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Learning Deep Multi-Level Similarity for
Thermal Infrared Object Tracking

Qiao Liu , Xin Li , Zhenyu He , Senior Member, IEEE, Nana Fan, Di Yuan , and Hongpeng Wang

Abstract—Existing deep Thermal InfraRed (TIR) trackers only
use semantic features to represent the TIR object, which lack the
sufficient discriminative capacity for handling distractors. This
becomes worse when the feature extraction network is only trained
on RGB images. To address this issue, we propose a multi-level
similarity model under a Siamese framework for robust TIR object
tracking. Specifically, we compute different pattern similarities
using the proposed multi-level similarity network. One of them
focuses on the global semantic similarity and the other computes the
local structural similarity of the TIR object. These two similarities
complement each other and hence enhance the discriminative
capacity of the network for handling distractors. In addition, we
design a simple while effective relative entropy based ensemble
subnetwork to integrate the semantic and structural similarities.
This subnetwork can adaptive learn the weights of the semantic and
structural similarities at the training stage. To further enhance the
discriminative capacity of the tracker, we propose a large-scale TIR
video sequence dataset for training the proposed model. To the best
of our knowledge, this is the first and the largest TIR object tracking
training dataset to date. The proposed TIR dataset not only benefits
the training for TIR object tracking but also can be applied to
numerous TIR visual tasks. Extensive experimental results on three
benchmarks demonstrate that the proposed algorithm performs
favorably against the state-of-the-art methods.

Index Terms—TIR object tracking, Multi-level similarity,
Siamese network, Thermal infrared dataset.

I. INTRODUCTION

THERMAL InfraRed (TIR) object tracking is a fundamen-
tal task in computer vision, which receives more and more

attention recently. Compared with visual tracking, TIR object
tracking has several superiorities, such as illumination insen-
sitivity and privacy protection. Since the TIR object tracking
method can track the object in total darkness, it can be used in a
wide range of applications, such as video surveillance, maritime
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rescue, and driver assistance at night [1]. However, there are sev-
eral problems in TIR object tracking that are still challenging,
such as thermal crossover, intensity variation, and distractor [2].

To handle various challenges, numerous TIR trackers are pro-
posed in the past decade. For instance, TBOOST [3] ensem-
bles several MOSSE filters [4] using a continuously switching
mechanism to choose a set of right base tracker. TBOOST can
adapt the appearance variation of the object since it maintains
a dynamics ensemble. Sparse-tir [5] explores the sparse rep-
resentation with a compressive Harr-like feature for real-time
TIR object tracking, which can alleviate the occlusion issue due
to the feature of the spare representation. Similar to Sparse-tir,
MF-tir [6] also uses the sparse representation method for TIR
object tracking but explores multiple complemental features for
getting more discriminative features. DSLT [7] uses an online
structural support vector machine [8] with a combination of the
motion feature and a modified Histogram of Oriented Gradient
(HOG) [9] feature for TIR object tracking. DSLT obtains favor-
able performance mainly because of the dense online learning
and the more robust feature representation. There are also a va-
riety of TIR trackers are proposed based on kernel density es-
timation [10], multiple instances learning [11], low-rank sparse
learning [12], discriminative correlation filter [13], [14], etc. De-
spite much progress, the performance of these trackers is limited
by the hand-crafted feature representation.

Recently, inspired by the success of Convolution Neural Net-
work (CNN) in visual tasks [15]–[23], several methods attempt
to explore CNN to improve the performance of TIR object track-
ing. DSST-tir [24] shows that deep features are more effective
than hand-crafted features in the Correlation Filter (CF) frame-
work for TIR object tracking. MCFTS [25] uses a pre-trained
VGGNet [26] to extract multiple convolutional deep features and
then combine them with Kernel Correlation Filter (KCF) [27] to
achieve an ensemble TIR tracker. LMSCO [28] integrates deep
appearance features [26] and deep motion features [29] into a
structural support vector machine [8] for TIR object tracking.
HSSNet [30] trains a verification based Siamese CNN on RGB
images for TIR object tracking. However, most of these methods
only use a deep semantic feature, which is less effective to distin-
guish intra-class TIR objects. Unlike RGB images, TIR images
do not have color information and lack rich texture features.
Intra-class TIR objects usually have similar visual and semantic
patterns. This indicates that only using a global semantic fea-
ture is insufficient for handling distractors in TIR object track-
ing. Furthermore, most of these deep TIR trackers are trained on
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RGB images due to lacking a large-scale TIR training dataset,
which further degrades the discriminative capacity.

