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Abstract

Knowledge distillation methods compress models by training a student network using the
classification outputs of a high quality teacher model, but can fail to effectively transfer the
properties of computer vision foundation models from the teacher to the student. While it
has been recently shown that feature distillation—where a teacher model’s output features
are replicated instead—can reproduce performance for foundation models across numerous
downstream tasks, they fall short in matching critical properties such as robustness and
out-of-distribution (OOD) detection performance. This paper overcomes this shortcoming
by introducing Cosine-similarity Preserving Compression (CosPress), a feature distillation
technique that learns a mapping to compress the latent space of the teacher model into
the smaller latent space of the student, by preserving the cosine similarities between image
embeddings. This enables direct optimisation of the student network and produces a more
faithful reproduction of the teacher’s properties. It is shown that distillation with CosPress
on a variety of datasets, including ImageNet, produces more accurate models with greater
performance on generalisability, robustness and OOD detection benchmarks, and that this
technique provides a competitive pathway for training highly performant lightweight models
on small datasets. Code is available at https://github.com/XXX /cospress.

1 Introduction

Deep learning computer vision approaches have become the standard for automating vision problems across
a range of fields, from medical imaging (Zhang & Metaxas) [2024) to analysis of satellite imagery (Bastani
et al.,|2023) and detecting weapons in luggage (Andriyanovj [2024). However, models trained with commonly
used supervised learning approaches can have poor robustness (Bai et al., 2021; Hendrycks et al., 2021b)
and struggle to detect out-of-distribution (OOD) data (Yang et al., [2022a; Nguyen et all 2015)).

By leveraging large Vision Transformer (ViT) architectures and pretraining on large and diverse datasets,
foundation models in computer vision comprise a significant step forward toward addressing these challenges,
providing significantly improved generalisation ability and robustness in comparison to purely supervised
approaches (Oquab et al.| [2024; |Radford et all [2021)). Large ViT models enjoy superior performance after
pre-training (Zhai et al.l [2022)), and can be distilled to produce smaller models that are more practical for
deployment. For example, smaller DINOv2 foundation models were distilled from their largest variant with
1.1 billion parameters by optimising the self-supervised training objective with a frozen teacher (Oquab et al.|
2024). This approach is not replicable, as it was conducted on the proprietary LVD-142M dataset and the
teacher head weights were never publicly released.

Nevertheless, knowledge distillation approaches (Hinton et al., 2015) that leverage the classification outputs
of the DINOv2 models trained on a particular datasets can be used to train performant student models.
However, it has been shown that fundamental properties of the foundation model need not transfer to the
student models, impacting generalisation performance on downstream tasks (Zhang et all |2025)). Feature
distillation approaches that use a Mean Squared Error (MSE) or Ly loss and a student head to map the
activations from the latent space of the student to the teacher are more effective in this respect. The
recent Proteus (Zhang et al., 2025) approach has shown that it is possible to distill the DINOv2 models
on ImageNet-1K and obtain comparable performance on downstream classification and segmentation tasks.
However, sub-optimal results are still obtained for key robustness metrics, as well as generalisability and
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Figure 1: Patch features. PCA visualisation of patch features for the DINOv2 ViT-S/14 model, and the
distilled ViT-Ti/14 model produced using the CosPress feature distillation approach.

performance in dense tasks such as image segmentation. Most concerning, however, is that models distilled
using Proteus do not faithfully reproduce the latent space of the teacher model, as shown by their severely
reduced performance on out-of-distribution (OOD) detection tasks (Table []).

This paper presents Cosine-similarity Preserving Compression (CosPress), a feature distillation approach
that addresses such shortcomings by learning a teacher head mapping that compresses the latent space of
the teacher model into the latent space of the student. CosPress achieves this by preserving cosine similarities
between points in the teacher’s latent space and allows the student to be directly optimised. This significantly
improves the faithfulness of the learned student on OOD detection (Table [1f) and robustness benchmarks in
comparison to Proteus, while achieving competitive performance across all of the considered challenges—
including classification accuracy, generalisation and semantic segmentation. CosPress reproduces the high-
quality patch features of the foundation model (Fig.[l)), and can be used to produce specialised models, that
have improved accuracy on particular tasks but retain these foundation model properties. In this work, we:

e present CosPress, an approach for distilling ViT foundation models that learns a mapping from
the latent space of the teacher to the student that preserves cosine similarities and allows direct
optimisation of the student model;

o demonstrate that CosPress produces a more faithful student model, better replicating the perfor-
mance of the teacher across a range of metrics including robustness, generalisability and out-of-
distribution detection; and

o show that CosPress can be used to train specialised models with improved performance on a particular
vision task, while retaining foundation model properties such as improved generalisability and out-
of-distribution detection performance.

2 Related Work

Foundation models Foundation models in computer vision follow the success of transformer-based foun-
dation models in language, such as BERT (Devlin et al}[2019)), and encode images as vectors in latent space,

Table 1: Out-of-distribution detection. Comparison of performance on the OpenOOD benchmark for
the ImageNet-1K dataset. The T means larger values are better and the | means smaller values are better.

Method Arch Teacher Near OOD Far OOD
DINOv2  AUROCt FPR] AUROCtT FPR{

Proteus ~ ViT-Ti/14 ViT-S/14 64.17 85.73 74.22 67.97
CosPress  ViT-Ti/14 ViT-S/14 70.49 77.29 91.03 37.21

ViT-S/14 72.58 74.12 92.67 29.55

Proteus  ViT-S/14  ViT-B/14 61.19 94.56 61.92 86.78
CosPress ViT-S/14  ViT-B/14 73.5 73.84 92.93 28.98
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where the distance between vectors describes the semantic similarity of the images. Two approaches have
emerged for training these models: self-supervised learning (Oquab et al., [2024)) and contrastive language-
image pretraining (CLIP) (Radford et al. 2021)). The CLIP models were among the first to show that by
using a large Vision Transformer (ViT) architecture (Dosovitskiy et all [2021]), and a large, diverse and high
quality training dataset, a generalist vision model could be produced that achieves high performance across
a range of applications (Radford et al., 2021). The DINOv2 foundation models followed, and using a com-
bined bootstrapping (Grill et al., 2020} (Caron et al, [2021)) and masked patch prediction (Zhou et al.| [2022)
approach to train foundation models with strong performance on image classification and segmentation tasks
(Oquab et al.l [2024).

Knowledge distillation. Knowledge distillation is the process of transferring knowledge from a large
model or model ensemble to a single smaller model. The earliest approaches aligned the output probability
vectors of the student and teacher classifications using a Kullback—Leibler (KL) divergence loss (Hinton et al.

. There is a wide range of literature demonstrating how this approach can improve the performance of
smaller Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) (Touvron|
let al [2021}; [Yang et all [2024)), by leveraging a strong teacher or one with different inductive biases to the
student model. It has been shown that knowledge distillation is most effective when it is treated as a function
matching problem (Beyer et al. 2022)), with the same inputs being provided to both the teacher and student
model.

