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Learning Deep Multi-Level Similarity for
Thermal Infrared Object Tracking

Qiao Liu™, XinLi®, Zhenyu He

Abstract—Existing deep Thermal InfraRed (TIR) trackers only
use semantic features to represent the TIR object, which lack the
sufficient discriminative capacity for handling distractors. This
becomes worse when the feature extraction network is only trained
on RGB images. To address this issue, we propose a multi-level
similarity model under a Siamese framework for robust TIR object
tracking. Specifically, we compute different pattern similarities
using the proposed multi-level similarity network. One of them
focuses on the global semantic similarity and the other computes the
local structural similarity of the TIR object. These two similarities
complement each other and hence enhance the discriminative
capacity of the network for handling distractors. In addition, we
design a simple while effective relative entropy based ensemble
subnetwork to integrate the semantic and structural similarities.
This subnetwork can adaptive learn the weights of the semantic and
structural similarities at the training stage. To further enhance the
discriminative capacity of the tracker, we propose a large-scale TIR
video sequence dataset for training the proposed model. To the best
of our knowledge, thisis the firstand the largest TIR object tracking
training dataset to date. The proposed TIR dataset not only benefits
the training for TIR object tracking but also can be applied to
numerous TIR visual tasks. Extensive experimental results on three
benchmarks demonstrate that the proposed algorithm performs
favorably against the state-of-the-art methods.

Index Terms—TIR object tracking, Multi-level similarity,
Siamese network, Thermal infrared dataset.

|. INTRODUCTION

HERMAL InfraRed (TIR) object tracking is a fundamen-
T tal task in computer vision, which receives more and more
attention recently. Compared with visual tracking, TIR object
tracking has several superiorities, such as illumination insen-
sitivity and privacy protection. Since the TIR object tracking
method can track the object in total darkness, it can beusedina
wide range of applications, such asvideo surveillance, maritime
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rescue, and driver assistanceat night [1]. However, thereare sev-
eral problemsin TIR object tracking that are still challenging,
such asthermal crossover, intensity variation, and distractor [2].

To handle various challenges, numerous TIR trackersare pro-
posed in the past decade. For instance, TBOOST [3] ensem-
bles several MOSSE filters [4] using a continuously switching
mechanism to choose a set of right base tracker. TBOOST can
adapt the appearance variation of the object since it maintains
a dynamics ensemble. Sparse-tir [5] explores the sparse rep-
resentation with a compressive Harr-like feature for real-time
TIR object tracking, which can aleviate the occlusion issue due
to the feature of the spare representation. Similar to Sparse-tir,
MF-tir [6] also uses the sparse representation method for TIR
object tracking but explores multiple complemental featuresfor
getting more discriminative features. DSLT [7] uses an online
structural support vector machine [8] with a combination of the
motion feature and a modified Histogram of Oriented Gradient
(HOG) [9] feature for TIR object tracking. DSLT obtains favor-
able performance mainly because of the dense online learning
and the more robust feature representation. There are also ava-
riety of TIR trackers are proposed based on kernel density es-
timation [10], multiple instances learning [11], low-rank sparse
learning [12], discriminative correlationfilter [13], [14], etc. De-
spite much progress, the performance of thesetrackersislimited
by the hand-crafted feature representation.

Recently, inspired by the success of Convolution Neural Net-
work (CNN) in visual tasks[15]-23], several methods attempt
to explore CNN toimprovethe performance of TIR object track-
ing. DSST-tir [24] shows that deep features are more effective
than hand-crafted features in the Correlation Filter (CF) frame-
work for TIR object tracking. MCFTS [25] uses a pre-trained
VVGGNet [26] to extract multipleconvol utional deep featuresand
then combine them with Kernel Correlation Filter (KCF) [27] to
achieve an ensemble TIR tracker. LM SCO [28] integrates deep
appearance features [26] and deep motion features [29] into a
structural support vector machine [8] for TIR object tracking.
HSSNet [30] trains a verification based Siamese CNN on RGB
imagesfor TIR object tracking. However, most of these methods
only useadeep semantic feature, whichislesseffectivetodistin-
guish intra-class TIR objects. Unlike RGB images, TIR images
do not have color information and lack rich texture features.
Intra-class TIR objects usually have similar visual and semantic
patterns. This indicates that only using a global semantic fea-
ture isinsufficient for handling distractors in TIR object track-
ing. Furthermore, most of these deep TIR trackersaretrained on
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RGB images due to lacking a large-scale TIR training dataset,
which further degrades the discriminative capacity.