To address the above-mentioned problems, we propose a
multi-level similarity model, called MLSSNet, under a Siamese
framework for robust TIR object tracking. We note that the
multi-level similarity is effective in enhancing the discrimina-
tive capacity of the Siamese network for handling distractors. To
this end, we design a structural Correlation Similarity Network
(CSN) and a semantic CSN to compute different pattern simi-
larities between TIR objects. The structural CSN captures the
local structural information of TIR objects and then computes
the structural similarity of them. We identify that the structure
information can help the network distinguish intra-class TIR
objects on the fine-grained level. The semantic CSN enhances
the global semantic representation capacity and then computes
the similarity on the semantic level. These two similarities com-
plement each other and hence boost the discriminative capacity
for handling distractors. To obtain an optimal comprehensive
similarity containing the structural and semantic similarities si-
multaneously, we design a Relative Entropy based adaptive en-
semble Network (REN) to integrate them. In addition, to further
enhance the discriminative capacity, we construct a large-scale
TIR training dataset.1 with manual annotations for training the
proposed model. The dataset has 500 TIR sequences with 20
object classes, more than 228 K frames, and over 289 K bound-
ing boxes. To the best of our knowledge, this dataset is the first
and the largest TIR object tracking training dataset to date. We
note that the tracker has a more powerful discriminative capacity
for handling distractors when it is trained on the proposed TIR
dataset. We analyze the multi-level similarity model with an ab-
lation study and compare it with the state-of-the-art methods on
the VOT-TIR2015 [31], VOT-TIR2017 [32], and PTB-TIR [2]
benchmarks in Section IV-B and Section IV-C respectively.
The favorable performance against the state-of-the-art methods
demonstrates the effectiveness of the proposed method.

The contributions of the paper are three-fold:
� We propose a deep multi-level similarity model under the

Siamese framework for robust TIR object tracking. We
design two complementary correlation similarity models,
which recognize TIR objects from the local structural level
and the global semantic level, respectively. We also design
a relative entropy ensemble network that can adaptive to
learn an optimal comprehensive similarity.

� We construct the first large-scale TIR training dataset with
manual annotations. The proposed dataset not only benefits
to TIR object tracking but can also be used to train deep
models for other TIR visual tasks.

� We carry out extensive experiments on three benchmarks
and demonstrate that the proposed TIR object tracking
algorithm performs favorably against the state-of-the-art
methods.

The rest of the paper is organized as follows. We first in-
troduce related tracking methods and TIR training datasets
briefly in Section II. Then, we describe the architecture and

1The dataset can be downloaded at [Online]. Available: https://mega.nz/file/
80J23A5T#pFYFv_y5NFNVnsJ4zU3a6OH3kPyRwLZebKZV1FjoD-w

training details of the proposed multi-level similarity network in
Section III. Subsequently, the extensive experiments are reported
in Section IV to show the proposed method achieves favorable
performance. Finally, we draw a short conclusion in Section V.

II. RELATED WORK

In this section, we first introduce the Siamese framework
based trackers, which are most related to ours. Then, we dis-
cuss several ensemble learning strategies in CNN based tracking
method. Finally, we describe several TIR training datasets used
for tracking.

Siamese based trackers: Siamese based trackers treat ob-
ject tracking as a similarity verification task, most of which is
to off-line train a similarity metric network and then uses it to
online compute the similarity between candidates and the target.
For example, Siamese-FC [33] trains the first fully convolutional
Siamese network for tracking and achieves promising results. In
order to adapt the appearance variation of the target, DSiam [34]
learns a dynamic Siamese network by two line regression mod-
els. One of these models can learn the target’s appearance change
and the other can learn to suppress the background. Struct-
Siam [35] learns a structured Siamese network, which focuses on
the local pattern of the target and their structural relationship. To
obtain more powerful features, SiamFC-tri [36] uses a triplet loss
to train the Siamese network, which learns the triplet relationship
instead of the pairwise relationship. Quadruplet [37] extends the
Siamese network to four branches which learn the potential con-
nection of training samples using a triplet loss and a pair loss
simultaneously. SA-Siam [38] exploits a twofold Siamese net-
work which is composed by a semantic branch and an appear-
ance branch. These two branches are trained from different tasks
to complement each other. Our method is similar to SA-Siam,
which uses two branches, but there are several significant differ-
ences. First, SA-Siam uses two separate branches trained with
different tasks to compute different similarity, while our model
uses two branches trained with one task (the same loss function)
to compute different similarity. Second, the two branches of
SA-Siam are trained separately, while ours is trained end-to-end.
Third, the two branches are fused in the tracking stage via a sim-
ple weighted operation in SA-Siam, while ours are fused in the
training stage using a relative entropy-based adaptive ensemble
network.

In order to enhance the discriminative capacity of the Siamese
network, CFNet [39] introduces CF as a differentiable layer into
the Siamese network. This layer can update the target branch
using video-specific cues that could be helpful for discrimina-
tion. CFNet-Hy [40] uses a deep Q-learning method to auto-
matically optimize the hyper-parameter of the tracker. Recently,
attention mechanism is widely used in visual task [41], [42]
for enhancing representation. For example, RASNet [43] intro-
duces a residual attention to CFNet to further boost the discrim-
inative capacity. HASiam [44] proposes a hierarchical attention
module with multi-layers fusion strategy in the Siamese frame-
work for object tracking. LSSiam [45] presents a local seman-
tic Siamese network to extract more robust features for object
tracking by using an auxiliary classification branch and a focal
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logistic loss. Considering the motion information is helpful for
tracking, FlowTrack [46] trains an optical flow network and a
CFNet model simultaneously. To achieve high performance and
high speed simultaneously, SiamRPN [47] employs a Siamese
region proposal network which consists of a feature extraction
subnetwork and a region proposal subnetwork. It is formulated
as a local one-shot detection task in the tracking stage. Subse-
quently, DaSiamRPN [48] extends SiamRPN by controlling the
distribution of the training data and achieves top performance
in the VOT2018 [49] challenge. However, most of these meth-
ods compute similarity from one single level e.g., the semantic
level. Different from these methods, in this paper, we exploit
the multi-level similarity to enhance the discriminative capacity
of the Siamese network for handling distractors in TIR object
tracking.