Feature distillation. Feature distillation—where the output features of the teacher are used for training
the student instead of the classification outputs—is less well studied for models without class outputs.
Generally speaking, feature distillation is used in combination with a knowledge distillation objective and
often focuses on supervised models. However, the Proteus approach (Zhang et al. 2025) demonstrated
that using pure feature distillation objectives is important for preserving foundation model properties. The
components of Proteus—a student head to align output dimensions, MSE loss on class and patch tokens,
and an iBOT (Zhou et al., 2022) inspired masking objective—are a logical adaption of components in prior
supervised feature distillation methods such as Masked Generative Distillation (MGD) (Yang et all, [2022D)),
SRD (Miles & Mikolajczyk, [2024) and Vi D (Miles et al) [2024) to a ViT architecture with the aim of
preserving both the local and global features of the teacher.

Dimensionality reduction. Feature distillation and the challenge of compressing latent spaces to train
performant student models are closely related to the broader ideas of dimensionality reduction and minimum
distortion embeddings (Agrawal et al., [2021). Stochastic Neighbor Embedding (SNE) (Hinton & Roweis|
[2002} [Van der Maaten & Hinton|, 2008]) is a dimensionality reduction technique that projects high-dimensional
embeddings into a low-dimensional space (typically two dimensions) while preserving local relationships.
SNE acheives this by constructing a probability distribution over pairs of points in the original space and
then optimising a corresponding set of points in the low-dimensional space to match this higher dimensional
distribution as closely as possible. However, SNE does not learn an explicit mapping between the original
and reduced spaces, only a lower dimensional representation. Other approaches, in contrast, explicitly learn
projection functions, often with the goal of preserving local geometric structures such as distances or angles
(Saul & Roweis, 2000; He & Niyogi, 2003; |Gao et al.l [2020} [Fischer & Maj, [2024)).

3 Methods

Notation. We consider a feature distillation setting, where there is a small student network Sy with output
dimensionality Dg and a larger frozen teacher network 7" with output dimensionality Dp. These networks
use a ViT architecture, so we assume Dp > Dg. The loss functions presented in this paper consider a mini-
batch stochastic gradient descent setting, defined for a batch of images x; € X. When only the output class
tokens are considered S§(z;),T°(x;) is used. We write S(x;), T (z;) to refer to a matrix of the concatenated
patch and class token outputs.

Motivation. We are interested in the problem of training a student network to mimic the behaviour of a
large, high quality teacher model using a ViT architecture, such as the DINOv2 foundation models. A key
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Figure 2: Feature distillation frameworks. In Proteus, student heads g are used to map the outputs of
the student network Sy into the latent space of the teacher T, so that a MSE loss can be applied. In CosPress,
a teacher head h is trained to compress the teacher 7' outputs into the student latent space, preserving the
cosine similarity of image embeddings and allowing direct optimisation. The Proteus student head does not
preserve cosine similarity, even when the projection matrices are forced to be right-orthogonal.

property of these models is that the cosine similarity between images and patch embeddings captures their
semantic similarity, as shown by the use of this measure for zero-shot classification and identifying duplicate
imagery (Jose et al.l|2024; /Oquab et al.l [2024; Radford et al., 2021). However, larger ViT architectures have
a larger output dimensionality, which prevents the embeddings produced by smaller student models being
directly compared to a teacher model embedding.

Proteus (Zhang et al., [2025) addresses this problem by introducing a student head g : RPs — RPT that
maps the outputs of the student model into the latent space of the teacher model, allowing a MSE (Ls) loss
to be applied. This student head contains a projection matrix, W € RPs*P7  that maps the from the latent
space of the student to the teacher, and is commonly discarded. Two issues arise with this approach. First,
the projection may encode information specific to replicating the teacher network, potentially distorting the
outputs of the student model, which is only indirectly optimised (Miles et al.l [2024). Second, there is no
guarantee that the projection matrix W will be faithful in preserving cosine similarities between teacher
embeddings of different images—similarities that reflect semantic relationships (Jose et al., [2024))—within
the student’s latent space.

Prior work has found that requiring W to be right-orthogonal addresses the first problem (Miles et al., |2024)).
Right-orthogonality means that WW T =I5 must be satisfied where Ip, € RPs*Ds is the identity matrix
of rank Dg. However, this implies that for any image 7, we have

S(a)W = T¢(2;) = S§(a;) = T(z;)W . (1)

Consequently, the cosine distance between image embeddings in the student network relates to the teacher,
for any two images 1, j, via

Sg(ai) - Sg(xy) . T(x) W WT ()"
155 (@) 1S5 (i) 117 () W T [WTe () T|
This implies that W also needs to be left-orthogonal to address the second problem and ensure that cosine

similarities are preserved. Asserting left-orthogonality with WTW = alp,. for some scalar o would yield
the desired relationship

(2)

Si(wi) - Silwy)  To(wi) - T(x;) " 3)
1S5 (@)l 1S5 (@Il T (@) [ [T(2;) T

Unfortunately, the projection W can only be approzimately left-orthogonal, as W is only of rank Dg, which
means the product WTW can only ever be of rank Dg. As Ip, is of rank Dy > Dg, then WTW # alp,..
Consider the following definition.
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Definition 1 (Approximately Orthogonal Matrix). A matrix M € R™*? is said to be approzimately or-
thogonal if
IMM" —al,|r <ec and [M'M-B8Lr<e,

for sufficiently small ¢ > 0 and real scalars «, 8. If only one of these conditions are satisfied the matrix
is said to be approximately right or left orthogonal, as appropriate. This notion expands upon the idea of
orthogonality, where a matrix M can only be orthogonal (¢ = 0,a = g = 1) if it is square (m = d).

Lemma 1. Let M € R™*? with m < d and rank(M) = m. Then
T_ d T
MM = TLf[ < [[MTM =T .
Moreover, the converse inequality does not generally hold.

This lemma shows that approximate right-orthogonality is sufficient for a matrix to also be approximately
left-orthogonal, and therefore to be approximately orthogonal overall. Consequently, both conditions Eq. (/1)
and Eq. are satisfied, ensuring that the mapping does not encode information while preserving the
relationships between image embeddings. The proof of Lemma Theorem [I] stems from M having more
columns than rows, which can be downsampled to form a square matrix, and is provided in Section [A]of the
supporting information. While prior methods such as VD introduce parametrisations that require W to be
right-orthogonal (Miles et al. [2024)), they do not also guarantee approximate left-orthogonality.

While Eq. (3) could be optimised directly using an SNE (Hinton & Roweis|, [2002; [Van der Maaten & Hinton|
inspired approach, our initial experiments found that this was less effective than Proteus due to this
target having a complex loss surface with many local minima. Instead, it is proposed to use a teacher head,
rather than a student head, to learn a function hg : RPT — RPs that compresses the representation of the
teacher into the latent space of the student while preserving cosine similarities

To(wi) - T(xy)  he(T(i)) - ho(T*(2;))
@I NT @)l Nho(T@) e (T (@)

which allows the student Sg(z;) to be directly optimised against the compressed teacher representation
hg(T¢(z;)). Learning the h, mapping is a tractable problem as described by the Johnson-Lindenstrauss
(JL) Lemma, which states that such a mapping can be constructed with a margin of error that depends
on the dimensionality of the target space and the size of the dataset of interest . Further
details are provided in Section [A] and Fig. [2] highlights the differences between the Proteus and CosPress
frameworks.

