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Abstract

Hyperparameters are a critical factor in reliably training well-performing reinforce-
ment learning (RL) agents. Unfortunately, developing and evaluating automated
approaches for tuning such hyperparameters is both costly and time-consuming. As
a result, such approaches are often only evaluated on a single domain or algorithm,
making comparisons difficult and limiting insights into their generalizability. We
propose ARLBench, a benchmark for hyperparameter optimization (HPO) in RL
that allows comparisons of diverse HPO approaches while being highly efficient in
evaluation. To enable research into HPO in RL, even in settings with low compute
resources, we select a representative subset of HPO tasks spanning a variety of
algorithm and environment combinations. This selection allows for generating a
performance profile of an automated RL (AutoRL) method using only a fraction
of the compute previously necessary, enabling a broader range of researchers to
work on HPO in RL. With the extensive and large-scale dataset on hyperparameter
landscapes that our selection is based on, ARLBench is an efficient, flexible, and
future-oriented foundation for research on AutoRL. Both the benchmark and the
dataset are available at https://github.com/automl/arlbench.

1 Introduction

Deep Reinforcement Learning (RL) algorithms require careful configuration of many different design
decisions and hyperparameters to reliably work in practice [Farsang and Szegletes, 2021, Pislar
et al., 2022], such as learning rates [Gulde et al., 2020] or batch sizes [Obando-Ceron et al., 2023].
Automated reinforcement learning (AutoRL) [Parker-Holder et al., 2022], a sub-field of automated
machine learning (AutoML), makes these design decisions in a data-driven manner. In fact, recent
work has shown that such a data-driven approach offers the best way of navigating hyperparameters
in RL [Zhang et al., 2021, Eimer et al., 2023], due to the complex and changing hyperparameter
optimization landscapes encountered [Mohan et al., 2023].

Research on hyperparameter optimization (HPO) for RL has been gaining traction in recent
years [Jaderberg et al., 2017, Parker-Holder et al., 2020, Franke et al., 2021, Wan et al., 2022].
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Figure 1: Running time comparison for an HPO method of 32 RL runs using 10 seeds each on the
full environment set and our subsets between ARLBench and StableBaselines3 (SB3) [Raffin et al.,
2021]. This results in speedup factors due to JAX of 3.59 for PPO, 2.87 for DQN, and 5.78 for SAC
of ARLBench, compared to SB3 on the full set. The subset selection further decreases the running
time by a factor of 2.67 for PPO, 2.49 for DQN, and 2.0 for SAC. Comparing ARLBench on the
subset to SB3 on the full set, the total speedups are 9.6 for PPO, 7.14 for DQN, and 11.61 for SAC.
Running time comparisons for each environment category can be found in Appendix E. Note the bars
for some domains, especially on ARLBench, may be very small due to low running time.

While such approaches promise to streamline the application of RL by providing users with well-
performing hyperparameter configurations for their RL tasks, it is hard to discern their actual quality;
each HPO method is usually evaluated on a limited number of environments, combined with a
different HPO configuration space (see, e.g., the differences between Parker-Holder et al. [2020]
and Shala et al. [2024]). This inability to compare HPO approaches and AutoRL approaches more
broadly leads to a lack of clarity and, ultimately, a lack of adoption of an approach that shows great
promise in making RL overall more efficient and easier to apply.

One reason for the inconsistent evaluations in the current HPO literature is the wealth of RL algorithms
and environments, each with its own challenges. While some environments require the processing of
image observations [Bellemare et al., 2013, Cobbe et al., 2020], others focus more on finding the
optimal solutions in settings with sparse reward signals [Nikulin et al., 2023]. It is fundamentally
unclear which environment and algorithm combinations should be considered representative tasks for
the current scope of RL research and thus useful as evaluation settings for AutoRL approaches.

We focus on the following question: Which environments should we evaluate a given RL algorithm
on to obtain a reliable performance estimate of an AutoRL method? To answer it, we first implement
highly efficient and configurable versions of three popular RL algorithms: DQN [Mnih et al., 2015],
PPO [Schulman et al., 2017], and SAC [Haarnoja et al., 2018]. We subsequently conduct a large-scale
study across different environment domains (ALE games [Bellemare et al., 2017], Classic Control and
Box2D simulations [Brockman et al., 2016, Towers et al., 2023], Brax robot walkers [Freeman et al.,
2021], and grid-based exploration [Nikulin et al., 2023]) to generate hyperparameter landscapes for
these algorithms. This study, which we publish as a meta-dataset, allows us to assess the performance
of given hyperparameter configurations for each algorithm and environment.

Based on the scores, we follow the method proposed by Aitchison et al. [2023] to find the subset of en-
vironments with the highest capability for predicting the average performance across all environments
in order to model the RL task space. This subset thus matches the tasks the RL community cares about
better than previous work on HPO for RL, while reducing computational demands for evaluation.
This provides the research community with an empirically sound benchmark for HPO, which we dub
ARLBench. It is highly efficient, taking only 937 GPU hours to evaluate an HPO budget of 32 full
RL trainings for 10 runs each on all three algorithm subsets. StableBaselines3 [Raffin et al., 2021]
(SB3) on the full set of environments would take 8 163 GPU hours, resulting in average speedup
factors of 9.6 for PPO, 7.14 for DQN, and 11.61 for SAC as shown in Figure 1.

ARLBench is designed with current AutoRL and AutoML methods in mind; partial execution as used
in many contemporary HPO methods [Li et al., 2017, Awad et al., 2021, Lindauer et al., 2022] is
built into the benchmark structure just like dynamic optimization in arbitrary intervals, as, e.g., in
population-based training [Jaderberg et al., 2017] variations. Moreover, various training data from
ARLBench, including performance measures such as evaluation rewards and gradient history, can be
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used in adaptive HPO methods. ARLBench additionally supports large configuration spaces, making
most low-level design decisions and architectures configurable for each algorithm. This flexibility
and running time efficiency spawns a range of new insights into approaches to AutoRL.

In short, our key contributions are: (i) A highly efficient benchmark for HPO in RL, which natively
supports diverse categories of HPO approaches; (ii) an environment subset selection for standardized
comparisons that covers the RL task space, both (i) and (ii) together improving computational feasi-
bility by an order of magnitude; (iii) a set of performance data on our benchmark with over 100 000
total runs spanning various RL algorithms, environments, seeds, and configurations (equivalent to
32 588 GPU hours).

2 Related Work: Benchmarking HPO for RL

Several works study the impact that such hyperparameter settings have on RL algorithms [Henderson
et al., 2018, Andrychowicz et al., 2021, Obando-Ceron and Castro, 2021, Obando-Ceron et al., 2023]
and show that they mostly do not transfer across environments [Ceron et al., 2024]. Automated
configuration of these algorithms, on the other hand, is not as common, especially compared to
the body of work in AutoML [Hutter et al., 2019]. Previous work has shown, however, that HPO
approaches can find high-performing hyperparameter configurations quite efficiently [Xu et al., 2018,
Parker-Holder et al., 2020, Zhang et al., 2021, Franke et al., 2021, Flennerhag et al., 2022, Wan et al.,
2022]. These approaches range from standard HPO, including multi-fidelity optimization [Falkner
et al., 2018, Awad et al., 2021], and algorithm configuration tools from AutoML [Schede et al., 2022,
Dierkes et al., 2024] to novel strategies aiming to adapt to the dynamic nature of RL algorithms.
Most popular is the population-based training (PBT) line of work [Jaderberg et al., 2017, Wan et al.,
2022], which evolves hyperparameter schedules via a population of agents, resulting in a dynamic
configuration strategy. For adaptive dynamic HPO, second-order optimization can be used to learn
hyperparameter schedules online [Xu et al., 2018, Flennerhag et al., 2022]. Most of these, however,
are not directly comparable due to different algorithms, environments, and configuration spaces in
their experiments, making it difficult to find clear state-of-the-art and thus promising directions for
future work [Eimer et al., 2023].