CNN based ensemble trackers: The ensemble learning
is used at different stages in object tracking. For example,
HDT [50] combines the multiple weak CNN based CF trackers
into a stronger one by a Hedge algorithm. This algorithm can
adaptively update the weights of each weak tracker. STCT [51]
trains an ensemble based CNN classifier for tracking via a se-
quential sampling method. Similar to STCT, Branchout [52]
trains an ensemble based CNN classifier by using a stochas-
tic regularization technology. TCNN [53] manages the multiple
CNNs in a tree structure to estimate target states and to update
the model. EDCF [54] integrates a low-level fine-grained fea-
ture and a high-level semantic feature in a mutually reinforced
way. Though both the proposed REN and the HDT methods
use an adaptive ensemble strategy, the proposed REN model
is trained end-to-end, which fuses multiple similarities at the
learning stage.

TIR training dataset: The lack of a large-scale TIR training
dataset hinders the development of CNN in TIR object tracking.
Several methods attempt to train a CNN feature model on the
TIR dataset for TIR object tracking. For instance, DSST-tir [24]
investigates the deep CNN feature in the correlation filter frame-
work for TIR object tracking. This CNN model is trained on a
small TIR image dataset (18 K) with the classification task. Its
experimental results show that the deep feature based CF tracker
can obtain better performance than hand-crafted feature based
CF tracker. Zhang et al. [55] train a Generative Adversarial Net-
work (GAN) [56] to generate synthetic TIR images from RGB
images. These synthetic images, the number of which is over
80 K, are used to train a Siamese network [39] for feature ex-
traction. Then, they combine this deep feature model with the
ECO [57] tracker for TIR object tracking. The experimental re-
sults show that the synthetic TIR training data significantly im-
proves the performance of TIR object tracking. In this paper, we
propose a large-scale real TIR dataset with manual annotations
for training the proposed model. To the best of our knowledge,
this is the first large-scale real TIR training dataset for object
tracking task.

III. MULTI-LEVEL SIMILARITY NETWORK

In this section, we first describe the framework of the pro-
posed multi-level similarity network in Section III-A, which

mainly consists of three specific designed subnetworks: struc-
tural CSN, semantic CSN, and REN. Then, we introduce the pro-
posed TIR training dataset in Section III-B and training details
of the network in Section III-C. Finally, we present how to use
the proposed network for TIR object tracking in Section III-D.

A. Network Architecture

To achieve more effective TIR object tracking, we construct
a multi-level similarity model under the Siamese framework, as
shown in Fig. 1. Unlike existing Siamese network which often
computes the similarity based on one feature space (e.g., se-
mantic level), we compute the similarity from multiple levels,
including the local structure level and the global semantic level.
We note that the multi-level similarity improves the discrimina-
tive capacity of the Siamese network, and hence improves the
robustness of the TIR tracker. To this end, we design two comple-
mentary modules, including structural CSN and semantic CSN,
which compute the structural similarity and the semantic simi-
larity, respectively. Furthermore, we design a simple while effec-
tive adaptive ensemble module, REN, to integrate the structural
similarity and semantic similarity. In the following, we highlight
these specific networks in detail.

Structural CSN: To compute the structural similarity, we de-
sign a structure-aware subnetwork to capture the local structure
feature of the object on the low-level convolution layer since
the low-level feature contains more local pattern information.
We note that the structural similarity is helpful for the accurate
location of a tracker. Since TIR objects do not have color in-
formation and lack rich texture feature, intra-class TIR objects
often have similar visual patterns. Therefore, we argue that the
local structure feature is crucial for recognizing them and it is
important for a tracker to distinguish distractors. Specifically,
we first use two big convolutional kernels to capture the local
structure information of the object on the shallow convolution
layer. Then, we locate these structure parts by using two corre-
sponding deconvolution layers. Next, we use a Sigmoid layer to
generate a two dimension weight map which indicates the im-
portance of every local structure. Finally, we use a scale layer
to weight the original feature via the weight map. Given an in-
put low-level convolutional feature map Xl ∈ RH×W×C , the
weighted feature ω(Xl) can be formulation as:

ω(Xl) = Xl � exp(WlXl)

exp(WlXl) + 1
, (1)

where Wl denotes the transform matrix which consists of two
convolution and two deconvolution layers. The weighted feature
is aware of the local structure of the object, as shown in structure-
aware feature of Fig. 2. After the scale layer, we add a CF [39]
layer to update the target template. Given an input target imageZ
and a search imageX, the structural similarity can be formulated
as:

fstruct(Z,X) = Corr(ϕ(ω(φlow(Z))),φlow(X)), (2)
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Fig. 1. Architecture of the proposed Multi-Level Similarity based Siamese Network (MLSSNet). MLSSNet is constituted by a shared feature extractor, a structural
Correlation Similarity Network (CSN), a semantic CSN, and an adaptive fusion model (REN). Every block denotes a specific network layer and each convolution
layer joins a hidden ReLU layer. GAP, GMP, CF, KL, and

⊗
denote the global average pooling, global max pooling, correlation filter, Kullback-Leibler divergence,

and scale layer respectively.

