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Abstract

Since its introduction a decade ago, relative entropy policy search (REPS) has
demonstrated successful policy learning on a number of simulated and real-world
robotic domains, not to mention providing algorithmic components used by many
recently proposed reinforcement learning (RL) algorithms. While REPS is well-
known in the community, there exist no guarantees on its performance when using
stochastic, gradient-based solvers. In this paper we aim to fill this gap by providing
guarantees and convergence rates for the sub-optimality of a policy learned using
first-order optimization methods applied to the REPS objective. We first consider
the setting in which we are given access to exact gradients and demonstrate how
near-optimality of the objective translates to near-optimality of the policy. We then
consider the setting of stochastic gradients and introduce a technique that uses
generative access to the underlying Markov decision process to compute parameter
updates that maintain favorable convergence to the optimal regularized policy.

1 Introduction
Introduced by Peters et al. [23], relative entropy policy search (REPS) is an algorithm for learning
agent policies in a reinforcement learning (RL) context. REPS has demonstrated successful policy
learning in a variety of challenging simulated and real-world robotic tasks, encompassing table
tennis [23], tether ball [12], beer pong [1], and ball-in-a-cup [8], among others. Beyond these direct
applications of REPS, the mathematical tools and algorithmic components underlying REPS have
inspired and been utilized as a foundation for a number of later algorithms, with their own collection
of practical successes [13, 25, 20, 22, 15, 2, 18, 21].

At its core, the REPS algorithm is derived via an application of convex duality [22, 19], in which
a Kullback Leibler (KL)-regularized version of the max-return objective in terms of state-action
distributions is transformed into an logsumexp objective in terms of state-action advantages (i.e., the
difference of the value of the state-action pair compared to the value of the state alone, with respect
to some learned state value function). If this dual objective is optimized, then the optimal policy of
the original primal problem may be derived as a softmax of the state-action advantages. This basic
derivation may be generalized, using any number of entropic regularizers on the original primal to
yield a dual problem in the form of a convex function of advantages, whose optimal values may be
transformed back to optimal regularized policies [7].

While the motivation for the REPS objective through the lens of convex duality is attractive, it leaves
two main questions unanswered regarding the theoretical soundness of using such an approach. First,
in practice, the dual objective in terms of advantages is likely not optimized fully. Rather, standard
gradient-based solvers only provide guarantees on the near-optimality of a returned candidate solution.
While convex duality asserts a relationship between primal and dual variables at the exact optimum,
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it is far from clear whether a near-optimal dual solution will be guaranteed to yield a near-optimal
primal solution, and this is further complicated by the fact that the primal candidate solution must be
transformed to yield an agent policy.

The second of the two main practical difficulties is due to the form of the dual objective. Specifically,
the form of the dual objective as a convex function of advantages frustrates the use of gradient-based
solvers in stochastic settings. That is, the advantage of a state-action pair consists of an expectation
over next states – an expectation over the transition function associated with the underlying Markov
decision process (MDP). In practical settings, one does not have explicit knowledge of this transition
function. Rather, one only has access to stochastic samples from this transition function, and so
calculation of unbiased gradients of the REPS objective is not directly feasible.

In this paper, we provide solutions to these two main difficulties. To the first issue, we present
guarantees on the near-optimality of a derived policy from dual variables optimized via a first-order
gradient method, relying on a key property of the REPS objective that ensures near-optimality in
terms of gradient norms. To the second issue, we propose and analyze a stochastic gradient descent
procedure that makes use of a plug-in estimator of the REPS gradients. Under some mild assumptions
on the MDP, our estimators need only sample transitions from a behavior policy rather than full
access to a generative model (where one can uniformly sample transitions). We combine these results
to yield high-probability convergence rates of REPS to a near-optimal policy. In this way, we show
that REPS enjoys not only favorable practical performance but also strong theoretical guarantees.

