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ABSTRACT

Gradient-based optimization is the workhorse of deep learning, offering efficient
and scalable training via backpropagation. However, exposing gradients during
training can leak sensitive information about the underlying data, raising privacy
and security concerns such as susceptibility to data poisoning attacks. In contrast,
black box optimization methods, which treat the model as an opaque function,
relying solely on function evaluations to guide optimization, offer a promising
alternative in scenarios where data access is restricted, adversarial risks are high, or
overfitting is a concern. This paper introduces BBoxER, an evolutionary black-box
method for LLM post-training that induces an information bottleneck via implicit
compression of the training data. Leveraging the tractability of information flow, we
provide non-vacuous generalization bounds and strong theoretical guarantees for
differential privacy, robustness to data poisoning attacks, and extraction attacks. In
experiments with LLMs, we demonstrate empirically that black-box optimization
methods—despite the scalability and computational challenges inherent to black-
box approaches—are able to learn, showing how a few iterations of BBoxER
improve performance, generalize well on a benchmark of reasoning datasets, and
are robust to membership inference attacks. This positions BBoxER as an attractive
add-on on top of gradient-based optimization, offering suitability for deployment
in restricted or privacy-sensitive environments while also providing non-vacuous
generalization guarantees.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing, achieving strong
performance across diverse tasks through training on massive datasets — often hundreds of billions of
tokens — and large-scale architectures (Kaplan et al., 2020; Wei et al., 2022a). Yet LLMs suffer from
persistent weaknesses, foremost among them vulnerability to extraction attacks (Haim et al., 2022;
Carlini et al., 2021b; 2024) where training data can be leaked (Zhu et al., 2019; Hitaj et al., 2017),
raising potential privacy concerns. They are also vulnerable to data poisoning (Wan et al., 2023b;
Miranda et al., 2025), and lack meaningful generalization guarantees at scale. These challenges are
amplified in settings where data is scarce, sensitive, or adversarially curated, underscoring the need
for more robust and privacy-aware optimization methods.

Black-Box Optimization (BBO) covers methods suited to settings where gradient information is
unreliable or unavailable (e.g., non-differentiable or noisy objectives). These algorithms are nat-
urally robust to local minima and non-convexity. Although around for decades, BBO has been
recognized only recently in machine learning, becoming a core tool in AutoML (Hutter et al., 2019),
for hyperparameter tuning, algorithm selection (Feurer & Hutter, 2019), and neural architecture
search (NAS) (White et al., 2023). Beyond random and grid search, techniques like Evolutionary
Algorithms (e.g., CMA-ES (Hansen & Ostermeier, 1996; 2003; Hansen, 2023), Differential Evolu-
tion (Storn & Price, 1997), Particle Swarm Optimization (Kennedy & Eberhart, 1995)) and Bayesian
Optimization (Mockus, 1975; Mockus, 1981; Garnett, 2023) offer diverse trade-offs in scalability,
sample efficiency, and exploration-exploitation dynamics. BBO methods still face limitations: they
scale poorly to high-dimensional parameter spaces and require many function evaluations, making
them unsuitable for full model training (except for Deep Reinforcement Learning, due to its high
parallelism (Salimans et al., 2017)). To reconcile the strengths and weaknesses of both paradigms,
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we adopt a hybrid strategy: using gradient-based pretraining for scale, followed by BBO on a small,
targeted subset of the model to tackle privacy, poisoning, and overfitting.

Post-training introduces its own risks: instruction tuning and generation can lead to exploitative
behavior (Shu et al., 2023; Huang et al., 2024), overfitting may harm robustness and generaliza-
tion (Yang et al., 2024), and data poisoning can occur during reinforcement learning from human
feedback (RLHF) (Wang et al., 2024; Baumgirtner et al., 2024) or direct preference optimiza-
tion (DPO) (Rando & Tramer, 2024; Pathmanathan et al., 2025). This setting is well-suited for
retrofitting — a concept initially developed to refine word vectors post-hoc using semantic knowl-
edge (Faruqui et al., 2015a), which we generalize here to LLMs for arbitrary downstream tasks.

We introduce BBoxER (Black-Box Evolutionary Retrofitting), a comparison-based black-box
retrofitting method (Videau et al., 2024b) applicable after pretraining, fine-tuning, or reinforce-
ment learning loops such as GRPO (Shao et al., 2024). Positioned in the outermost layer of the
pipeline, BBoxER requires no gradient access and integrates seamlessly with existing black-box li-
braries and algorithms (Rapin & Teytaud, 2018). The resulting sequence of queries and updates forms
an implicit compression trace, enabling the use of compression-based generalization theory (Campi
& Garatti, 2023; Jiang et al., 2022), currently the only route to non-vacuous generalization bounds
for LLMs (Lotfi et al., 2024). It allows us to derive strong generalization and differential privacy
guarantees that - unlike VC dimension (Vapnik & Chervonenkis, 1971) or Rademacher complex-
ity (Bartlett & Mendelson, 2002) - do not depend on the number of modified parameters but on the
complexity of the optimization trajectory. As a result, BBoxER ensures privacy by design, robustness
to data poisoning, robustness to extraction attacks, and provable, non-vacuous generalization bounds
to control overfitting. It is uniquely positioned to provide improvements from aggregate feedback of
billions of users anonymously, without accessing individual data.

While our approach establishes strong theoretical guarantees, guarantees alone would be meaningless
if they came at the cost of utility—after all, doing nothing also ensures perfect privacy. What is
striking with BBoxER is that, even under tight query budgets of only a few hundred model evaluations,
it consistently improves performance and generalization on billion-scale LLMs across reasoning
benchmarks. In other words, the framework delivers provable generalization and safety without
sacrificing usefulness, turning theory into a practical tool for post-hoc adaptation of LLMs, especially
in privacy-sensitive settings.

Our contributions. BBoxER introduces a new perspective on LLM post-training: instead of fine-
tuning weights or relying on reinforcement learning, we show that simple black-box retrofitting can
achieve safe and modular adaptation. Building on this idea, we make three main contributions:

« A general-purpose retrofitting framework. We formalize BBoxER (Alg. 1), a comparison-
based black-box optimization scheme that compresses optimization traces, enabling safe and modular
adaptation of pretrained and post-trained LLMs (Sec. 3).

« Strong theoretical guarantees. We derive non-vacuous generalization bounds (Cor. 1) that scale
linearly with dataset size, and establish privacy by design through provable robustness to poisoning
(Equation (7)) and resistance to extraction attacks (Cor. 2) (Secs. 4, 4.2 and 4.3).

« Empirical validation on billion-scale LLMs. Despite tight query budgets, we show consistent
gains on GSM8K and related math benchmarks with Llama3.1-8B and Qwen-2.5-3B, and provide em-
pirical evidence supporting our theoretical claims: retrofitted models with BBoxER resist Membership
Inference Attacks, unlike fine-tuned counterparts at equal utility (Sec. 5).

2 BACKGROUND AND RELATED WORK

An extensive exposition of related work is provided in App. A.

Generalization Bounds for LLMs. Classical generalization theory based on uniform convergence
and VC dimension fails for large models like LLMs. Modern approaches either apply PAC-Bayes
bounds using compression techniques (Zhou et al., 2018; Lotfi et al., 2022; 2024) or adopt algorithmic
stability (Bousquet & Elisseeff, 2000), which does not rely on hypothesis class complexity. Our
approach aligns with the latter by leveraging comparison-based optimization and using union-bound-
like arguments (e.g., Bonferroni correction) to derive non-trivial generalization bounds.
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Data Poisoning. Recent poisoning attacks show that corrupting as little as 1-5% of fine-tuning
or preference data can induce persistent, targeted behaviors in LLMs (Baumgirtner et al., 2024;
Wang et al., 2024), even in quantized variants (Egashira et al., 2024). These attacks evade standard
detection and persist during inference. Moreover, the common strategy of training on public data
then fine-tuning on private data is also vulnerable to backdoor injection (Feng & Tramer, 2024).
Specifically, Feng & Tramer (2024) showed that allowing neurons to retain a gradient from a single
input and later “deactivate” to avoid overwriting makes models susceptible to gradient inversion. Our
black-box optimization approach is, by design, secure against such attacks. While theoretical bounds
exist for simpler models (Steinhardt et al., 2017), robust guarantees for LLMs remain elusive.

Privacy and Robustness. LLM:s risk leaking private or confidential content (Carlini et al., 2021b).
Differential privacy (DP) techniques (Dwork et al., 2006) like DP-SGD (Abadi et al., 2016; Flemings
et al., 2024) and PATE (Papernot et al., 2016) are the standard paradigm for privacy preserving
learning, offering formal guarantees but suffering from utility and scalability challenges, due to the
necessary per-sample gradient clipping and adding noise that is inversely proportional to €. Our
method avoids the need for noisy gradient updates by enforcing a compression bottleneck through
comparison-based optimization. For instance, in the specific case of ensuring the privacy of user
input prompts and outputs in A/B testing, it achieves (¢ = 0,6 = 0).

3 METHODS: RETROFITTING WITH BBO

Retrofitting (Douglas, 2006; Dawson, 2007; Dixon & Eames, 2013) is routinely deployed in industry,
in order to adapt old devices to new contexts or new data. In machine learning, the term has mainly
been used in natural language processing since Faruqui et al. (2015b), who adapted the representation
of the word vector to take semantic knowledge into account. It is performed after classical training,
i.e., without retraining the entire network. Videau et al. (2024b) adapted retrofitting to the black-
box optimization context. In the present paper, we instantiate retrofitting as BBoxER and consider
comparison-based black-box optimization algorithms to obtain the explicit compression properties
that lend themselves to the strong bounds proved in Sec. 4.

A key motivation for using BBO is that it allows post-training with non-differentiable loss functions
such as accuracy or signals from A/B testing. And since it only requires model inference, it
significantly reduces memory usage. More importantly, the main motivation of this work is to
leverage the compression achieved by reducing the entire dataset’s forward pass to just a single—or a
few—comparison results, yielding a finite branching factor. This constrains our deployment of BBO
to comparison-based algorithms, which include Evolutionary Algorithms (EA) and Strategies (ES)
like Population-Based Evolution Strategies (e.g., CMA, DiagonalCMA), Differential Evolution, and
Particle Swarm Optimization - all described in App. D.2. While a vast class of BBO algorithms is not
comparison based (see App. D.2 for an anthology of BBO) this nonetheless gives us a substantial
variety of BBO algorithms to deploy. For example, the (1+1)-OneFifth strategy samples new points
from a Gaussian centered on the current best solution and adjusts the mutation step size based on
the acceptance rate. Similarly, CMA-ES updates both the mean and covariance of its sampling
distribution based on comparisons within the current population. More algorithms are described
in App. D. Our BBoxER framework is modular and algorithm agnostic, and we instantiate it with
methods from the Nevergrad suite (Rapin & Teytaud, 2018).

3.1 THE RETROFITTING FRAMEWORK: BBoxER

Notation. Let D be the class of datasets of size s over a domain X x ). Models map X to ). Let w
be the random seed corresponding to the possibly randomized optimization algorithm a and wp the
random seed associated with the draw of D € D.

Initial model and modifiers. We denote m( the initial model, irrespective of its creation.
modi fied(mg, z) refers to a modification of mg parametrized by some z. We prove all results
for an arbitrary modt fied function. For example, mods fied can refer to a multiplicative low-rank
update of a particular attention layer of the LLM, z then contains the two low-rank matrices that
parametrize the update (see App. B).

Alg. | presents our abstract retrofitting framework BBoxER.
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Algorithm 1 BBoxER(mo,w, D, a, b): Returns a modifica- Elr ?t’.Algqnthm aits lmtlal,lzed. and returns
tion of initial model mo by BBO algorithm a on dataset D  its initial internal state /o in Line 1. Then

with budget b and random seed w. fqr b iterations, Algorithm a, via a.ask. at
I: Io — ainitialize(w) Line 3, proposes a new sample z;, which
2: f(;)r;ea {Z?”azbz}e dﬁ used’to‘ obtaip a new model m; through
Z’i: m; = modified(mo, z; := a.ask()) modi fied. Line 4 introduces the branch-

: ki := a.numCases() : ) . .
i choices — a.compare((m, ..., mi), D) € {1,... K} D8 factgr k;, representing the finite number
6:  a.tell(choice;) of possible outputs of a.compare, which
gf I = (Ii—1, choice;) we assume is upper bounded. At Line 5,
: enfi for o ~ a.compare returns choice; € {1,...,k;},
9: FinalModel = modified(mg, T = a.recommend()) the outcome of comparing various previ-
ously proposed models m1, ..., m; on the

data D. For instance, the comparison may involve the current model and the best model obtained so
far, which corresponds to k; = 2. The outcome of this comparison can be based on user-provided
preference, such as in A/B testing, or on performance evaluations over D, where we compute a metric
(e.g., accuracy) but only retain the binary comparison result (e.g., 0 or 1). In Line 7, internal state
of a is updated to account for the comparison result. Finally a.recommend at Line 9 returns the
modification Z used to obtain the final model.