Fig. 2. Visualization of the original and the learned structure-aware and
semantic-aware features. The visualized feature maps are generated by summing
all channels. From left to right on each column are the input images, the origi-
nal low-level feature (e.g., Conv3), the learned structure-aware feature form the
low-level feature, the original high-level feature (e.g., Conv5), and the learned
semantic-aware feature from the high-level feature respectively. We can see that
the structure-aware features tend to focus on the local structure parts, e.g., head
and leg, while the semantic-aware features emphasize the more discriminative
global semantic regions.

whereφlow(·) denotes the low-level convolutional features of the
shared feature extraction network, ω(·) represents the structure-
aware subnetwork formulated by Eq. 1,ϕ(·) is the CF block [39],
and Corr(·, ·) denotes the cross-correlation operator.

Semantic CSN: To compute the semantic similarity, we de-
sign a semantic-aware subnetwork to enhance the semantic rep-
resentation ability on the high-level convolutional layer since
the high-level feature mainly represents a global semantic ab-
stract. Since the discriminative capacity of the network to the
inter-class objects mainly comes from the semantic feature, it is
important to obtain a more powerful semantic feature. To this
end, our semantic-aware subnetwork formulates the relationship
of feature channels to generate the more powerful feature, which
is similar to SENet [58]. Specifically, we first squeeze the fea-
ture map into two one dimension vectors by a global average
pooling and a global max pooling respectively. Then, we use
two shared full-connected layers to formulate the relationship

between these channels and then we fuse the two kinds of rela-
tionship vectors via a Sum layer. Different from previous meth-
ods, we use two kinds of global pooling because we note that
they provide different clues for the global semantic information.
Next, we use a Sigmoid layer to generate a one dimension weight
vector which indicates the importance of each feature channel.
Finally, we employ a scale layer to weight the origin feature via
the weight vector. Given an input high-level convolutional fea-
ture map Xh ∈ RH×W×C , the weighted feature ν(Xh) can be
formulation as:

ν(Xh) = Xh � exp(Wh ·Gap(Xh) +Wh ·Gmp(Xh))

exp(Wh ·Gap(Xh) +Wh ·Gmp(Xh)) + 1
,

(3)
where Wh denotes the transform matrix comprised by two
shared convolution layers, Gap(·) and Gmp(·) represent the
global average pooling and global max pooling layers, respec-
tively. The weighed feature emphasizes the discriminative region
and hence obtains more powerful semantic feature representa-
tion, as shown in the semantic-aware feature maps of Fig. 2.
Similar to the structural similarity, the semantic similarity can
be formulated as:

fsemantic(Z,X) = Corr(ϕ(ν(φhigh(Z))),φhigh(X)), (4)

where φhigh(·) denotes the high-level convolutional features
of the shared feature extraction network, ν(·) represents the
semantic-aware subnetwork formulated by Eq. 3.

REN: To obtain an optimal comprehensive similarity con-
taining the structural similarity and semantic similarity simul-
taneously, we propose an adaptive ensemble subnetwork which
is constituted by two 1× 1 convolution layers and a specific
designed Kullback-Leibler (KL) divergence layer. The aim of
this subnetwork is to obtain a comprehensive similarity map
which has a minimum distance from the structural and semantic
similarities. Givenn similarity mapsS = {S1, S2, . . . , Sn}, we
hope to get an optimal integrated similarity map Q ∈ RM×N .
Each similarity map can be regarded as a probability distribution
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Fig. 3. Examples of the proposed TIR training dataset. We annotate the class name and bounding box of objects in each frame of all sequences. Some sequences
have multiple objects, such as the deer, horse, and dog sequences.

of the tracked object. Each element of the similarity map denotes
the probability of whether it is the tracked target. We can use KL
divergence to measure the distance between the similarity map
Sk(k = 1, 2, . . . , n) and the integrated similarity map Q. Then,
we minimize the distance to optimize the similarity map Q by:

argmin
Q

n∑

k=1

KL(Sk‖Q) s.t.
∑

qij = 1, (5)

where

KL
(
Sk‖Q)

=
∑

ij

skij log
skij
qij

, (6)

sij and qij denote the (i, j)th element of the similarity map S
and Q respectively. We use the Lagrange multiplier method to
solve Eq. 5 and the solution has a simple formulation as:

Q =
1

n

n∑

k=1

Sk. (7)

Therefore, the KL layer can be regarded as a weighted sum
operator. According to Eq. 7, the final comprehensive similarity
can be formulated by:

f (Z,X) =
1

2
(αfstruct(Z,X) + βfsemantic(Z,X)) + b, (8)

where α and β denote the parameter of the two convolution
filters respectively. b is the sum of bias of the two convolution
layers. These parameters are learned adaptively.