To address the above-mentioned problems, we propose a
multi-level similarity model, called ML SSNet, under a Siamese
framework for robust TIR object tracking. We note that the
multi-level similarity is effective in enhancing the discrimina-
tive capacity of the Siamese network for handling distractors. To
this end, we design a structural Correlation Similarity Network
(CSN) and a semantic CSN to compute different pattern simi-
larities between TIR objects. The structural CSN captures the
local structural information of TIR objects and then computes
the structural similarity of them. We identify that the structure
information can help the network distinguish intra-class TIR
objects on the fine-grained level. The semantic CSN enhances
the global semantic representation capacity and then computes
the similarity on the semantic level. These two similarities com-
plement each other and hence boost the discriminative capacity
for handling distractors. To obtain an optimal comprehensive
similarity containing the structural and semantic similarities si-
multaneously, we design a Relative Entropy based adaptive en-
semble Network (REN) to integrate them. In addition, to further
enhance the discriminative capacity, we construct alarge-scale
TIR training dataset.® with manual annotations for training the
proposed model. The dataset has 500 TIR sequences with 20
object classes, more than 228 K frames, and over 289 K bound-
ing boxes. To the best of our knowledge, this dataset isthe first
and the largest TIR object tracking training dataset to date. We
notethat thetracker hasamore powerful discriminative capacity
for handling distractors when it is trained on the proposed TIR
dataset. We analyze the multi-level similarity model with an ab-
lation study and compare it with the state-of-the-art methods on
the VOT-TIR2015 [31], VOT-TIR2017 [32], and PTB-TIR [2]
benchmarks in Section 1V-B and Section IV-C respectively.
The favorabl e performance against the state-of-the-art methods
demonstrates the effectiveness of the proposed method.

The contributions of the paper are three-fold:

e \We propose a deep multi-level similarity model under the
Siamese framework for robust TIR object tracking. We
design two complementary correlation similarity models,
which recognize TIR objectsfrom thelocal structural level
and the global semantic level, respectively. We also design
a relative entropy ensemble network that can adaptive to
learn an optimal comprehensive similarity.

e \We construct thefirst large-scale TIR training dataset with
manual annotations. The proposed dataset not only benefits
to TIR object tracking but can also be used to train deep
models for other TIR visual tasks.

e \We carry out extensive experiments on three benchmarks
and demonstrate that the proposed TIR object tracking
algorithm performs favorably against the state-of-the-art
methods.

The rest of the paper is organized as follows. We first in-

troduce related tracking methods and TIR training datasets
briefly in Section Il. Then, we describe the architecture and

1The dataset can be downloaded at [Onling]. Available: https.//meganz/file/
80J23A5T#pFY Fv_y5NFNV nsJ4zU3a60H3kPyRwL ZebKZV 1FoD-w

2115

training details of the proposed multi-level similarity network in
Section|11. Subsequently, the extensive experimentsarereported
in Section IV to show the proposed method achieves favorable
performance. Finally, we draw a short conclusion in Section V.

Il. RELATED WORK

In this section, we first introduce the Siamese framework
based trackers, which are most related to ours. Then, we dis-
cussseveral ensemblelearning strategiesin CNN based tracking
method. Finally, we describe several TIR training datasets used
for tracking.

Siamese based trackers: Siamese based trackers treat ob-
ject tracking as a similarity verification task, most of which is
to off-line train a similarity metric network and then uses it to
online compute the similarity between candidates and the target.
For example, Siamese-FC [33] trainsthefirst fully convolutional
Siamese network for tracking and achieves promising results. In
order to adapt the appearance variation of thetarget, DSiam [34]
learns a dynamic Siamese network by two line regression mod-
els. Oneof these modelscanlearn thetarget’ sappearance change
and the other can learn to suppress the background. Struct-
Siam[35] learnsastructured Siamese network, whichfocuseson
thelocal pattern of thetarget and their structural relationship. To
obtain morepowerful features, SiamFC-tri [36] usesatripletloss
totrainthe Siamese network, whichlearnsthetriplet relationship
instead of the pairwise relationship. Quadruplet [37] extendsthe
Siamese network to four brancheswhich learn the potentia con-
nection of training samples using a triplet loss and a pair loss
simultaneously. SA-Siam [38] exploits a twofold Siamese net-
work which is composed by a semantic branch and an appear-
ance branch. Thesetwo branchesaretrained from different tasks
to complement each other. Our method is similar to SA-Siam,
which usestwo branches, but there are several significant differ-
ences. First, SA-Siam uses two separate branches trained with
different tasks to compute different similarity, while our model
usestwo branchestrained with onetask (the samelossfunction)
to compute different similarity. Second, the two branches of
SA-Siam aretrained separately, while oursistrained end-to-end.
Third, the two branches are fused in the tracking stage viaasim-
ple weighted operation in SA-Siam, while ours are fused in the
training stage using arelative entropy-based adaptive ensemble
network.