(4)

Proteus. |Zhang et al|(2025|) propose to minimize the MSE (L) loss between the outputs of the teacher and
that of the student, when passed through a dimension-raising map called the student head g : RP?s — RP7,
To achieve best performance, they use three student heads with different weights ¢, 1, v and minimise the
Lo loss separately on the class tokens, features (class and patch tokens), and on randomly masked tokens
XM similar to the MGD (Yang et al., [2022b) approach. This leads to the following optimisation loss

»Cproteus(X; ¢7 7/)7 v, 0) = L2 (g¢(50(
+ La(gy (S5(
+ Lo(g,(So(X™M)

ole)

CosPress. Our approach, CosPress, separates the challenge of feature distillation into two parts,

LCosPress (X§ 9, 9) = Ldim-red (X§ ¢) + Lstudent (X§ 9) (6)

Firstly, a teacher head hy : RPT — RPs is learnt to map the teacher outputs 7' to the latent space of the
student network Sy while preserving cosine similarities. This dimensionality reduction loss term Lgim_req is
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independent of fitting the student network. It only requires the target dimension in order to fit the teacher
head hg.

Secondly, the student network Sy is trained to match the image of the teacher under the teacher head hyoT
in the student loss term Lgtydent- The most effective way to fit this term is to freeze the teacher head hy
gradients and train on both losses concurrently as shown in Fig. 2] Using a weighting scheme was observed
to produce similar results (Section .

Dimensionality reduction objective. To build a loss function that will ensure the mapping hy satisfies
Eq. an SNE (Hinton & Roweis| [2002; Van der Maaten & Hinton, 2008) inspired approach is used.
This involves defining a kernel to build distributions describing the similarity between vectors, allowing for
embeddings in the high dimensional input space to be aligned with the low dimensional target space by
minimising the KL divergence between these distributions.

We define a kernel using the von-Mises Fisher distribution, where for input vectors y and z we have

Y-z
hois) x o () "
with temperature hyperparameter 7. As a result, Eq. becomes

ke (T(2:); T(25)) % kr (ho (T*(2:)); ho (T*(25))) , (8)

for each ,j. Then, for a set of vectors in the input space p; € p and target space q; € q of size N, we
construct the matrices P7, Q" that define the input and target distributions by

- Djli T Dijj kr(pispy)
) 2N 9 p]l’L Zi¢k k-,—(p”pk)’ ( )
. Gl k- (qi; q;5)
o Gl kel9ig) 10
h 2N 4l Zz’;ﬁk k- (qi; qr) (10)

where the first equation builds symmetric P™, Q™ matrices, allowing for greater flexibility in the solution.
If these P7, Q™ matrices are equal, the cosine similarity between pairs of points in p,q will be equal and
Eq. will be satisfied. This can be achieved approximately by minimising the KL divergence (D) over
T, a vector of temperature values via

Liap.) = 7 Y Dacn (P7Q). (1)

TET
An ablation study on the best values of 7 is described in Table [S21]in the supporting information.

Putting this all together, we propose a dimensionality reduction loss that conserves cosine similarity at two
levels—between the image class tokens in a batch, and between the features (patch and class tokens) within
an image

Laim-red(X; ¢) = Lk (hg(T(X)), T°(X)) (12)
ﬂ%mewm»mm

The calculation of Ly, (he(T°(X)),T°(X)) is the only term in the CosPress loss that is calculated between
examples in a batch, and that will scale non-linearly with increasing batch size. All other terms in both
CosPress and Proteus are computed within individual examples and scale linearly with batch size.

Teacher head architecture. As done for the Proteus (Zhang et all 2025)) student heads, the teacher
head architecture in CosPress uses a LayerNorm (Bay, [2016)) followed by a linear layer. This can be written
as

z—Z

ho(e) = (S50 ) W4 (13)

Izl
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where Z is the average of the z vector elements, and the initialisation scheme sets the biases 31, 82 to zero
and the scaling v to one at the start of training. The linear map W' € RP7*DPs ig initialised using a
random normal distribution as is standard, which is consistent with the mapping constructed in the JL
Lemma (Section IE) For the Proteus student heads g, W is replaced by W and the dimension of the bias
vectors are adjusted accordingly.

Student objective. The student objective minimises cosine distance

1 Zi * Yi
Lcosine(ZaY) = g (Z 1- y) ) (]-4)

\Zz'|| ||Z/z‘||

where z,y are sets of input vectors of the same length n. Considering the teacher head hy learns to
conserve cosine similarity, this is a natural choice for the student network and is found to result in improved
performance with CosPress than the Lo loss (Section |C)).

Similarly to the dimensionality reduction objective, the final student loss employs both a class token loss
and a feature loss term

‘Cstudent (X7 9) = Lcosine<Sg(X)a h¢(TC(X))) (15)
+ Lcosine(SG(X)a h¢(T(X)))

4 Experiments: Feature distillation

In this section, the CosPress feature distillation approach is compared to Proteus and distilled variants of
the DINOv2 models. While we do not have access to the proprietary LVD-142M dataset used to distill
the DINOv2 models, it has been shown that ImageNet-1K (Russakovsky et all [2015) is sufficient to distill
models with comparable accuracy across a range of measures (Zhang et all [2025).

4.1 Experimental setup

Vision Transformer (Dosovitskiy et al., [2021) models are distilled using larger DINOv2 teachers on the
ImageNet-1K (Russakovsky et al., 2015)) training dataset, comprising 1000 categories across more than 1.2
million training images. To enable a fair comparison, we reproduce the results of the Proteus paper and
train CosPress models using a unified codebase. This ensures consistency in the optimizers, samplers,
augmentations and other hyperparameters. Following Proteus (Zhang et al., |2025)), student networks are
distilled for 300 epochs using a batch size of 1024, cosine learning rate decay with five warmup epochs
(Loshchilov & Hutter, |2017a)), an AdamW optimizer (Loshchilov & Hutter, [2017b)), a repeated augmentation
sampler with three views per image (Fort et al) [2021), and RandAugment (Cubuk et al) 2020) image
augmentations (Wightman| [2019)). An ablation study on the hyperparameters introduced by CosPress is
provided in Section [C] of the supporting information.

Following the DINOv2 kNN evaluation (Wu et all [2018)) and linear probing approach (Oquab et al., [2024)
with an additional batchnorm layer (Lee et al.,2023), evaluations are undertaken on the ImageNet validation
set, as well as nine fine-grained classification benchmarks (Oxford Pets (Parkhi et al., [2012), FGVC Aircraft
Maji et al., 2013), Describable Textures (Cimpoi et al.,|2014), Stanford Cars (Krause et al., 2013), CUB200
Wah et al., 2011), CIFAR-10/100 (Krizhevsky et al., 2009), Flowers-102 (Nilsback & Zisserman), 2008) and
Food-101 (Bossard et al. 2014)) and the Pascal VOC 2012 segmentation task (Everingham et al., |2012).
Performance is also tested on several robustness and generalisation benchmarks including ImageNet-V2
Recht et all [2019), Sketch (Wang et al. [2019), ImageNet-R (Hendrycks et al., 2021a) and ImageNet-A
Hendrycks et al.| [2021b)).