B. TIR Training Dataset

To further enhance the performance of the proposed method,
we construct a TIR video training dataset, as shown in Fig. 3,
for training the proposed network. The dataset contains 500 TIR
image sequences with 20 object classes and more than 228 K
frames. We manually annotate the bounding box of objects in

each frame of all sequences according to the VID2015 [65] for-
mat and generate over 289 K bounding boxes. The source of
the dataset comes from existing TIR datasets and Youtube web-
sites, such as RGB-T [64], BU-TIV [61], and OTCBVS [66].
These datasets aim for different tasks, including object tracking,
detection, and counting, etc. Since the dataset is collected from
different sources and its shot scene and shot time of the videos
are also various. Therefore, the dataset has real data distribution
and high diversity. Table I compares the proposed TIR training
dataset with existing TIR object tracking datasets. From Table I,
we can see that the proposed TIR dataset is captured from more
than 20 device sources with 20 object classes in various scenar-
ios, which ensures the diversity of the proposed dataset. All of
the images of the dataset are shown as the white-hot palette style
and stored with an 8 bits depth. Most of the videos are shotted
at night, thus, the most object targets are warmer than its back-
ground. In addition, we can see that the proposed dataset con-
tains the largest number of videos, frames, and bounding boxes
among these compared datasets. To the best of our knowledge,
this is the largest and most diverse TIR tracking training dataset
to date. We believe this dataset will contribute not only to TIR
object tracking but also to other TIR visual tasks, such as image
classification, and object detection.

C. Network Training

Training samples: As shown in Fig. 1, the network needs a
pair of cropped samples as inputs. In the experiment, we find
that using mixed TIR and grayscale training samples can boost
the tracking performance of the proposed method. Therefore, we
first mix the VID2015 dataset with our TIR dataset using the dif-
ferent proportions. We test several proportions in Ablation study
(see Section IV-B). Then, we convert RGB images of VID2015
to the grayscale since the TIR object does not have color infor-
mation. Finally, we crop the image and choose the positive and
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TABLE I
COMPARISON OF THE PROPOSED TIR TRAINING DATASET WITH OTHER TIR OBJECT TRACKING DATASETS

negative training pairs from the whole mixed training dataset
like in CFNet [39].

Loss function: We use the logistic loss to train the proposed
network. Since the similarity map measures the similarity be-
tween a target and multiple candidates, the loss function should
be a mean loss:

L(y, o) =
1

| D |
∑

u∈D

log(1 + exp(−y[u]o[u])), (9)

where D ∈ R2 denotes the similarity map, o[u] represents the
real score of a single target-candidate pair and y[u] is the ground-
truth of this pair.

D. Tracking Interface

After training of the proposed model, we just use it as a match
function at the tracking stage without any online updating. Given
a target image Zt−1 at the (t− 1)-th frame and a search image
region Xt at the t-th frame, the tracked target at the t-th frame
can be formulated by:

x̂t,i = argmax
xt,i

f(Zt−1,Xt), (10)

where xt,i ∈ Xt is the i-th candidate in the search region Xt.
The function f(., .) denotes the comprehensive similarity de-
fined as E.q 8. To handle the scale variation of the object, we use
a simple scale-pyramid mechanism like that in SiamFC [33].

IV. EXPERIMENTS

In this section, we first present the implementation details
in Section IV-A. Then, we analyse the effectiveness of each
component of the proposed method in Section IV-B. Finally,
we compare the proposed algorithm with the state-of-the-art
methods in Section IV-C.

A. Experimental Details

We use a modified AlexNet [67] as the shared feature ex-
tractor, which all the paddings are removed. Before using the
structure CSN, we reduce the channel number of the low-level
convolution layer to 64 for accelerating computation. We set
the two convolution kernels of the structure-aware module to
5 × 5 and 7 × 7 and the corresponding deconvolution kernels to

7 × 7 and 5 × 5 respectively. We train the proposed network via
Stochastic Gradient Descent (SGD) with the momentum of 0.9
and weight decay of 0.0005 using MatConvNet [68]. The learn-
ing rate exponentially decays from 10−2 to 10−5. The network is
trained for 50 epochs and we set the mini-batch size to 8. In the
tracking stage, we set three fixed scales to {0.9745, 1, 1.0375}
for handling scale variation of the object. The current scale is
updated by a linear interpolation with a factor of 0.59 on the
predicted scale. The proposed method is carried out on a PC
with a GTX 1080 GPU card and achieves an average speed of
18 frames per second (FPS).

B. Ablation Studies

To demonstrate that each component of the proposed net-
work architecture is effective, we first compare the proposed
method with its variants on two benchmarks, including VOT-
TIR2015 [31], VOT-TIR2017 [32]. Then, we show that which
low-level convolution feature is more suitable for TIR object
tracking in the proposed framework on the VOT-TIR2017 [32]
and PTB-TIR [2] benchmarks. Finally, we validate the effective-
ness of the proposed TIR training dataset using several different
mixed proportions of the TIR and grayscale training data on the
PTB-TIR [2] benchmark.