In order to enhance the discriminative capacity of the Siamese
network, CFNet [39] introduces CF as adifferentiable layer into
the Siamese network. This layer can update the target branch
using video-specific cues that could be helpful for discrimina-
tion. CFNet-Hy [40] uses a deep Q-learning method to auto-
matically optimize the hyper-parameter of the tracker. Recently,
attention mechanism is widely used in visua task [41], [42]
for enhancing representation. For example, RASNet [43] intro-
ducesaresidua attention to CFNet to further boost the discrim-
inative capacity. HASiam [44] proposes a hierarchical attention
module with multi-layers fusion strategy in the Siamese frame-
work for object tracking. LSSiam [45] presents alocal seman-
tic Siamese network to extract more robust features for object
tracking by using an auxiliary classification branch and a focal

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on January 17,2022 at 07:20:47 UTC from IEEE Xplore. Restrictions apply.
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logistic loss. Considering the motion information is helpful for
tracking, FlowTrack [46] trains an optical flow network and a
CFNet model simultaneously. To achieve high performance and
high speed simultaneously, SiamRPN [47] employs a Siamese
region proposal network which consists of a feature extraction
subnetwork and a region proposal subnetwork. It isformulated
as aloca one-shot detection task in the tracking stage. Subse-
quently, DaSiamRPN [48] extends SiamRPN by controlling the
distribution of the training data and achieves top performance
in the VOT2018 [49] challenge. However, most of these meth-
ods compute similarity from one single level e.g., the semantic
level. Different from these methods, in this paper, we exploit
the multi-level similarity to enhance the discriminative capacity
of the Siamese network for handling distractors in TIR object
tracking.

CNN based ensemble trackers: The ensemble learning
is used at different stages in object tracking. For example,
HDT [50] combines the multiple weak CNN based CF trackers
into a stronger one by a Hedge algorithm. This algorithm can
adaptively update the weights of each weak tracker. STCT [51]
trains an ensemble based CNN classifier for tracking via a se-
quential sampling method. Similar to STCT, Branchout [52]
trains an ensemble based CNN classifier by using a stochas-
tic regularization technology. TCNN [53] manages the multiple
CNNs in atree structure to estimate target states and to update
the model. EDCF [54] integrates a low-level fine-grained fea-
ture and a high-level semantic feature in a mutually reinforced
way. Though both the proposed REN and the HDT methods
use an adaptive ensemble strategy, the proposed REN model
is trained end-to-end, which fuses multiple similarities at the
learning stage.

TIR training dataset: The lack of alarge-scale TIR training
dataset hindersthe development of CNN in TIR object tracking.
Several methods attempt to train a CNN feature model on the
TIR dataset for TIR object tracking. For instance, DSST-tir [24]
investigatesthe deep CNN featurein the correlation filter frame-
work for TIR object tracking. This CNN model is trained on a
small TIR image dataset (18 K) with the classification task. Its
experimental results show that the deep feature based CF tracker
can obtain better performance than hand-crafted feature based
CFtracker. Zhang et al. [55] train aGenerative Adversarial Net-
work (GAN) [56] to generate synthetic TIR images from RGB
images. These synthetic images, the number of which is over
80 K, are used to train a Siamese network [39] for feature ex-
traction. Then, they combine this deep feature model with the
ECO [57] tracker for TIR object tracking. The experimental re-
sults show that the synthetic TIR training data significantly im-
provesthe performance of TIR object tracking. In this paper, we
propose a large-scale real TIR dataset with manual annotations
for training the proposed model. To the best of our knowledge,
this is the first large-scale real TIR training dataset for object
tracking task.

IIl. MULTI-LEVEL SIMILARITY NETWORK

In this section, we first describe the framework of the pro-
posed multi-level similarity network in Section I11-A, which
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mainly consists of three specific designed subnetworks:. struc-
tural CSN, semantic CSN, and REN. Then, weintroducethe pro-
posed TIR training dataset in Section |11-B and training details
of the network in Section 111-C. Finally, we present how to use
the proposed network for TIR object tracking in Section 111-D.

A. Network Architecture

To achieve more effective TIR object tracking, we construct
amulti-level similarity model under the Siamese framework, as
shown in Fig. 1. Unlike existing Siamese network which often
computes the similarity based on one feature space (e.g., se-
mantic level), we compute the similarity from multiple levels,
including thelocal structure level and the global semantic level.
We note that the multi-level similarity improves the discrimina-
tive capacity of the Siamese network, and hence improves the
robustnessof the TIR tracker. To thisend, wedesign two compl e-
mentary modules, including structural CSN and semantic CSN,
which compute the structural similarity and the semantic simi-
larity, respectively. Furthermore, wedesign asimplewhileeffec-
tive adaptive ensemble module, REN, to integrate the structural
similarity and semantic similarity. In thefollowing, wehighlight
these specific networks in detail.

Structural CSN: To computethestructural similarity, we de-
sign a structure-aware subnetwork to capture the local structure
feature of the object on the low-level convolution layer since
the low-level feature contains more local pattern information.
We note that the structural similarity is helpful for the accurate
location of a tracker. Since TIR objects do not have color in-
formation and lack rich texture feature, intra-class TIR objects
often have similar visual patterns. Therefore, we argue that the
local structure feature is crucia for recognizing them and it is
important for a tracker to distinguish distractors. Specifically,
we first use two big convolutional kernels to capture the local
structure information of the object on the shallow convolution
layer. Then, we locate these structure parts by using two corre-
sponding deconvolution layers. Next, we use a Sigmoid layer to
generate a two dimension weight map which indicates the im-
portance of every local structure. Finally, we use a scale layer
to weight the original feature via the weight map. Given an in-
put low-level convolutional feature map X; € RE*WxC the
weighted feature w(X;) can be formulation as:

exp(W; X))