We additionally consider the OpenOOD benchmarks (Yang et all 2022a). Foundation models are trained
on a diverse dataset and excel in this task, and whether distilled students can reproduce this performance
has not been previously considered. This section focuses on the ImageNet-1K OpenOOD benchmark, which
uses SSB-hard (Bitterwolf et al., [2023) and NINCO (Vaze et al., [2022) as near OOD data, and iNaturalist
(Van Horn et al., 2018), Openlmage-O (Wang et al.l [2022) and Describable Textures (Cimpoi et al., [2014])
as far OOD data.
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4.2 Results

Table 2: ImageNet classification. Comparison of performance on ImageNet-1K under kNN and linear
probing evaluation approaches. We report the mean and standard deviation over four runs with different
random seeds for the Proteus and CosPress ViT-Ti/14 models.

Method Arch Teacher kNN Linear
Proteus ViT-Ti/14 DINOv2 ViT-S/14 73.0+£0.1 76.1+0.2
Proteus-V,D ViT-Ti/14 DINOv2 ViT-S/14  73.0 75.9
CosPress ViT-Ti/14 DINOv2 ViT-S/14 743+0.1 76.6+0.1
DINOv2 ViT-S/14  79.0 81.1
Proteus ViT-S/14  DINOv2 ViT-B/14 79.8 82.0
CosPress ViT-S/14  DINOv2 ViT-B/14 80.4 82.3

Table 3: Distillation components. Results for kNN evaluations on different components of the distillation
process for models distilled on ImageNet-1K. For Proteus, results are shown for the class token student head.

Method Arch Teacher kNN

DINOv2 Backbone Stu. head Tea. head Teacher
Proteus ViT-Ti/14 ViT-S/14 73.1 73.5 79.0
Proteus-V,D  ViT-Ti/14 ViT-S/14 73.0 73.3 79.0
CosPress ViT-Ti/14 ViT-S/14 74.3 78.8 79.0
Proteus ViT-S/14  ViT-B/14 79.8 80.0 82.1
CosPress ViT-S/14  ViT-B/14 80.4 82.1 82.1

CosPress trains more competitive students. Table[2]shows that CosPress trains students with better
performance in comparison to Proteus (Zhang et al.l |2025), for both the linear probing and kNN evaluation
methods. These improvements are statistically significant, taking into account the low variability observed
across different random seeds. It is also found that the teacher head can project the embeddings from
the teacher network into the latent space of the student with minimal loss of kNN accuracy, and that the
token student head from Proteus has a higher kNN accuracy than the model backbone (Table [3)). These
observations confirm the motivations for CosPress—the Proteus student heads are not an uninformative
mapping into a higher dimensional space, but are contaminated with information relevant for reproducing
the teacher model. Further, a high-quality projection that compresses the teacher emebeddings into the
latent space of the student—that preserves cosine similarity—can be learnt, and this provides more effective
supervision.

In Table [2| we also consider Proteus-Vj; D, where the projection matrices W in the Proteus student head
are constrained to be right-orthogonal using the V},D approach (Miles et al., 2024)). This method builds a
re-parametrisation map using skew symmetry and a matrix exponential approximation to construct W such
that it is approximately right-orthogonal. Table 2] shows that in this context, this re-parametrisation does
not significantly impact performance, and does not completely prevent contamination of the student head

9o+
It is also observed in Table 2] that the CosPress and Proteus approaches can outperform the distilled DINOv2
models of the same size. However, it is challenging to determine if these distillation approaches are more

effective, as the DINOv2 models were trained on a larger proprietary dataset, of which the ImageNet-1K
dataset was only a small subset.

CosPress learns an approximately left and right orthogonal projection. As theorised in Lemma
it is found that CosPress learns a linear map W in the teacher head (Eq. ) that is approximately left
and right-orthogonal, up to a scaling factor. More concisely, we find that

WiW/ax1I, WW'/gxI (16)
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Figure 3: Visualising orthogonality. Kernel density estimate plots of the diagonal and non-diagonal
elements for the scaled Gram matrices of the linear maps W in the teacher and student heads, drawn
from CosPress and Proteus respectively. The dashed coloured lines represent W' W /a and the solid lines
represent WW ' /3, where «, 3 are defined as in Table A perfectly orthogonal matrix W will have a

Gram matrix with density on the black dashed vertical lines.

Table 4: Measuring orthogonality. Distance measures of the scaled Gram matrices A = WTW /a
and B = WW T /3 for the projection matrix in the Proteus student and CosPress teacher head, and their
respective identity matrices Ip,.,Ip, of the same dimensions. For each matrix «, 5 is set to the mean of the
diagonal elements of A, B, which minimises error under the Frobenius norm.

Method Distance to the Identity Measures
[A-Ip.llr [B-Ipsllr Tr(|A-Ip,[) Tr(B—1Ips)
Proteus 27.3 9.5 57.1 17.0
Proteus-V;, D 24.9 7.7 152.7 8.2
CosPress 20.3 2.6 3.4 4.2

where «, 8 are positive real numbers. Qualitatively, this can be seen in Fig. [3| where kernel density plots
are shown of the elements from Gram matrices formed using the linear maps W, W . These projections
are taken from the CosPress teacher head and the Proteus class token student head obtained while training
the ViT-Ti/14 student network. The scaled CosPress Gram matrices are much closer to the identity matrix,
and this is measured quantitatively using the Frobenius norm and trace in Table [4]

While the Proteus-V;, D approach in Fig. [3]and Table[d]does learn a projection W that is approximately right-
orthogonal, there is a large degree of error. This is due to the approximation of the matrix exponential that
is used in the V3D method (Miles et al., [2024), and CosPress is able to learn a right-orthogonal projection
matrix with less error.

Table 5: Fine-grained classification.
a linear probe evaluation.

Comparison of performance on fine-grained classification tasks using

Method Arch Teacher Dataset
C10 C100 Food CUB DTD Pets Cars Airer Flowers Average
Proteus ViT-Ti/14 DINOv2 ViT-S/14 95.1 814 835 84.1 729 94.2 728 54.1 96.0 81.6
CosPress ViT-Ti/14 DINOv2 ViT-S/14 949 81.9 84.6 85.1 73.8 941 753 55.7 96.8 82.5
DINOv2 ViT-S/14 977 875 891 8.1 80.6 951 81.6 74.0 99.6 88.1
Proteus ViT-S/14  DINOv2 ViT-B/14 97.8 87.7 89.7 834 78.0 95.9 828 629 97.6 86.8
CosPress ViT-S/14  DINOv2 ViT-B/14 97.8 87.6 90.3 88.9 78.0 959 84.0 63.4 98.8 87.2

CosPress improves performance on classification tasks. Table [5|shows that the models distilled by
CosPress have improved or similar performance over Proteus for all downstream fine-grained classification
tasks. Competitive accuracy is also achieved with the distilled DINOv2 models of the same size, which
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CosPress outperforms on six of the nine datasets. Poorest performance is achieved on the FGVC-Aircraft
dataset, which likely reflects differences in the training data used for distillation. The LVD-142M dataset used
to train and distill the DINOv2 models contains a million images with high similarity to the FGVC-Aircraft
dataset (Oquab et all 2024]), whereas ImageNet only contains a single airliner class with approximately
1300 images.

Table 6: Semantic segmentation. Comparison of performance on the Pascal VOC 2012 semantic segmen-
tation task using a linear probe.