Datasets: VOT-TIR2015 [31] is a first standard TIR object
tracking benchmark which provides the dataset and toolkit to
fair evaluate TIR trackers. The dataset contains 20 TIR image se-
quences and five kinds of challenges, such as Dynamics Change
(DC), Occlusion (Occ), Camera Motion (CM), Motion Change
(MC), and Size Change (SC). VOT-TIR2017 [32] has 25 TIR im-
age sequences, which is more challenging than VOT-TIR2015.
It also has five kinds of challenges which can be used to eval-
uate the corresponding performance of a tracker. PTB-TIR [2]
is a recently proposed TIR object tracking benchmark which
focuses on the TIR pedestrian tracking and contains 60 TIR
pedestrian sequences. It has nine challenge attributes, such as
thermal crossover, distractor, and background clutter, which can
be used for attribute-based evaluation.

Evaluation criteria: Accuracy (Acc.) and Robustness (Rob.)
are often used to evaluate the performance of a tracker on
VOT-TIR2015 and VOT-TIR2017 due to their high interpretabil-
ity. While accuracy is computed from the overlap rate between
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TABLE II
ABLATION STUDIES OF THE NETWORK ARCHITECTURE OF THE PROPOSED METHOD ON TWO BENCHMARKS, INCLUDING VOT-TIR2015, VOT-TIR2017.

LOW-LEVEL, STR, HIGH-LEVEL, AND SEM DENOTE THE BASELINE TRACKER ON THE LOW-LEVEL FEATURE (E.G., CONV3), STRUCTURE SIMILARITY MODULE, THE

BASELINE TRACKER ON THE HIGH-LEVEL FEATURE (E.G., CONV5), SEMANTIC SIMILARITY MODULE, RESPECTIVELY. THE UP ARROW AND DOWN ARROW

DENOTE THE BIGGER OR SMALLER VALUE IS, THE BETTER CORRESPONDING PERFORMANCE HAS

the prediction and ground truth, robustness is measured in term
of the frequency of tracking failure. Furthermore, there is a com-
prehensive evaluation criterion called Expected Average Over-
lap (EAO) [69] which is adopted to measure the overall per-
formance of a tracker. Different from VOT-TIR2017, PTB-TIR
uses Center Location Error (CLE) and Overlap Ratio (OR) as
the metrics [70]. Base on these two metrics, Success (Suc.) and
Precision (Pre.) are computed to measure the performance of a
tracker. Success is defined as that the percentage of the success-
ful frame whose OR is larger than a given threshold. A dynamic
threshold [0 1] is often used and the corresponding Area Under
Curve (AUC) is used to rank the trackers. Precision denotes that
the percentage of the successful frame whose CLE is within a
given threshold (e.g, 20 pixels).

Network architecture: We use two CFNet [39] using the
low-level (e.g., Conv3) and high-level (e.g., Conv5) convolution
features respectively as the baseline methods, which trained on
VID2015 [65]. First, to demonstrate that the structure-aware is
effective, we compare the baseline (low-level) with its variation
(low-level+Str) adding the structure-aware module. The first and
second rows of Table II show that the structure-aware improves
the accuracy and EAO of the baseline by 6% and 2.2% on VOT-
TIR2015 respectively. This shows that the structure-aware is
helpful for precisely object location.

Second, to show that the semantic-aware is effective, we com-
pare the baseline tracker (high-level) with its variation (high-
level+Sem) adding the semantic-aware module. The third and
fourth rows of Table II show that the semantic-aware mod-
ule improves the accuracy of the baseline by 3% and 5% on
VOT-TIR2017 and VOT-TIR2015, respectively. We can see that
the semantic-aware module also enhances the robustness of the
baseline on two benchmarks remarkably. These results demon-
strate that the semantic-aware module can enhance the discrim-
inative capacity of the original feature representation. Third, to
show that the multi-level similarity can further improve the dis-
criminative capacity, we compare the proposed network with
other variations. The last row of Table II shows that compared
with the baseline tracker (high-level) using only high-level con-
volution feature, the multi-level similarity improves EAO by
4.4% and 2.2% on VOT-TIR2015 and VOT-TIR2017 respec-
tively. Compared with the baseline (low-level+Str) using the
low-level convolution feature and the structure-aware module,

TABLE III
COMPARISON OF THE PROPOSED METHOD USING DIFFERENT LOW-LEVEL

CONVOLUTION LAYERS ON THE VOT-TIR2017 AND PTB-TIR BENCHMARKS

it also enhances EAO by 1.6% and 0.6% on VOT-TIR2015 and
VOT-TIR2017 respectively. These results demonstrate that the
multi-level similarity can enhance the discriminative capacity of
the Siamese network due to the complementarity between the
structure similarity and semantic similarity.