X)) =X, 0 —DWiIR
w(Xi) l®exp(Wle)+17

1)

where W denotes the transform matrix which consists of two
convolution and two deconvolution layers. Theweighted feature
isawareof thelocal structure of the object, asshownin structure-
aware feature of Fig. 2. After the scale layer, we add a CF [39]
layer to updatethetarget template. Given aninput targetimage Z
and asearchimage X, thestructural similarity can beformulated
as.

fstruct(z’ X) = COTT(QO(W(¢|CW(Z))), ¢|0\N(X))’ (2)
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Architecture of the proposed Multi-Level Similarity based Siamese Network (ML SSNet). ML SSNet isconstituted by ashared feature extractor, astructural

Correlation Similarity Network (CSN), a semantic CSN, and an adaptive fusion model (REN). Every block denotes a specific network layer and each convolution
layer joinsahidden ReL U layer. GAR, GMP, CF, KL, and ® denote the global average pooling, global max pooling, correlation filter, Kullback-L eibler divergence,

and scale layer respectively.

FLA g2
-e - i, -
Input images Conv3  Structure-aware  Conv5  Semantic-aware

Fig. 2. Visuaization of the origina and the learned structure-aware and
semantic-awarefeatures. The visualized feature mapsare generated by summing
al channels. From left to right on each column are the input images, the origi-
nal low-level feature (e.g., Conv3), the learned structure-aware feature form the
low-level feature, the origina high-level feature (e.g., Conv5), and the learned
semantic-aware feature from the high-level feature respectively. \We can see that
the structure-aware features tend to focus on the local structure parts, e.g., head
and leg, while the semantic-aware features emphasi ze the more discriminative
global semantic regions.

where ¢jon (-) denotesthelow-level convolutional featuresof the
shared feature extraction network, w(-) represents the structure-
awaresubnetwork formulated by Eq. 1, ¢ (-) isthe CFblock [39],
and Corr(-, -) denotes the cross-correl ation operator.
Semantic CSN: To compute the semantic similarity, we de-
sign a semantic-aware subnetwork to enhance the semantic rep-
resentation ability on the high-level convolutional layer since
the high-level feature mainly represents a global semantic ab-
stract. Since the discriminative capacity of the network to the
inter-class objects mainly comes from the semantic feature, it is
important to obtain a more powerful semantic feature. To this
end, our semantic-aware subnetwork formul atesthe relationship
of feature channel sto generate the more powerful feature, which
is similar to SENet [58]. Specifically, we first squeeze the fea
ture map into two one dimension vectors by a global average
pooling and a global max pooling respectively. Then, we use
two shared full-connected layers to formulate the relationship

between these channels and then we fuse the two kinds of rela-
tionship vectors viaa Sum layer. Different from previous meth-
ods, we use two kinds of global pooling because we note that
they provide different cluesfor the global semantic information.
Next, weuseaSigmoid layer to generate aone dimension weight
vector which indicates the importance of each feature channel.
Finally, we employ ascale layer to weight the origin feature via
the weight vector. Given an input high-level convolutional fea-
ture map X, € RT>*WxC 'the weighted feature v/(X},) can be
formulation as:

exp(Wy, - Gap(Xy,) + Wy, - Gmp(Xy,))

vXn) =X © W - Gap(Xn) + Wi - Gmp(Xn) =

where W), denotes the transform matrix comprised by two
shared convolution layers, Gap(-) and Gmp(-) represent the
global average pooling and global max pooling layers, respec-
tively. Theweighed feature emphasi zesthediscriminativeregion
and hence obtains more powerful semantic feature representa
tion, as shown in the semantic-aware feature maps of Fig. 2.
Similar to the structural similarity, the semantic similarity can
be formulated as:

fsemantic(Z, X) = Corr(p(v(Pngn(Z))), prign(X)), (4

where ¢nign(-) denotes the high-level convolutional features
of the shared feature extraction network, v(-) represents the
semantic-aware subnetwork formulated by Eqg. 3.

REN: To obtain an optimal comprehensive similarity con-
taining the structural similarity and semantic similarity simul-
taneously, we propose an adaptive ensemble subnetwork which
is constituted by two 1 x 1 convolution layers and a specific
designed Kullback-Leibler (KL) divergence layer. The aim of
this subnetwork is to obtain a comprehensive similarity map
which has aminimum distance from the structural and semantic
similarities. Givenn similarity maps S = {S!, 52,..., 58"}, we
hope to get an optimal integrated similarity map @ € RM>V,
Each similarity map can beregarded asaprobability distribution
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have multiple objects, such as the deer, horse, and dog sequences.

of thetracked object. Each element of the similarity map denotes
the probability of whether it isthetracked target. We can use KL
divergence to measure the distance between the similarity map
S*(k =1,2,...,n) and theintegrated similarity map Q. Then,
we minimize the distance to optimize the similarity map @ by:

arg minZKL(SkHQ) S.t-ZQij =1, ©)
Q@ k21
where
sk
KL(S*1Q) = _sljlog 2. 6)
i i

s;; and g;; denote the (i, j)th element of the similarity map .S
and @ respectively. We use the Lagrange multiplier method to
solve Eq. 5 and the solution has a simple formulation as:

1
Q=-> s" (7)

Therefore, the KL layer can be regarded as a weighted sum
operator. According to Eq. 7, the final comprehensive similarity
can be formulated by:

f (Z,X) = % (afstruct(zax) + ﬁfsemantic(z7x)) + bv (8)

where « and 8 denote the parameter of the two convolution
filters respectively. b is the sum of bias of the two convolution
layers. These parameters are learned adaptively.