2 Related Work

As REPS is a popular and influential work, there exist a number of previous papers that have studied its
performance guarantees. These previous works predominantly study REPS as an iterative algorithm,
where each step comprises of an exact optimization of the REPS objective and then the derived
policy is used as the reference distribution for the KL regularization of the next step. This iterative
scheme may be interpreted as a form of mirror descent or similar proximal algorithms [6], and this
interpretation can provide guarantees on convergence to a near-optimal policy [29, 22]. However,
because this approach assumes the ability to optimize the REPS objective exactly, it still suffers from
the practical limitations discussed above; specifically (1) translation of near-optimality of advantages
to near-optimality of the policy and (2) ability to compute unbiased gradients when one does not
have explicit knowledge of the MDP dynamics. Our analysis attacks these issues head-on, providing
guarantees on first-order optimization methods applied to the REPS objective. To maintain focus
we do not consider iterative application of REPS, although extending our guarantees to the iterative
setting is a promising direction for future research.

In a somewhat related vein, a number of works use REPS-inspired derivations to yield dynamic
programming algorithms [13, 14, 26] and subsequently provide guarantees on the convergence of
approximate dynamic programming in these settings. Our results focus on the use of REPS in a
convex programming context, and optimizing these programs via standard gradient-based solvers.

The use of convex programming for RL in this way has recently received considerable interest. Works
in this area typically propose to learn near-optimal policies through saddle-point optimization [9, 28,
10, 4, 11, 17]. Instead of solving the primal or dual max-return problem directly, these works optimize
the Lagrangian in the form of a min-max bilinear problem. The Lagrangian form helps to mitigate
the two main issues we identify with advantage learning, since (1) the candidate primal solution
can be used to derive a policy in a significantly more direct fashion than using the candidate dual
solution, and (2) the bilinear form of the Lagrangian is immediately amenable to stochastic gradient
computation. In contrast to these works, our analysis focuses on learning exclusively in the dual
(advantage) space. The first part of our results is most comparable to the work of [4], which proposes
a saddle-point optimization with runtime O(1/✏), assuming access to known dynamics. While our
results yield a O(1/✏2) rate, we show that it can be achieved via optimizing the dual objective alone.

More similar to our work is the analysis of Bas-Serrano et al. [5], which considers an objective
similar to REPS, but which is in terms of Q-values as opposed to state (V ) values. Beyond these
structural differences, our proof techniques also differ. For example, our result on the suboptimality
of the policy derived from dual variables (Lemma 4), is arguably simpler from the analogous result
in Bas-Serrano et al. [5], which uses a two-step process to first connect suboptimality of the dual
variables to constraint violation in the primal, and then connects this to suboptimality of the policy.
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3 Contributions

The main contributions of this paper are the following:

1. We prove several structural results regarding entropy regularized objectives for reinforcement
learning and leverage them to prove convergence guarantees for Accelerated Gradient
Descent on the dual (REPS) objective under mild assumptions on the MDP (see Theorem 2).
For discounted MDPs we show that an ✏-optimal policy can be found after O(1/(1� �)2✏2)
steps and an ✏�optimal regularized policy can be found in O(1/(1� �)2✏) steps.

2. Similarly we show that a simple version of stochastic gradient descent using biased plug-in
gradient estimators can be used to find an ✏�optimal policy after O(1/(1��)8✏8) iterations
(see Theorem 3) and an ✏-optimal regularized policy in O(1/(1��)8✏4) steps. Although our
rates are short of the ones achievable by alternating optimization methods, we are the first to
show meaningful convergence guarantees for a purely dual approach based on on-policy
access to samples from the underlying MDP.

3. In Appendix I, we extend our results beyond the REPS objective and consider the use of
Tsallis Entropy regularizers. Similar to our results for the REPS objective we show that for
discounted MDPs an ✏�optimal policy can be found after O(1/(1 � �)2✏2) steps and an
✏�optimal regularized policy can be found in O(1/(1� �)2✏) steps.

4 Background

In this section we review the basics of Markov decision processes and their Linear Programming
primal and dual formulations (see section 4.1) and some facts about the geometry of convex functions.

4.1 RL as an LP

We consider a discounted Markov decision process (MDP) described by a tuple M =
(S,A, P, r,µ, �), where S is a finite state space, A is a finite action space, P is a transition probability
matrix, r is a reward vector, µ is an initial state distribution, and � 2 (0, 1) is a discount factor. We
make the following assumption regarding the reward values {rs,a}.
Assumption 1 (Unit rewards). For all s, a 2 S ⇥A, the rewards satisfy, rs,a 2 [0, 1].