Feature selection: Since the proposed structure CSN and se-
mantic CSN are computed from low-level and high-level con-
volution layers respectively, their results should be different
when using different convolution layers. We use the last con-
volution layer, i.e., conv5, to compute the semantic similarity
due to it contains the highest semantic abstract. Meanwhile, we
test several different low-level convolution features to compute
the structure similarity, the results are shown in Table III. We
can see that the results are slightly different on two benchmarks
when using different low-level convolution layers. The proposed
method achieves the best EAO score (0.283) on VOT-TIR2017
when using the fourth convolution layer, which enhances only
0.7% than the second-best (0.276). While it obtains the best
success rate (0.516) on PTB-TIR when using the third convo-
lution layer, which improves only 0.6% than the worst (0.510).
These results indicate that the proposed method is insensitive to
these low-level features. We suggest that this is mainly because
these convolution layers have similar receptive fields and hence
provide similar features.

Training data: We find that using the mixed TIR and
grayscale training data can boost the performance of the pro-
posed method. Here, we test several different proportions be-
tween the TIR training data and the grayscale training data
(VID2015) on the PTB-TIR [2] benchmark, as shown in Fig. 4.
The results show that using the proportion of 1:1 between the TIR
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TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH THE STATE-OF-THE-ART METHODS ON VOT-TIR2017 AND VOT-TIR2015. THE BOLD, ITALIC, AND UNDERLINE

DENOTE THE BEST, THE SECOND-BEST, AND THE THIRD-BEST SCORE RESPECTIVELY. THE NOTATION “*” DENOTES THE SPEED IS REPORTED BY THE AUTHORS

Fig. 4. Comparison of the proposed method using different proportions be-
tween the TIR and grayscale training data on the PTB-TIR benchmark. The
legend ‘MLSSNet_1-TIR_1-Gray’ denotes the proposed method using the pro-
portion of 1:1 between the TIR and grayscale training data.

and grayscale training data, the proposed method (MLSSNet_1-
TIR_1-Gray) achieves the best success score (0.539), which is
higher than the proposed method using only the grayscale train-
ing data (MLSSNet_0-TIR_all-Gray) by 2.3% and is higher
than the proposed method using only the TIR training data
(MLSSNet_1-TIR_0-Gray) by 1.1%. This shows that the TIR
image and grayscale image have certain complementary char-
acteristics, which is useful for TIR tracking. Although the pro-
posed TIR training dataset is about 8 times smaller than the
grayscale training dataset (VID2015), the proposed method us-
ing only the TIR training dataset achieves the higher success
score (0.528, ↑ 1.2%) than the proposed method using only the

grayscale training dataset. This shows that the proposed TIR
training dataset can help the network learn more discriminative
features for TIR tracking. In addition, we find that the perfor-
mance of the proposed method gradually decreases as the pro-
portion of the grayscale training data increases. This shows that
the TIR training dataset is crucial for learning discriminative
features for TIR tracking.

C. Comparison With the State-of-the-Arts

To evaluate the proposed algorithm comprehensively, we
compare our method with the state-of-the-art methods on the
VOT-TIR2017 [32], VOT-TIR2015 [31], and PTB-TIR [2]
benchmarks.

Compared trackers: We compare the proposed method
MLSSNet and its variant (MLSSNet-N-TIR is trained with-
out the proposed TIR dataset) with the state-of-the-art track-
ers. These methods can be divided into four categories. Seven
trackers are based on the deep correlation filter, such as
deepMKCF [72], HDT [50], MCFTS [25], CREST [73], ECO-
deep [57], UDT [79], and DeepSTRCF [74]. Seven trackers
are based on the Siamese framework such as Siamese-FC [33],
SiamFC-tri [36], CFNet [39], SiamRPN [47], DaSiamRPN [48],
TADT [78], and HSSNet [30]. Two hand-crafted feature based
CF trackers: SRDCF [71], Staple-TIR [63]. Four other deep
trackers, such as the classification based trackers, MDNet-N [63]
and VITAL [75], and the overlap prediction based trackers,
ATOM [76] and DiMP [77].
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Fig. 5. Comparison of the proposed method with ten deep trackers on eight attribute subsets of the PTB-TIR benchmark.

Fig. 6. Comparison of the proposed method with ten deep trackers on the
PTB-TIR benchmark.

Overall performance: We compare the comprehensive per-
formance of the proposed algorithm with the state-of-the-art
methods on VOT-TIR2015, VOT-TIR2017, and PTB-TIR, as
shown in Table IV and Fig. 6. The results show that our al-
gorithm achieves the third-best EAO of 0.286 and 0.329 on
the VOT-TIR2017 and VOT-TIR2015 benchmarks, respectively.
We can see that although the proposed method does not use
the proposed TIR training dataset, it also achieves the compet-
itive EAO 0.276 and 0.326 on both two benchmarks, respec-
tively. These results demonstrate that the proposed method per-
forms favorably against the state-of-the-art methods. Compared
with the Siamese based tracker, Siamese-FC [33], the proposed
method obtains a 11.0% EAO gain and a 6.1% EAO gain on
the VOT-TIR2015 and VOT-TIR2017 benchmarks respectively.
Compared with the baseline tracker, CFNet [39], our algorithm
achieves a 3.2% EAO score gain and a 4.0% accuracy gain on the
VOT-TIR2017 benchmark. It also obtains a 9.0% success score
gain on the PTB-TIR benchmark. We attribute the good per-
formance to the proposed multi-level similarity network, which
can enhance the discriminative capacity of the network by two
complementary similarity modules. Compared with CF based

deep tracker CREST [73], our method has better overall perfor-
mance on three benchmarks despite CREST online updates the
target template. We argue that the superior performance of the
proposed method comes from the training on the proposed TIR
dataset. Though MDNet-N [63] online trains a deep classifica-
tion network for TIR tracking, our method gets better robustness
on VOT-TIR2017, which benefits from both the multi-level sim-
ilarity and the proposed TIR training dataset.