Method Arch Teacher mloU
Proteus ViT-Ti/14 DINOv2 ViT-S/14  70.5
Proteus w/o patch loss  ViT-Ti/14 DINOv2 ViT-S/14  69.7
CosPress ViT-Ti/14 DINOv2 ViT-S/14  71.1

DINOv2 ViT-S/14  81.2
Proteus ViT-S/14  DINOv2 ViT-B/14  77.3
Proteus w/o patch loss  ViT-S/14 ~ DINOv2 ViT-B/14  77.1
CosPress ViT-S/14  DINOv2 ViT-B/14 77.9

CosPress improves segmentation performance. Table[fshows that CosPress also improves accuracy
on downstream segmentation tasks in comparison to Proteus. CosPress does not include the masked patch
loss objective, that we confirm improves the performance of Proteus on dense tasks, and incorporating it into
CosPress may improve performance further. The DINOv2 distilled model outperforms CosPress in this case.
Further pretraining with an increased image resolution was found to be key to improving the performance
of the DINOv2 models on dense tasks (Oquab et al.l [2024]), but is not undertaken in training the CosPress
and Proteus student models.

Table 7: Robustness and generalisation. Comparison of performance on ImageNet-1K robustness and
generalisation benchmarks.

Method Arch Teacher Test Dataset
DINOv2 IN-V2 Sketch IN-R IN-A
Proteus ViT-Ti/14 ViT-S/14 64.3 25.5 37.8 114
CosPress  ViT-Ti/14 ViT-S/14 64.9 27.9 40.7 13.2
ViT-S/14 (Oquab et al.|[2024) 70.9 41.2 53.7  33.5
Proteus ViT-S/14  ViT-B/14 72.2 38.4 50.0  29.6
CosPress ViT-S/14  ViT-B/14 72.5 40.4 52.3 31.5

CosPress distills a more robust student model. Table [7| shows that CosPress results in improved
performance over Proteus across a range of ImageNet-1K robustness and generalisation benchmarks. The
DINOv2 distilled model obtains better performance in this instance for all benchmarks except ImageNet-V2,
but CosPress closes the gap between the ImageNet-1K and LVD-142M distilled models significantly.

CosPress reproduces the OOD detection performance of the teacher. CosPress is faithful to the
teacher networks when it comes to OOD detection performance, as shown in Table[l] Proteus performs very
poorly on this benchmark, with worse performance observed for larger student models. In contrast, CosPress
is able to distill models that have strong OOD performance, even outperforming their DINOv2 counterparts.

CosPress improves performance across other teacher networks. Table [7] demonstrates that Cos-
Press also trains higher performing student networks than Proteus when using CLIP (Radford et al., |2021])
and DINOv2 w/reg (Darcet et al. [2024)) teacher networks. These experiments employ the same hyperpa-
rameters as those in Table[2l Additional results exploring feature distillation with ViT-T students and larger
teacher networks are provided in Section [B| of the supporting information.
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Table 8: Feature distillation with different teachers. Comparison of performance on ImageNet-1K
under kNN and linear probing evaluation methods with other kinds of teacher backbones, using different
architectures and training approaches.

Method Arch Teacher kNN Linear

Proteus  ViT-T/14 DINOv2 ViT-B/14 w/reg 71.1 75.1
CosPress  ViT-T/14 DINOv2 ViT-B/14 w/reg 74.0 76.4

Proteus ViT-T/16 CLIP ViT-B/16 63.6 71.4
CosPress  ViT-T/16 CLIP ViT-B/16 64.0 72.0

Table 9: Training time. Comparison of training time on ImageNet for 300 epochs with a batch size of 1024
using Nvidia A100 GPUs.

Method Arch Teacher GPUs GPU hours GPU memory
Proteus  ViT-Ti/14 DINOv2 ViT-S/14 1 92 55GB
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 1 95 47GB
Proteus ~ ViT-S/14  DINOv2 ViT-B/14 2 182 111GB
CosPress  ViT-S/14  DINOv2 ViT-B/14 2 154 81GB

CosPress does not require additional computational resources. Table [9] provides timings and
GPU memory usage for fitting the Proteus and CosPress models described in this section. Training time
is similar for the ViT-Ti/14 and DINOv2 ViT-S/14 student-teacher pair, but CosPress is more efficient for
larger models. This is due to the masked patch loss in Proteus, which requires that the student network is
evaluated once on unmasked inputs, and a second time on masked inputs. As a result, training is faster for
CosPress with larger students. CosPress is also slightly more memory efficient compared to Proteus, and
further computational savings could be made by freezing the teacher head hg once a sufficiently high quality
map has been learned.

5 Experiments: Specialist models

This section explores the potential for CosPress feature distillation to improve the performance of specialised
models that solve one particular task (e.g. classifying images of food). We refer to this process, where an
additional feature distillation training step is undertaken on a target dataset, as CosPress finetuning. This
approach can train highly performant small networks, that also have improved results on generalisability
and OOD detection benchmarks.

5.1 Experimental setup

The CosPress models distilled in the previous section are compared with models that have been further
finetuned with CosPress—an additional pretraining step where distillation is undertaken on a smaller target
dataset of interest. The strong DeiT (Touvron et al) |2021)) pretrained weights are also considered, which
were distilled from ImageNet-1K with a larger CNN network using class-based knowledge distillation (Hinton
et al.,|2015). The same hyperparameters and training methodology is used as in Section with the exception
of the number of training and warmup epochs.

This section focuses on a set of small-scale tasks, including CIFAR-10/100 (Krizhevsky et al, 2009), Food-
101 (Bossard et al.; 2014) and Oxford Pets (Parkhi et al., 2012). We employ 300 training epochs and 10
warmup epochs for CIFAR-10/100, and 3000 training epochs and 100 warmup epochs for Oxford Pets. The
DINOv2 linear probe evaluation method is employed (Oquab et al., [2024), as well as finetuning using the
DeiT recipe (Touvron et al., 2021)). When training models with this latter approach, the linear prediction
head is trained before finetuning the backbone, to avoid distorting the pretrained features (Kumar et al.
2022]).
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Table 10: Specialist models — accuracy. Comparison of performance on fine-grained image classification
tasks.

Method Arch Teacher Pretraining dataset Linear DeiT
C10 C100 Food Pets ‘ C10 C100 Food Pets
DeiT (Touvron et al.l 2021) ViT-Ti/16 RegNetY-16GF ImageNet 93.1 777 777 933 | 983 878 899 93.0
CosPress ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 949 819 846 941 | 98.7 89.0 917 927
CosPress ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 97.6 86.3 89.8 94.9 | 98.8 89.6 92.7 93.0
5.2 Results

CosPress finetuning improves the performance of specialist models. Table[I0]shows that CosPress
finetuning improves downstream performance, even when the training datasets are quite small. For every
dataset considered, this additional pretraining step improves linear probe evaluations with a frozen backbone
by a significant margin (1-5%). These benefits remain under the strong DeiT training recipe, which further
finetunes the model backbone. While CIFAR-10/100 and Food-101 have much stronger results under DeiT
finetuning, we find that Oxford Pets has best performance with a linear probe evaluation after CosPress
finetuning. This reflects the small size of the Oxford pets dataset, which makes training ViT networks
challenging.

Table 11: State-of-the-art lightweight models. Comparison of best CosPress models to other approaches
for training state-of-the-art lightweight models for specialised tasks.

