform 3.5d @ 2GPU 6h @ 2 GPU 9.5h @ 1 GPU
Funnel 45d @ 2GPU 6h @ 2GPU 9.5h @ 1 GPU
Moon 5d @ 2GPU 6.5h @ 2GPU 10h @ 1 GPU
Gaussians 1d @ 2GPU 7.5h @ 2GPU 11h @ 1 GPU
Spheres ld@2GPU 7h@2GPU 10h @ 1 GPU
Spaghetti 1.5d @ 2GPU 6h @ 2GPU 9h @ 1 GPU
Arrows 10d @ 8GPU 10h @ 2 GPU -
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G DISCUSSION & IMPORTANT REMARKS

During the development of the article, we received numerous helpful questions and suggestions from
the scientific community, for which we are grateful. As many of them led to an interesting discussion
and remarks, we publish an excerpt of them in this section.

Validity of the IDR transformation. Our claims regarding the properties of IDR are supported by
the theory behind principal component analysis. Since PCA is an affine transformation that only
rotates the manifold and translates it within the ambient space, it does not alter the key geometric
properties we consider. For example, this transformation preserves distances between points and does
not affect curvature — both of which are crucial factors in many of our experiments.

Why did we choose the 7th class from FMNIST for IDR? When we apply PCA to most of the
image datasets, the resulting representations no longer resemble meaningful images. They often
appear as chaotic blobs of light and dark, lacking coherent structure. This occurs because applying
PCA to a complex manifold does not guarantee that the resulting distribution for first n vectors
will be Gaussian. While PCA centers and rotates the data, the resulting distribution often contains
holes. If PCA is used in reverse as a generative model — i.e., by sampling from a standard normal
distribution in the reduced space and applying the inverse PCA transformation-samples drawn from
these holes can lead to unnatural and noisy outputs. This is precisely why we chose a specific shoe
class from FMNIST: it was one of the few datasets where the data was sufficiently dense in the first
20 PCA components to yield visually coherent and plausible images. In contrast to other classes,
this particular FMINIST category produced sharper edges and more meaningful shapes, making it
suitable for our experiments in the image domain. Another reason we did not test other classes was
due to computational budget constraints. Training on datasets with higher dimensionality, especially
RGB images instead of grayscale, would be several times more expensive — an overhead we could
not accommodate within our current resources.

Why do we assume that LID is a homogenous integer? In this paper, we adopt a definition of LID
that aligns with those used in recent neural-based LID estimation algorithms we analysed. While the
assumption of integer-valued LID is a meaningful limitation that deserves future attention, we observe
that current algorithms still struggle even with relatively simple manifolds under this assumption.
Addressing these remains our current focus. That said, our IDR dataset generation approach is
capable of embedding any manifold into the data space while preserving its structure, making it
suitable for generating data with non-integer dimensionalities manifolds with singularities when we
generate one as an input.

Our work focuses specifically on the LID estimation problem. This perspective may not capture
all the complexities relevant to downstream applications in representation learning, some of which
may benefit more from global dimensionality measures. However, there is clear and ongoing interest
in local LID estimation. Our goal is to support this active line of research by offering targeted
benchmarks that reveal key weaknesses in existing estimators, many of which, as our results show,
struggle on specific, controlled instances. While the broader issues of non-integer and heterogeneous
LID values are important, addressing them comprehensively lies beyond the scope of this work.
Nevertheless, we believe our contributions serve as a useful and timely step toward improving future
methods. Finally, we note that although many current estimators assume local homogeneity of density,
our aim is not to critique accepted algorithms but to provide tools that help the community develop
more robust approaches. It is also worth mentioning that some methods, such as LIDL, are already
capable of handling non-uniform densities to some extent (Tempczyk et al.,2024)).

Fourier-based alternative to PCA. An anonymous reviewer suggested using Fourier or DCT bases,
which is indeed very interesting. They suggested to consider a 2D discrete Fourier expansion of an
N x N image in a form of
N-1
X (i,7) = Z X (u,v)e 2 witv)/N 5y € {0,..., N — 1}?

u,v=0

and retain bases with a coefficients having a high X (u, v), which can proxy the top PCA directions
for a smoother, frequency-oriented chart.