The agent interacts with M via a policy ⇡ : S ! �A. The agent is initialized at a state s0 sampled
from an initial state distribution µ and at time k = 0, 1, . . . it uses its policy to sample an action
ak ⇠ ⇡(sk). The MDP provides an immediate reward rsk,ak and transitions randomly to a next
state sk+1 according to probabilities Pa(sk+1|sk). Given a policy ⇡ we define its infinite-horizon
discounted reward as V⇡ := E⇡

⇥P1
k=0 �

krsk,ak

⇤
, where we use E⇡ to denote the expectation over

trajectories induced by the MDP M and policy ⇡. In RL, the agent’s objective is to find an optimal
policy ⇡?; that is, find a policy maximizing V⇡ over all policy mappings ⇡ : S ! �A. We denote the
optimal policy as ⇡? := argmax⇡ V⇡ .

We now review the definitions of state value functions and visitation distributions:
Definition 1. We define the value vector v⇡

2 R|S| of a policy ⇡ as v⇡
s :=

E⇡
⇥P1

k=0 �
k
rsk,ak |s0 = s

⇤
.

Definition 2. Given a policy ⇡ we define its state-action visitation distribution �⇡
2 R|S|⇥|A| as,

�⇡
s,a := (1� �)E⇡

⇥P1
k=0 �

k1(sk = s, ak = a)
⇤
. Notice that by definition

P
s,a �s,a = 1.

We note that any vector of nonnegative entries � may be used to define a policy ⇡� as:

⇡�(a|s) :=
�s,aP

a02A �s,a0
. (1)

Note that ⇡�⇡ = ⇡, while the visitation distribution �⇡� of ⇡� is not necessarily �.
Definition 3. Given a policy ⇡ we define its state visitation distribution as, �⇡

s := (1 �
�)E⇡

⇥P1
k=0 �

k1(sk = s)
⇤
. Notice that �⇡

s =
P

a �
⇡
s,a and �⇡

s,a = �⇡
s · ⇡(a|s).
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The optimal visitation distribution �⇤ is defined as �⇤ := argmax�⇡

P
s,a �

⇡
s,ars,a. It can be

shown [24, 9] that solving for the optimal visitation distribution is equivalent to the following linear
program:

max
�s,a2�S⇥A

X

s,a

�s,ars,a, s.t.
X

a

�s,a = (1� �)µs + �
X

s0,a

Pa(s|s0)�s0,a 8s 2 S. (Primal-�)

Where we write P 2 R|S||A|⇥|S| to denote the transition operator. Specifically, the |S| constraints
of Primal-� restrict any feasible � to be the state-action visitations for some policy ⇡ (given by ⇡�).
The dual of this LP is given by,

min
v

(1� �)
X

s2S
µsvs, s.t. 0 � Av

s,a 8s 2 S, a 2 A, (Dual-v)

where Av
s,a = rs,a � vs + �

P
s0 Pa(s0|s)vs0 is the advantage evaluated at s, a 2 S ⇥A. It can be

shown [24, 9] that the unique primal solution �⇤ is exactly �⇡⇤ and the unique dual solution v⇤ is
v⇡⇤ .

We finalize this section by defining the notion of suboptimality satisfied by the final policy produced
by the algorithms that we propose.
Definition 4. Let ✏ > 0. We say that policy ⇡ is ✏-optimal if maxs2S |v⇡

s � v⇡?
s |  ✏.

Our objective is to design algorithms such that for any ✏ > 0, can return an ✏�optimal policy.

4.2 Regularized Policy Search

Following Belousov & Peters [7], we consider regularizing Primal-� with a convex function F :
�|S|⇥|A| ! R [ {1}. The resulting regularized LP is given by,

max
�s,a2�S⇥A

X

s,a

�s,ars,a � F (�) := JP (�), s.t.
X

a

�s,a = (1� �)µs + �

X

s0,a

Pa(s|s
0)�s0,a.