It is important to note that the internal state I, of algorithm a is entirely determined by
w,a,b, choicey, . .., choice, and contains all the information needed to obtain 7, and thus the final
modified model. Moreover, the number of distinct possible outputs of BBoxER is upper bounded by
the number of distinct possible values of I;,. We assume that the randomness of algorithm « is fixed
given the seed w; stochastic algorithms can be obtained by randomizing the seed w in a.

3.2 BBoxER: LINK WITH COMPRESSION

In Alg. 1, FinalModel = modified(my, ) is a deterministic function of mg,w, a, b, D. And
since 7 only depends on w, a, b, choicey, . .., choicey,, we can construct Z without D. Hence, there
exists a mapping X

s.t. Z = X(w,a,b, choicey, ..., choicep) e))
But (choice, ..., choicep) is a deterministic function of mg,w,a,b, D. Hence, there exists a
deterministic compression function c defined by
c(mo,w, a,b, D) := (choicey, . .., choicey) 2)
Here, X mimics the BBoxER Alg. 1 but returns Z instead of modi fied(my, T), and uses ¢ instead of
D. The dataset, replaced by ¢ = (choicey, . . ., choicey), is entirely removed from Equation (1). To
flesh out BBoxER as compression, we can merge Equation (1) and Equation (2) into:
FinalModel = modi fied(mg, X (w, a, b, c := compression(mg, w, a,b, D))) 3)

Final M odel only depends on the data through the compression bottleneck c of bounded size (see Fig-
ure 2, Appendix, for illustration). The impact of this compression is formalized in Sec. 4, and used to
prove guarantees in terms of overfitting, privacy robustness w.r.t poisoning and extraction attacks.

4 THEORETICAL ANALYSIS

Analyzing BBoxER within a unified framework through its information bottleneck that compresses
the dataset into a sequence of comparisons, allows us to state and prove strong and precise bounds
on its ability to preserve generalization, its robustness to poisoning, its privacy guarantee, and its
robustness against extraction attacks. For mathematical background see App. C, additional results
in App. E, and proofs in App. G.

4.1 OVERFITTING BOUNDS

In this section, we adress generalization by bounding the gap between empirical and true loss in
terms of the variability of the algorithm’s internal state. Notably, these bounds are governed by the
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optimization path, with no dependence on the number of model parameters optimized during the
retrofitting process.

Let L(z) = L(modified(mg,x)) denote the true loss over dataset distribution D, and E(:c) =

L(modi fied(mg, x)) the empirical loss on sampled dataset D. Let N (w, a, b) denote the number of
possible internal states over all possible datasets in D, then from Line 5 in Alg. 1 we have:

b
N(w7aab) < sSup Hki(w7D7a7b)' (4)

DeD iy

We fix the algorithm a seed w (the stochastic case is discussed in App. E.2) and study how the
number of distinct possible internal states affects generalization. We defer the general case Thm |
to App. E, showing that the generalization gap is controlled by the number of reachable configurations
in Equation (4). It also provides a uniform bound over all intermediate models (mq,...,my),
ensuring that empirical losses remain close to the true risk throughout optimization. The bound is
obtained using mild assumptions, only requiring that the that empirical loss is a good proxy for the
true loss, a standard concentration-bound hypothesis in classical learning theory (van der Vaart &
Wellner, 1996; Vapnik, 1995a) (see App. C.1).

We present below the practical case where the individual losses are bounded in [0,1], as with accuracy
or user preference signals € {0, 1}, and where data points are sampled independently from each other.

Corollary 1. (informal) Under standard concentration assumptions (Equation (A.1)), if individual
losses are in [0, 1] and Hoeffding’s inequality applies (Eq. A.2) with dataset size s, then:

b b
P,, (|E(§) - L(2)| > 6) <2 (ZI:II k1> -exp(—2se?) = 2-exp (1112 : ZlogQ(ki) - 2se2> %)

i=1

Most BBO algorithms used within BBoxER bound the average k; by 2 or 3. Interpreting log, (k;) as
a budget in bits means that to avoid overfitting we can afford a number of iterations b proportional to
s divided by the bits used per step. Precisely, if we assume V4, k; = 2, then for an error gap € and
confidence d, we have from Cor. 1 the following formula (numerical values can be found in App. E.7):
o R In(8) + 2se?
P, (IL@) - L@)| 2 €) <0 b< In(0) +2s¢” 1) z;) . ©6)
n

Bounds on additional BBO algorithms. Our analysis extends to a wide range of evolutionary BBO
methods. In particular, App. E.4 shows that so called Bet-And-Run variants - running N parallel
runs each with a budget of b/N - can reduce overfitting and scale the total budget while preserving
generalization. App. E.5 and App. E.6 provide analogous bounds for Population-Based Evolution
Strategies (e.g., CMA, DiagonalCMA), Differential Evolution, and Particle Swarm Optimization.

4.2 PRIVACY AND POISONING

We now consider the two key risks associated with model post-training: (a) poisoning, where a
small number of corrupted inputs can steer the outcome, and (b) privacy leakage, where individual
training samples or - in the case of A/B testing - individual user preferences - might be inferred
from the final model. Standard fine-tuning methods, including privacy-aware approaches such as
differentially private stochastic gradient descent (DP-SGD), rely on batch-level gradient signals
that inherently encode information on the underlying data. BBoxER on the other hand, relies
only on aggregate values over the entire dataset, namely on the outcomes of model comparisons
(choices, . . ., choicey). Each choice; represents a compressed signal derived from the full dataset D.
For a training dataset D, in this context we define preference signals to be the sample-level decisions
that lead to aggregate decision choice; over D. In the case of A/B testing on prompt/output pairs,
these would be the binary user preferences that aggregate to a model preference. In the case of more
general metrics, the preference signal for a sample is defined as the result of models comparison over
the subdataset {sample}.

To analyze BBoxER, we consider a simplified setting, where Vi, k; = 2, and in which two models
{0,1} are compared by majority vote over s independent preference signals r; € {0,1}. The
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observed frequency is f = % >:_, ri. An adversary may corrupt up to m values among the 7,
yielding a perturbed frequency f’ such that | f’ — f| < m/s. This follows the standard poisoning
model (Kearns & Li, 1993), where the adversary is computationally unbounded and fully informed,
but constrained in the number of values it can alter. Lem. | in App. G bounds the probability that
such perturbations alter the comparison outcome.

Using a union bound argument, we extend this analysis to BBoxER (Alg. 1), which performs b
consecutive comparisons. In iteration j € {1,...,b}, the algorithm collects binary preferences
Tjls---,Tjs, aggregates them into f; = <37 | r;;, and selects a model based on whether
f; > 1/2. Under poisoning, the adversary may shift f; to f; with |f; — f;| < m/s, independently at
each round. The following theorem bounds the impact of these perturbations on the final output.

Theorem 2 (Robustness of BBoxER under poisoning). Let FinalModel = modified(myg,)
denote the selected model using decisions choice; = sign(f; — %) Let outputy denote the model
chosen under unperturbed frequencies f;, and outputy under perturbed frequencies fJ' satisfying
|fj — fil <m/s. Then:

2m +1

V2st

P(outputy # outputs) < b

(N

Differential privacy guarantee Let D; and D be two datasets that differ by a single sample. We ex-
amine the effect of this difference on the FinalModel given by BBoxER, and we distinguish two cases:

« privacy of users prompts and outputs (like in A/B testing) We assume that the preference
signals are provided directly by users, and that the datasets D) and D can differ on the prompts or
outputs. Since BBoxER relies solely on users preference signals to perform model comparisons, and
does not access prompts or outputs, privacy is ensured by design and we have (g,4) = (0, 0).

« privacy of the entire sample We assume that the D; and D, can differ on an entire sample,
which impacts its prefence signal. This is the case when the preference signal needs to be computed
from the sam]gle before aggregating and passing it to the algorithm. In this scenario, we obtain € = 0,
while § Nl following the poisoning bound from Theorem 2 with m = 1.

Theorem 2 yields two immediate consequences: First, unless m = (1/s), the retrofitting framework
is resilient to poisoning attacks, and second, privacy is guaranteed by design, covering prompts,
outputs, and user satisfaction signals without additional mechanisms. These points are further
discussed in App. F. It is important to note that, while other privacy preserving methods such as
DP-SGD (Flemings et al., 2024) enforce privacy by perturbing gradients and consequently suffer
from utility degradation as € becomes small, BBoxER’s compression-based guarantees remain robust.
These structural differences highlight a fundamental advantage of our approach.

4.3 ROBUSTNESS TO EXTRACTION ATTACKS

Prior work shows that training data can sometimes be extracted from models (Carlini et al., 2021b;
Henderson et al., 2023), even in privacy-preserving settings like federated learning. We formalize
vulnerability to data extraction through identifiability: if one can reliably infer which dataset was
used during fine-tuning, the process may be considered vulnerable.

Formally, let mg be fine-tuned on unrelated datasets D1, ..., D,,. For text, "unrelated" can mean
differing by one word out of five while remaining coherent. A dataset D with B bits may yield
n ~ 2B/F such variants by altering one bit per k. We define vulnerability to data extraction as follows:

Definition 1 (simple formalization of vulnerability to data extraction). An algorithm A producing

A(mqg, D) from model mq and dataset D is vulnerable to data extraction for D = (Dy, ..., D) (all
distinct) if there exists a mapping E such that

Vi € {].77TL}7 E(A(WL(),DZ)) =1. (8)
This criterion can be tested practically: generate n unrelated variants D1, ..., D,, fine-tune models

on each D;, and check whether each model assigns the highest likelihood to its own training set. If so,
it indicates vulnerability to data extraction. We argue this is unlikely for retrofitting, due to limited
capacity to encode training data. Thm 5 in App. G.2 formalizes this, leading to the corollary below:
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Corollary 2. For given w,a,b s.t. k; < 2 for all i, BBoxER is not vulnerable to extraction for
D = (Ds,...,Dy)ifn > 2°. More generally, BBoXER is not vulnerable for D if n > [, k;.

Thus, if the number of alternative datasets exceeds that of distinguishable outputs, no extractor can
identify the training data. Since 2° grows only exponentially with budget b, while the number of
unrelated textual variants grows exponentially with dataset size (e.g., > 400B bits for Wikipedia
articles, > 20M for War and Peace), extraction is very unlikely in practice.

5 EXPERIMENTAL RESULTS: LEARNING WITH PRIVACY AND ROBUSTNESS

The theoretical bounds in Sec. 4 establish that comparison based BBOs in the framework of BBoxER
offer strong generalization guarantees and inherent privacy. However, theoretical guarantees alone do
not ensure that these methods are practically effective—only empirical evidence can reveal whether
they actually lead to meaningful learning. To validate the capacity of BBoxER as an LLM retrofitting
method, we focus on verifiable domains, like math, where performance improvements are both
measurable and interpretable. We experiment with budgets b determined theoretically for guaranteed
generalization on the test set and we empirically examine how performance changes as the budget
exceeds these thresholds.

5.1 EXPERIMENTS

Llama-3.1-8B Llama-3.1-8B-Instruct
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Figure 1: Experiment 1 with Llama3.1-8B on GSM8K. Accuracy (exact match) on GSM8k-test as a function
of budget. Left: Base. Right: Instruct Model. D-CMA improves from 54.4% to 60.0% on base and from 77.4%
to 79.5% on instruct. Notably, it improves even for budgets above those computed from our theory (b > 150).

Experimental setup. We deploy a family of BBO algorithms with finite branching factors, described
in App. D, using the default parameters in Nevergrad. We conduct experiments on both base and
instruct variants. Retrofitting the base models allows us to verify that learning indeed occurs, while
targeting the instruct models demonstrates that our method can yield further improvements even on
top of models already fine-tuned for reasoning tasks. All experimental details can be found in App. H.

Datasets. Most of our experiments deploy BBoxER on GSM8K (Cobbe et al., 2021), a dataset
composed of short grade-school math problems, consisting of 7,473 problems for training and 1, 319
for testing. We train on the train split and test on GSM8k-test (in distribution) with standard 8-shot
methodology (unless otherwise stated), in addition to various other benchmark datasets (out of
distribution): MATHS500 (4-shots) (Hendrycks et al., 2021), Hellaswag (0-shots) (Zellers et al.,
2019), GSM+ test_mini (8-shots) (Li et al., 2024a), ARC Easy (0-shots) and ARC Challenge (0-shots)
(Clark et al., 2018), AMC23 (0-shots). All benchmarks are evaluated with exact match using greedy
decoding. The theoretical bounds in Sec. 4 allow us to precisely determine the budget b that guarantees
in-domain generalization (as a function of dataset size): for GSM8k-train the permissible budget is
between 100-150 steps and approximately 3 times larger for Bet-and-run variants like 3-OneFifth.