Besides this lack of comparisons in HPO for RL, the cost of training and evaluation is a significant
factor hindering progress in the field. Tabular benchmarks [Ying et al., 2019, Klein and Hutter, 2019]
offer a low-cost option when benchmarking HPO. Such benchmarks are essentially databases, from
which the results of running a given algorithm are looked up rather than performing actual runs.
Currently, the only benchmark library for HPO in RL is a tabular benchmark: HPO-RL-Bench [Shala
et al., 2024]. It contains results for five RL algorithms on 22 different environments with three
random seeds each. HPO-RL-Bench offers significantly reduced configuration spaces of only up to
three hyperparameters, narrowed down from typically larger spaces of 10 to 13 hyperparameters,
e.g., in ARLBench and SB3 [Raffin et al., 2021], and is based solely on a pre-computed dataset. Its
dynamic option is further reduced to only two hyperparameters, each with three possible values at
two switching points. We believe, therefore, that HPO-RL-Bench and ARLBench will fulfill different
roles: HPO-RL-Bench can provide zero-cost evaluations of expensive domains, while for ARLBench,
we prioritized flexibility in what and when to configure while still allowing fast evaluations.

Benchmarks are essential in the broader AutoML domain; Benchmarks such as
HPOBench [Eggensperger et al., 2021], HPO-B [Pineda et al., 2021] and YAHPO-Gym [Pfisterer
et al., 2022] have been contributing to research progress in HPO. In contrast, ARLBench focuses
exclusively on RL, a domain that has only been included with a single toy scenario in HPOBench
so far. Given that Mohan et al. [2023] have shown that the RL HPO landscapes do not seem
as benign as Pushak and Hoos [2018] describe the HPO landscapes for supervised learning
overall (see Appendix H.1), it is necessary to offer a dedicated RL benchmark with a diverse
task set. The NAS-Bench benchmarks for neural architecture search (NAS) are examples of
benchmarking supporting efficient research: NAS-Bench-101 [Ying et al., 2019] is a tabular
benchmark, which NAS-Bench-201 [Dong and Yang, 2020] extends to a larger configuration space,
and NAS-Bench-301 [Zela et al., 2022] uses this data to propose surrogate models [Eggensperger
et al., 2014, Klein et al., 2019] that can predict performance even for unseen architectures. Building
on these, several dozens of specialized NAS benchmarks have been developed [Mehta et al., 2022].
We expect that benchmarking HPO in RL will similarly become a focal point within the community
towards advancing the configuration of RL algorithms.

3



Figure 2: Overview of the ARLBench framework. The AutoRL environment, providing a Gymnasium-
like interface [Towers et al., 2023], is the interaction point for HPO methods. At optimization step t,
the optimizer selects a hyperparameter configuration λt and a training budget (number of steps) bt.
Then, the RL algorithm is trained using the given configuration and budget. As a result, the AutoRL
environment returns the training result in the form of optimization objectives ot, e.g., the evaluation
return and runtime, and state features xt, e.g., gradients during training.

3 Implementing ARLBench

In this section, we discuss the implementation of the ARLBench framework. Notably, we elaborate on
essential considerations for the benchmark and its two main components: the AutoRL Environment
HPO interface and the RL algorithm implementations.

3.1 Benchmark Desiderata for ARLBench

Given the limitations of HPO-RL-Bench [Shala et al., 2024] compared to the kinds of methods
we see in HPO for RL, our three main priorities in constructing ARLBench are (i) enabling the
large configuration spaces required for RL, (ii) prioritizing fast execution times, and (iii) supporting
dynamic and reactive hyperparameter schedules.

Configuration Space Size. Eimer et al. [2023] have shown that most hyperparameters contribute to
the training success of RL algorithms. Furthermore, our knowledge of how hyperparameters act on
RL algorithms continues to expand, most recently, e.g., by showing the importance of batch sizes in
certain RL settings [Obando-Ceron et al., 2023]. Thus, limiting the configurability of a benchmark
will lead to the insights we gather outpacing the benchmarking capabilities of the community.
Therefore, we enable large and flexible configuration spaces for all algorithms. To achieve this,
however, we cannot simply extend the tabular HPO-RL-Bench, as the computational expense required
for larger configuration spaces would grow exponentially in the number of hyperparameters. A
long-term solution would be to train surrogate models to predict performance. However, as the data
requirements for reliable and dynamic surrogates in RL are presently unclear, we focus on building a
good online benchmark first and use it to generate preliminary landscapes. We hope this approach
allows the building of better RL-specific surrogate models in future work.

Running Time. An alternative to using surrogate models is building an efficient way of evaluating
hyperparameter configurations in RL. JAX [Bradbury et al., 2018] enables significant efficiency gains,
leading to RL agents training on many domains in mere minutes or seconds [Lu, 2022, Toledo, 2024].
We exploit this while providing RL algorithms that are easy to configure for commonly used HPO
methods, including multi-objective and multi-fidelity optimization.

Dynamic Configuration. Finally, we aim to enable dynamic configurations that allow hyperpa-
rameter settings to be adjusted during a single RL training session, recognizing that the optimal
hyperparameters can evolve as training progresses [Mohan et al., 2023]. One way of doing this is
by providing checkpoint capabilities that support the seamless continuation of RL training. Most
population-based methods, for example, find schedules with 10–20 hyperparameter changes during a
single training run [Jaderberg et al., 2017, Parker-Holder et al., 2022, Wan et al., 2022], while other
methods, such as hyperparameter adaptation via meta-gradients, can configure much more often and
even require information about the current algorithm state.
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3.2 The HPO Interface: The AutoRL Environment

As shown in Figure 2, the AutoRL Environment is the main building block of ARLBench and connects
all the critical parts for HPO in RL. It provides a powerful, flexible, and dynamic interface to support
various HPO methods in an interface that, for ease of use, functions similarly to Gymnasium [Towers
et al., 2023]. During the optimization, the HPO method selects a hyperparameter configuration λt

and training budget bt for the current optimization step t. Given these, the AutoRL Environment
sets up the algorithm and RL environment and performs the actual RL training. In addition to an
evaluation reward, data such as gradients and losses are collected during training. Depending on
the user’s preferences, the AutoRL Environment then extracts optimization objectives, such as the
average evaluation reward, training running time, or carbon emissions [Courty et al., 2024], as well
as optional information on the RL algorithm’s internal state, e.g., the variance of the gradients.

The AutoRL Environment supports static and dynamic HPO methods. While static methods start the
inner RL training from scratch for each configuration, dynamic approaches can keep the training state,
which includes the neural network parameters, optimizer state, and replay buffer. To support the latter,
we integrate an easy-to-use yet powerful checkpointing mechanism. This enables HPO methods to
restore, duplicate, or checkpoint the training state at any point during the dynamic optimization.

3.3 RL Training

To address the computational efficiency of RL algorithms, we implement the entire training pipeline
using JAX [Bradbury et al., 2018]. We re-implement DQN [Mnih et al., 2015], PPO [Schulman
et al., 2017], and SAC [Haarnoja et al., 2018] in order to make them highly configurable, enable
dynamic execution, and ensure compatibility with different target environments. Wherever we use
code from external sources (Freeman et al. [2021], Lu [2022], Toledo et al. [2023]; licensed under
Apache-2.0), it is referenced in the code. We compare our implementation to SB3 [Raffin et al.,
2021] in Appendix E and find very similar learning curves for the speedups in Figure 1. We support a
range of environment frameworks, particularly Brax [Freeman et al., 2021], Gymnax [Lange, 2022],
Gymnasium [Towers et al., 2023], Envpool [Weng et al., 2022], and XLand [Nikulin et al., 2023].
This results in a broad coverage of RL domains, including robotic simulations, grid worlds, and
video games, such as the ALE [Bellemare et al., 2013]. We ensure compatibility with these different
environments and their APIs with our own ARLBench Environment class, allowing for future updates
and continued support of changing interfaces in RL.

4 Finding Representative Benchmarking Settings

Highly efficient implementations are crucial for efficient benchmarking of HPO methods for RL.
However, they represent just a fraction of the overall picture: prior work has focused primarily on a
single-task domain, due to a lack of insight regarding which RL domains to target. To tackle this
issue, we aim to find a subset of RL environments representative of the broader RL field. First,
we study the hyperparameter landscapes for a large set of environments using random sampling of
configurations. To ensure the feasibility of our experiments in terms of computational resources, we
select a representative subset of environments from each domain. In particular, we select a total of
21 environments: five ALE games (Atari-5), three Box2D environments, four Brax walkers, five
classic control environments, and four XLand environments (see Appendix D). Then, we use the
Atari-5 [Aitchison et al., 2023] method to find a set of environments for testing HPO approaches in
RL. Ultimately, we validate that this subset is representative of the HPO landscape of all RL tasks we
consider. In total, we spent 10 105 h on CPUs and 32 588 h on GPUs (see Appendix I).