(PrimalReg-�)
Henceforth we denote the primal objective function as JP (�) =

P
s,a �s,ars,a�F (�). Any feasible

� that satisfies the |S| constraints in this regularized LP is the (true) state-action visitation distribution
for some policy ⇡; therefore, the optimal �⇤ of this problem can be used to derive an optimal F -
regularized max-return policy ⇡F,⇤ := ⇡�⇤ . To simplify our derivations, we introduce the definition
of the convex conjugate of a convex function, oftentimes referred to as the Fenchel conjugate:
Definition 5 (Fenchel Conjugate). Let F : D ! R be a convex function over a convex domain
D ✓ Rd. We denote its D�constrained Fenchel conjugate as F ⇤ : Rn

! R defined as F ⇤(u) =
maxx2D hx,ui � F (x).

The dual JD of the regularized problem is given by the following optimization problem [7, 19]:

min
v

JD(v) := (1� �)
X

s

vsµs + F
⇤ (Av) , (2)

where F
⇤ is the �S⇥A-constrained Fenchel conjugate of F . The vector quantity inside F

⇤ is known
as the advantage. That is, it quantifies the advantage (the difference in estimated value) of taking an
action a at s, with respect to some state value function v. Using Fenchel-Rockafellar duality, the
optimal solution v⇤ of the dual function JD may be used to derive an optimal primal solution �⇤ as:

�⇤
2 rF

⇤
⇣
Av?

⌘
. (3)

Algorithm 1 Relative Entropy Policy Search [Sketch].
Input: Initial iterate v0, accuracy level ✏ > 0, gradient optimization algorithm O.

1. Optimize the objective in 2 using O to yield a candidate dual solution v̂⇤ where F satisfies
Equation 4.

2. Use the candidate dual solution to derive a candidate primal solution �̂
⇤

using 3.

3. Extract a candidate policy ⇡�̂
⇤ from �̂

⇤
via Equation 1.

Return: ⇡�̂
⇤ .
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Relative Entropy Policy Search (REPS) is derived by setting F (�) := DKL(�kq), the KL-divergence
of � from some reference distribution q 2 �|S||A|. The reader should think of q as the visitation
distribution of a behavior policy. As we can see, the derivation we provide here further generalizes to
arbitrary regularizers F . We focus on a specific F given by

F (�) :=
1

⌘

X

s,a

�s,a

✓
log

✓
�s,a

qs,a

◆
� 1

◆
, (4)

for some scalar ⌘ > 0. In this case F
⇤ : R|S|⇥|A|

! R equals F
⇤(u) =

1
⌘ log

⇣P
s,a exp (⌘us,a)qs,a

⌘
+ 1

⌘ , its gradient satisfies [rF ⇤(u)]s,a = exp(⌘us,a)qs,aP
s0,a0 exp(⌘us0,a0 )qs0,a0

and therefore the dual function equals:

JD(v) := (1� �)
X

s

vsµs +
1

⌘
log

 
X

s,a

exp
�
⌘Av

s,a

�
qs,a

!
+

1

⌘
, (DualReg-v)

And the dual problem equals the unconstrained minimization problem:

min
v

JD(v) (5)

The objective of REPS is to find the minimizer v? of DualReg-v (with regularization level ⌘).

Algorithm 1 raises two practical issues discussed in Section 1. Specifically, optimization algorithms
applied to REPS will typically only give guarantees on the near-optimality of v̂⇤. We will need to
translate near-optimality of v̂⇤ to near-primal-optimality (w.r.t. JP (�?)) of �̂

⇤
, and then translate

that to near-optimality of the final returned policy ⇡�̂
⇤ . Secondly, first-order optimization of the

REPS objective requires access to a gradientrvJD(v), which involved computingrF ⇤(Av). Exact
computation of this quantity is often infeasible in practical scenarios where one does not have access
to P, but rather only stochastic generative access to samples from P. We show how to compute
approximate (biased) gradients of JD(v) using samples from a distribution qs,a (here thought of as a
behavior policy) and how to use them to derive convergence rates for Relative Entropy Policy Search.