Choices for parameter updates. A key design choice in our framework is choosing which parameters
the BBO algorithm should modify. To explore this, we experiment with a couple of multiplicative
update schemes, across different layers of the model: the outer (unembedding) layer (Experiment
1), @ matrices of attention layers (Experiment 2) or all normalization layers (Experiment 3). We
distinguish between low-rank (LoRa) - rank-1 in fact (Experiment 1), broadcast (Experiment 2) and
full (Experiment 3) updates; LoRa multiplies the weight matrix by a low rank matrix, broadcast
multiplies pointwise by a matrix with identical rows and full multiplies by an update matrix directly.
For full details, refer to App. B. We optimize a small number of parameters, between ~ 4K and
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~ 266K, as BBO algorithms are known to scale poorly unless the problem’s effective dimensionality
is much lower (Nesterov & Spokoiny, 2017), which is likely the case here.

Experiment 1 (rank-1, output layer updates). In a first series of experiments on LLlama3.1-8B
(resp. Llama3.1-8B-Instruct) we test BBoxER performance on GSM8k-test, mostly with 1 seed
(sometimes 2). Figure 1 illustrates the results: while D-CMA was our favorite choice, we ran other
BBO algorithms to validate the robustness of the BBoxER approach.

Experiment 2 (broadcast updates on atten- Typle 1: Experiment 2. Performance difference

tion layers). In this setting, we again train
a range of BBO algorithms on the GSM8SK
training set on Llama3.1-8B (Base) to explore
out-of-distribution generalization capabilities of
BBoxER with evaluations on SVAMP (Patel
et al., 2021) and GSM+(Li et al., 2024a), in
addition to GSM8k-test. We experiment with
broadcast updates on ()-matrices of the 1st, 8th,
or all attention layers. We have added bet-and-
run variants which enjoy particularly strong gen-
eralization guarantees (see Sec. 4).

Tab. 1 shows the results for different settings.
Each line without std.dev. (4) corresponds to
one single run, and all runs use a budget b = 150
except otherwise specified; on the first atten-
tion layer, OneFifth was run with 3 seeds and
D-CMA and CoLengler with 2 seeds each. Ex-
cept for the “no few-shot” line, the default 8-
shot evaluation is used on GSM8k. The results
demonstrate the stability of BBoxER in terms of

(after—before) BBoxER with Llama3.1-8B (Base) on
GSMB8Kk-train, evaluated on GSM8k-test (ID), (OOD)
SVAMP and GSM+. Red: detrimental runs, < —1%.
Green: beneficial runs, > 1%. Blue rows are bet-and-
run cases.

BBO algorithm GSM8k | SVAMP | GSM+

Base score 5693 | 766 | 5134
First attention layer, d=4096

OneFifth 0.35 £ 0.50

D-CMA
COLengler
NglohTuned

0.49 +0.19 | 0.65 + 0.75 | 0.00 & 0.02
-0.41 4+ 0.41{-0.15 4 0.05 | -0.06 £ 0.02
0.90 0.18

All attention layers, d=131072

OneFifth
COLengler

[ All attention layers, no few-shot, d=131072 |

Base score 20.31 58.30 19.06

learning capabilities, and a notable performance improvement of up to 7% in distribution (GSMS8k
test) and 5% in out-of-distribution transfer to GSM+. Additional results are reported in Tab. 6
in App. L.

Experiment 3 (full update of normalization layers). In this experiment, D-CMA is used to
directly optimize all normalization layers of Llama3.1-8B(-Instruct) and Qwen2.5-3B-Instruct (no
low-rank and no broadcast involved) on GSM8k. As in Experiment 2, we test both in distribution
(GSM8k-test), and on various other benchmark datasets (out of distribution). We report the results
averaged over 5 different runs with the standard deviation. The results (Tab. 3) indicate that running
BBoxER improves in distribution performance and generally preserves it on very different tasks (e.g.,
Hellaswag). Additional experiments are described in App. I: BetAndRun results are reported in
Tab. 7, and experiments using a larger training set can be found in Tab. 8 in App. L.

Experiment 4 (Robustness to data extraction).
To assess the robustness of BBoxER against
membership inference attacks (MIAs), we be-
gin from the observation that most MIAs rely
on the negative log-likelihood (NLL) of training
samples as their primary signal to infer mem-
bership (Fu et al., 2023; Carlini et al., 2022;
2021a) - see also App. H for an exposition. Ac-
cordingly, we propose to measure the average of
absolute differences in negative log-likelihood
(NLL) between the base and the updated model
for each training sample. We consider GSM8K
as our training dataset, Llama-3.1-8B as our
base model, and compute three metrics: Diff-
full (NLL computed over the entire prompt),
Diff-CoT-a (NLL computed over only the CoT
and the answer), and the relative average exact
match improvement on GSM8K-test from the

Table 2: Experiment 4 - BBoxER is robust to MIA.
Comparison of BBoxER, SFT and DP-SFT in the setting
of Experiment 3 with Llama3.1-8B-Instruct on GSM8K.
Runs with comparable test accuracy are highlighted in
the same color to compare robustness at similar accu-
racy. We see that both finetuning and DP-finetuning
approaches lead to NLL metrics at least an order of
magnitude larger than comparable BBoxER runs.

Method Diff-Full Diff-CoT-a Acc
ft-5epochs 2.25e-01 5.06e-01  +7.88
ft-2epochs 2.53e-01 3.99e-01  +3.79
ft-norm-5epochs 6.00e-03 4.62¢-02  +0.45
DP-AdamW-eps=8 8.66e-01 2.17e-01  +2.05
BBoxER-norm-b=150  7.19e-04 2.90e-03  +0.15
BBoxER-norm-b=300  1.01e-03 3.68¢-03  +1.97
BBoxER-norm-b=1200  6.33e-03 1.17e-02  +3.87
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Table 3: Experiment 3 (full update, normalization layers) Comparison of model performance of BBoxER
run with D-CMA across various benchmarks, 5 seeds.

Models D 00D
GSM8k GSM+ MATH500 ARC Easy ARC Challenge AMC23  Hellaswag
Llama3.1-8B 54.97 36.50 20.20 83.04 55.19 0.00 80.71
Llama3.1-8B-BBoxER (b=150) 55.244+0.92  37.284+0.48 19.72+0.68 83.05+£0.12 54.97+0.12  4.50+2.92 80.67+0.05
Llama3.1-8B-BBoxER (b=300) 56.65+0.26  37.88+0.33 20.12+0.87 83.16+0.13  55.09+0.24  4.00+£3.39 80.65+0.08
Llama3.1-8B-Instruct 77.26 54.37 37.60 79.62 55.45 22.50 79.90

Llama3.1-8B-Instruct-BBoxER (b=150)  77.79£0.41  55.11£0.15 37.164+0.53 79.16+£0.32  55.48+0.17  25.00£3.54 79.98+0.05
Llama3.1-8B-Instruct-BBoxER (b=300)  78.57+0.41  55.33+£0.53 37.564+0.51 79.64+0.12  55.61+0.15 21.00£3.00 79.94+0.04

Qwen-2.5-3B-instruct 79.98 62.29 41.00 72.39 47.38 32.50 74.94
Qwen-2.5-3B-instruct-BBoxER (b=150)  82.90+0.37  62.274+0.45 42.48+0.41 72.57£0.19 47.59+0.31 38.004+2.45 75.0040.06
Qwen-2.5-3B-instruct-BBoxER (b=300)  83.554+0.36  61.9440.64 41.32+0.95 72.62+0.17 47.76+0.22  36.504+3.00 75.0240.09

base model. For a fair comparison, we evaluate BBoxER alongside standard fine-tuning and DP-
AdamW, training all methods on GSMS8K under different settings-varying budget, epochs, and
parameter subsets (full details in App. H)—so that models are compared at similar utility. Our results,
reported in Tab. 2, demonstrate that at matched test accuracy, the NLL shifts under BBoxER are orders
of magnitude smaller than under fine-tuning or DP-AdamW. This provides empirical confirmation of
our theoretical claim in Sec. 4.3: BBoxER is significantly more robust to extraction and membership
inference attacks.

5.2 DISCUSSION OF EXPERIMENTAL RESULTS

Robustness and statistical validation. Our experiments demonstrate that BBoxER achieves statisti-
cally significant performance gains without overfitting across a range of BBO algorithms (see P-value
validation in App. J), these gains are also observed on Instruct models. Consistent with theory, the
Bet-and-Run variant 3-OneFifth further improves performance and allows for larger budgets as shown
in experiment 2. More discussion is provided in App. L.

Validation of transfer. The compact optimization trace in BBoxER reduces the risk of overfitting
to spurious patterns or idiosyncrasies in the training data. As a result, we may expect improved
generalization and stronger performance on unseen datasets. In Experiments 2 and 3, indeed, we
observe a improvement on GSM+ when evaluating our model trained exclusively on GSM8k. This
positive transfer, in particular with 3-OneFifth, is especially noticeable when fine-tuning all the
attention layers, highlighting the robustness of BBoxER. GSM+ is an interesting and challenging
evaluation benchmark, as it modifies GSM8k questions to make them trickier by introducing various
scenarios aimed at testing model robustness. In contrast, SVAMP presents simpler questions, typically
involving only a single operation. As a result, improvements on SVAMP are more likely to reflect
better numerical reasoning rather than enhanced problem comprehension.

Computational cost. Our approach is memory-efficient, as it relies solely on LLM inference without
the need to compute and store gradients, or large optimizer states. This allows us to fit a large batch
size during training. The overhead introduced by the internal state of the BBO algorithm is negligible
compared to the computational cost of LLM inference.

6 CONCLUSION

This paper introduced BBoxER a principled post-training method that leverages comparison-based
BBO algorithms for retrofitting. By compressing the training set into a comparison trace, measured in
only a few bits, BBoxER offers strong theoretical guarantees on overfitting, robustness, and privacy.
Despite this compression and the limited number of optimization iterations, BBoxER empirically
demonstrates effective learning and transfer on GSM8k with contemporary LLMs, as well as empirical
robustness to membership inference attacks. Theoretical insights are reinforced by experimental
results, especially with Bet-and-Run algorithm variants. Importantly, this work is the first to bridge
the LLM training landscape with the full BBO zoology. This connection, grounded in formal analysis,
paves the way for safer, more robust, and adaptable language models, and opens the door to broader
adoption of privacy-preserving training at scale, including completely private remote A/B testing or
(post-)training directly on user satisfaction without any leakage of the underlying data.
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Reproducibility Statement To enable independent re-implementation, we provide in the paper and
Appendix: (i) The exact publicly available datasets and models used for training and evaluation (Sec. 5
and App. H) (ii) full hyperparameter details, modi fier functions, and training objective (Apps. B
and H); (iii) number of few shots examples and inference settings for evaluation (Sec. 5); (iv) number
of runs per result, with mean + std when possible (Sec. 5); (v) open-source libraries used; and (vi)
compute details (App. H).
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A EXTENDED RELATED WORK

Generalization Bounds for LLMs. Early generalization bounds, such as those derived from the
VC dimension (Vapnik, 1995b), covering numbers (van der Vaart & Wellner, 1996), and the fat-
shattering dimension (Kearns & Schapire, 1990), become ineffective in the overparameterized regime
of LLMs (Nagarajan & Kolter, 2019). PAC-Bayes-based methods have been proposed to derive
bounds from model compressibility (Zhou et al., 2018; Lotfi et al., 2022; 2024), offering data-
dependent generalization guarantees by leveraging informed priors over parameters to exploit the
implicit preference of a network for simpler functions (Lotfi et al., 2022). This approach connects
generalization to model compressibility: if a trained Transformer can be heavily compressed while
retaining accuracy, it implies an effectively smaller hypothesis complexity. Indeed, some of the
tightest known bounds come from compressing large networks. For instance, by quantizing parameters
in a low-dimensional subspace. Such results echo Occam’s razor, suggesting that big neural networks
contain simpler sub-models that drive their generalization.

Another paradigm is algorithmic stability (Bousquet & Elisseeff, 2000), that instead analyzes how
sensitive the learning algorithm is to perturbations in the training data. This makes it applicable to
settings with infinite VC dimension. However, applying stability or norm-based analyses to huge
LLMs often requires strong assumptions (e.g., tiny learning rates or bounded layer norms) and
tends to yield loose bounds in practice. Hence, while these theoretical tools have advanced our
understanding, for example, by explaining how a 100-billion-parameter Transformer might effectively
behave like such a “simpler” model, extending them to practically useful guarantees is non-trivial.
In particular, LLMs introduce extra complexities (e.g., autoregressive dependencies and unbounded
loss values) that defy many standard assumptions. Li et al. (2023a) showed that the self-attention
mechanism is uniformly stable under certain Lipschitz constraints, which allows a generalization
bound for in-context learning with Transformers.

Our contribution shares this spirit, exploiting the comparison-based nature of optimization and
the limited branching factor of black-box optimizers. By leveraging union-bound variants like the
Bonferroni correction, we derive non-vacuous generalization guarantees.