4.1 Data Collection

For each combination of algorithm and environment, we aim to estimate the hyperparameter landscape,
i.e., the relationship between a certain hyperparameter configuration and its performance. Therefore,
we run an RL algorithm on 256 Sobol-sampled configurations [Sobol, 1967]. With configuration
spaces ranging from 10 to 13 hyperparameters, this is roughly equivalent to the search space covering
initial design recommendations of Jones et al. [1998]. We run each configuration for 10 random
seeds. The performance is measured by evaluating the final policy induced by the configuration on a
dedicated evaluation environment with a different random seed. We collect 128 episodes and calculate
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Figure 3: Comparison of the Spearman correlation for different subset sizes with confidence intervals
from 5-fold cross-validation on the configurations.

the average cumulative reward. This dataset can be found on GitHub as well as on Huggingface:
https://huggingface.co/datasets/autorl-org/arlbench.

4.2 Subset Selection

Based on the collected evaluation rewards, we aim to find a subset of environments on which to
evaluate an AutoRL method. Due to discrete and continuous action spaces, the algorithms differ in
the environments they are compatible with. Therefore, we perform this selection for each algorithm
individually. The set of environments for PPO contains all 21 evaluated environments, while DQN is
limited to discrete action spaces (13 environments), and SAC only supports continuous action spaces
(8 environments). The full sets of environments per algorithm are listed in Appendix D. Additional
details on the subset selection are stated in Appendix G.1.

Finding an optimal subset. For selecting an optimal subset, we use the method proposed by Aitchi-
son et al. [2023]. Let Λ be the set of hyperparameter configurations for an algorithm and E the
corresponding set of environments. For each evaluated hyperparameter configuration λ ∈ Λ and
environment e ∈ E , we are given a performance score peλ. We define pEλ := 1

|E| ·
∑

e∈E p
e
λ as the

average score of a configuration λ across all environments. Given a subset of environments I ⊂ E of
size C ∈ N, we use a linear regression model f to predict pEλ from the scores peλ for all e ∈ I, i.e.,
p̂Eλ := f(pe1λ , · · · , peCλ ). An optimal subset I∗ of size C is defined as

I∗ ∈ argmin
I={e1,··· ,eC}⊂E

d(p̂E , pE) with p̂E = (p̂Eλ)λ∈Λ and p̂Eλ = f(pe1λ , · · · , peCλ ), (1)

where d is a distance metric between the predicted and target hyperparameter landscapes, i.e., the
vector of predicted scores p̂E = (p̂Eλ)λ∈Λ and the vector of target scores pE = (pEλ)λ∈Λ spanning
across the configurations λ ∈ Λ. The performance attained on the subset then provides the best
approximation of the performance across all environments for subsets of size C. Note that the
environment selection does not take HPO behavior into account. We could perform the subselection
to approximate HPO results directly. However, the performance discrepancies we see for HPO
methods in the literature [Eimer et al., 2023, Shala et al., 2024] suggest that we do not yet know how
to best apply HPO methods to RL. Therefore, we currently lack reliable methodologies to obtain the
necessary data allowing us to infer direct relationships between environments and performance of
HPO methods.

Selection Strategy. Although reward scales vary drastically across environments, we lack the human
expert scores [Aitchison et al., 2023] to normalize rewards per environment. Instead, we apply a rank-
based normalization method to obtain the performances peλ. For an environment e, we train policies
using each hyperparameter configuration λ across 10 different random seeds and evaluate each
resulting policy to obtain its mean return. The performance peλ of a configuration λ is then determined
by the average rank with respect to the mean return over its 10 random seeds when compared to all
other configurations within the same environment e. Now, we can fit a linear model to predict the
average ranks across the full set, given the ranks on the subset. We use the Spearman correlation
coefficient ρp as a similarity metric, leading to d(p̂Eλ, p

E
λ) := 1−ρp(p̂

E
λ, p

E
λ) in Equation 1. Our choice

of ρp is motivated by our interest in capturing relationships between two return distributions robustly
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Figure 4: Selected set of representative environments per algorithm. For PPO, the discrete variant of
LunarLander was selected.

Figure 5: Comparison of the return distributions over hyperparameter configurations of PPO on all 21
environments (left) and the selected subset of 5 environments (right). For the same comparisons for
DQN and SAC, see Appendix H.2.

by focusing on relative rankings rather than exact values. Figure 3 shows the Spearman correlation
coefficient for the top three subsets of different sizes with confidence intervals computed using 5-fold
cross-validation on the configurations. The results are fairly consistent for all algorithms except for
very small subsets for PPO. Furthermore, they exhibit a high correlation to the full environment
set, even when considering only a few environments. Based on these correlations, we select five
environments for PPO and DQN from their respective full sets of 21 and 13 environments. The
selected PPO subset shows a correlation of 0.95, while the DQN subset has a correlation of 0.92. For
SAC, we select a subset of four environments, achieving a correlation of 0.94 with the full set of
eight environments. Further details can be found in Figure 4 and Appendix G.3. A single training on
all environments in all three subsets takes around 2.93 GPU hours, compared to 7.12 GPU hours for
the full set of environments, where the ALE environments are limited to Atari-5 in the full set.

4.3 Validating ARLBench

Having selected a subset per algorithm, we still need to ensure this subset is representative of the full
environment set from an HPO perspective. To investigate this, we examine (i) the HPO landscape, in
particular the return distributions, budget correlations, and hyperparameter importance, and (ii) the
performance of different HPO optimizers on the subset and full environment set. For most of the
following analysis, we use DeepCAVE [Sass et al., 2022], as a monitoring package for HPO. We use
95% confidence intervals in our reported results as suggested by Agarwal et al. [2021].

Comparing HPO Landscapes. We first analyze the differences in HPO landscapes between the full
environment set and our subset. This is especially important since we do not use HPO performance
data for the selection but still want to ensure that HPO approaches will encounter the same overall
landscape characteristics on the subsets as on all benchmarks. We argue that this yields the first
insights into the consistency of HPO performance on the subset and full set of environments. To see
if the overall RL algorithm performance changes, Figure 5 shows the distribution of returns in our
random samples of PPO, normalized per domain by the performance scores seen in our pre-study.
For the Box2D and Brax environments, we set fixed minimum scores of -200 and -2000, respectively,
to mitigate artificially low performance caused by numerical instabilities. We see that the subset
includes a diverse selection of return distributions: from a large bias of configurations towards the
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PPO Subset PPO DQN Subset DQN SAC Subset SAC

#HPs ≥ 5% 2.2 1.2 2.54 2.75 1.86 1.25
#Interactions ≥ 5% 1.62 2.2 1.3 1.2 1.0 1.0

Table 1: Number of hyperparameters and hyperparameter interactions with over 5% importance on
the full set and subset for each algorithm.

lower end of the performance spectrum (in BattleZone, LunarLander, and Humanoid), an even spread
biased towards higher performance (in EmptyRandom) to a dense concentration of performances
towards the middle (in Phoenix). Most environment domains show a similar trend to BattleZone,
LunarLander, and EmptyRandom: there is a wide spread of configurations, with a bias towards low
performances. Our subset thus captures this dominant trend as well as the tendency of XLand and
Classic Control for a more even performance distribution. The Phoenix environment reflects the
opposite behavior, ensuring that similar environments outside of the typical performance distribution
are included in our subset. These different patterns in performance with regard to hyperparameter
settings suggest that the selected subset is likely to test these variations in HPO behavior.