We agree such approach seem to be suited to the specific case of image datasets. However, the
framework suggested by the reviewer is also more complex. What we need is a single d-dimensional
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orthonormal system for the whole dataset, which is the case, e.g., in the PCA approach. In the
proposed approach, we need to choose a subset of a larger orthonormal basis 5, given something
we may roughly describe as “compatibility score” for each sample from the dataset and each basis
vector (the coefficient in the expansion of the sample in basis 53). Then there is an additional
step of aggregating this information to obtain a single orthonormal system. Given the expansions
=), c5{z,b)bof every in our dataset, and a fixed b € B we could look at the functions  + (z,b)
and try to use their norms, e.g. ¢! or £? norms. We could also use these coefficients to perform a
voting on basis vectors. Nevertheless, despite discussed shortcomings, IDR was enough to show
underperformance of LID algorithms, which was one of our goals.

Why the Arrows dataset (MS) is the most challenging one? This dataset is more challenging for
existing algorithms because the manifold has some nasty properties that others presented don’t. E.g.
our theoretical considerations show that the manifold has many V-shape corners as an artifact of
translating and rotating the arrow on the image. This may pose a challenge for the existing algorithms
designed with the simpler manifold shapes in mind.

What is the underlying manifold, what the parameterization looks like, and how the transfor-
mation preserves the intended ID? In the Arrows dataset, when two arrows overlap, their color
vectors are added without clipping, leading to unbounded RGB values, but preventing information
loss. An image of a single arrow can be parametrized by the manifold M = [0, 1]> x S, where the
first five dimensions correspond to (normalized) 3 components of RGB color and 2 coordinates of the
center of the arrow. The S factor corresponds to the rotation of the arrow. For k arrows, the image is
parametrized by M*, and so there is a mapping f: M* — A, where A is the space of all k-arrow
images. This mapping is not a bijection, but is close enough to a bijection for LID purposes. That
is, outside of a union of lower-dimensional submanifolds of M, all the coordinates are distinct, i.e.
every arrow has a different color, position, and angle. What we claim is that the restriction of f to
this set is a smooth bijection with its image.

How does local density in the funnel manifold affect LID estimation? We acknowledge that
variations in local density can indeed affect the final LID estimate, as demonstrated in our experiments
on sample size (Fig. [9). However, our observation is that higher local density generally reduces the
likelihood of the algorithm misclassifying a lower-dimensional manifold as a higher-dimensional
one. When points from different manifolds are located close together, the algorithm may incorrectly
treat them as part of the same manifold, leading to an overestimation of intrinsic dimensionality. In
this experiment, our goal was to show that different algorithms vary in the distance at which this
misclassification occurs — the smaller this distance, the better the algorithm.
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H SOME OTHER RESULTS FOR LIDL AND FLIPD FROM THE COMPARISON
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Figure 25: On this plot we present how values of average LID estimate changes for different values
of § parameter and different IDR datasets for LIDL algorithm.

I USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only for light copy-editing (e.g., grammar and phrasing) after the technical content
was written by the authors. All content was verified by the authors.
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Mean LID estimated by LIDL (original manifold) for diffetent values of 6
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Figure 26: On this plot we present how values of average LID estimate changes for different values of
0 parameter and different datasets for LIDL algorithm. Those datasets are made of original manifold
coordinates before IDR transformation. Ambient space of those datasets is 30.
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Mean LID estimated by LIDL (original manifold + padding) for diffetent values of & 1000
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Figure 27: On this plot we present how values of average LID estimate changes for different values of
0 parameter and different datasets for LIDL algorithm. Those datasets are made of original manifold
coordinates before IDR transformation padded with O to be of higher dimension. Ambient space of
those datasets is 784.
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Figure 28: On this plot we present how values of average LID estimate changes for different values
of § parameter and different modified FMNIST datasets for LIDL algorithm.
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Figure 29: On this plot we present how values of average LID estimate changes for different values
of ¢ parameter and different IDR datasets for FLIPD algorithm. To improve clarity, we present results
for every 4th ¢.
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Figure 30: On this plot we present how values of average LID estimate changes for different values
of ¢ parameter and different modified FMNIST datasets for FLIPD algorithm. To improve clarity, we
present results for every 4th ¢.
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