Method Architecture Parameters Dataset

C10 C100 Food Pets

NAT (Tu et al.| [2021 MobileNetV2 (Sandler et al.||2018 4.5-9.0M 984 88.3 89.4  94.3

CeiT (Yuan et al.|[2021) CeiT-T 6.4M 985 88.4 93.8
CosPress ViT-Ti/14 55M 98.8 89.6 92.7 94.9

A ViT-Tiny network finetuned with CosPress can have competitive accuracy compared to other approaches
in the literature that have been highly optimised to perform well on specialist tasks with a small and
efficient model. Table shows that CosPress finetuning trains competitive networks in comparison to
Neural Architecture Transfer (NAT) and Convolution-enhanced image Transformers (CeiT)
(Yuan et all [2021)). Feature distillation methods like CosPress are an additional approach, that could be
used in conjunction with these techniques to build highly performant lightweight vision models.

Table 12: Specialist models — generalisability. Comparison of generalisability of specialist models on
the cartoon subsets of the CIFAR-10-W benchmark . We report mean per-class accuracy
due to dataset imbalances. In-distribution training images (top) and cartoon images (bottom) are included
for reference.

Method Arch Teacher Pretraining dataset Linear DeiT

Diff Bin Bai 360 | Diff Bin Bai 360
DeiT (Touvron et al.|[2021) ~ ViT-Ti/16 RegNetY-16GF ImageNet 65.9 51.0 47.6 48.8 | 86.9 62.6 56.0 60.1
CosPress ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 70.8 49.5 48.7 50.3 | 885 632 56.3 60.7
CosPr ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 73.4 52.5 486 49.9 | 89.1 64.1 57.5 61.4

CosPress finetuning improves the generalisability of specialist models. The challenging cartoon

subsets of the CIFAR-10-W benchmark (Sun et al.| 2024) are used to test generalisation performance on
CIFAR-10. Table [12[shows that CosPress finetuning leads to improved generalisability for specialist models
on CIFAR-10. Under a linear probing evaluation, CosPress finetuning strongly improves generalisability on
two of the four datasets, and improves generalisability for all datasets even after DeiT finetuning.
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Table 13: Specialist models — OOD detection. Comparison of performance on the OpenOOD bench-
mark (Yang et al 2022a). The AUC is reported for detecting OOD images.

Method Arch Teacher Pretraining dataset Frozen backbone DeiT finetuned
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100
Near-OOD  Far-OOD  Near-OOD  Far-OOD ‘ Near-OOD  Far-OOD  Near-OOD  Far-OOD
DeiT (Touvron et al.{[2021]  ViT-Ti/16 RegNetY-16GF ImageNet 57.01 47.04 58.14 46.19 96.79 98.69 87.45 86.73
CosPress ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 93.44 95.87 85.23 76.37 96.69 98.59 87.90 89.87
CosPress ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 95.12 98.02 87.00 80.95 97.05 98.79 89.52 89.53

CosPress finetuning improves the OOD detection performance of specialist models. The
CIFAR-10/100 OpenOOD benchmarks (Yang et al.| 2022a)) are used to test OOD detection performance.
Table shows that CosPress finetuning leads to improved performance on the OpenOOD (Yang et al.
2022a)) benchmark for specalist models on CIFAR-10/100. Without DeiT finetuning, strong improvements
in OOD detection are observed under CosPress finetuning over the ImageNet pretrained baselines. Some
improvements remain after DeiT finetuning, but are smaller.

6 Discussion

Significance of angles in deep learning. Language models have been shown to exhibit a principle of su-
perposition, wherein concepts are encoded along nearly orthogonal directions in representation space (Bricken
et al) 2023). While only d vectors can be exactly orthogonal in a d-dimensional space, high-dimensional
geometry allows for the construction of up to exp(d) approximately orthogonal vectors (with pairwise cosine
similarity less than € > 0) enabling the representation of a vastly larger set of concepts in practice (Elhage
et al., 2022)). This phenomenon is closely related to the Johnson-Lindenstrauss lemma (Freksen) 2021)), and
similar properties have been observed in foundation models for computer vision (Bhalla et al., |2024). By
preserving angular relationships between image embeddings, CosPress maintains the semantic structure of
the foundation model feature space in the student networks it trains.

Limitations. FEven with CosPress, a small generalisation gap remains. Models trained with CosPress
do not generalise quite as well as the original DINOv2 distilled variants (Table @ Without access to the
proprietary LVD-142M dataset, it is difficult to determine whether this gap arises from the limitation of
performing feature distillation solely on ImageNet-1K, or from a shortcoming in the methodology itself.

7 Conclusion

This paper introduces CosPress, a feature distillation approach designed to train highly performant student
networks from a foundation model teacher with a Vision Transformer (Dosovitskiy et al., 2021)) architecture,
that reproduces their properties in regards to generalisation, robustness and OOD detection. This is achieved
by introducing a teacher head, that maps from the higher dimensional latent space of the teacher network
into the smaller dimensional space of the student, and training this mapping to preserve the cosine similarity
of images within these embedding spaces. CosPress trains a faithful student, that more closely replicates
the behaviour of the teacher network in comparison to the Proteus approach (Zhang et al., [2025]), where a
student head is used to align the student outputs with the teacher.
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Supplementary Material

A The Johnson-Lindenstrauss Lemma

The Johnson—Lindenstrauss (JL) Lemma (Freksen| 2021)) states that for a set of points X in a high dimen-
sional space, there exists a function that can map these points into a lower dimensional space, within error
€, where this error depends on the dimension of the target space m and the size of the set of points |X|. In
its standard form, the JL lemma states that Euclidean distances are preserved.

Lemma 2 (Johnson-Lindenstrauss; (Freksen, 2021)). For every d € Ny, € € (0,1) and X C R?, there exists
a function f : R? — R™ where m = O(e~?log |X|) such that for every z,y € X,

1f(z) = FWIIE — llz — yll3] < ella —yl3 (17)
Morever, the map f can be constructed using a simple approach. Given a matrix M € R™*? with every
element drawn from a standard normal distribution N (0, 1), then
1
f(z) = —=Muz (18)

NGD

is a linear map that satisfies Lemma [2| with a probability given by the norm preservation lemma. This
function is also referred to as a JL transform.

Lemma 3 (Norm preservation; (Freksen, 2021)). Let € € (0,1). If f is constructed as above with m =
O(e 2logd~'), and x € RY is a unit vector, then

Pllf(@)ze+e] >1-4 (19)

Again, for target spaces with larger dimension m this Lemma [3] states that it is more likely that a high
quality map will be sampled. A similar result also holds for angles (Magen), [2007)), which gives

Lemma 4 (Angles; (Magen, 2007))). Let € < %\]and let n,t be integers for which t > 60e=2logn. Then for
any n-point subset X of the Euclidean space RY | there is a linear contracting embedding f(X) — RE, under
which angles are preserved to within a (double-sided) factor of 1+ 8/m+/e.

The proof of Lemma W] also relies on f being generated as a random projection as above (Magen) 2007]).
The JL transform matrix M has a further interesting property, as observed in this work, that we refer to as
approximate left and right orthogonality.