Attribute-based results: In order to show the effectiveness
of the proposed method for handling different challenges, we
compare the proposed method with the state-of-the-art meth-
ods on the five challenging attributes of the VOT-TIR2017 and
VOT-TIR2015 benchmarks, as shown in Table V and Table VI
respectively. The results show that our method achieves the
best EAO on the dynamics change (0.285) and the camera mo-
tion (0.263) challenges of VOT-TIR2017. It also obtains the
best EAO, 0.482 and 0.588 on motion change and camera mo-
tion challenges of VOT-TIR2015 respectively. Compared with
CFNet [39], our method enhances EAO by 6.3% and 13.8%
on the dynamic change of VOT-TIR2017 and VOT-TIR2015
respectively. This shows that the proposed multi-level similar-
ity model is more robust to the dynamic change challenge. We
can see that our method obtains the competitive performance
on the size change challenge of two benchmarks. Compared
with Siamese-FC [33], our tracker achieves 6.2% and 12.8%
EAO gains on size change of VOT-TIR2017 and VOT-TIR2015
respectively. This demonstrates that the multi-level similarity
model improves the robustness of the Siamese network re-
markably, since these two trackers use a same scale estimation
strategy. We also compare the proposed method with the ten
state-of-the-art deep trackers on the eight attribute subsets of
the PTB-TIR benchmark, as shown in Fig. 5. The results show
that the proposed method performs the best on most attributes,
such as background clutter, fast motion, out-of-view, and scale
variation. This is consistent with the results on VOT-TIR2017
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Fig. 7. Tracking results visualized comparison of the proposed method and the state-of-the-art methods on several challenging sequences. From left to right and
top to bottom, the sequences are ‘car1,’‘birds,’‘excavator,’‘mixed-distractors,’‘street,’‘sidewalk1,’‘sidewalk2,’‘airplane,’ respectively. The first five sequences are
from VOT-TIR2017 and the last three are from PTB-TIR.

TABLE V
COMPARISON OF THE PROPOSED TRACKER AND THE STATE-OF-THE-ART

METHODS ON THE FIVE CHALLENGES OF THE VOT-TIR2017 BENCHMARK

UNDER EAO EVALUATION CRITERION. THE BOLD AND UNDERLINE DENOTE

THE BEST AND THE SECOND-BEST SCORES RESPECTIVELY

and VOT-TIR2015. We can also see that the proposed method
performs well on the other attributes, such as thermal crossover,
occlusion. It is easy to integrate an independent re-detection

TABLE VI
COMPARISON OF THE PROPOSED TRACKER AND THE STATE-OF-THE-ART

METHODS ON THE FIVE CHALLENGES OF THE VOT-TIR2015 BENCHMARK

UNDER EAO EVALUATION CRITERION

strategy [80], [81] using the confidence of tracked object [82]
for further improving the robustness of the tracker to handle these
challenges. All of these attributes based results demonstrate that
our algorithm achieves a powerful discriminative capacity and
favorable performance.

Visualized results: To show the tracking performance more
intuitionally, we compare the visualized tracking results of the
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proposed algorithm with several state-of-the-art trackers on
eight challenging sequences, as shown in Fig. 7. The results
show that the proposed method tracks the objects more accurate
and robust in the most challenges. Especially, when two similar
objects cross each other, such as ‘mixed-distractors,’ ‘street,’ and
‘airplane,’ most trackers drift to distractors, while our algorithm
locates the object accurately. We attribute the good performance
to the proposed multi-level similarity network, which can rec-
ognize the intra-class objects from their subtle differences. In
addition, we can see that the proposed method also performs
better than most trackers when the background is clutter, such
as ‘excavator,’‘sidewalk1,’ and ‘sidewalk2’. This shows that the
proposed method achieves favorably discriminative capacity.

V. CONCLUSION

This paper proposes a multi-level similarity model under the
Siamese framework for robust Thermal InfraRed (TIR) object
tracking. The network consists of a multi-level similarity net-
work and a relative entropy based adaptive ensemble network.
The structural correlation similarity network captures the local
structure information of the TIR object for the precise location.
While the semantic correlation similarity network enhances the
global semantic representation of the feature for robust identi-
fication. The multi-level similarity improves the discriminative
capacity of the Siamese network. In addition, to further enhance
the discriminative capacity, we construct a large-scale TIR im-
age dataset to train the proposed model. The dataset not only
benefits the training for TIR object tracking but also can be ap-
plied to numerous TIR visual tasks such as classification and
detection. Extensive experimental results on three benchmarks
show that the proposed method performs favorably against the
state-of-the-art methods.
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