B. TIR Training Dataset

To further enhance the performance of the proposed method,
we construct a TIR video training dataset, as shown in Fig. 3,
for training the proposed network. The dataset contains 500 TIR
image sequences with 20 object classes and more than 228 K
frames. We manually annotate the bounding box of objects in

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021
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Examples of the proposed TIR training dataset. We annotate the class name and bounding box of objectsin each frame of all sequences. Some sequences

each frame of all sequences according to the VID2015 [65] for-
mat and generate over 289 K bounding boxes. The source of
the dataset comes from existing TIR datasets and Youtube web-
sites, such as RGB-T [64], BU-TIV [61], and OTCBVS [66].
These datasets aim for different tasks, including object tracking,
detection, and counting, etc. Since the dataset is collected from
different sources and its shot scene and shot time of the videos
are also various. Therefore, the dataset hasreal data distribution
and high diversity. Table | compares the proposed TIR training
dataset with existing TIR object tracking datasets. From Tablel,
we can see that the proposed TIR dataset is captured from more
than 20 device sources with 20 object classesin various scenar-
ios, which ensures the diversity of the proposed dataset. All of
theimages of the dataset are shown asthe white-hot palette style
and stored with an 8 bits depth. Most of the videos are shotted
at night, thus, the most object targets are warmer than its back-
ground. In addition, we can see that the proposed dataset con-
tains the largest number of videos, frames, and bounding boxes
among these compared datasets. To the best of our knowledge,
thisisthe largest and most diverse TIR tracking training dataset
to date. We believe this dataset will contribute not only to TIR
object tracking but also to other TIR visual tasks, such asimage
classification, and object detection.

C. Network Training

Training samples: As shown in Fig. 1, the network needs a
pair of cropped samples as inputs. In the experiment, we find
that using mixed TIR and grayscale training samples can boost
thetracking performance of the proposed method. Therefore, we
first mix the V1D2015 dataset with our TIR dataset using the dif-
ferent proportions. Wetest several proportionsin Ablation study
(see Section 1V-B). Then, we convert RGB images of VID2015
to the grayscale since the TIR object does not have color infor-
mation. Finally, we crop the image and choose the positive and
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TABLE
COMPARISON OF THE PROPOSED TIR TRAINING DATASET WITH OTHER TIR OBJECT TRACKING DATASETS

Datasets Num. of Max Min Mean Total ~ Frame Object Bit Device Max
sequences frames frames frames frames  rates classes depth sources resolution
OSU [59] 6 2,031 601 1,424 8K 30 fps 1 8 1 320 x 240
PDT-ATV [60] 8 775 77 486 4K 20 fps 3 8 1 324 x 256
BU-TIV [61] 16 26,760 150 3,750 60K 30 fps 5 16 1 1,024 x 512
LTIR [62] 20 1,451 71 563 11K 30 fps 6 8 8 1,920 x 480
VOT-TIR2017 [63] 25 1,451 71 555 14K 30 fps 8 8 8 1,920 480
PTB-TIR [2] 60 1,451 50 502 30K 30 fps 1 8 8+ 1,024 x 720
RGB-T [64] 234 4,000 45 500 117K 30 fps 6 8 1 640 x 480
Ours ‘ 500 3,056 47 457 228K 30 fps 20 8 20+ 1,920x 1, 080

negative training pairs from the whole mixed training dataset
likein CFNet [39].

Loss function: We use the logistic loss to train the proposed
network. Since the similarity map measures the similarity be-
tween atarget and multiple candidates, the loss function should
be amean loss:

Ly.0) = llﬁ S log(1 + exp(—ylulofu]),  (9)

uey

where 2 € R? denotes the similarity map, o[u] represents the
real scoreof asingletarget-candidatepair and y[u] istheground-
truth of this pair.

D. Tracking Interface

After training of the proposed model, wejust useit asamatch
function at thetracking stage without any online updating. Given
atarget image Z,_; at the (¢t — 1)-th frame and a search image
region X, at the ¢-th frame, the tracked target at the ¢-th frame
can be formulated by:

Xy, = argmax f(Z;_1, Xy), (10

where x; ; € X, is the i-th candidate in the search region X,.
The function f(.,.) denotes the comprehensive similarity de-
fined asE.q 8. To handle the scal e variation of the object, we use
asimple scale-pyramid mechanism like that in SiamFC [33].

IV. EXPERIMENTS

In this section, we first present the implementation details
in Section IV-A. Then, we analyse the effectiveness of each
component of the proposed method in Section IV-B. Finally,
we compare the proposed algorithm with the state-of-the-art
methodsin Section 1V-C.