Data Poisoning. Data poisoning alters training data to inject specific behaviors, either to degrade
performance or to create targeted backdoors (Chen et al., 2017). This includes subtle manipula-
tions—e.g., poisoning just 0.001% of training data in medical applications (Alber et al., 2025)—that
remain undetected by conventional metrics. Attacks have proven transferable across quantized
and full-precision models (Egashira et al., 2024). Recent work shows that inserting only a few
percent of malicious preference pairs in RLHF (Christiano et al., 2017) or DPO (Rafailov et al.,
2023) data can dramatically shift model behavior (Baumgirtner et al., 2024; Wang et al., 2024; Yan
et al., 2024; Zhong et al., 2023; Zeng et al., 2024; Zhao et al., 2025; Chen et al., 2017), such as
increasing output verbosity or sentiment polarity. These changes are activated by specific triggers
and survive quantization. Theoretical work (Kearns & Li, 1993; Steinhardt et al., 2017) confirms that
even small adversarial corruptions can be highly effective, especially in overparameterized models.
However, certified robustness against poisoning in LLMs remains an open problem. Compared to
e.g., (Steinhardt et al., 2017), we provide an explicit algorithm with the desired stability assumptions.

Privacy and Robustness. LLMs are exposed to risks of privacy and data extraction attacks (Carlini
et al., 2021b; Zhang et al., 2024; Rando et al., 2025; Feng & Tramer, 2024). DP-SGD (Abadi
et al., 2016) introduces formal guarantees by adding Gaussian noise to clipped gradients, achieving
(e, 6)-DP under strict accounting (Li et al., 2024b). Nevertheless, it suffers from increased compute,
memory use, and degraded utility. Specific implementations like Book Keeping (Bu et al., 2023),
and extensions like adaptive clipping and layer-wise noise scaling aim to mitigate this (Li et al.,
2024b). PATE (Papernot et al., 2016) aggregates teacher votes to train a student model privately.
Parameter-efficient strategies like DP-BiTFiT (Bu et al., 2024), soft prompts (Duan et al., 2023), and
selective DP (Shi et al., 2022) offer better trade-offs. Our method avoids the need for noisy gradient
updates by enforcing a compression bottleneck and comparison-based optimization, achieving
(e = 0,0 = 0) for user input prompts and outputs in scenarious like A/B testing, by targeting
high-fidelity memorization pathways directly. This aligns with broader insights that data retention
precision is a root cause of privacy and misuse (Lee & Yoon, 2025; Zheng et al., 2025). Yu et al.
(2021) proposed a meta-framework for differentially private fine-tuning pretrained language models,
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achieving state-of-the-art privacy-utility tradeoffs on standard NLP tasks. Their approach was
inspired by the success of parameter-efficient fine-tuning methods, allowing for simpler and sparser
algorithms while maintaining high utility and providing rigorous privacy guarantees. In this case, by
leveraging DP-SGD with careful gradient clipping and noise addition, the framework ensures that the
influence of any single data point on the model’s parameters is bounded, thus protecting individual
privacy. However, although the methods achieve strong performance, there is still a noticeable drop in
accuracy compared to non-private fine-tuning, especially for smaller models or more complex tasks.
Furthermore, the effectiveness of their DP fine-tuning approach is sensitive to hyperparameters such
as learning rate, clipping norm, and noise multiplier, illustrating that careful fine-tuning is required to
balance privacy and utility. Other works have focused on privacy-preserving strategies for instruction
tuning and alignment of large language models. For instance, Yu et al. (2024) introduced a two-stage
framework that addresses privacy risks not only during training, but also in the instruction collection
phase. In this case, they first fine-tune a pretrained LLM using differentially private optimization
(DP-Adam) to generate synthetic user instructions, and then apply a DP histogram-based distribution
matching technique to resample instructions such that they resemble the distribution of the original
private data. This approach ensures that both annotators and the final alignment pipeline never see
raw user inputs, thereby preventing both direct exposure and downstream memorization. Applied
to LLaMA (Touvron et al., 2023) and Phi-models (Li et al., 2023b), their approach achieved state-
of-the-art performance in both supervised fine-tuning and RLHF settings, with utility comparable
to non-private baselines. In particular, they highlight the importance of privacy-preserving data
preparation in addition to model training.

Post-training for Reasoning. Reasoning tasks like GSM8k (Cobbe et al., 2021), SVAMP (Patel
et al., 2021), MATH (Hendrycks et al., 2021), and GSM-Symbolic (Mirzadeh et al., 2025) highlight
the limitations of standard LLM (pre)training. Post-training approaches for reasoning tasks are now
commonplace in LLM training. Enhancements via chain-of-thought prompting (Wei et al., 2022b),
complex reasoning extensions (Fu et al., 2022), and in-context learning (SU et al., 2023; Gupta
et al., 2023) are effective but often brittle. Reinforcement learning approaches such as GRPO (Shao
et al., 2024) allow fine-tuning using unsupervised signals, opening the door for real-time user-driven
improvement (Peng & Risteski, 2022). LoRA (Hu et al., 2022) and robust tuning (Yen et al., 2025)
enhance adaptability but are prone to hallucination (Ren & Sutherland, 2025) and exploitative
behaviors (Qi et al., 2025; Zheng et al., 2025). Our approach combines low-rank adaptations with
retrofitting techniques and avoids reward-based fine-tuning. It limits overfitting risks and prevents
the amplification of memorized or poisoned content by emphasizing rank-based signal aggregation
over token-level supervision. A somewhat complementary approach is self-improving (Sun et al.,
2025b). In such a case, a large language model tries to improve its performance by self-fine-tuning
with synthetic data generated by itself. Nevertheless, such approaches have mostly focused on
performance, and they are not risk-free from data poisoning or leaking private data.

B EXAMPLES OF MODIFIERS

The BBoxER framework is described in Alg. 1. This algorithm has various hyperparameters, such as
a budget, a black-box optimization algorithm, and a mod; fied(mg, «) function which specifies how
a vector x proposed by the black-box optimization method is used to modify an initial model my.
Here we present a few examples of such modi fied(. . . ) functions, involving broadcast, low-rank, or
full updates.

B.1 EXAMPLES OF MODIFIERS FOR ONE LAYER
In the present section x refers to pointwise multiplication and @ refers to matrix multiplication.

Full Layer Update. A simple example of a multiplicative modifier is the following:
1: Define model = modi fied(mq, x)
2: model = copy(my)
3: model.output_matriz = model.output_matriz x exp(0.01 x )
4: Return model

In this example, we modify the normalization layer of the model, using a matrix z.
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Other update formulas include +0.01 x =, x (Id+0.01 x z), and other constants than 0.01. However,
in most cases, we will use vectors x rather than matrices, as explained in low rank and broadcast.

Low Rank Update. When updating entire weight matrices, we prefer to work with low-rank
(LoRA) updates (rank 1 in fact), defined as follows, when model.output_matriz has shape
(hidden_dim, vocab_size) and x has dimension hidden_dim + vocab_size:

1: Define model = modi fied(mq, x)
model = copy(my)
x1,xo = split(x){x; has shape (hidden_dim, 1) and x5 has shape (1, vocab_size)}
model.output_matriz = model.output_matriz x exp(0.01 x x1Qxs)
Return model

Broadcast Update. In some cases, we use broadcast rather than low-rank updates.
modi fied(mg, ) is then defined as follows, where x as a row vector is repeated M times to
fit the shape of the matrix we want to update. In Sec. 5 = has dimension hidden_dim and
M = hidden_dim:

1: Define model = modi fied(mq, x)
model = copy(my)
x1 = (1,...,1) {x; has shape (1, hidden_dim)}
model .output_matriz = model.output_matriz x exp(0.01 x z{Qxzx)
Return model

In App. I, x has dimension vocab_size when broadcast updates are applied to the output layer.

B.2 MODIFYING SEVERAL LAYERS

In the examples above, we consider updates of one layer only. However, this can be naturally extended
to updates of [ layers. Then, x is split into x1, ..., x;, and each x; is used for updating a specific
layer, as in App. B.1.

In our experiments in Sec. 5 we performed the following updates:

* Optimizing the output layer with the rank 1 Low Rank Update. (Experiment 1)
* Optimizing all () matrices of all attention layers with the Broadcast Update. (Experiment 2)
* Optimizing all normalization layers with the Full Layer Update.(Experiment 3)

For all these experiments the update constant is 0.01. A few additional experiments in App. I use a
different constant.

C THEORETICAL BACKGROUND: A BRIEF OVERVIEW OF STATISTICAL
LEARNING THEORY

C.1 NON ASYMPTOTIC LARGE DEVIATION BOUNDS FROM THE 60S: HOEFFDING, BENNET,
BERNSTEIN

Large deviation bounds refer to bounds on the difference between an expectation and an empirical
average. They exist independently of machine learning (contrary to overfitting bounds, below) and
are used for polls, Monte Carlo integration, and others.

Indeed, for a dataset size s, consider d; . the risk against the randomness wp w.r.t. dataset D of an
e-divergence between the empirical risk and the risk in generalization for a given parametrization z,
ie.,

W(z,€,5), Py, (IL(2) = L(@)] > €) < 01, (A1)

01, refers here to the risk of deviation e for one (hence the subscript 1) model: when Lis computed
by average on a sample, we can invoke d; . by Hoeffding, Chernoff or Bernstein bounds (Devroye
et al., 1996). By Hoeffding’s bound (Hoeffding, 1963), if individual losses are in [0, 1] we get

851, = 2exp(—2se?). (A.2)
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In case we have a prior on a bound o2 on the variance of a randomly drawn individual loss, we can
use the bound of Bennet and Bernstein (Bennett, 1962):

01, = 2exp (fsehl (%)) .

where h1(A) = (1+ §)In(1 4+ X) — 1.

C.2 PROBABLY APPROXIMATELY CORRECT (PAC) LEARNING: A BRIEF OVERVIEW

We propose a point of view on optimization algorithms based on their risk of overfitting in the context
of huge VC-dimensions and covering numbers, deriving bounds that are not covered by the studies
on the rates of convergence. These bounds were frequently developed in the *90s or ’00s:

e App. C.2.1 presents the Bonferroni correction: whereas “non-uniform” large deviation
inequalities estimate the difference between an empirical error and a generalization error
for a single predefined classifier (for example when testing a single model on a test set),
the Bonferroni correction provides bounds applicable uniformly on a finite set of classifiers
(e.g., for selecting, with a validation set, a classifier in a list of classifiers obtained on the
training set).

* App. C.2.2 generalizes the Bonferroni correction to infinite families of classifiers: VC-
dimension bounds, and others, are the most well-known bounds. They are based on limiting
the “capacity” of a space of function, even when it is infinite.

* App. C.2.3 presents other bounds for infinite families of functions, taking into account the
optimization algorithm used for selecting a classifier: the idea is that even if the space of
functions is large, we can get bounds if the optimization algorithm satisfies some stability
assumptions. This last part of the state-of-the-art is the closest to our work: we get non-trivial
bounds on deep learning models, independently of the possibly huge number of parameters.

C.2.1 BOUNDS ON THE GENERALIZATION LOSS BASED ON BONFERRONI

The Bonferroni bound (Bonferroni, 1936b; Dunn, 1961) is a direct application to statistics of the
union bound:

k
P(AjorAsor...ord) < Z P(4;) (A.3)
i=1

The analysis below extends (Videau et al., 2024b;a), using the branching factor analysis in (Fournier &
Teytaud, 2011). L () refers to the error in generalization for a probability distribution F' and a model
x. Lp(x) (frequently denoted L(z) in the literature) refers to the random variable corresponding to
the empirical error on a dataset D, of cardinality s, randomly independently drawn from F'. Whereas
gradient-based optimization does not lead to any bound on the generalization loss, such bounds can
be obtained when using comparison-based optimization (i.e., a subset of black-box optimization),
as detailed below. These bounds suggest that the risk of overfitting is lower than for gradient-based
methods. Our experimental results suggest that this interpretation is correct.

Let us see the generalization of large deviation inequalities seen in App. C.1.

If we use the empirical error for picking up the best Z, in a list of b models 1, ...,z (e.g.,
z1,...,Zp are chosen by random search or low-discrepancy search or choice by the user, which leads
to N(w, a,b) = b), the risk of deviation ¢ for that Z is at most b - d; . (union bound, also known as

Bonferroni correction (Bonferroni, 1936a)) instead of 8y .: Py, (|L(Z) — L(Z)| > €) < 8. = bdy .

Thm 1 extends this to more sophisticated cases, with N (w, a,b) = m;k;(w, a,b) >> b (in many
cases, exponential in b e.g. N(w,a,b) < 2° and k; < 2) instead of N (w, a,b) = b. In spite of being
larger, this bound, exponential in b, is tighter than bounds based on capacity.
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C.2.2 BOUNDS ON THE GENERALIZATION LOSS BASED ON CAPACITY: STATISTICAL
LEARNING THEORY FROM THE 90s

Vapnik (1995b) is a pioneering work on bounds on the generalization loss based on VC-dimension.
Many other capacity measures have been defined, such as covering numbers (van der Vaart & Wellner,
1996) and the fat-shattering dimension (Kearns & Schapire, 1990). The most classical bound on the
generalization loss is probably the VC-bound in the case of classification:

VClog(s) +4

E[L(#)] < inf L(x) + 16 e

(assuming that £ minimizes Z(EE)) When using shattering coefficients instead of VC-dimension, one
can read:

log(8e x Shattering(n))
2s )

E[L(#)] < inf L(z) + 16\/

When it is possible to reach zero loss, then we get
P(L(i) > €) < 2 x Shattering(2n)2~°¢/2.