Lemma 5 (Approximate left and right orthogonality for JL transforms). Given a matriz M € R™*4 with
elements drawn from N(0,1), there is

E[MMT — oL, |% m E[M™M — L, |3 d

E[|MMT |2, Cd+m’ E[|MTM|2% Cd+m

Proof. Using the properties of the Wishart distribution, which given the construction of M, we have

MM ~ W,,(I,,d) (20)
MM ~ Wy(I4,m), (21)

from which we have the following results for the mean and variance

EMM '] = dIL,,, Var((MM7];;) = d (22)
EM M| = ml,, Var((M*M];;) = m. (23)
These expectations imply Lemma O
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Morever, this property of approximate left and right orthogonality does not just apply to JL transformations,
but any linear map M € R™*? with d > m such that M is approximately left-orthogonal with M "M = I,.
M cannot be exactly left-orthogonal, as the rank of M and M ' are both at most m, while I is of rank d
which is greater than m.

Lemma 1. (Approzimate left-orthogonality implies right-orthogonality) For any matriz M € R™*? with
m < d with rank m, we have the inequality [MMT — 41, ||p < [[MTM — L4||p. The converse inequality
does not hold.

Proof. We can write M"M = I; + E, which provides that
IM™ — Li||» = ||E|l (24)

where E is an error matrix. Let us sample m columns of M to produce a square matrix K € R”™*™, This
provides for K, that we have K"K = I,, + Ex where Ex are the same columns sampled from the error
matrix E. This means that |Ex||r < ||E| F.

We then introduce the singular value decomposition of K = UXV ', where U and V are orthonormal
matrices and X is a square diagonal matrix containing the singular values of K, to give

K'K=v'sv' =1, + Ex (25)
2TE =V, +Eg)V (26)
'Y =1, +V'ExV (27)

which we can use, as '3 = 2T for a square diagonal matrix, to find that

KK' =Uzx'Uu’ (28)
=U(I,+V ExV)UT (29)
=1, + UV'ELVU' (30)

Let us consider a sample of d sets of m columns, such that each of the d columns is selected m times to
produce a set of K; matrices where I € {1,...,d} without repeated columns. Then we observe that,

d
[MMT], = MMy, (31)
k=1
m d
1
=— Z Z M, My, (32)
=1 k=1
d m
1
= > KKk (33)
=1 k=1

as we have sampled our set of K; matrices from the columns of M such that each M;;,Mj; element in the
sum of their products occurs m times. This gives

d
1
MM' = ~ > KK/ (34)
=1

and introducing Eq. from above obtains

d
1
MM = ~ Z (I, + UV E,, VUT) (35)
=1
d 1 ‘ T T
=—I,+— Y UV'ELVU (36)
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Algorithm 1 Algorithm for feature distillation with CosPress.

Input: Training set X, teacher model T, student model Sg, teacher head hy, Ng number of epochs,
Aug(.) augmentation strategy
Randomly initialise student model Sy and teacher head hg, or initialise using previous weights if fine-
tuning;
1 =0;
while i < Ng do
Randomly split X into B mini-batches;
for z, € {X1,..., Xp,..., Xp} do
Generate augmented views: X = Aug(xy);
Compute dimensionality reduction objective (Eq. ):
Laim-red(X; ¢) = Lir(he (T°(X)), T(X)) + 17 22 L (ho (T (24)), T(x:))
Compute student objective, while freezing ¢ (Eq. (15)):
Lstudent (X3 0) = Leosine (S§(X); hggygpen (T9(X))) + Leosine (96(X), Agyyopen (T(X)))
Combine losses: £ = Lgtudent (X;0) + Ldim-red (X; 0);
Minimise loss £ by updating parameters of 6 and ¢;
end for
1 =1+ 1;
end while

which provides that

d
d 1
IMMT = ST, = = > UV B VU | (37)
=1
d
< ZEllr (33)

which proves the first statement. It is easy to see the converse inequality is not true, simply by constructing
a matrix M € R¥"™ with the first m rows equal to the identity. This matrix satisfies that MM T = I,,,, but
MM will have d — m rows with only zeros in them. This proves the second statement. O
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B Further Results

Table S14: ImageNet classification — larger teachers. Comparison of performance on ImageNet-1K
under kNN and linear probing evaluation approaches.

Method Arch Teacher kNN Linear
Backbone Student head Teacher head Teacher

Proteus ViT-Ti/14 DINOv2 ViT-S/14 73.1 73.5 79.0 76.1

CosPress  ViT-Ti/14 DINOv2 ViT-S/14 74.3 78.8 79.0 76.8

Proteus ViT-Ti/14 DINOv2 ViT-B/14 73.4 73.8 82.1 76.9

CosPress  ViT-Ti/14 DINOv2 ViT-B/14 75.6 81.9 82.1 77.9

Larger teachers result in better accuracy but have poorer quality dense features. We observe
that training with larger teachers in comparison to the student requires longer training runs. To achieve
best results efficiently, the pretrained models from a smaller teacher are used as a starting point. Then, the
student and teacher heads are first trained with a frozen pretrained student model (allowing the CosPress
teacher heads to minimize the student loss) for 30 epochs. Finally, the models are trained for 300 epochs
using the same distillation approach as previously. Table shows that this improves the performance of
the student models, with CosPress seeing larger improvements in accuracy on ImageNet-1K in comparison
to Proteus.

However, this results in poorer results in dense image tasks, like semantic segmentation. Table[SI5|shows that
the students trained with a larger teacher network have poorer mloU for a linear probe on the Pascal VOC
2012 dataset. Undertaking longer distillation runs, or continuing training using a larger image resolution
potentially might be helpful in these cases.

Table S15: Semantic segmentation — larger teachers. Comparison of performance on the Pascal VOC
2012 semantic segmentation task using a linear probe.

Method Arch Teacher mloU

Proteus  ViT-Ti/14 DINOv2 ViT-S/14  70.5
CosPress ViT-Ti/14 DINOv2 ViT-S/14 71.1

Proteus  ViT-Ti/14 DINOv2 ViT-B/14  68.1
CosPress  ViT-Ti/14 DINOv2 ViT-B/14  69.7

Further out-of-distribution detection results. The OOD detection results for all of the OpenOOD
datasets (Yang et all [2022a) are presented in Table Table and Table The tables report the
ROC-AUC for detecting OOD images and the False Positive Rate (FPR) using a 95% threshold for including
all in-distribution images. To produce these results, the KNN+ (Sun et al., |2022) OOD metric is used to
measure the performance of the model backbones. For ImageNet-1K, we sample 1% of the dataset (12,812
images) and set k = 10 to measure distance to OOD samples. For CIFAR-10/100, we sample 100% of the
dataset (50,000 images) and set k = 1.

Table S16: Out-of-distribution detection. Comparison of performance on the OpenOOD benchmark for
the ImageNet-1K dataset. The 1 means larger values are better and the | means smaller values are better.