A. Experimental Details

We use a modified AlexNet [67] as the shared feature ex-
tractor, which al the paddings are removed. Before using the
structure CSN, we reduce the channel number of the low-level
convolution layer to 64 for accelerating computation. We set
the two convolution kernels of the structure-aware module to
5 x 5and 7 x 7 and the corresponding deconvolution kernelsto

7 x 7Tand5 x 5respectively. Wetrain the proposed network via
Stochastic Gradient Descent (SGD) with the momentum of 0.9
and weight decay of 0.0005 using MatConvNet [68]. Thelearn-
ing rate exponentially decays from 102 to 10~°. The network is
trained for 50 epochs and we set the mini-batch sizeto 8. In the
tracking stege, we set three fixed scales to {0.9745, 1, 1.0375}
for handling scale variation of the object. The current scale is
updated by a linear interpolation with a factor of 0.59 on the
predicted scale. The proposed method is carried out on a PC
with a GTX 1080 GPU card and achieves an average speed of
18 frames per second (FPS).

B. Ablation Sudies

To demonstrate that each component of the proposed net-
work architecture is effective, we first compare the proposed
method with its variants on two benchmarks, including VOT-
TIR2015 [31], VOT-TIR2017 [32]. Then, we show that which
low-level convolution feature is more suitable for TIR object
tracking in the proposed framework on the VOT-TIR2017 [32]
and PTB-TIR[2] benchmarks. Finally, wevalidate the effective-
ness of the proposed TIR training dataset using several different
mixed proportions of the TIR and grayscal e training data on the
PTB-TIR [2] benchmark.

Datasets: VOT-TIR2015 [31] is a first standard TIR object
tracking benchmark which provides the dataset and toolkit to
fair evaluate TIR trackers. The dataset contains20 TIR image se-
guences and five kinds of challenges, such as Dynamics Change
(DC), Occlusion (Occ), Camera Motion (CM), Motion Change
(MC), and SizeChange(SC). VOT-TIR2017[32] has25 TIR im-
age sequences, which is more challenging than VOT-TIR2015.
It also has five kinds of challenges which can be used to eval-
uate the corresponding performance of atracker. PTB-TIR [2]
is a recently proposed TIR object tracking benchmark which
focuses on the TIR pedestrian tracking and contains 60 TIR
pedestrian sequences. It has nine challenge attributes, such as
thermal crossover, distractor, and background clutter, which can
be used for attribute-based eval uation.

Evaluation criteria: Accuracy (Acc.) and Robustness (Rob.)
are often used to evaluate the performance of a tracker on
VOT-TIR2015and VOT-TIR2017 duetotheir highinterpretabil-
ity. While accuracy is computed from the overlap rate between
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TABLEII
ABLATION STUDIES OF THE NETWORK ARCHITECTURE OF THE PROPOSED METHOD ON TWO BENCHMARKS, INCLUDING VOT-TIR2015, VOT-TIR2017.
Low-LEVEL, STR, HIGH-LEVEL, AND SEM DENOTE THE BASELINE TRACKER ON THE LOW-LEVEL FEATURE (E.G., CONV3), STRUCTURE SIMILARITY MODULE, THE
BASELINE TRACKER ON THE HIGH-LEVEL FEATURE (E.G., CONV5), SEMANTIC SIMILARITY MODULE, RESPECTIVELY. THE UP ARROW AND DOWN ARROW
DENOTE THE BIGGER OR SMALLER VALUE IS, THE BETTER CORRESPONDING PERFORMANCE HAS

Tracker |  VOTTIR2015 [31] |  VOT-TIR2017 [32]

Low-level Str High-level Sem | EAO 1 Acc.? Rob.| | EAOT Acc.t Rob. |
v 0288 053 270 | 0.265 0.57 3.40

v v 0310 059 239 | 0270 059 328

v 0282 055 282 | 0254 052 345

v v 0312 060 251 | 0268  0.55 3.21

v v v v 0326 058 253 | 0276 056 327

TABLE I

the prediction and ground truth, robustnessis measured in term
of thefrequency of tracking failure. Furthermore, thereisacom-
prehensive evaluation criterion called Expected Average Over-
lap (EAO) [69] which is adopted to measure the overall per-
formance of atracker. Different from VOT-TIR2017, PTB-TIR
uses Center Location Error (CLE) and Overlap Ratio (OR) as
the metrics [70]. Base on these two metrics, Success (Suc.) and
Precision (Pre.) are computed to measure the performance of a
tracker. Successis defined as that the percentage of the success-
ful framewhose OR islarger than agiven threshold. A dynamic
threshold [0 1] is often used and the corresponding Area Under
Curve (AUC) isused to rank the trackers. Precision denotes that
the percentage of the successful frame whose CLE is within a
given threshold (e.g, 20 pixels).

Network architecture: We use two CFNet [39] using the
low-level (e.g., Conv3) and high-level (e.g., Conv5) convolution
features respectively as the baseline methods, which trained on
V1D2015 [65]. First, to demonstrate that the structure-aware is
effective, we compare the baseline (low-level) with its variation
(low-level +Str) adding the structure-aware module. Thefirst and
second rows of Table Il show that the structure-aware improves
the accuracy and EAO of the baseline by 6% and 2.2% on VOT-
TIR2015 respectively. This shows that the structure-aware is
helpful for precisely object location.