5 Relative Entropy Policy Search

We start by deriving some general results regarding the geometry of regularized linear programs. Our
first result (Lemma 2) characterizes the smoothness properties of a regularized LP. This will prove
crucial in later sections where we make use of this result to derive convergence rates for the REPS
objective. We start by recalling the definitions of both strong convexity and smoothness of a function.

Definition 6. A function f : Rn
! R is ��strongly convex w.r.t norm k · k if f(x) � f(y) +

hrf(y),x� yi+ �
2 kx� yk2.

Let’s also define smoothness:
Definition 7. A function h is ↵�smooth1 w.r.t. norm k · k? if:

h(u)  h(w) + hrh(w),u�wi+
↵

2
ku�wk2?. (6)

We will now characterize the smoothness properties of the dual of a regularized linear program. Let’s
start by considering the generic linear program:

max
�2D

hr,�i, s.t. E� = b,

where r 2 Rn, E 2 Rm⇥n, and b 2 Rm and D is a convex domain. Let’s regularize this objective
using a function F that is �-strongly convex with respect to norm k · k:

max
�2D

hr,�i � F (�), s.t. E� = b. (RegLP)

1Smoothness is independent of the convexity properties of h.
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The Lagrangian of problem RegLP is given by gL(�,v) = hr,�i�F (�)+
Pm

i=1 vi (bi � (E�)i) .
Therefore, the dual function gD : Rm

! R with respect to the original primal regularized LP is,
gD(v) = hv,bi+max

�2D
h�, r� v>Ei � F (�) = hv,bi+ F

⇤(r� v>E),

where the last equality follows from the definition of the Fenchel conjugate of F . It is possible to
relate the smoothness properties of F ⇤ with the strong convexity of F . A crucial result that we will
use in our results is the following:
Lemma 1. If F is �-strongly convex w.r.t. k · k over D then F

⇤ is 1
� -smooth w.r.t the dual k · k?.

Definitions 6 and 7 are stated in terms of a generic norm k · k and its dual k · k?. When applied to
the REPS objective in Equation 2, using these general norm definitions of smoothness and strong
convexity allow us to obtain guarantees with a milder dependence on S and A than would be possible
if we were to use their `2 norm characterization instead. We can use the result of Lemma 1 to
characterize the smoothness properties of the dual function JD of a generic regularized LP.
Lemma 2. Consider the regularized LP RegLP with r 2 Rn, E 2 Rm⇥n, b 2 Rm, and where F

is ��strongly convex w.r.t. norm k · k. The dual function gD : Rm
! R of this regularized LP is

kEk2
·,?

� -smooth w.r.t. to the dual norm k · k?, where we use kEk·,? to denote the k · k norm over the
k · k? norm of E0s rows.

As a consequence of Lemma 2 we can bound the smoothness parameter of JD in the REPS objective:
Lemma 3. The dual function JD(v) is (|S|+ 1)⌘-smooth in the k · k1 norm.

5.1 Structural results for the REPS objective

Armed with Lemma 2 we are ready to derive some useful structural properties of the REPS objective.
In this section we present two main results. First we show that under some mild assumptions it is
possible to relate the gradient magnitude of any candidate solution to JD with its suboptimality gap
and second, we show an l1 bound for the norm of the optimal dual solution v?. For most of the
analysis we make the following assumptions:
Assumption 2. There is � > 0 such that qs,a � � 8s, a 2 S ⇥A.

We introduce the following assumption on the discounted state visitation distribution of arbitrary
policies ⇡ in the MDP, paraphrased from Wang [27]:
Assumption 3. There exists ⇢ > 0 such that for any policy ⇡, the discounted state visitation
distribution �⇡ defined as �⇡

s =
P

a �
⇡
s,a satisfies �⇡

s � ⇢ for all states s 2 S .