Method Arch Teacher Near OOD Datasets Far OOD Datasets
SSB-hard NINCO Average iNaturalist Openlmage-O Textures Average
AUROCT FPR| AUROCt FPR| ‘ AUROCT FPR| ‘ AUROCt FPR| AUROCt FPR| AUROCt FPR] ‘ AUROCT FPR| ‘

Proteus ViT-Ti/14 DINOv2 ViT-S/14 55.59 92.24 72.76 79.22 64.17 85.73 60.08 91.47 73.13 75.34 89.46 37.1 74.22 67.97
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 63.39 84.98 77.58 69.59 70.49 77.29 95.81 22.57 90.72 40.62 86.57 48.45 91.03 37.21

DINOv2 ViT-S/14 65.76 81.8 79.39 66.45 ‘ 72.58 74.12 ‘ 98.74 4.76 92.23 35.44 87.04 48.45 ‘ 92.67 29.55 ‘

Proteus ViT-S/14  DINOv2 ViT-B/14 53.78 97.4 68.61 91.71 61.19 94.56 39.89 99.5 61.7 91.11 84.19 69.73 61.92 86.78
CosPress  ViT-S/14  DINOv2 ViT-B/14 65.75 82.98 81.24 64.71 73.5 73.84 97.31 12.27 92.77 32.95 88.72 41.71 92.93 28.98
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Table S17: Specialist models — near OOD detection. Comparison of performance on the OpenOOD
benchmark (Yang et al., [2022a)). The 1 means larger values are better and the | means smaller values are
better.

IDD Method Arch Teacher Pretraining dataset Near OOD Datasets Average
CIFAR-10 CIFAR-100 Tiny ImageNet

CIFAR-100 AUROCtT FPR| AUROCt FPR| AUROCt FPR| AUROCtT FPR|
Frozen DeiT ViT-Ti/16 RegNetY-16GF ImageNet 53.53 94.96 62.75 85.44 58.14 90.2
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 80.39 71.45 90.07 34.94 85.23 53.2
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 84.08 70.28 89.91 44.15 87.0 57.22
DeiT finetuned DeiT ViT-Ti/16 RegNetY-16GF ImageNet 83.91 61.04 90.98 44.29 87.45 52.66
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 85.45 56.76 90.34 47.36 87.9 52.06
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 86.7 56.45 92.35 39.37 89.52 47.91
CIFAR-10 DINOv2 ViT-S/14 87.97 56.05 91.83 29.61 89.9 42.83
Frozen ViT-Ti/16 RegNetY-16GF ImageNet, 50.88 94.08 63.15 84.75 57.01 89.42
ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 90.22 415 96.67 13.63 93.44 27.57
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 93.76 31.79 96.49 15.86 95.12 23.82
DeiT finetuned DeiT ViT-Ti/16 RegNetY-16GF ImageNet 96.5 16.34 97.08 12.52 96.79 14.43
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 96.15 16.57 97.24 10.62 96.69 13.6
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 96.76 15.94 97.33 12.02 97.05 13.98
DINOv2 ViT-S/14 94.08 29.27 97.59 10.28 95.83 19.77

Table S18: Specialist models — far OOD detection. Comparison of performance on the OpenOOD
benchmark (Yang et al., 2022a). The 1 means larger values are better and the | means smaller values are
better.

IDD Method Arch Teacher Pretraining dataset Far OOD Datasets Average
DTD MNIST SVHN Places365
CIFAR-100 AUROCT FPR| AUROCT FPR| AUROCt FPR| AUROCt FPR| AUROCt FPR|
Frozen DeiT ViT-Ti/16 RegNetY-16GF ImageNet, 14.97 100.0 71.86 73.77 43.35 93.18 54.57 83.06 46.19 87.5
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 33.09 99.89 97.21 11.01 76.96 87.71 98.22 7.18 76.37 51.45
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 44.46 98.56 95.78 18.94 86.17 67.34 97.39 12.91 80.95 49.44
DeiT finetuned  DeiT ViT-Ti/16 RegNetY-16GF ImageNet 74.07 82.86 85.18 62.99 95.81 24.57 91.87 43.29 86.73 53.43
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 83.41 68.51 87.49 56.64 96.5 21.0 92.08 37.52 89.87 45.92
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 79.51 67.44 90.24 48.05 96.12 22.84 92.27 37.61 89.53 43.98
CIFAR-10 DINOv2 ViT-S/14 42.46 99.8 96.25 15.68 7775 88.13 97.89 8.48 78.58 53.02
Frozen DeiT ViT-Ti/16 RegNetY-16GF ImageNet 17.03 100.0 71.36 73.15 42.03 92.25 57.74 80.58 47.04 86.49
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 95.24 30.79 99.17 3.54 89.13 60.24 99.97 0.18 95.87 23.69
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet — Target dataset 98.2 7.44 98.92 4.38 95.08 33.79 99.88 0.48 98.02 11.52
DeiT finetuned  DeiT ViT-Ti/16 RegNetY-16GF ImageNet 97.86 9.33 97.52 9.69 99.67 0.71 99.7 0.96 98.69 5.17
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 ImageNet 97.95 9.31 97.41 8.99 99.63 0.32 99.36 1.51 98.59 5.03
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 TImageNet — Target dataset 97.78 11.81 98.18 7.9 99.81 0.16 99.37 2.16 98.79 5.51
DINOv2 ViT-S/14 97.0 19.08 98.93 4.25 90.6 55.45 99.96 0.18 96.62 19.74
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C Ablation Studies

In this section we modify a number of hyperparameters and component choices for CosPress to investigate
how these impact performance. In the tables below the bold parameter sets are the default ones used
throughout the rest of the paper.

Table S19: Ablation study: weighting. Comparison of kNN performance on ImageNet-1K for CosPress
models trained with different weightings v for the dimensionality reduction component. The first row uses
the frozen gradient approach described in the paper.

Method Arch Teacher v kNN

CosPress  ViT-Ti/14 DINOv2 ViT-S/14 - 74.3
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 10 74.3
CosPress ViT-Ti/14 DINOv2 ViT-S/14 100 74.2

CosPress dimensionality reduction loss weighting. We consider the performance of weighting the
dimensionality reduction loss in Eq. @, rather than freezing the gradients of ¢ in the student loss. This
gives an alternative loss function

LCosPress(X; (rb? 0) = ’yﬁdim—red (Xa d)) + ‘Cstudent (X; 97 d)) (39)

where 7 is a weighting factor prioritises the dimensionality reduction loss when it is set to be greater than
one. Table [S19shows that the approach of weighting or freezing gradients leads to similar results.

Table S20: Ablation study: metric. Comparison of kNN performance on ImageNet-1K for CosPress
models trained with different metrics for the student loss.

Method Arch Teacher Loss Metric kNN
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 Cosine distance  74.3
CosPress ViT-Ti/14 DINOv2 ViT-S/14 MSE 74.2

CosPress student loss metric. Table considers the impact on performance of using different metrics
for the student loss Lggudent for Eq. . It is found that using a cosine distance loss leads to slightly better
performance in comparison to a mean squared error loss.

Table S21: Ablation study: temperature. Comparison of KNN performance on ImageNet-1K for Cos-
Press models trained with different sets of temperatures 7 for the dimensionality reduction loss.

Method Arch Teacher T kNN
CosPress  ViT-Ti/l4 DINOv2 ViT-S/14 [0.01,0.02,0.03,0.04, 0.05,0.06,0.07, 0.08,0.09,0.10]  74.3
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 [0.01] 74.1
CosPress  ViT-Ti/14 DINOv2 ViT-S/14 [0.10] 74.5
CosPress ViT-Ti/14 DINOv2 ViT-S/14 [0.01,0.10] 74.3

CosPress dimensionality reduction temperature parameters. Table shows the performance
impact of different sets of temperatures 7 in the dimensionality reduction loss for Eq. . It is found that
these values have a small impact on performance, with the best set being 7 = [0.10], which obtains slightly
better performance that the set of parameters chosen for the paper.
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