Both the Shattering coefficients and the VC-dimension depend on the class of functions. Extensions
exist for regression and other cases, and other capacity measures exist. However, capacity bounds are
not always relevant for vast models such as deep networks.

C.2.3 ALGORITHMIC STABILITY: BOUNDS BASED ON PROPERTIES OF ALGORITHMS IN THE
2000s

Algorithmic Stability (Bousquet & Elisseeff, 2000) is a radically different approach, based on some
algorithm properties rather than on the capacity of the underlying family of functions. Because we
also use particularities of the learning algorithm to derive generalization bounds, our approach is
close to that of Algorithmic Stability.

Following (Bousquet & Elisseeff, 2000), we write [(x, z) the loss of a model parametrized by = on
an example z, so that L(z) = E.l(z, z). An algorithm which outputs a model parametrized by & (D)
on the training data D has uniform stability 3 if supp, , [[(2(D), z) — l-;(2(D), z)| < j for all 4,
where [_; is the loss of the model learned from a training set obtained from D by removing the i'"
example. An algorithm with uniform stability S and some other technical assumptions (including
0 <1 <1) has the following property:

V5 >0,P (L(;fs(D)) > L(#(D)) + W) <.

D BLACK-BOX OPTIMIZATION ALGORITHMS

The BBoxER algorithmic framework, as illustrated in Figure 2, embeds an algorithm from the family
of block-box optimization algorithms, which we now describe in detail.

D.1 EVOLUTIONARY ALGORITHMS

For the reasons given in Sec. 3, only Evolutionary Algorithms (EAs) have been used in the present
work, as they are (at least for those uses in the present document) comparison-based, and hence
de facto comply with the finite branching factor condition, which is mandatory for the theoretical
results of Sec. 4 to hold. App. D.2 discusses this choice, and its possible relaxation, while the current
section introduces EAs more thoroughly, and details all the comparison-based algorithms used in the
experiments of Sec. 5.

Evolutionary algorithms (A. E. Eiben and, 2015) are stochastic optimization algorithms that crudely
mimic the Darwinian evolution of a “population” of  “individual” (i.e., points of the search space)
based on random variations and “survival of the fittest” selection: the p “parents” generate A
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Figure 2: Schematic view of BBoxER Alg. 1. Our approach compresses the data relative to the current model,
leading to a list ¢ of b bits (Eq. 3, b is the total budget). The final model depends only on those b bits, giving
perfect control over the number of bits transferred from the dataset to the model. In BBoxER, budgets b are
typically between 60 and 1500 bits, i.e., very small compared to the dataset size. The “Retrofitting compressor”
refers to the part of Alg. I which outputs the list ¢ of outputs of the Compare(. .. ) function: c represents a
compression of the dataset D conditional on the initial model. “Retrofitting modifier” is the part of Alg. 1 which
outputs the final model, given the list ¢ and the initial model.

“offspring” by random operations; the selection process then retains p individuals to build the next
population; in (14 4+ A)-EAs, these are the fittest of the 1 parents plus the A offspring, while (i, \)-EAs
select the best of the ) offspring only. EAs can search any search space on which random variation
operators can be defined. These EAs are comparison-based, i.e., only comparisons of the values of
the objective are used (to deterministically choose the best ones). But stochastic selection processes
can also be used in general EAs.

When it comes to continuous optimization (the variables are continuous), among the most popular
EAs are Evolution Strategies (ESs) (Beyer & Schwefel, 2002), Differential Evolution (DE) (Storn &
Price, 1997), and Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995).

Evolution Strategies (Rechenberg, 1973; Schwefel, 1977; Beyer & Schwefel, 2002) are specific EAs
for continuous optimization, using normal “mutations”, i.e., sampling some Gaussian distribution,
generally centered on the parent, to generate the offspring. The issue is then to adjust the variance
and the covariance matrix of this normal mutation.

The first adaptive ES uses the so-called “one-fifth success rule” (Schumer & Steiglitz, 1968; Rechen-
berg, 1973), established by theoretical analyses on simple linear and quadratic objective functions,
on which the optimal behavior is reached for a success rate (offspring better than parent) of approx-
imately 0.2. This is available in Nevergrad as the (/+1)-ES with 1/5th rule, named in this paper
OneFifth, whose pseudo-code is given in Alg. 2-left.

CMA-ES (Hansen & Ostermeier, 1996; 2003; Hansen, 2023) iteratively updates a multivariate
Gaussian random variable, initialized at the identity and parametrized by a covariance matrix and its
variance (the so-called step-size). Each update is based on the correlations observed in successful
mutations. This allows CMA-ES to adapt its step-size and search directions (the covariance matrix) to
the problem landscape. Despite its o(d?) computational cost and memory usage, due the the handling
of the full covariance matrix, it is widely regarded as a powerful and reliable optimizer.

D-CMA (Ros & Hansen, 2008) is the most popular of the several “tricks” that have been proposed
to cope with this complexity. D-CMA uses a diagonal covariance matrix rather than a full positive
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Algorithm 2 The two typical (1+1)-EAs.

Left: all variables are added some Gaussian noise in the (1 + 1)-ES, but the step-size of the
multivariate Gaussian mutation is modified according to the success rate.

Right: each variable is replaced with a given probability by a value sampled from a fixed standard
normal Gaussian in all discrete-inspired (1+1)-EA.

Adaptive One-fifth (1 + 1)-ES Generic Discrete-inspired (1 + 1)-EA
Require: initial point z¢ € R, budget b € N Require: initial point z¢ € R, budget b € N
Require: step-size o > 0 1: 2 =29
1: 2 =x 2: fori € {1,...b} do
2: fori € {1,...b}do 3 2=z
3 ' =z +oN(0,1) 4:  whilez’ =z do
4 if ' better than z then 5: =z
5: z =z 6: for j € {1,...,d} do
6: o =20 7. With probability p(i, b, d) "c; = N(0,1)
7 else 8: end for
8 c=2"14c¢ 9:  end while
9 end if 10:  if 2’ better than 2 then
10: end for 11: z=a'
12:  endif
13: end for

definite matrix. Its efficiency, hence, depends on the degree of correlation between the variables, aka
the separability of the objective function.

When handling a full population (1 > 1), both CMA-ES and D-CMA apply the adaptive Gaussian
mutation to a linear recombination of the x individuals. The historical CMA-ES used the mean (all
weights of the linear recombination are 1/), whereas the state-of-the-art CMA-ES uses weights
that decrease with the rank of each individual. In the latter case, more information is used, and the
branching factor increases (see App. E.5).

The simplest ESs (or EAs) are the (1+1)-EAs: the single current individual is modified, and the best
of both becomes the new current one. While the already-mentioned OneFifth was the first historical
successful adaptive EA (see again Alg. 2-Left), another family of (1+1)-EAs is directly derived from
the historical GAs (Genetic Algorithms), that optimize bitstrings: the mutation typically flips each
bit with a given probability. In the continuous case, the bitflip is turned into a “Gaussian flip”: each
value is replaced by a value sampled from a standard normal mutation (N (0, 1) in Alg. 2). Several
variants of such “discrete-inspired” algorithms exist in Nevergrad, depending on the probability of
applying this Gaussian flip to each variable. The Discrete algorithm exactly mimics the standard
setting in GAs by adopting a fixed 1/d probability; the Lengler (Doerr et al., 2019; Einarsson et al.,
2019) algorithm uses a gradually decreasing schedule. The Uniform-Disc (Dang & Lehre, 2016)
algorithm uses a probability that is uniformly sampled in ]0, 1], and the FastGA (Doerr et al., 2017)
uses an «/d probability where « is sampled from a power-law distribution.

Additionally, COLengler is a variant of Lengler that also performs, after mutation, a coordinate-wise
crossover a la differential evolution.

DE (Differential Evolution) (Storn & Price, 1997)
Table 4: Bound on the average branching factor for CVOI_VCS a populat'ion Qf ipdividuals: each individ-
various algorithms (see App. E.4, App. E.5, App. E.6). ual is mutated using (i) differences between good
points (for taking into account the key directions)
and, in its “Curr-to-best” variants (ii) typical

(1 + 1) algorithms differences between the population and the best
OneFifth 2 point so far, before a coordinate-wise crossover
Il;‘;z‘éj\r 3 is applied. In spite of its very low computational
Portfolio 2 cost, DE is known as a very efficient algorithm.
R alg‘z‘;t}f“;f?/3)1 - PSO (Particle Swarm Optimization) (Kennedy
176 & Eberhart, 1995) uses a population of moving
3-OncFifth _ 3 Qb/g) <2 individuals ("particles"), each with an associated
SEF0 Population-based algorithms 5 velocity. At each iteration, the velocity of each
DE. PSO with curr-to-best 3 particle is biased towards the best value observed
CMA-ES/D-CMA 2 so far by this particle, and towards the best value
Ch@ﬁfgﬁiyﬁi ahts 2% i over the complete population of particles, and the

particle moves according to its new velocity.
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Furthermore, Nevergrad also includes some ensemble approaches.

NglohTuned is a wizard. It chooses one algorithm from its portfolio of BBO algorithms, based on
some characteristics of the problem, and following a hand-made rule. Portfolios and wizards have
been first proposed for SAT solving (Xu et al., 2008), and later ported to black-box optimization (Awad
et al., 2020; Meunier et al., 2021).

Bet-And-Run algorithms, for budget b, consists in running k algorithms with budget ab/k, picking
up the one reaching the best objective value and running it for the remaining (1 — «)b budget;
3-OneFifth is an instance of Bet-And-Run with a = 0.5 and three OneFifth in parallel; with o = 1,
3-Disc runs three Discrete in parallel and 2-DE/D-CMA runs DE and D-CMA.

These algorithms were chosen because of their finite branching factor: Tab. 4 lists the branching
factors of all cited algorithms. The branching factor is 2 for all (1+1) algorithms. The derivation of
the other values is detailed in App. E.

Discussion. The choice of a BBO algorithm for a given problem is a long-lasting problem, and can of
course be left to the Nevergrad wizard NglohTuned. However, some characteristics of the algorithm
introduced above are worth highlighting here, and might in turn give some information about the
problems addressed with BBoxER based on its experimental results.

The adaptive approaches are now well mastered: CMA-ES offers the most sophisticated update
mechanism. It is competitive in terms of performance with the best algorithms of Mathematical
Programming, and has recently been proven to converge linearly (Gissler, 2024) However, it has
a high computational complexity with respect to dimension d and hence poorly scales up. Among
several variants, D-CMA offers a very good compromise. But the simplest adaptive mechanism is
that of OneFifth, which is very robust and often very efficient. Note, however, that its adaptation
mechanism requires a number of iterations to take place, and was, for example, discarded in the
OpenAl ES, one of the rare examples of large-scale BBO in complete training of Deep Neural
Networks (Salimans et al., 2017).

Because D-CMA only adapts a diagonal covariance matrix, one cannot expect that it effectively
handles non-separable objectives. Less intuitively, this is also true for PSO, and, to a lesser extent,
for DE unless its crossover rate is small (Auger et al., 2009). On the other hand, their adaptive
mechanism (implicit for DE) makes CMA-ES, D-CMA and (some variants of) DE very efficient in
dealing with randomly rotated ill-conditioned problems, which is not the case for PSO (Auger et al.,
2009).

Regarding the discrete-inspired (1+1)-EAs, Discrete, Uniform-Disc, Lengler, and FastGA, they
are based on proved convergence proofs for known benchmark functions in the bitstring case, but
their efficiency in the continuous setting is more surprising, and would deserve deep mathematical
analyses.

Last but not least, Bet-And-Run algorithms, including 3-OneFifth, 3-Disc, and 2-DE/D-CMA, are
robust, as proved in App. E.4 and demonstrated in the experimental results (Sec. 5 and App. L.
However, they still require the choice of the embedded algorithms.

D.2 POSSIBLE EXTENSIONS

Code and Package. As said, all experiments in this work have been run on the Nevergrad open
source platform (Rapin & Teytaud, 2018), which encompasses many BBO algorithms, along with
specialized wizards that select among them based on problem-specific properties. Nevergrad also
includes algorithms that are black-box optimizers without being comparison-based, such as (Powell,
1994; 1964). Since these operate with a finite number of bits per loss function, they might also fall
under the theoretical framework of Sec. 4, though this is left for future work.

Extension to multi-objective algorithms is another promising direction, for instance by optimizing
different criteria (e.g., pass@k and accuracy) or by considering performance across several distinct
benchmarks as the training objective, rather than averaging them.