Suppose we have a candidate dual solution ev forJD(v) in DualReg-v with its corresponding

candidate primal solution e� =
exp(⌘Aṽ)·q

eZ
where the operators exp and · act pointwise and

eZ =
P

a,s exp(⌘A
ṽ)qs,a. We denote the corresponding candidate policy (computed using Equa-

tion 1) associated with ev as e⇡(a|s). This candidate policy induces a discounted visitation distribution
�e⇡ that may be substantially different from e�. We now show that it is possible to control the deviation
of primal objective value of �e⇡ from JP (�) in terms of krJD(ev)k1:
Lemma 4. Let ev 2 R|S| be arbitrary and let e� be its corresponding candidate primal variable. If
krvJD(ev)k1  ✏ and Assumptions 2 and 3 hold then whenever |S| � 2:

JP (�
e⇡) � JP (�

?
⌘)� ✏

✓
1 + c

1� �
+ kevk1

◆
,

where c =
1+log( 1

⇢3�
)

⌘ and �?
⌘ is the JP optimum.

We finish this section by proving a bound on the norm of the dual variables. This bound will inform
our optimization algorithms as it will allow us to set up the right constraints.
Lemma 5. Under Assumptions 1, 2 and 3, the optimal dual variables are bounded as

kv⇤k1  1
1� �

 
1 +

log |S||A|
�⇢

⌘

!
=: D. (7)

From now on we use the notation D to refer to the quantity on the RHS of Equation 7.
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5.2 Convergence rates

As a warm up we derive convergence rates for the case when we have access to exact knowledge of
the transition dynamics P and therefore exact gradients. We analyze the effects of using Accelerated
Gradient Descent (see Section F for a full description of the algorithm) on the REPS objective JD(v).
Theorem 1 (Accelerated Gradient Descent for general norms. Theorem 4.1 in Allen-Zhu & Orecchia
[3]). Let D? be an upper bound to kx0,x?k

2
2. Given an ↵�smooth function h w.r.t. the k · k? norm

over domain D, then T iterations of Algorithm 4 ensure h(yt)� h(x?)  4↵D⇤
T 2 .

We want to find almost optimal solutions (in function value). Let’s define an ✏�optimal solution:
Definition 8. Let ✏ > 0. We say that x is an ✏�optimal solution of an ↵�smooth function h : Rd

! R
if h(x)� h(x?)  ✏, where h(x?) = minx2Rd h(x).

We can also show the following bound on the gradient norm for any ✏�optimal solutions of h.
Lemma 6. If x is an ✏�optimal solution for the ↵�smooth function h : Rd

! R w.r.t. norm k · k?
then the gradient of h at x satisfies krh(x)k 

p
2↵✏.

When h = JD the DualReg-v function in the reinforcement learning setting, we set k · k? = k · k1
and k · k = k · k1. We are ready to prove convergence guarantees for Algorithm 4 when applied to
the objective JD.

Lemma 7. Let Assumptions 1, 2 and 3 hold. Let D = {v s.t. kvk1  D} and c
0 =

log |S||A|
�⇢

⌘ . After
T steps of Algorithm 4, the objective function JD evaluated at the iterate vT = yT satisfies:

JD(vT )� JD(v⇤)  4⌘(|S|+ 1)2
(1 + c

0)2

(1� �)2T 2
,

Proof. This result follows simply by invoking the guarantees of Theorem 1, making use of the fact
that JD is (|S|+ 1)⌘�smooth as proven by Lemma 3, observing that as a consequence of Lemma 5,
v?
2 D and using the inequality kxk22  |S|kxk21 for x 2 R|S|.

Lemma 7 can be easily turned into the following guarantee on the final dual function value:

Corollary 1. Let ✏ > 0. If Algorithm 4 is ran for at least T rounds where T � 2⌘1/2(|S|+1)
(1+c0)
(1��)

p
✏

then vT is an ✏�optimal solution for the dual objective JD.

If T satisfies the conditions of Corollary 1 a simple use of Lemma 6 allows us to bound the k · k1
norm of the dual function’s gradient at vT :

krJD(vT )k1 
p

2(|S|+ 1)⌘✏

If we denote as ⇡T to be the policy induced by �vT , and �?
⌘ is the candidate dual solution corre-

sponding to v?. A simple application of Lemma 4 yields:

JP (�
⇡T ) � JP (�

?
⌘)�

p
2(|S|+ 1)⌘✏

1� �

 
2 +

1 + log |S||A|
�2⇢4

⌘

!