Additionally, for the environment domains, the performance at different points in training is similarly
correlated with the final performance, see Appendix H.4 for the full analysis. This shows that a
large proportion of the RL algorithms’ behavior regarding their hyperparameters is preserved in the
subset selection (see Appendix H.2 for full results). In our fANOVA analysis [Hutter et al., 2014]
(see Appendix H.3 for full results), we verify that the number of important hyperparameters stays
consistent. For most algorithm-environment combinations, only two to four hyperparameters have an
importance of at least 5%, though the specific important ones differ, similar to common observations
in HPO [Bergstra and Bengio, 2012]. Table 1 shows that the number of important hyperparameters
and their interactions remain consistent in the subset, with the highest deviation being between 2.2
hyperparameters above 5% importance on average for PPO on the whole environment set and 1.2 on
the subset. Our results, along with the observed similarities in return distributions, suggest that the
main properties of the HPO landscapes are preserved in our subselection.

Figure 6: Comparison of HPO methods’ scores on the subset and full environment set (higher is
better). Top: Performance distributions over optimizer runs and environments. Medians and means
are visualized using black and dotted gray lines, respectively. Bottom: HPO anytime performance
with 95% confidence intervals. See Appendices G.3 for PPO and SAC , and J for details. We note
that we do not consider inter-quartile means to prevent disregarding environments (top), especially
since we are using only three optimizer runs (bottom).

Comparing HPO Optimizers. To further validate the subset selection, we run four HPO optimizers
with a budget of 32 full training runs each for all algorithms and environments. We use five runs, i.e.,
random seeds for each HPO optimizer and each configuration is evaluated on three random seeds,
following recommendations by Eimer et al. [2023]. We believe five seeds are a good compromise
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to obtain valid insights while accounting for the associated high computational demand. While
statistically significant insights might require many more seeds, we believe five seeds are sufficient for
obtaining preliminary insights into the compatibility of the full set of environments and our chosen
subsets. To reflect the current range of HPO tools for RL, we select random search (RS) [Bergstra and
Bengio, 2012], PBT [Jaderberg et al., 2017], the Bayesian optimization tool SMAC [Lindauer et al.,
2022] as well as SMAC in combination with the Hyperband scheduler [Li et al., 2017] (SMAC+HB).
We compare the results on the subsets and the full set of environments.

Figure 7: The hyperparameter landscape
of PPO on Ant. Lighter is better, (mean
performance over 10 seeds). Similar con-
figurations perform very differently: high
returns occur next to almost failure modes.

Figure 6 shows the HPO optimizer scores, normalized per
domain by the performances seen in our pre-study, for
each algorithm on the subset and all environments. The
overall performance of each HPO optimizer is represented
by the mean performance across all environments in the
respective set of environments. We observe that the scores
are distributed similarly between the full set and the subset
on each algorithm for the final scores. Median and mean
scores for all algorithms closely align with the respective
scores of the subsets in terms of ranking.

For HPO anytime performance, the relative order remains
consistent across both sets for RS, PBT, and SMAC+HB,
with the only major difference that RS scores higher on the
complete set earlier on; This, however, is due to merely
a slight difference in scores, which is still within the con-
fidence interval of RS. Our analysis shows that overall,
the best mean HPO optimizer performance is achieved by

SMAC (without HB) and RS. Although the confidence intervals overlap, the overall trends we observe
in the subsets and full sets of environments stay consistent. In previous work [Eimer et al., 2023, Shala
et al., 2024], multi-fidelity optimizers were shown to perform quite well, and PBT performed worst
overall. Here, multi-fidelity optimization still outperforms PBT for DQN, but black-box optimization
with SMAC without HB and RS overperform in comparison. This is likely due to the wider variety of
environment domains we consider, some of which might not be suitable for the partial evaluations
of multi-fidelity approaches (e.g. XLand). Another important factor is the inclusion of SAC where
RS is especially strong. Even for PPO and DQN, however, it is striking how closely SMAC as a
state-of-the-art HPO optimizer compares to RS, which typically performs worse than SMAC and
other state-of-the-art HPO methods in standard supervised ML settings [Turner et al., 2021, Lindauer
et al., 2022].

Looking at a partial hyperparameter landscape in Figure 7, we see a possible reason: this is far from
the benign HPO landscapes Pushak and Hoos [2018] found for supervised learning. This shows
that simply applying common HPO packages will not be sufficient to solve HPO for all RL tasks; a
dedicated, specific effort is needed. We present further landscape plots in Appendix H.1, showing the
contrast between benign and adverse landscapes we found during our experiments.

5 Limitations and Future Work

Due to the dimensions of complexity involved in this topic, including the computational expense and
wealth of RL algorithms and environments, ARLBench has some limitations. First, we manually
selected the underlying set of algorithms and environments from those used in the RL community
at large. This gave rise to a focus on model-free learning in combination with base versions of
PPO, DQN, and SAC. In the future, we will cover extensions to these algorithms, such as advanced
types of replay strategies [Kapturowski et al., 2019], multi-step or exploration strategies [Amin
et al., 2021, Pislar et al., 2022]. Additionally, we would like to enable ARLBench to evaluate policy
generalization, ensuring that optimized policies perform well in previously unseen environments [Kirk
et al., 2023, Benjamins et al., 2023, Mohan et al., 2024, Benjamins et al., 2024]. Further research on
hyperparameter landscapes in RL [Mohan et al., 2023] can inform useful future additions.

Using a selected subset reduces computational costs but may increase variance due to the smaller
sample size, requiring careful experimental design to ensure statistically significant results. Addi-
tionally, the selection of subsets could also consider training time, aiming for the most informative

9



and the least costly subsets. Currently, we prioritize higher validation accuracy over reduced running
time, even if one environment is slightly less important but significantly faster.

The computational cost itself remains a limitation of the benchmark. While our setting is much
cheaper to evaluate and enables many more research groups to do thorough research on AutoRL,
it is still by no means as cheap as surrogate or table lookups would be. Our highest priority is the
flexibility of large configuration spaces and dynamic configuration, representing real-world HPO
applications of RL; we do not see purely tabular benchmarks as an alternative in this exploratory
phase of the field. Instead, we believe surrogate models [Eggensperger et al., 2015, 2018, Zela et al.,
2022] will be crucial for more efficient HPO in RL, though modeling the dynamic nature of HPO in
surrogates remains an open challenge. Our published meta-dataset, the largest one for AutoRL to
date, enables the first steps towards such dynamic surrogates.

Furthermore, there are additional elements of AutoRL research our benchmark does not yet fully
support. We designed it to be future-oriented, with a benchmark structure that can, in principle,
support second-order optimization methods, learning based on internal algorithmic aspects, such as
losses and activation functions, or architecture search. However, we believe integrating these aspects
into ARLBench first requires research into how state-based HPO in RL and NAS for RL should
be approached. The same holds for concepts such as discovering RL algorithms [Co-Reyes et al.,
2021, Jackson et al., 2024], where no standard interface exists for evaluating a learned algorithm.
Nonetheless, our environment subsets can aid in the evaluation of these approaches. Integrating
AutoRL for environment components, such as environment design [Jiang et al., 2021, Parker-Holder
et al., 2022], into ARLBench poses a challenge because most RL environments do not inherently
support these approaches. Improving the compatibility of the environment frameworks in ARLBench
will facilitate the integration of these methods into the benchmark.

6 Conclusion

We propose a benchmark for HPO in RL that supports this emerging field of research by (i) providing
a general, easily integrable and extensible way of evaluating various paradigms for HPO in RL; (ii) re-
ducing computational costs with highly efficient implementations, while expanding the evaluation
coverage of HPO methods by selecting informative environment subsets, achieving over 16 times
the efficiency compared to standard frameworks; (iii) publishing a large set of performance data for
future use in AutoRL research. Such a concerted effort is necessary to help the community work in
a common direction and democratize AutoRL as a research field. While its set of algorithms and
environments will evolve within the coming years, ARLBench is built to allow for easy extension,
e.g., to AutoML paradigms such as NAS, which are currently underrepresented in RL. Therefore,
ARLBench will catalyze the development of increasingly efficient HPO methods for RL that perform
well across algorithms and environments.
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A Dataset Description

Our dataset is hosted on HuggingFace for easy and continued access: https://huggingface.co/
datasets/autorl-org/arlbench. See the page there for in-depth information on data value and
distributions. The croissant meta-data can also be found here: https://github.com/automl/
arlbench/blob/experiments/croissant_metadata.json. Everything needed to reproduce
the data can be found in the ’experiments’ branch of our GitHub repository: https://github.com/
automl/arlbench/tree/experiments It is intended to be used in continued research on AutoRL,
e.g., by using it in warm-starting HPO optimizers, proposing novel analysis methods or meta-learning
on it. The dataset is in CSV format, making it easily readable. We license it under the BSD-3 license.