Beyond Comparison-based Algorithms An important assumption (Line 5) is that the only thing
that depends on the dataset D is choiceq, ..., choicey, and each choice; has at most k; possible
values (k; := alg.numCalls() is called the branching factor (Fournier & Teytaud, 2011)). This is
unusual in deep learning (DL), as in DL compare is replaced by some function involving gradients
(even Reinforce (Williams, 1992b) or GRPO (Shao et al., 2024) return a gradient update), and choice;
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is replaced by a gradient, or, for reinforcement learning such as GRPO (Shao et al., 2024), the outputs
and their rewards.

Algorithms that do not return any gradient are termed black-box optimization algorithms. Among
black-box optimization algorithms, some methods are comparison-based: they have finite k;. These
comparison-based algorithms are typically classified in three families of algorithms: (i) random
search and derandomized variants (McKay et al., 1979; Niederreiter, 1992), (ii) direct search
methods (Roberts & Royer, 2023), and (iii) evolutionary computation (Beyer, 2001). Note that
GRPO (Shao et al., 2024) is sometimes considered as gradient-free in the sense that it does not require
the gradient of the loss function; however, it does require other detailed information about the outputs
of models, so that it is not black-box in the same sense (and a fortiori not comparison-based), and
the present results do not apply to GRPO or REINFORCE (Williams, 1992a) if we assume that they
work on infinite-precision floats.

Taking into account the Finite Float Precision. Because our results are mainly useful when k; is
small, this work focused on comparison-based algorithms. However, all results of Sec. 4 are true for
large values of k;. Let us check k; in the case of some classical methods for post-training. In BBoxER,
the information flow from the data to the model is limited to roughly one bit per iteration, leading
to at most 2° possible outputs for a budget of b steps. This limited capacity directly reflects the
compression properties showcased in Equation (3) and Figure 2. In contrast, supervised fine-tuning
updates the model using one gradient per mini-batch. For an 8B model with 16-bit precision, each
mini-batch carries about 256B bits: a few mini-batches are sufficient to encode the entire content of
Wikipedia. Reinforcement learning methods, such as GRPO, typically rely on model outputs and
reward signals that would allow them to encode the full dataset within a single training epoch.

E OVERFITTING BOUNDS AND THEIR GENERALIZATIONS

In this Section we provide the theoretical generalization bounds for the deterministic (App. E.1)
and randomized cases (App. E.2), followed by (App. E.3) strengthened bounds for the special cases
of (1,\) and (1 + A) BBO algorithms as described in App. D. We proceed by making our bounds
explicit for various families of algorithms, based on Fournier & Teytaud (2011); in App. E.4 we obtain
strengthened bounds for Bet-and-Run combinations like 3-OneFifth, MultiDisc, or 2-DE/D-CMA
(deployed in some of our experiments in Sec. 5), App. E.5 lays out bounds for population-based
evolution strategies (i.e., (1 + A) and (u, A) with g > 1) like CMA-ES and D-CMA, and App. E.6
deals with differential evolution and particle swarm optimization. The key to our results is the
branching factor k;, i.e., the number of distinct behaviors of the algorithm that can arise in an iteration.
Finally, App. E.7 derives explicit bounds as a function of the dataset size.

E.1 BOUNDS FOR THE DETERMINISTIC ALGORITHM: THEOREM 1

Theorem 1 (Deterministic case). Let a be an algorithm, b a budget, s the dataset size, and
€ > 0. Assume N(w, a,b) is finite and that for some 61 ¢, Vzx, P, (|E($) — L(z)] > e) <
01.c. Then

Py (IL@) ~ L@)| 2 €) < N(w,a,0) - b1 c. (A4)
P,, ( sup |L(z;) — L(x;)| > e) <b-N(w,a,b) - .. (A5)
1<i<b

Proof. For Equation (A.4): apply the Bonferroni bound (Equation (A.3)) to the set of events
{|L(FinalModel,, p o) — L(FinalModel, p.a)| > €; D € D}.
This set has cardinality at most N (w, a, b).
For Equation (A.5), apply the Bonferroni bound to the set of events
{|L(modely,p.api) — L(modely, paps)| > €i € {1,...,b},D € D},
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where model,, p 5, is m; when BBoxERis applied with seed w, algorithm a, budget b, dataset D.
This set has cardinality b - N (w, a, b). O

E.2 GENERALIZATION BOUNDS FOR RANDOMIZED BBoxER

Thm 1 applies to deterministic algorithms, where the only source of randomness is the sampling of
the dataset D, determined by the seed wp. In this case, the deviation risk d; . is computed over that
randomness alone. When the optimization algorithm itself is randomized (i.e., w is a random seed),
the deviation risk . ., also depends on w. Averaging over w yields the total deviation risk:

55 = Ew(se,w~

Since the bound of Thm 1 holds uniformly for any fixed w, it extends naturally to the randomized
setting, in which Z depends on both w and wp:

Theorem 3 (Stochastic case). Consider a randomized seed w (i.e. w is a random variable),
an algorithm a and a budget b € N. Then

Pw7wD(|ﬁ(fE) — L(Z)| > €) < ( sup N(w,a,b)) 01 e
w constant

Here, the probability is taken over both w (which determines the optimization trajectory and hence
the final model Z) and wp (which governs dataset sampling). The supremum is over a constant w,
and Z can be built with a random variable w.

Application to Random Search. In this case, the b candidate models are sampled indepen-
dently of the data. Since each choice is fixed a priori, the number of internal states satisfies
N(w, random-search,b) < b. N(w,a,b) is derived from k, = b (we choose between the b
models z1, ..., x, at the very end) and k; = 1 for other values of i. Apply the Bonferroni correction
to the N (w, a, b) possible values of T leads to

Po,(IL(@)— L&) > €) <b-6. (A.6)

This also applies to quasi-random strategies and design of experiments, where the sampling of
hyperparameters does not depend on their empirical performance. In these cases, we observe that b
can be exponential in s without overfitting.

E.3 COMPARISON-BASED STRATEGIES: THE (1, \) AND (1 + A) CASES.

In contrast to random search, where all candidate parametrizations are chosen independently of their
evaluation, comparison-based algorithms build candidates iteratively based on performance. If A
candidates are evaluated at each step and the best is retained, then the number of internal states after
one iteration is \; after two iterations, A%; and after n = b /A iterations, at most \™. The total risk is,
therefore, bounded by A" - 8; ., where n is the number of iterations with k; > 1 (with k; = A in such
iterations); see (Fournier & Teytaud, 2011).

In the elitist variant (1+\), the best model is selected among the current best and the A new candidates,

so k; € {1, \+1}. This leads to a total number of internal states bounded by (A + 1)(*=1/*, Simply
apply Thm 3 in the case

o k; = Nif i + 1 mod A = 0 (every \'" iterations we pick up the best of the previous A
models).

¢ k; = 1 otherwise.
and the corresponding generalization bound becomes:

P(L@E) - LE)| > ¢) < A+ 1D g, (A7)

For example, this applies to the (1 + 1) evolution strategy with the one-fifth success rule or the
Lengler variant (Einarsson et al., 2019), both corresponding to k; = 2.
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E.4 GENERALIZATION BOUNDS FOR BET-AND-RUN COMBINATIONS

Consider the example in Equation (A.7). Additionally, if we perform k& > 1 independent optimization
runs, and if the budget b is divided by k, then the Bonferroni correction leads to a risk

k . A0/ (AF)) . 51.c (A.8)

s

—
Bonferroni correction  Branching factor per run - pic for a single model

for the resulting parametrization. According to these bounds, increasing the number k of independent
runs for a given total budget decreases the risk of overfitting. More generally, consider bet — and —
run(ay,as, . ..,ax), the bet-and-run of k algorithms ay,. .. ,ax. This algorithm, for a budget b, runs
each a; with budget b/k:

» These k runs are completely independent.

» Its random seed is split into k random seeds w', ..., w".

» At the end, we choose the model with best empirical performance, i.e. 7 is T; =
FinalModel(w?, a;,b/k) minimizing L(Z;).

Theorem 4 (Bet and Run has low overfitting risk). Consider bet — and —
run(ay,az, . ..,ax).Then
k
N (w,bet —and — run(ay,ag, ..., a),b) < Z N(w,a;,b/k). (A9)
i=1

Proof. The final outcome 7 is one of the Z;, so the number of possible outcomes is the sum of the
numbers of possible outcomes of each algorithm individually. O

Let us consider that the a; are all the same algorithm, and let us check the impact of bet-and-run on
overfitting. Equation (A.9) implies a lower overfitting than with a single algorithm (corresponding
to N(w,a;,b)) if N(w,a;,b/k) increases more than linearly in b/k, which is the case for most
optimization algorithms. For example, with (1 + 1) evolution strategies, App. E.3 shows that
N (w, evolution_strategy, b) is exponential in b.

Let us illustrate this in an example. Consider Equation (5) in the case k; < 2, namely:
P,, (|E(§) — L(z)| > 6) <2-exp(In2-b— 2se?).
With a bet-and-run of 3 algorithms, it becomes:
P, (|Z(§) —L(@)] > e) <2 exp(In2 - (logy(3) + b/3) — 2s€2). (A.10)

which is better (lower) as b — oc.

E.5 POPULATION-BASED EVOLUTION STRATEGIES (E.G. CMA-ES AND D-CMA)

For a (1 + 1) evolution strategy which stores a full ranking of the population of size i, each new
point has (1 + 1) possible ranks: from best to worst in a list of cardinal 1 4 p, so the bound becomes
(14 p)N—H. Extensions are possible for (y, A) or (1 + \) evolution strategies:

b—p

N(w, (. A), @ = (p, A)-ES, b) - < (Z)

)
7

In the case of CMA or D-CMA, the (u, \) strategy is more usual and used in our experiments; and

typically, the population-size A is set as A = 4+ |3log(d) | in dimension d, and y frequently scales as

A/4 or A\/2. Sometimes there is a complete ranking of the  selected points so that different weights

are used for the p selected points depending on their rank: this adds a factor p! to the number of
possible branches: otherwise, we get bounds as in Tab. 4.

IN

N(w, (p+ A),a = (un+ N)-ES,b)
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E.6 DIFFERENTIAL EVOLUTION (DE) AND PARTICLE SWARM OPTIMIZATION (PSO)

For differential evolution without storing the best so far, each point is just compared to its parent: we
get 2°8; .: this suggests that recombination is not a problem as it does not increase the number of bits
of information. When the best so far is stored, we have 3 possibilities: worse than parent, better than
parent but not better than best so far, and new best so far: so the bound is 3b51,€. Similar bounds are
straightforward for PSO.

E.7 DEPENDENCE ON DATASET SIZE: SCALING AND NUMERICAL APPLICATION

App. C.2 presents classical large deviation inequalities, and the present paper shows how, in the case
of comparison-based algorithms, we can derive non-vacuous bounds. Let us now see numerically
how our overfitting bound behaves in practical cases.

We have focused on bounds (on the generalization loss of the model obtained by optimization) derived
from a given ¢; . (obtained for a single model):

We have seen in Equation (A.2) that, using Hoeffding’s bound, &1 . = 2 exp(—2se?) with s = |D|
the sample size, and § < 2 x (2°) exp(—se?), leading to § constant when b scales linearly with s: the
acceptable number of iterations (i.e., a fixed bound on §) is linear in the sample size D. Applying
Hoeffding, and aiming at a risk &, we get that overfitting at level € is impossible if

In(d) + 2se?
= (2

If we prefer the Bennet&Bernstein inequality (based on an assumption on the standard deviation, see
App. C.1 (Devroye et al., 1996, Section 8.2)), we get

< sehy(e/o?)  In(6)

—  In(2) In(2)
This equation, for s = 8000 examples (close to GSM8k), 6 = % (we are considering the median
case), € = 0.01 (we want that precision) and 0 = 0.06 (the standard variation of the loss is 0.06,
we assume that the initial model is already good), leads to the claim that a budget b < 91 cannot
lead to overfitting. If we assume ¢ = 0.04 and o = 0.3, we get with Hoeffding a bound 34 and with
Bennet&Bernstein a bound 88. With € = 0.06, 0 = 0.3, Bennet&Bernstein leads to a budget 189.
The budget becomes 482 if we use € = 0.1, ¢ = 0.3. Also, these bounds scale linearly with s (the
number of user preferences in A/B testings or dataset size). These numbers are low, but we see that
our bounds are not vacuous even in realistic scenarios.

— 1.

F CONSEQUENCES FOR PRIVACY AND POISONING

F.1 PRIVACY BY DESIGN

In the context of large language models, privacy typically refers to users’ desire to prevent their
inputs, such as queries or conversations, from being inferred or reconstructed. Several studies have
shown that gradient-based training methods can leak such information (Zhu et al., 2019; Hitaj et al.,
2017; Haim et al., 2022; Carlini et al., 2021b).

In contrast, the BBoxER approach is an instance of privacy by design (Gershoff, 2025): It does
not rely on gradients, nor does it require access to the raw content of user sessions. Instead, it
only leverages a binary satisfaction signal-whether a user prefers one version of the model over
another. This can be collected via simple A/B testing, or from the individual samples of the dataset
by comparing the models over the singleton {sample}. Then the algorithm proceeds using aggregated
comparison outcomes. In particular, for A/B testing, our method operates without knowledge of the
specific queries or model responses, that do not need to leave the user’s device, and in the general
case, we only feed the algorithm the aggregate of model comparison without direct access to the
underlying data.