The following is the equivalent version of optimality for regularized objectives:

Definition 9. Let ✏ > 0. We say ⇡̃ is an ✏�optimal regularized policy if JP (�e⇡) � JP (�
?
⌘)� ✏.

This leads us to the main result of this section:

Corollary 2. For any ⇠ > 0, and let c00 =
1+log |S||A|

�2⇢4

⌘ . If T � 4⌘ (|S|+ 1)3/2
(2+c00)2

(1��)2⇠ then
JP (�

⇡T ) � JP (�
?
⌘)� ⇠.

Thus Algorithm 4 achieves an O(1/(1� �)2✏) rate to an ✏�optimal regularized policy. We proceed
to show that an appropriate choice for ⌘ can be leveraged to obtain an ✏�optimal policy.

Theorem 2. For any ✏ > 0, let ⌘ = 1

2✏ log( |S||A|
� )

. If T � (|S| + 1)3/2 (2+c00)2

(1��)2✏2 , then ⇡T is an

✏�optimal policy.
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The main difficulty in deriving the guarantees of Theorem 2 lies in the need to translate the function
value optimality guarantees of Accelerated Gradient Descent into ✏-optimality guarantees for the
candidate policy ⇡T . This is where our results from Lemma 4 have proven fundamental. It remains
to show that it is possible to obtain an ✏�optimal policy when access to the true model is only via
samples.

6 Stochastic Gradients

In this section we show how to obtain stochastic (albeit biased) gradient estimators brvJD(v) for
rvJD(v) (see Algorithm 2). We use brvJD(v) to perform biased stochastic gradient descent steps
on JD(v) (see Algorithm 3). In Lemma 8 we prove guarantees for the bias and variance of this
estimator and show rates for convergence in function value to the optimum of JD(v) in Lemma 10.
We turn these results into guarantees for ✏�optimality of the final candidate policy in Theorem 3.
Let’s start by noting that:

(rvJD(v))s = (1� �)µs + E(s0,a,s00)⇠q⇥Pa(·|s0)

h
Bv

s0,a (�1(s
00 = s)� 1(s0 = s))

i
,

Where Bv
s,a =

exp(⌘Av
s,a)

Z and Z =
P

s,a exp
�
⌘Av

s,a

�
qs,a. We will make use of this characterization

to devise a plug-in estimator for this quantity:

Algorithm 2 Biased Gradient Estimator
Input Number of samples t.
Collect samples {(s`, a`, s0`)}

t
`=1 such that (s`, a`) ⇠ q while s

0
` ⇠ Pa`(·|s`)

for (s, a) 2 S ⇥A do
Build empirical estimators bAv(t) 2 R|S|⇥|A| and bq(t) 2 R|S|⇥|A|.

Compute estimators bBv
s,a(t) =

exp(⌘ bAv
s,a(t))

bZ(t)
.

Where bZ(t) =
P

s,a exp(⌘
bAv

s,a(t))bqs,a(t).

end
Produce a final sample (st+1, at+1) ⇠ q and s

0
t+1 ⇠ Pat+1(·|st+1).

Compute brvJD(v) such that:
⇣
brvJD(v)

⌘

s
= (1 � �)µs + bBst+1,at+1 (t)

⇣
�1(s0t+1 = s) � 1(st+1 = s)

⌘
.

Output: brvJD(v).

We now proceed to bound the bias of this estimator:
Lemma 8. Let �, ⇠ 2 (0, 1) with ⇠  min(�, 1

4 ). With probability at least 1� � for all t 2 N such

that t
ln ln(2t) �

120(ln 41.6|S||A|
� +1)

�⇠2 max
�
480⌘2�2

kvk21, 1
�
, the plugin estimator brvJD(v) satisfies:

max
u2{1,2,1}

kĝ � Et+1[ĝ]ku 
8

�
; max

u2{1,2,1}
kEt+1[ĝ]� gku  8⇠ ;

E
h
kĝ � Et+1[ĝ]k

2
2

���bBv(t)
i


8

�
,

where ĝ = brvJD(v), g = rvJD(v), and Et+1[·] = Est+1,at+1,s0t+1
[·|bBv(t)].