B Reproducing Our Results

Below we describe our hardware setup and steps for reproducing our experiments.

B.1 Execution Environment

To conduct the experiments detailed in this paper, we pooled various computing resources. Below,
we describe the different hardware setups used for CPU and GPU-based training.

CPU Jobs. Compute nodes with CPUs of type AMD Milan 7763, 2.45 GHz, each 2x 64 cores,
128GB main memory

GPU Jobs.

V100 Cluster: Compute nodes with CPUs of type Intel Xeon Platinum 8160, 2.1 GHz, each 2x 24
cores, 180GB main memory. Each node comes with 16 GPUs of type NVIDIA V100-SXM2
with NVLink and 32 GB HBM2, 5120 CUDA cores, 640 Tensor cores, 128 GB main
memory

A100 Cluster: Compute nodes with CPUs of type AMD Milan 7763, 2.45 GHz, each 2x 64 cores,
126GB main memory. Each node comes with 1 GPU of type NVIDIA A100 with NVLink
and 40 GB HBM2, 6,912 CUDA cores, 432 Tensor cores, 16 GB main memory

H100 Cluster: Compute nodes with CPUs of type Intel Xeon 8468 Sapphire, 2.1 GHz, each 2x 48
cores, 512GB main memory. Each node comes with 4 GPUs of type NVIDIA H100 with
NVLink and 96 GB HBM2e, 16,896 CUDA cores, 528 Tensor cores, 512 GB main memory

B.2 Experiment Code

We provide code and runscripts for all of our dependencies in the ’experiments’ branch of our
repository: https://github.com/automl/arlbench/tree/experiments.

All scripts relating to the dataset creation and HPO optimizer runs are in ’runscripts’. For the
performance over time plots, see ’runtime_comparison’. ’rs_data_analysis’ contains the analysis
of the HPO landscapes. For the subset selection, see ’subset_selection’. The subset validation and
performance over time plots for the HPO optimizers can be found in ’subset_validation’. Additionally,
we provide all of our raw data in ’results_finished’ with ’results_combined’ containing dataset
aggregates. Instructions for the usage of all of these can be found in the ReadMe file of that branch.

C Maintenance Plan

Following [Eggensperger et al., 2021] and [Pfisterer et al., 2022], we provide a maintenance plan
for the future of ARLBench. For our feature roadmap, see: https://github.com/orgs/automl/
projects/17

Who Maintains. ARLBench is being developed and maintained as a cooperation between the
Institute of AI at the Leibniz University of Hannover and the chair for AI Methodology at the RWTH
Aachen University.
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Contact. Improvement requests, issues and questions can be asked via issue in our GitHub repository:
https://github.com/automl/arlbench. The contact e-mails we provide can be used for the
same purpose.

Errata. There are no errata.

Library Updates. We plan on updating the library with new features, specifically more extensive state
features, more algorithms and added environment frameworks. We also welcome updates via external
pull requests which we will test and integrate into ARLBench. Changes will be communicated via
the changelog of our GitHub and PyPI releases.

Support for Older Versions. Older versions of ARLBench will continue to be available on PyPI and
GitHub, but we will only provide limited support.

Contributions. Contributions to ARLBench from external parties are welcome in any form, be
extensions to other environment frameworks, added algorithms or extensions of the core interface. We
describe the contribution process in our documentation: https://automl.github.io/arlbench/
main/CONTRIBUTING.html. These contributions are managed via GitHub pull requests.

Dependencies. All of our dependencies are listed here in the GitHub repository: https://github.
com/automl/arlbench/blob/main/pyproject.toml.

D Overview of all Environments

Tables 2, 3 and 4 provide an overview of all environments we executed for a given RL algorithm,
including the underlying framework used and the number of environment steps for training.

Category Framework Name #timesteps

ALE Envpool BattleZone-v5 107

ALE Envpool DoubleDunk-v5 107

ALE Envpool Phoenix-v5 107

ALE Envpool Qbert-v5 107

ALE Envpool NameThisGame-v5 107

Box2D Envpool LunarLander-v2 106

Box2D Envpool LunarLanderContinuous-v2 106

Box2D Envpool BipedalWalker-v3 106

Walker Brax Ant 5 · 107

Walker Brax HalfCheetah 5 · 107

Walker Brax Hopper 5 · 107

Walker Brax Humanoid 5 · 107

Classic Control Gymnax Acrobot-v1 106

Classic Control Gymnax CartPole-v1 105

Classic Control Gymnax MountainCarContinuous-v0 2 · 104

Classic Control Gymnax MountainCar-v0 106

Classic Control Gymnax Pendulum-v1 105

xland XLand-xland xland-DoorKey-5x5 106

xland XLand-xland xland-EmptyRandom-5x5 105

xland XLand-xland xland-FourRooms 106

xland XLand-xland xland-Unlock 106

Table 2: Environments for PPO.
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Category Framework Name #timesteps

ALE Envpool BattleZone-v5 107

ALE Envpool DoubleDunk-v5 107

ALE Envpool Phoenix-v5 107

ALE Envpool Qbert-v5 107

ALE Envpool NameThisGame-v5 107

Box2D Envpool LunarLander-v2 106

Classic Control Gymnax Acrobot-v1 105

Classic Control Gymnax CartPole-v1 5 · 104

Classic Control Gymnax MountainCar-v0 12 · 104

xland XLand-xland xland-DoorKey-5x5 106

xland XLand-xland xland-EmptyRandom-5x5 105

xland XLand-xland xland-FourRooms 106

xland XLand-xland xland-Unlock 106

Table 3: Environments for DQN.

Category Framework Name #timesteps

Box2D Envpool LunarLanderContinuous-v2 5 · 105

Box2D Envpool BipedalWalker-v2 5 · 105

Walker Brax Ant 5 · 106

Walker Brax HalfCheetah 5 · 106

Walker Brax Hopper 5 · 106

Walker Brax Humanoid 5 · 106

Classic Control Gymnax MountainCarContinuous-v0 5 · 104

Classic Control Gymnax Pendulum-v1 2 · 104

Table 4: Environments for SAC.

E Performance Comparisons with Other RL Frameworks

To validate the correctness of our implementations beyond unit testing, we compare their performance
on a range of environments to established RL frameworks in terms of reward achieved and running
time. Additionally, running time comparisons for each environment category are shown in Figures 8,
9, 10, 11, and12.

Figure 13 compares the resulting learning curves between ARLBench, SB3 and the Brax default
agent. We use the Brax agent instead of SB3 since SB3 performed significantly worse than we
expected. In most of our tests we observed very similar behavior with the other framworks and
ARLBench outperforming the other two times and showing comparable learning curves for all
other experiments. In the case of DQN, where SB3 performed better on CartPole and worse on
Pong, SB3’s results look noisy, possibly causing this discrepancy in both directions. SB3 also
outperforms ARLbench on Pendulum, though this difference is fairly slight. For PPO on Ant,
ARLBench performs quite a bit better than the Brax default agent, though their performances of SAC
are the same. Inconsistencies in learning curves can be due to differences in the implementations of
algorithms1 and environments [Voelcker et al., 2024]. Overall, this shows that our algorithms perform
on par with other commonly used implementations.

1https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
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Figure 8: Running time comparison for an HPO method of 32 RL runs, using 10 seeds each on the full
environment set and our subsets between ARLBench and SB3 for ALE. JAX-related speedup factors
are 3.21 for PPO and 2.83 for DQN. Total speedup factors of the ARLBench subset compared to the
full set of environments in SB3 are 8.03 for PPO and 7.08 for DQN. Note: As ALE environments
have discrete action spaces, SAC is left out in this figure.