BBoxER privacy guarantees can be framed in terms of differential privacy (Dwork, 2008), which
ensures that the output of a training algorithm does not change significantly when a single data point
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is modified. Given two datasets D and D5 differing by a single element, differential privacy requires
that for any output set .5,

P(A(Dy) € S) < exp(e) - P(A(Ds) € S) + 6. (A.11)

We now examine how this applies in two distinct cases: the privacy of user queries and responses and
the general case of privacy.

Privacy of Queries and Responses. (like in A/B testing setting) Our algorithm never observes
the actual content of user interactions. If D and D5 differ by one prompt or answer or any data
unrelated to preference signals, then the outcome of Alg. | remains unchanged. In that case, the
algorithm behaves identically on both datasets, satisfying differential privacy with e = 0, § = 0.
This guarantee is stronger than what is typically offered in federated learning: since no gradients are
shared or aggregated, the system is inherently robust to inference attacks such as those in (Zhu et al.,
2019; Hitaj et al., 2017; Carlini et al., 2021b).

Privacy of the entire sample. (general case of applying BBoxER on a dataset D) We may also be
interested in the privacy implications of modifying a single satisfaction response r; associated with a
specific user, or in the case were we compute this preference signal from the data. While this is less
sensitive than access to the user’s actual queries or responses, it still reflects user preference and may
warrant protection. In this setting, we consider the case where D; and D- differ by exactly one such
response, altered during a run.

Applying Equation (7) with m = 1, we get that A(D;) and A(D-) are the same with probability
atleast 1 — 3b/+/2sm when we have s data points and b iterations. This corresponds to differential
privacy with e = 0 and § = 3b/+/2s7.

Comparison with Other Approaches. In supervised fine-tuning, both inputs and outputs are
required for training. Reinforcement learning additionally requires access to the model’s responses
and reward signals. While federated learning aims to limit privacy leakage by aggregating gradients
locally, it still exposes sensitive intermediate data—such as gradients—that have been shown to be
vulnerable to attacks (Hitaj et al., 2017). In contrast, our approach bypasses these vulnerabilities
entirely by never interacting with such information in the first place, in the case of A/B testing. Or,
by limiting the impact of individual samples through an aggregate compressed signal from the data.

F.2 POISONING

Poisoning attacks seek to influence the outcome of a learning algorithm by injecting malicious data.
This threat has been widely studied in machine learning (Biggio et al., 2012; Pathmanathan et al.,
2025; Wan et al., 2023a), and it is particularly relevant in interactive settings such as retrofitting.
In our context, a poisoning attempt manipulates up to m user preferences per iteration to bias the
optimization process.

Our robustness Theorem 2 quantifies the impact of such attacks: the probability that the final model
is altered remains bounded by (2“12# This implies that an adversary must control m ~ /s/b user
preferences per round to affect the result significantly. Such an attack becomes increasingly difficult

as the number of users (or dataset size) s grows.

Importantly, this guarantee holds even under a strong adversarial model (Kearns & Li, 1993), where
the attacker is computationally unbounded and has full knowledge of the system. In practice, this
highlights the resilience of our retrofitting method to small-scale poisoning.

G ADDITIONAL THEORETICAL RESULTS AND PROOFS

G.1 PROOF OF THEOREM 2

We first prove the following Lemma.

Lemma 1 (Privacy and robustness to poisoning — single comparison). Consider a frequency f =
% E‘;l r; computed by considering s samples r1, ... ,rs independent and identically distributed
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with P(r; = 1) = fo and P(r; = 0) = 1 — fy for some unknown fy. Then

1 1 2m + 1
P o 3 f suchthat |f' — fl <m/s and (f—=) - (f'—=)<0] < . (A2
o (31 P dl s s and (=) - 5 <0) < 2EL @)
Proof. First, using (Devroye et al., 1996, Lemma A.3), we observe that
1 1
Ve €{0,...,s},P(B(s,=) =2) < . A.13
0,08}, P(B(s, ) =) < o (A13)

Consider a probability p that individual comparisons are in favor of a model model; against a
model model,. Assume that a modification of the training set has an impact € on the frequency f
with which model; was preferred against model models: the new frequency f’isin [f — €, f + €].
(f —1/2) x (f' —1/2) < 0is possible only if f € [L/2—€,1/2+ €. And since f ~ 1B(s,p),
P(f € [1)2—€,1/2 + €]) is maximum if p = 1/2. Then,

P elp-ciptd) <P (SR k-1t d)

< P(B(s,1)2) € [s(12 —€), s(1/2 + €)))
2se +1
V2st

If someone modifies the data by modifying the answers corresponding to m users, the frequency
moves to f’ instead of f with | f — f’| < e = m/s where s is the number of independent users/samples.
This shows Equation (A.12). O

<§:= thanks to Equation (A.13).

To show Theorem 2, we apply the Bonferroni correction when m data values are modified at each
iteration and we have b iterations. Then, the probability of a difference between output; and outputs
is upper bounded by b x d. This shows Equation (7).

G.2 THEOREM ON DATA EXTRACTION AND PROOF OF COR. 2

Cor. 2 is a direct consequence of the following Theorem.

Theorem 5. The cardinality of the set of possible outputs of BBoxER for a given mg,w, a,b
is bounded as follows:

b
#{BBOXER (mg,w, D, a,b);i € {1,...,n}} < sup [ k. (A.14)
D

Proof. Equation (A.14) is an immediate consequence of Equation (1). If A(mg, D) :=BBoxER
(mg,w, D, a,b), then vulnerability to data extraction as in Equation (8) immediately implies that
{E(A(mo, D;));i € {1,...,n}} has cardinal at least n, and therefore { A(mg, D;);i € {1,...,n}}
has cardinal at least n. If 2% > n and k; < 2, this contradicts Equation (A.14). O

This means that no matter how large s is, retrofitting can only produce a number of different outputs
upper-bounded by the product over the k;, which represent the number of possible data-dependent
choices per iteration - e.g., 2% for algorithms with k; < 2 and b iterations.

H EXPERIMENTAL DETAILS

Here we provide details for the settings of the experiments in Sec. 5. The licenses for all datasets
used in this work can be found in Tab. 5.

All BBO algorithms are used with their default parameters in Nevergrad (Rapin & Teytaud, 2018). At
each iteration of Alg. 1, the modified model is evaluated on GSMS8k train (8-shot, unless otherwise
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Table 5: Datasets licenses

License Datasets
MIT License =~ GSM8k, MATH, MATHS500, Hellaswag, SVAMP
CCBY-SA 4.0 GSM+, ARC Easy, ARC Challenge

specified) and the objective function to optimize is the exact match. At the end of each run, the
FinalModel is evaluated on the same objective function. Specifically, we compute the performance of
modi fied(mg, &) where Z is the update that reaches the best objective function value during training.

Experiment 1. We apply BBoxER (Alg. 1) with rank-1 (LoRA) multiplicative parameter updates on
the unembedding layer, as detailed in App. B. In both base and instruct models, the total number of
parameters to optimize is hidden_dim + vocab_size = 4096 4 128, 256 = 132, 352. Each iteration
requires around 40s on 16 A100 GPUs.

Experiment 2. We explore 3 setups on Llama3.1-8B:

1. First attention layer, where we perform a broadcast multiplicative update to the Q matrix
in the first attention layer by broadcasting a vector of size 4096 to the 4096 x 4096 Q matrix
and then using the update formula as in App. B.1.

2. All attention layers, where we perform a broadcast multiplicative update on all the @
matrices of all attention layers. Resulting in n_layers x hidden_dim = 32 x 4096 =
131, 072 parameters to optimize, using the update formula as in App. B.2

3. All attention layers and no few-shot, where we apply a broadcast multiplicative update
on all the () matrices of all attention layers, as in 2 above. However, we do not include any
few-shot examples in the prompt during either training or testing.

All experiments are carried out with budget b = 150 unless otherwise specified. In addition to
GSMBSKk test, we also evaluate the results on GSM+ (8-shot) and SVAMP (8-shot). Each iteration
requires around 40s on 16 A100 GPUs.

Experiment 3 In this experiment, D-CMA is used to directly optimize all normalization layers
of Llama3.1-8B(-Instruct) and Qwen2.5-3B-Instruct (without using any low rank modification).
The number of updated parameters is n_norm_layers X hidden_dim = 65 x 4096 = 266, 240
for Llama3.1-8B(-Instruct) and n_norm_layers x hidden_dim = 73 x 2048 = 149,504 for
Qwen2.5-3B-Instruct. All experiments are conducted with budget b € {150, 300}. Furthermore, we
evaluate on additional mathematical reasoning benchmarks: MATHS500 (4-shot), Hellaswag (0-shot),
GSM+ test_mini (8-shot), ARC Easy (0-shot) and ARC Challenge (0-shot), AMC23 (0-shot). Each
iteration requires 30s on 16 A100 GPUs for Llama3.1-8B(-Instruct) and 25s on 16 A100 GPUs for
Qwen2.5-3B-Instruct.

Experiment 4 Most MIA rely on the loss (negative likelihood) of the model over the tested sample
to determine membership in the training dataset (Fu et al., 2023; Carlini et al., 2022; 2021a). We can
formulate the membership test as follows:

f (NLL{sample}) > threshold{sample}

where f denotes a transformation (usually continuous) applied to the sample loss. The threshold
used in membership test is sample dependent, in order to account for the fact that some samples may
exhibit low losses even without being part of the training set, simply because they share patterns that
were seen during training.

For example, in Carlini et al. (2022), the authors propose to model the distribution of model’s
“confidence” with a gaussian distribution; they train shadow models to estimate the parameters
(in, Oin, tout, Oout ) and perform a Likelihood-ratio test:
p(¢(NLL{sample}); thin, oin)
p(o(NLL{sample}); fiout, Tout)
< p(¢(NLL{sample}); tin, 0in) > threshold x p(¢p(NLL{sample}); tiouts Tout)

> threshold
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Therefore, if a learning method does not impact the loss of the model over each sample, it would
be difficult impossible to perform any MIA that relies on statistical tests based on the loss. We
thus propose the two following metrics as proxies for the ability of membership inference attacks to
succeed:

1

num of samples

Z | per_token_NLLneW model { sampl € } — per_token_NLLinim] model { sample } | (A 1 5)

sample

1
Z |per710ken7NLLCOT’a {sample} - perﬁtokeanLL-COT’a {sample}| (A.16)

] new model inital model
num of samples
sample

The only distinction between Equation (A.15) and Equation (A.16) is which tokens are used to
compute the negative log-likelihood (NLL): Equation (A.16) computes NLL only over the (chain-
of-thought, answer) pair, whereas Equation (A.15) computes NLL over the entire input (few-shot
examples, question, chain-of-thought, and answer). We aggregate the absolute differences (i.e., sum
of absolute changes in sample NLL) across all samples so that positive and negative changes do not
cancel each other out; although in practice the loss of the new finetuned model will be lower than the
initial model. To interpret the metric: a low value indicates that the sample losses are only slightly
affected by the learning method, suggesting it would be difficult to mount an attack that relies on loss
changes, whereas a large value indicates that it might be possible (but not certain) to perform such
an attack successfully. By showing in Table Tab. 2 that BBoxER barely affects these metrics, and is
orders of magnitude less than finetuning methods, including privacy-aware ones like DP-AdamW, we
demonstrate robustness of BBoxER against a vast majority of membership inference attacks.

Below we detail all algorithms used in Tab. 2:

o ft: default SFT with next token prediction loss, global batch size of 128, same template
used during evaluation that includes few shots examples but only the CoT and the answer
contribute to the loss. AdamW is used with (beta; = 0.9, betas = 0.95) and a learning rate
of 1e~5 with cosine annealing and warm-up over the first 5% steps. The training is done for
2 and 5 epochs.

* ft-norm: similar to ft, but only the parameters of RMSNorm layers are optimized, and the
learning rate is increased to 2¢~* instead.

» DP-AdamW: differentially private training with gradient norm clipping setto 1.0, § = 1075,
L =128, N = 7473 samples, 292 gradient steps (5 epochs) and a target € = 8, the privacy
accounting of (Abadi et al., 2016) is used to infer the added noise scale o. The training
is done with the same template used during evaluation that includes few shots, all tokens
contribute to the loss.

* BBoxER-norm: exact setup as in experiment 3 for our algorithm, step § = 0.01, only
updating RMSNorm layers with an exponential multiplicative full update. Different budget
values are used 150, 300, 1200. Nevergrad seed = 42.

I ADDITIONAL EXPERIMENTS

In this section, we describe extensions of the experiments performed in Sec. 5, in particular for
Bet-and-Run variants and for training on larger datasets.