We will now make use of Lemma 8 along with the following guarantee for projected Stochastic
Gradient Descent to prove convergence guarantees for Algorithm 3.

Algorithm 3 Biased Stochastic Gradient Descent
Input Desired accuracy ✏, learning rates {⌧t}1t=1, and number-of-samples function n : N! N .
Initialize v0 = 0 for t = 1, · · · , T do

Get brvJD(v) with n(t) samples via Algorithm 2.
Perform update: v0

t  vt � ⌧t
brvJD(v); vt  ⇧D(v0

t), where ⇧D denotes the projection to
D = {v s.t. kvk1  D}.

end
Output: vT .

8



The following holds:
Lemma 9. Let f : Rd

! R be an L�smooth function. We consider the following update:

x0
t+1 = xt � ⌧ (rf(xt) + ✏t + bt) ; xt+1 = ⇧D(x

0
t+1).

If ⌧  2
L then:

f(xt+1)� f(x?) 
kxt � x?k2 � kxt+1 � x?k2

2⌧
+ 2⌧krf(xt)k2 + 5⌧kbtk2 + 5⌧k✏tk2

+ kbtk1kxt � x?k1 � h✏t,xt � x?i.

Lemma 8 implies the following guarantee for the following projected stochastic gradient algorithm
with biased gradients brvJD(v)R:

Lemma 10. We assume ⌘ � 4
� . Set ⇠t =

8|S|⌘Dp
t

and ⌧t =
1

16|S|⌘
p
t
. If we take t gradient steps using

n(t) samples from q⇥P (possibly reusing the samples for multiple gradient computations) with n(t)

satisfying n(t) �
525t

✓
ln 100|S||A|t2

� +1

◆3

�|S|2 . Then for all t � 1 we have that with probability at least

1� 3� and simultaneously for all t 2 N such that t � 64|S|2⌘2D2

� :

JD

✓
1

t

Pt
`=1 v`

◆
 JD(v?) + eO

✓
D

2
|S|⌘
p
t

◆
.

Lemma 10 implies that making use of N samples it is possible to find a candidate v̄N such
that JD(v̄N )  JD(v?) + eO

⇣
D2⌘
�
p
N

⌘
. This in turn implies by a simple use of Lemma 6 that

krJD(v̄N )k1  eO
⇣

|S|1/2D⌘p
�N1/4

⌘
. If we denote as ⇡̄N to the policy induced by �v̄N , a simple applica-

tion of Lemma 4 yields:

JP (�
⇡̄N ) � JP (�

?
⌘)� eO

✓
|S|

1/2
D⌘

(1� �)
p
�N1/4

◆

Thus Algorithm 3 achieves an O(1/(1 � �)8✏4) rate of convergence to an ✏�optimal regularized
policy. We proceed to we can set ⌘ to obtain an ✏�optimal policy:

Theorem 3 (Informal). For any ✏ > 0 let ⌘ = 1

2✏ log( |S||A|
� )

. If N � eO
⇣

1
✏8(1��)8�2

⌘
, then with

probability at least 1� � it is possible to find a candidate v̄N such that ⇡̄N is an ✏�optimal policy.

7 Conclusion

This work presents an analysis of first-order optimization methods for the REPS objective in reinforce-
ment learning. We prove convergence rates of O(1/✏2) for accelerated gradient descent on the dual
of the KL-regularized max-return LP in the case of a known transition function with convergence rate.
For the unknown case, we propose a biased stochastic gradient descent method relying on samples
from behavior policy and show that it converges to an optimal policy with rate O(1/✏8). There are
several interesting questions that remain open. First, while directly optimizing the dual via gradient
methods is convenient from an algorithmic perspective, prior unregularized saddle-point methods
have been shown to achieve a faster O(1/✏) convergence [4]. An important open direction is thus
to understand if faster rates are possible in order to bridge this gap, or if optimizing the regularized
dual directly is fundamentally limited. Second, we only considered MDPs with finite state and action
spaces. It is therefore of interest to see if these ideas readily extend to infinite or very large spaces
through function approximation.
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