Figure 9: Running time comparison for an HPO method of 32 RL runs, using 10 seeds each on the
full environment set and our subsets between ARLBench and SB3 for Box2D. JAX-related speedup
factors are 1.97 for PPO, 2.04 for DQN, and 6.64 for SAC. Total speedup factors of the ARLBench
subset compared to the full set of environments in SB3 are 5.92 for PPO and 13.27 for SAC. As no
Box2D environment is part of the DQN subset, there is no total speedup factor for DQN.

Figure 10: Running time comparison for an HPO method of 32 RL runs, using 10 seeds each on the
full environment set and our subsets between ARLBench and SB3 for Classic Control. JAX-related
speedup factors are 4.72 for PPO, 1.89 for DQN, and 6.10 for SAC. Total speedup factors of the
ARLBench subset compared to the full set of environments in SB3 are 5.68 for DQN and 12.2 for
SAC. As no Classic Control environment are part of the PPO subset, there is no total speedup factor
for PPO.
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Figure 11: Running time comparison for an HPO method of 32 RL runs, using 10 seeds each on the
full environment set and our subsets between ARLBench and SB3 for Brax/MuJoCo. JAX-related
speedup factors are 5.4 for PPO and 5.64 for SAC. Total speedup factors of the ARLBench subset
compared to the full set of environments in SB3 are 21.62 for PPO, and 11.28 for SAC. Note: As
MuJoCo environments have continuious action spaces DQN is left out in this figure.

Figure 12: Running time comparison for an HPO method of 32 RL runs, using 10 seeds each on
the full environment set and our subsets between ARLBench and SB3 for XLand. JAX-related
speedup factors are 10.02 for PPO and 3.72 for DQN. Total speedup factors of the ARLBench subset
compared to the full set of environments in SB3 are 40.07 for PPO and 7.42 for DQN. Note: As ALE
environments have discrete action spaces SAC is left out in this figure.
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Figure 13: Performance comparisons of ARLBench and the Brax default agent, StableBaselines3 [Raf-
fin et al., 2021]

Table 5 show the speedups we achieve in terms of running time over StableBaselines3 (SB3) [Raffin
et al., 2021] on all subsets while Tables 6, 7 and 8 list the same for each environment individually.
As already discussed, we see a consistently large speedup, most pronounced for the Brax walkers
with a factor of 8.57 for PPO and 10.67 for SAC. The lowest speedups we observe are still close to a
factor of 2: 1.89 for DQN CartPole as well as 1.91 and 1.97 respectively for PPO LunarLander and
LunarLanderContinuous.

Algorithm Set ARLBench SB3 Speedup

PPO All 2h 7.18h 3.59

PPO Subset 0.74h 2.58h 3.48

DQN All 3.87h 11.10h 2.87

DQN Subset 1.55h 4.49h 2.89

SAC All 1.25h 7.23h 5.78

SAC Subset 0.62h 3.61h 5.82

Sum All 7.12h 25.51h 3.58

Sum Subset 2.91h 10.68h 3.67

Table 5: Running time comparisons for a single RL training between ARLBench and StableBaselines3
(SB3) [Raffin et al., 2021] on the set of all environments and the selected subset. The numbers are
based on the results in Tables 6, 7, and 8. For each environment category, we use the running times
from the experiments to estimate the overall running time for this category.
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Category Framework Name ARLBench SB3 Speedup

Classic Control Envpool CartPole-v1 5.42s 25.54s 4.72

Classic Control Envpool Pendulum-v1 5.98s 21.87s 3.66

Box2D Envpool LunarLander-v2 125.87s 248.54s 1.97

Box2D Envpool LunarLanderContinuous-v2 162.77s 311.25s 1.91

Minigrid XLand Minigrid-DoorKey-5x5 54.38s 544.71s 10.01

ALE Envpool Pong-v5 1161.11s 3728.58s 3.21

Walker Envpool Ant 194.09s 1048.84s
Walker Brax Ant 122.28s 1048.84s* 8.57

Average 4.86

Table 6: Speedup of ARLBench PPO compared to StableBaselines3 (SB3) [Raffin et al., 2021] on
different envrionments. *Note: Since SB3 is not compatible with Brax without manual interface
adapation, we compare the results of MuJoCo + SB3 and Brax + ARLBench.

Category Framework Name ARLBench SB3 Speedup

Classic Control Envpool CartPole-v1 21.5s 40.68s 1.89

Box2D Envpool LunarLander-v2 95.27s 194.61s 2.04

Minigrid XLand Minigrid-DoorKey-5x5 187.73s 697.64s 3.71

ALE Envpool Pong-v5 2602.69s 7373.40s 2.83

Average 2.15

Table 7: Speedup of ARLBench DQN compared to StableBaselines3 (SB3) [Raffin et al., 2021] on
different envrionments.

Category Framework Name ARLBench SB3 Speedup

Classic Control Envpool Pendulum-v1 17.32s 105.67s 6.10

Box2D Envpool LunarLanderContinuous-v2 365.45s 2425.04s 6.64

Walker Envpool Ant 930.06s 5245.17s
Walker Brax Ant 491.70s 5245.17s* 10.67

Average 7.80

Table 8: Speedup of ARLBench SAC compared to StableBaselines3 (SB3) [Raffin et al., 2021] on
different envrionments. *Note: Since SB3 is not compatible with Brax without manual interface
adapation, we compare the results of MuJoCo + SB3 and Brax + ARLBench.

F Algorithm Search Spaces

For all algorithms, we used extensive search spaces covering almost all hyperparameters that are
commonly optimized. The search spaces for PPO, DQN and SAC are presented in Table 9, 10 and 11
respectively. We choose not to optimize some hyperparameters to keep the computational resources
constant for each training. The default values for these hyperparameters for each environment domain
have been inferred from stable-baselines3 zoo Raffin [2020] and Google Brax’s hyperparameter
sweeps Freeman et al. [2021] and are shown in Tables 9, 10 and 11 accordingly. The search space
for the batch sizes was set to one power of two below and above its baseline value.
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Hyperparameter Box2D XLand ALE CC Brax

batch size {32, 64, 128} {128, 256, 512} {512, 1024, 2048}
number of environments 16 8 2048

number of steps 1024 32 128 32 512
update epochs 4 10 4
learning rate log([10−6, 10−1])

entropy coefficient [0.0, 0.5]

gae lambda [0.8, 0.9999]

policy clipping [0.0, 0.5]

value clipping [0.0, 0.5]

normalize advantages {Yes,No}
value function coefficient [0.0, 1.0]

max gradient norm [0.0, 1.0]

Table 9: The hyperparameter search space for PPO. To keep the computational costs feasible we
choose not to optimize the number of steps per epoch and update epochs.

Hyperparameter ALE Box2D CC XLand

batch size {16, 32, 64} {64, 128, 256} {32, 64, 128}
number of environments 8 4 1 4
buffer priority sampling {Yes,No}

buffer α [0.01, 1.0]

buffer β [0.01, 1.0]

buffer ϵ log([10−7, 10−3])

buffer size [1024, 106]

initial epsilon [0.5, 1.0]

target epsilon [0.001, 0.2]

learning rate log([10−6, 10−1])

learning starts [1, 2048]

use target network {Yes,No}
target update interval [1, 2000]

Table 10: The hyperparameter search space for DQN. The target update interval is a conditional
hyperparameter that is only optimized when a target network is used. Similarly, buffer α, β and ϵ are
only optimized when priority sampling is used. If the number of training steps is smaller than the
upper limit of the buffer size, the buffer size limit is reduced accordingly.
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Hyperparameter Box2D CC Brax

batch size {128, 256, 512} {256, 512, 1024} {512, 1024, 2048}
number of environments 1 1 64
buffer priority sampling {Yes,No}

buffer α [0.01, 1.0]

buffer β [0.01, 1.0]

buffer ϵ log([10−7, 10−3])

buffer size [1024, 106]

learning rate log([10−6, 10−1])

learning starts [1, 2048]

use target network {Yes,No}
tau [0.01, 1.0]

reward scale log([0.1, 10])
Table 11: The hyperparameter search space for SAC. The hyperparameter tau is a conditional
parameter that is only optimized when a target network is used. Similarly, buffer α, β and ϵ are only
optimized when priority sampling is used. If the number of training steps is smaller than the upper
limit of the buffer size, the buffer size limit is reduced accordingly.