Extensions of Experiment 2. We have performed additional experiments on Llama3.1-8B in the
spirit of Experiment 2 (Sec. 5), by modifying the output layer instead of the attention layers, using
a multiplicative update by broadcasting a vector of size vocab_size = 128,256 as described in
App. B.1. We also experiment with two different update constants in {0.01,0.0001}. Tab. 6 shows
the results. We see improvements particularly for the larger update constant and Bet-and-Run
algorithms.

Experiment 3 for Bet-and-Run Algorithms. The theoretical results in App. E.4 demonstrate that
Bet-and-Run algorithms enable the use of larger budgets without risks of overfitting. This has been
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Table 6: Additional Experiments. Counterpart of Tab. 1 for the output layer: Performance difference (%)
after vs before BBoxER with Llama3.1-8B (Base) on GSM8Kk-train, evaluated on GSM8k-test (ID), and (OOD)
SVAMP and GSM+, with budget b = 150. Number of seeds in brackets. Red: detrimental runs, < —1%. Green:
beneficial runs, > 1%. Blue rows are bet-and-run cases.

BBO GSM SVAMP GSM+
algorithm (# runs) progress ‘ progress progress
Output layer, no few-shot, broadcast d=128256

w0 X €(0.0001 x x)

Base score 20.31 58.30 19.06
OneFifth (2) 0.49 £0.34 | 0.05+0.15 | 0.01 £0.02
D-CMA 0.07 0.00 0.01
Lengler 0.00 0.00 0.00
COLengler (2) 0.00 £ 0.00 | 0.05 4+ 0.05 | 0.00 4 0.00

Output layer, broadcast d=128256
w0 X e(0.01 X x)
76.6 51.34
-02+0.6 0.9 +0.41
-0.76 & 1.03 | 0.19 £0.43
0.018 4 0.03 | 0.075 4 0.08 | 0.005 + 0.015
0.79 £0.11 | 045 £ 0.15 | -0.05 + 0.05

Base score
Lengler (2)
COLengler (5)
Discrete (4)
Uniform-Disc (2)

partially validated in Experiment 2 by the results of 3-OneFifth, performing well even with greater
budget (Table 1). We here extend this analysis and report Bet-and-Run results for the setup of
Experiment 3 in Tab. 7. Specifically, we run BBoxER under the same setup as in Experiment 3
(detailed in App. H), and use the BetAndRun (N, b) variant of D-CMA, where we run D-CMA for
N different runs with budget b’ = N/b, and pick the update & that performed the best across these
runs. In practice, we use the runs with 5 different seeds from Tab. 3 and report the mean and standard
deviation of all possible combinations () with N € {3, 4}.

Table 7: Extension of Experiment 3 to Bet-and-Run algorithms, same setting as Tab. 3

Models 1D 00D
GSMB8k GSM+  MATH500 ARC Easy ARC Challenge AMC23  Hellaswag
Llama3.1-8B 54.97 36.50 20.20 83.04 55.19 0.00 80.71

(N=3,b=450)  55.660+0.42  37.62+0.34 20.04+0.45 82.96+0.08 55.03+£0.03  3.00+3.67 80.6240.05
(N=3,b=900)  56.83+0.21  37.7440.28 20.361+0.77 83.26+0.11 54.96+0.18  1.00£1.22 80.68+0.11
(N=4,b=600)  55.624+0.21  37.73+0.30 20.20+0.40 82.94+0.03 55.02+0.00  1.50+3.00 80.604+0.04
(N=4,b=1200) 56.854+0.12  37.77£0.22 20.48+0.64 83.29+0.10 54.88+£0.07  0.50£1.00 80.7140.10

Llama3.1-8B-Instruct 77.26 5437 37.60 79.62 55.45 22.50 79.90
(N=3,b=450)  78.20+0.21  55.0240.12 36.684+0.36 78.90+0.38  55.404+0.08  23.2542.25 79.96+0.04
78.37+£0.21  55.18+0.15 37.2040.54 79.57+0.12  55.59+0.19  18.00£1.50 79.92+0.02
78.26+0.03  55.03+£0.10 36.52+0.24 78.77+0.34  55.42+0.07 24.004+2.00 79.9640.03
(N=4,b=1200)  78.454+0.18  55.17+0.08 37.04+0.48 79.5440.10 55.54+0.17  17.5040.00 79.91+0.02

Qwen-2.5-3B-instruct 79.98 62.29 41.00 7239 47.38 32.50 74.94
(N=3,b=450)  83.06+0.24  62.1240.32 42.704+0.20 72.69+0.12  47.85+0.17 36.00+1.22 74.99+0.07
83.90+0.42  61.66+0.32 42.26+0.65 72.614+0.21  47.63+0.31  37.004+2.45 75.04+0.05
83.08+0.18  62.2440.27 42.7240.16 72.71£0.05 47.86+0.10 35.50£1.00 75.00£0.06
(N=4,b=1200)  84.084+0.30  61.55+0.02 42.52+0.16 72.684+0.19 47.52+0.27  36.004+2.00 75.06+0.04

Llama3.1-8B-BBoxER-BetAndRun

Llama3.1-8B-Instruct-BBoxER-BetAndRun

Qwen-2.5-3B-instruct

Comparing the results in Tab. 7 with those in Tab. 3 (BBoxER without Bet-and-Run), we observe that
in 100% runs (with or without Bet-and-Run) BBoxER improves results; in 83% of cases Bet-and-Run
outperforms its base counterpart.

Experiment 3 for Larger Training Sets. In Tab. 8 we report the results of running BBoxER with a
larger training dataset. This experiment is motivated by the theoretical prediction that the allowable
budget scales linearly with the dataset size. Formally, we adopt the same experimental setup as in
Experiment 3 (see App. H), but in addition to GSM8Kk train (7,473 samples), we also include the
MATH train set (7500 samples) into the training set, thus doubling its size compared to previous
experiments. We define the objective function for BBoxER to be the average of exact matches (EM)
across both datasets : metric = 3 EM(GSM8k)+ +EM(MATH ). We run BBoxER with a budget
of up to b = 1200 and evaluate the model every 150 iterations. As the budget increases, we observe
eventual overfitting. Interestingly, we find that the Llama3.1-8B base model does not overfit on the
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GSMSk test set and continues to improve, contrary to its instruct variant, which begins to overfit
earlier. See also Figure 3 for illustration of performance gain on some of the benchmarks.

Table 8: Experiment 3 (full update, normalization layers) on larger training set. Comparison of
model performance of BBoxER run with D-CMA across various benchmarks, 1 seed.

Models 1D 00D
GSM8k MATH MATH500 GSM+ ARC Easy ARC Challenge AMC23 Hellaswag
Llama3.1-8B 5497 21.22 20.20 36.50 83.00 55.19 0.00 80.71
(b=150) 5542 21.00 19.20 36.96 83.09 54.85 0.00 80.76
(b=300) 5527 21.14 18.80 36.79 83.09 54.85 2.50 80.78
(b=450) 5527 21.14 18.80 36.79 83.09 54.85 2.50 80.78
(b=600) 5542  20.74 20.60 37.67 83.04 54.94 5.00 80.77
Llama3.1-8B-BBoxER (b=750) 57.85  20.92 20.20 37.67 83.00 54.85 0.00 80.83
(b=900) 5747 21.58 21.20 38.75 82.66 55.11 0.00 80.66
(b=1050) 5747 21.58 21.20 38.75 82.66 55.11 0.00 80.66
(b=1200) 58.61 21.14 21.00 39.33 83.04 55.36 5.00 80.81
Llama3.1-8B-Instruct 7726 38.84 37.60 54.37 79.62 55.36 22.50 79.90
(b=150) 7741 38.78 37.40 54.12 79.45 55.36 25.00 80.03
(b=300) 78.24  38.86 38.60 55.04 79.58 55.36 30.00 79.91
(b=450) 77.56  38.40 37.00 54.62 80.00 55.54 22.50 79.94
(b=600) 7779 39.04 38.20 54.58 79.83 55.54 22.50 79.94
Llama3.1-8B-Instruct-BBoxER  (b=750) 78.70  38.86 37.00 55.33 79.45 55.36 15.00 80.00
(b=900) 78.54  38.30 37.40 55.25 79.70 55.45 20.00 80.10
(b=1050) 77.86 38.62 37.40 55.29 79.53 55.54 20.00 79.98
(b=1200) 7779  38.86 37.40 55.42 79.87 55.79 15.00 80.00
Qwen2.5-3B 79.98 43.68 41.00 62.38 72.35 47.38 32.50 74.94
(b=150) 83.55 43.32 39.80 62.00 72.77 48.24 37.50 75.07
(b=300) 82.79 44.10 42.60 62.17 72.60 47.64 40.00 75.09
(b=450) 83.09 43.66 39.40 62.58 72.81 48.24 42.50 74.94
(b=600) 82.64 4494 42.60 62.17 72.98 47.90 42.50 74.93
Qwen2.5-3B-BBoxER (b=750) 82.87 45.26 44.00 61.54 71.54 47.47 32.50 74.85
(b=900) 84.08  45.68 47.80 63.04 72.60 48.15 40.00 74.92
(b=1050) 83.17  46.50 45.60 62.58 72.85 47.47 32.50 74.98
(b=1200) 8249 46.72 45.80 61.46 73.32 46.27 37.50 74.91
—— Llama3.1-8B
—— Llama3.1-8B-Instruct
—— Qwen2.5-3B
GSM8k MATH GSM+
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Figure 3: (full update, normalization layers) Comparison of model performance of BBoxER run
with D-CMA across various benchmarks, 1 seed. See Tab. 8.
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Further Discussion of all Experiments. Consistent with our theoretical results, our results are
robust and show performance improvement with little to no overfitting even with larger budgets.
We note that even when running various experiments with randomly chosen parameters, significant
performance drops are rare: In Figure | and in Tab. 1, all data points are independent from one
another (i.e. computed independently); This allows us to compute P-values (App. J) to support our
claims of statistical significance of the observed performance improvements.

In order to contextualize our findings, we can also compare to post-training with GRPO which proved
to be highly effective on reasoning tasks. Most works deploy GRPO on larger training sets and we
were unable to find results for the models deployed in our study. However, as shown in (Lin et al.,
2025), GRPO achieved a notable 22% improvement when training a Qwen-2.5-1.5B-Instruct model
on the GSM8k dataset, leading to results between 77% and 81% with 1B models, without transfer to
OOD. However, such improvement jumps tend to shrink with larger models. Nevertheless, though the
Qwen-2.5-3B-Instruct model we use already starts at nearly 80%, it is improved to 84% by BBoxER
(Tab. 7).

There are only few works that train on GSM8k and study OOD transfer. The authors of (Sun
et al., 2025a) employ an ’on-policy’ training approach, generating training samples through model
prompting and subsequently fine-tuning on the resulting question-answer pairs. Their approach yields
significant gains on both GSM8k and GSM+ benchmarks when evaluated in a zero-shot setting, by
up to 28.8% on GSMS8k with Llama3.1-8B-Instruct. However, the gains are less pronounced in the
5-shot setting, with an increase of 1.8% using self-consistency and 5 generations, figures that are
close to those obtained by BBoxER on GSM8k and GSM+, as can be seen in Tab. 7.

In any case, remember that our goal in this work is not to achieve state-of-the-art performances on
these and other benchmarks, but rather to show that our approach sacrifices little for provable privacy
and overfitting guarantees.

J  P-VALUES

Contemporary papers on LLMs frequently involve a small number of experiments, due to the
significant computational burden. But because we run independent tests, we can compute rigorous
p-values by Fisher’s exact test, getting a measure of statistical significance despite the moderate
number of experiments:

* We computed the p-value of the frequency of green vs red in the columns of Tab. 1 and
Tab. 6, the null hypothesis being "the probability of improvement is < 0.5".

* For the values in Figure 1, we computed the p-value for the obtained frequency of successful
runs (i.e., runs above baseline, vs below baseline) for budget > 20, under the null hypothesis
"the probability of improvement is < 0.5".

* In Experiment 3, we run BBoxER with budget b = 150 or b = 300. For each column of
results we performed an exact Fisher test on all BBoxER runs (both 150 and 300, without
considering the Bet-And-Runs) and computed p-values: there is therefore one p-value per
downstream task, against the null hypothesis "there is a probability of improvement < %".
These different tests are not independent.

When computing p-values from tables of results, we used the initial data, not the averaged ones,
obtaining one data point per independent run.

P-values Values.
Experiment 1: P-values in Figure 1 are 3e~8 (left), 3> (right).
Experiment 2:

s Tab. 1: P-values are significant for GSM (5¢ %) and GSM+ (0.03), not for SVAMP.

e Tab. 6: P-values are 0.003 for GSM, 0.5 for the transfer to GSM+, no improvement for
SVAMP.

Experiment 3: The P-values are 5e~7 for GSM8Kk, le~* for GSM+, 1le—* for AMC23.
Other results are usually positive but without significant p-value: 0.13 for ARC Easy, 0.21 for ARC
Challenge, 0.36 for MATHS00, 0.12 for Hellaswag.
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K LLM USAGE

We acknowledge the use of large language models (LLMs) to assist with text checking for clarity and
grammar, as well as for figure editing.
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