Second, to show that the semantic-awareis effective, we com-
pare the baseline tracker (high-level) with its variation (high-
level+Sem) adding the semantic-aware module. The third and
fourth rows of Table Il show that the semantic-aware mod-
ule improves the accuracy of the baseline by 3% and 5% on
VOT-TIR2017 and VOT-TIR2015, respectively. We can see that
the semantic-aware modul e also enhances the robustness of the
baseline on two benchmarks remarkably. These results demon-
strate that the semanti c-aware module can enhance the discrim-
inative capacity of the original feature representation. Third, to
show that the multi-level similarity can further improve the dis-
criminative capacity, we compare the proposed network with
other variations. The last row of Table Il shows that compared
with the baseline tracker (high-level) using only high-level con-
volution feature, the multi-level similarity improves EAO by
4.4% and 2.2% on VOT-TIR2015 and VOT-TIR2017 respec-
tively. Compared with the baseline (low-level+Str) using the
low-level convolution feature and the structure-aware module,

COMPARISON OF THE PROPOSED METHOD USING DIFFERENT LOW-LEVEL
CONVOLUTION LAYERS ON THE VOT-TIR2017 AND PTB-TIR BENCHMARKS

VOT-TIR2017 [32] PTB-TIR [2]
Low-level
EAO T Acc.T Rob. | | Press  Suc.t
Convl 0.269 0.55 328 | 0.699 0.512
Conv2 0.274 0.58 3.31 | 0.700 0.516
Conv3 0.276 0.56 327 | 0.722 0.516
Conv4 0.283 0.56 3.12 | 0.697 0.510

it a'so enhances EAO by 1.6% and 0.6% on VOT-TIR2015 and
VOT-TIR2017 respectively. These results demonstrate that the
multi-level similarity can enhance the discriminative capacity of
the Siamese network due to the complementarity between the
structure similarity and semantic similarity.

Feature selection: Since the proposed structure CSN and se-
mantic CSN are computed from low-level and high-level con-
volution layers respectively, their results should be different
when using different convolution layers. We use the last con-
volution layer, i.e., convb, to compute the semantic similarity
dueto it contains the highest semantic abstract. Meanwhile, we
test severa different low-level convolution features to compute
the structure similarity, the results are shown in Table 111. We
can seethat the results are slightly different on two benchmarks
when using different low-level convolution layers. The proposed
method achieves the best EAO score (0.283) on VOT-TIR2017
when using the fourth convolution layer, which enhances only
0.7% than the second-best (0.276). While it obtains the best
success rate (0.516) on PTB-TIR when using the third convo-
Iution layer, which improves only 0.6% than the worst (0.510).
These resultsindicate that the proposed method isinsensitive to
these low-level features. We suggest that thisis mainly because
these convolution layers have similar receptive fields and hence
provide similar features.

Training data: We find that using the mixed TIR and
grayscale training data can boost the performance of the pro-
posed method. Here, we test several different proportions be-
tween the TIR training data and the grayscale training data
(V1D2015) on the PTB-TIR [2] benchmark, as shown in Fig. 4.
Theresultsshow that usingthe proportion of 1:1 betweenthe TIR
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TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH THE STATE-OF-THE-ART METHODS ON VOT-TIR2017 AND VOT-TIR2015. THE BOLD, ITALIC, AND UNDERLINE
DENOTE THE BEST, THE SECOND-BEST, AND THE THIRD-BEST SCORE RESPECTIVELY. THE NOTATION “*” DENOTES THE SPEED |S REPORTED BY THE AUTHORS

VOT-TIR2017 [32] VOT-TIR2015 [31] Speed

Category Tracker
EAO + Acc.t Rob.| | EAOt Acc.t Rob. | FPS
Hand-crafted feature SRDCEF [71] 0.197 0.59 3.84 0.225 0.62 3.06 12.3
based CF tracker Staple-TIR [63] 0.264 0.65 3.31 - - - | 80.0%
MCFTS [25] 0.193 0.55 472 | 0218 0.59 4.12 4.7
HDT [50] 0.196 0.51 4.93 0.188 0.53 5.22 10.6
gaeflfefeamre based CF | 4 . OMKCF [72] 0213 061  3.90 - - | o
CREST [73] 0.252 0.59 3.26 0.258 0.62 3.11 0.6
DeepSTRCEF [74] 0.262 0.62 3.32 0.257 0.63 2.93 5.5
ECO-deep [57] 0.267 0.61 273 | 0.286 0.64 2.36 16.3
MDNet-N [63] 0.243 0.57 3.33 - - - 1.0%*
Other deep tracker VITAL [75] 0.272 0.64 2.68 0.289 0.63 2.18 4.7
ATOM [76] 0.290 0.61 243 | 0334 0.65 2.24 30%
DiMP [77] 0.328 0.66 238 | 0.330 0.69 2.23 40%
Siamese-FC [33] 0.225 0.57 4.29 0.219 0.60 4.10 66.9
SiamRPN [47] 0.242 0.60 3.19 0.267 0.63 2.53 | 160.0*
Siamese based deep CFNet [39] 0.254 0.52 3.45 0.282 0.55 2.82 37.0
tracker DaSiamRPN [48] 0.258 0.62 290 | 0311 0.67 233 160
HSSNet [30] 0.262 0.58 3.33 0.311 0.67 2.53 10.0%*
TADT [78] 0.262 0.60 3.18 0.234 0.61 3.33 42.7
MLSSNet-N-TIR (Ours) 0.276 0.56 3.27 0.326 0.58 2.53 18.0
MLSSNet (Ours) 0.286 0.56 3.11 0.329 0.57 2.42 18.0
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Fig. 4. Comparison of the proposed method using different proportions be-
tween the TIR and grayscale training data on the PTB-TIR benchmark. The
legend ‘MLSSNet_1-TIR_1-Gray’ denotes the proposed method using the pro-
portion of 1:1 between the TIR and grayscale training data.