G Subset Selection

We provide additional information on the subset selection in the form of explanations, alternative
selection methods, and a more detailed look into the results, including environment weights.

G.1 Additional Explanation

We select the subset based on the hyperparameter landscapes obtained through Sobol sampling. For
each randomly sampled hyperparameter configuration, the RL algorithm is trained and evaluated on a
separate evaluation environment. As evaluation metric, we collect the cumulative episode rewards,
i.e., return of 128 episodes and calculate the mean. The mean return for environment e ∈ E and
hyperparameter configuration λ ∈ Λ is denoted as reλ and calculated as

reλ = Es∼S

[
1

128
·
128∑
i=1

T∑
t=1

R
(i,s)
t

]
(2)

where S is the set of 10 random seeds, T is the number of steps in the i-th evaluation episode, and
Rt corresponds to the reward at time step t in the i-th episode for seed s. As reward ranges differ
across environments, we have to apply normalization to compare the corresponding results. However,
normalization based on human expert scores is not possible as done by Aitchison et al. [2023] for
the selection of Atari-5. We apply rank-based normalization to compare the rewards of different
environments. By ranking the rewards reλ of all configurations λ ∈ Λ for a given environment e, with
higher rewards corresponding to higher ranks, and normalizing these ranks to the interval [0, 1], we
obtain the performance scores peλ. The performance score peλ for each configuration λ in environment
e is given by:

peλ =
rank(reλ)−minλ′∈Λ rank(reλ′)

maxλ′∈Λ rank(reλ′)−minλ′∈Λ rank(reλ′)
, (3)

where rank(reλ) denotes the rank of the return reλ among all returns in environment e.

For the regression model, we use the LinearRegression class from the scikit-learn2 package. This
relies on the ordinary least squares method for fitting, which is invariant to permutation of features,
i.e., environments.

2https://scikit-learn.org
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G.2 Alternative Methods

In addition to our chosen method of rank-based normalization in combination with the Spearman
correlation as a distance metric, we compare alternative normalization methods as well as MSE for
the distance. Figure 14 shows the validation error of different combinations while Figure 15 shows
the resulting Spearman correlation to the full environment set. While MSE might produce a good
validation error, the resulting correlation is significantly worse than using the Spearman correlation
for the distance. Min-max normalization performs slightly worse than rank normalization for the
validation error. Therefore we chose rank-based normalization with Spearman correlation for our
subset selection.

Figure 14: Comparison of the validation error of different ranking methods and error functions based
on the subset size.

Figure 15: Comparison of the validation error of different ranking methods and error functions based
on the subset size. Please note, that not all lines in this plot are visible due to overlaps. The reason is
that the approaches Ranks + Spearman and Ranks + MSE as well as Min-Max + MSE and Min-Max
Spearman each results in the exact same Spearman correlation and thus are not distinguishable in the
plot.

G.3 Extended Subset Results

In addition to the environments in the subsets, we also provide the exact weights for each environment
in the subsets in Table 12. Furthermore, Figures 16 and 17 show the optimization-over-time results
for DQN and SAC.
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Algorithm Environments (with predicted weights) ρs

PPO 0.21× LunarLander, 0.21× Humanoid, 0.18× BattleZone, 0.96

0.12× Phoenix, 0.23× XLand-EmptyRandom
DQN 0.33× Acrobot, 0.11× NameThisGame, 0.22× DoubleDunk 0.96

0.12× XLand-FourRooms, 0.18× XLand-EmptyRandom
SAC 0.32× BipedalWalker, 0.31× HalfCheetah, 0.97

0.15× Hopper, 0.19× MountainCarContinuous
Table 12: The environment subsets selected for each algorithm with their Spearman correlation to the
full environment set.

Figure 16: Anytime performance of the HPO methods for PPO.

Figure 17: Anytime performance of the HPO methods for SAC.

H Landscape Analysis

We use DeepCave [Sass et al., 2022] to analyze our performance dataset with regards to performance
distribution, hyperparameter importance and budget correlation over time. Please note that in some
cases, results can be missing, due to consistent numerical errors in the analysis, e.g., in the case of
SAC on Halfcheetah.

H.1 Landscape Behaviour

Algorithm configuration landscapes are often found to show relatively benign structure, characterized
by unimodal responses and compensatory or negligible interactions [Pushak and Hoos, 2018]. How-
ever, in our experiments, we observe that some partial hyperparameter landscapes deviate from these
traits, displaying challenging structure instead. Figure 18 highlights the contrast between benign and
adverse landscapes in our experiments, providing further insight into their differing characteristics.
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ALE Qbert (DQN) CC Acrobot (PPO)

CC Mountain Car (PPO) XLand Unlock (PPO)

Brax Ant (PPO) Brax Hopper (PPO)

Figure 18: Comparison of adverse landscapes on the left with typical benign landscapes on the
right. Lighter is better, mean performance over 10 seeds. Adverse landscapes exhibit multi-modality,
whereas benign landscapes are uni-modal and display minimal to no hyperparameter interaction.

H.2 Performance Distributions

Completing the results from the performance distributions comparison in Section 4.3, Figures 19 and
20 show the distribution of scores for the domains and subsets of DQN and SAC, respectively. Just
like for PPO, there are fairly direct correspondences between selected environments and the score
distributions of the full domains. The only seeming exception is Box2D for DQN which has a lot
of low scores that are not directly represented by one selected environment. Acrobot in that subset,
however, covers a lot of such bad configurations even though it has higher performances overall.
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Figure 19: Score distribution across environment domains and the selected subset of DQN.

Figure 20: Score distribution across environment domains and the selected subset of SAC.

H.3 Hyperparameter Importances

Tables 13, 14 and 15 show extended information on the number of important hyperparameters for
each environment domain as well as the subset and full environment set. The set of top 3 interactions
are shown in Table 16 for PPO, Table 17 for DQN and Table 18 for SAC. We also include the full set
of importance plots for each environment in Figures 21, 22, 23 and 24 for PPO, Figures 25, 26 and 27
for DQN and Figure 28 for SAC.

ALE Box2D CC Xland Brax All Subset

#HPs with over 10% importance 1.6 1.5 1.0 1.75 0.75 1.3 1.0
#HPs with over 5% importance 1.6 1.5 3.4 2.25 1.75 2.2 1.2
#HPs with over 3% importance 2.0 3.0 4.0 2.5 3.0 2.9 2.0

Table 13: Fraction of hyperparameters with over 10%, 5%, and 3% importance on the full set and
subset for PPO.

ALE Box2D CC Xland All Subset

#HPs with over 10% importance 2.0 1.0 1.0 2.25 1.77 2.0
#HPs with over 5% importance 2.8 1.0 1.33 3.5 2.54 2.75
#HPs with over 3% importance 3.8 2.0 2.33 4.0 3.38 3.5

Table 14: Fraction of hyperparameters with over 10%, 5%, and 3% importance on the full set and
subset for DQN.
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Box2D CC Brax All Subset

#HPs with over 10% importance 1.0 1.5 1.0 1.14 0.75
#HPs with over 5% importance 1.0 3.0 1.5 1.86 1.25
#HPs with over 3% importance 1.0 3.5 2.75 2.71 2.5

Table 15: Fraction of hyperparameters with over 10%, 5%, and 3% importance on the full set and
subset for SAC.

ALE BattleZone ALE DoubleDunk

ALE Phoenix ALE QBert

ALE NameThisGame

Figure 21: Hyperparameter importances for PPO: ALE.
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Brax Ant Brax Hopper

Brax Humanoid Box2D LunarLander

Box2D BipedalWalker

Figure 22: Hyperparameter importances for PPO: Brax and Box2D.

33



CC CartPole CC Cont. Mt Car

CC Mt Car CC Pendulum

CC Acrobot

Figure 23: Hyperparameter importances for PPO: Classic Control.
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XLand DoorKey XLand Unlock

XLand FourRooms XLand EmptyRandom

Figure 24: Hyperparameter importances for PPO: XLand.
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ALE BattleZone ALE DoubleDunk

ALE Phoenix ALE QBert

ALE NameThisGame

Figure 25: Hyperparameter importances for DQN: ALE.
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CC CartPole CC Mt Car

CC

Acrobot Box2D LunarLander

Figure 26: Hyperparameter importances for DQN: Classic Control and Box2D.

XLand DoorKey XLand Unlock

XLand FourRooms XLand EmptyRandom

Figure 27: Hyperparameter importances for DQN: XLand.
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Brax Ant Brax Hopper

Brax Humanoid CC Cont. Mt Car

CC Pendulum Box2D BipedalWalker

Figure 28: Hyperparameter importances for SAC.
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H.4 Budget Correlations

We show the budget correlation plots for all budgets (Figures 29, 30, 31 and 32 for PPO, Figures 33,
34 and 35 for DQN and Figure 36 for SAC). We see that most correlations are strong or very strong
with some numerical inconsistencies in mountaincar and brax halfcheetah. XLand is the the only
domain with a strong trend over time, for DQN most correlations only become strong after about
30-40% of training while the same is true for DoorKey of PPO. These are consistent in the domains,
though: we see low or no correlations for Brax (likely due to numerical issues) and in Classic Control,
strong correlations otherwise. ALE and Box2D are other domains with strong correlations while
XLand tends to need a warmup phase.

ALE BattleZone ALE DoubleDunk

ALE Phoenix ALE QBert

ALE NameThisGame

Figure 29: Budget correlations for PPO: ALE.

39



Brax Ant Brax Hopper

Brax Humanoid Box2D LunarLander

Figure 30: Budget correlations for PPO: Brax and Box2D.
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CC CartPole CC Cont. Mt Car

CC Mt Car CC Pendulum

CC Acrobot

Figure 31: Budget correlations for PPO: Classic Control.
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XLand DoorKey XLand Unlock

XLand FourRooms XLand EmptyRandom

Figure 32: Budget correlations for PPO: XLand.
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ALE BattleZone ALE DoubleDunk

ALE Phoenix ALE QBert

ALE NameThisGame

Figure 33: Budget correlations for DQN: ALE.
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CC CartPole CC Mt Car

CC

Acrobot Box2D LunarLander

Figure 34: Budget correlations for DQN: Classic Control and Box2D.

XLand DoorKey XLand Unlock

XLand FourRooms XLand EmptyRandom

Figure 35: Budget correlations for DQN: XLand.
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Brax Ant Brax Hopper

Brax Humanoid CC Cont. Mt Car

CC Pendulum

Figure 36: Budget correlations for SAC.

I Resource Consumption

All running time results are stated in Table 19 and were obtained using the same setup on the H100
cluster as described in Appendix B.1.
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Algorithm Environment Platform Running Time [s] Total Running Time [h]

DQN Acrobot-v1 CPU 26.1 37.13
DQN BattleZone-v5 GPU 2967.69 4220.72
DQN CartPole-v1 CPU 10.27 14.6
DQN DoubleDunk-v5 GPU 2918.08 4150.16
DQN LunarLander-v2 CPU 34.47 49.03
DQN MiniGrid-DoorKey-5x5 CPU 81.44 115.82
DQN MiniGrid-EmptyRandom-5x5 CPU 30.32 43.12
DQN MiniGrid-FourRooms CPU 172.31 245.07
DQN MiniGrid-Unlock CPU 94.68 134.65
DQN MountainCar-v0 CPU 19.4 27.59
DQN NameThisGame-v5 GPU 2970.15 4224.22
DQN Phoenix-v5 GPU 2710.29 3854.64
DQN Qbert-v5 CPU 2943.79 4186.73
PPO Acrobot-v1 CPU 15.34 21.82
PPO BattleZone-v5 GPU 1154.29 1641.66
PPO BipedalWalker-v3 CPU 89.83 127.76
PPO CartPole-v1 CPU 7.95 11.3
PPO DoubleDunk-v5 GPU 1083.08 1540.38
PPO LunarLander-v2 CPU 162.97 231.78
PPO LunarLanderContinuous-v2 CPU 300.47 427.33
PPO MiniGrid-DoorKey-5x5 CPU 81.23 115.52
PPO MiniGrid-EmptyRandom-5x5 CPU 26.37 37.5
PPO MiniGrid-FourRooms CPU 179.84 255.77
PPO MiniGrid-Unlock CPU 112.33 159.76
PPO MountainCar-v0 CPU 13.21 18.79
PPO MountainCarContinuous-v0 CPU 7.68 10.93
PPO NameThisGame-v5 GPU 1130.46 1607.76
PPO Pendulum-v1 CPU 13.81 19.64
PPO Phoenix-v5 GPU 955.17 1358.46
PPO Qbert-v5 CPU 1145.07 1628.54
PPO ant GPU 220.87 314.13
PPO halfcheetah GPU 851.99 1211.73
PPO hopper GPU 458.43 651.98
PPO humanoid GPU 338.6 481.57
SAC BipedalWalker-v3 CPU 486.32 691.66
SAC LunarLanderContinuous-v2 CPU 381.22 542.17
SAC MountainCarContinuous-v0 CPU 557.13 792.36
SAC Pendulum-v1 CPU 111.76 158.95
SAC ant GPU 824.95 1173.26
SAC halfcheetah GPU 2194.59 3121.2
SAC hopper GPU 1263.28 1796.66
SAC humanoid GPU 871.83 1239.93

Table 19: Running times of algorithms and environments and respective platforms they were executed
on. The column Running Time represents the duration, in seconds, of a single training session, while
Total Running Time indicates the cumulative hours spent on all experiments conducted for a given
environment.

Each experiment was run for 4096 total runs. This results in a total CPU running timer of 10 105.34
h and GPU running time of 32 588.46 h (including 40.54 h GPU hours for the running time

experiments).
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J Additional HPO Results

This section contains optimizer results per environment. In order to compare optimizer performance
across environments, we apply normalization, as done in subset selection. However, to incorporate the
distances between incumbents, we use explicit returns rather than ranks. In particular, we normalize
using the minimum and maximum returns obtained during the initial landscaping experiments
described in Section 4.1. This is done per environment, to allow for a comparison of optimizers across
environments while preserving relative order and distances. This yields optimizer scores between
0 and 1 for our experiments, since no optimizer was able to find a better incumbent performance
as encountered through 256 Sobol-sampled configurations. However, due to numerical instabilities
in the Box2D and Brax environments, we fixed the minimum in these domains to -200 and -2000,
respectively, to exclude artificially low values that distort the normalization.

Figures 37, 38, 39, 40, and 41 show results for PPO. Figures 42, 43, 42, and 44 show results for DQN.
Figures 42, 45 and 46 show results for SAC.

When comparing the results shown in Figure 16, we can see that SMAC outperforms PBT and RS in
terms of mean performance. However, if we would benchmark the optimizers on another, arbitrary
selected set of environments, e.g. QBert-v5 (ALE), Phoenix-v5 (ALE), and MiniGrid-DoorKey-5x5
(XLand), the results would look very different from the observation on our selected subset. This, in
fact, emphasizes the importance of the subset of environments on which a HPO method is evaluated.
The differences show, that in order to reliable benchmark and compare HPO methods, they need to
be evaluated on the same, representative subset of environments.
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Figure 37: Anytime performance of optimizers for PPO: ALE. Figure shows 95%-confidence
intervals.
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Figure 38: Anytime performance of optimizers for PPO: Brax. Figure shows 95%-confidence
intervals.
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Figure 39: Anytime performance of optimizers for PPO: Classic Control. Figure shows 95%-
confidence intervals.
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Figure 40: Anytime performance of optimizers for PPO: Box2D. Figure shows 95%-confidence
intervals.

Figure 41: Anytime performance of optimizers for PPO: XLand. Figure shows 95%-confidence
intervals.
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Figure 42: Anytime performance of optimizers for DQN: Classic Control and Box2D. Figure shows
95%-confidence intervals.
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Figure 43: Anytime performance of optimizers for DQN: ALE. Figure shows 95%-confidence
intervals.
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Figure 44: Anytime performance of optimizers for DQN: XLand. Figure shows 95%-confidence
intervals.

Figure 45: Anytime performance of optimizers for SAC: Brax. Figure shows 95%-confidence
intervals.
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Figure 46: Anytime performance of optimizers for SAC: Classic Control and Box2D. Figure shows
95%-confidence intervals.
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