and grayscaletraining data, the proposed method (ML SSNet_1-
TIR_1-Gray) achieves the best success score (0.539), which is
higher than the proposed method using only the grayscale train-
ing data (MLSSNet O-TIR all-Gray) by 2.3% and is higher
than the proposed method using only the TIR training data
(MLSSNet_1-TIR_0-Gray) by 1.1%. This shows that the TIR
image and grayscale image have certain complementary char-
acteristics, which is useful for TIR tracking. Although the pro-
posed TIR training dataset is about 8 times smaller than the
grayscale training dataset (V1D2015), the proposed method us-
ing only the TIR training dataset achieves the higher success
score (0.528, 1 1.2%) than the proposed method using only the

grayscale training dataset. This shows that the proposed TIR
training dataset can help the network learn more discriminative
features for TIR tracking. In addition, we find that the perfor-
mance of the proposed method gradually decreases as the pro-
portion of the grayscale training dataincreases. This shows that
the TIR training dataset is crucial for learning discriminative
featuresfor TIR tracking.

C. Comparison Wth the State-of-the-Arts

To evaluate the proposed algorithm comprehensively, we
compare our method with the state-of-the-art methods on the
VOT-TIR2017 [32], VOT-TIR2015 [31], and PTB-TIR [2]
benchmarks.

Compared trackers: We compare the proposed method
MLSSNet and its variant (MLSSNet-N-TIR is trained with-
out the proposed TIR dataset) with the state-of-the-art track-
ers. These methods can be divided into four categories. Seven
trackers are based on the deep correlation filter, such as
deepMKCF [72], HDT [50], MCFTS[25], CREST [73], ECO-
deep [57], UDT [79], and DeepSTRCF [74]. Seven trackers
are based on the Siamese framework such as Siamese-FC [33],
SiamFC-tri [36], CFNet [39], SiamRPN [47], DaSiamRPN [48],
TADT [78], and HSSNet [30]. Two hand-crafted feature based
CF trackers: SRDCF [71], Staple-TIR [63]. Four other deep
trackers, such asthe classification based trackers, MDNet-N [63]
and VITAL [75], and the overlap prediction based trackers,
ATOM [76] and DIMP [77].
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Fig. 6. Comparison of the proposed method with ten deep trackers on the
PTB-TIR benchmark.

Overall performance: We compare the comprehensive per-
formance of the proposed agorithm with the state-of-the-art
methods on VOT-TIR2015, VOT-TIR2017, and PTB-TIR, as
shown in Table IV and Fig. 6. The results show that our al-
gorithm achieves the third-best EAO of 0.286 and 0.329 on
theVOT-TIR2017 and VOT-TIR2015 benchmarks, respectively.
We can see that although the proposed method does not use
the proposed TIR training dataset, it also achieves the compet-
itive EAO 0.276 and 0.326 on both two benchmarks, respec-
tively. These results demonstrate that the proposed method per-
forms favorably against the state-of-the-art methods. Compared
with the Siamese based tracker, Siamese-FC [33], the proposed
method obtains a 11.0% EAO gain and a 6.1% EAO gain on
the VOT-TIR2015 and VOT-TIR2017 benchmarks respectively.
Compared with the baseline tracker, CFNet [39], our algorithm
achievesa3.2% EAO score gain and a4.0% accuracy gainonthe
VOT-TIR2017 benchmark. It aso obtains a 9.0% success score
gain on the PTB-TIR benchmark. We attribute the good per-
formance to the proposed multi-level similarity network, which
can enhance the discriminative capacity of the network by two
complementary similarity modules. Compared with CF based
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Comparison of the proposed method with ten deep trackers on eight attribute subsets of the PTB-TIR benchmark.

deep tracker CREST [73], our method has better overall perfor-
mance on three benchmarks despite CREST online updates the
target template. We argue that the superior performance of the
proposed method comes from the training on the proposed TIR
dataset. Though MDNet-N [63] online trains a deep classifica-
tion network for TIR tracking, our method gets better robustness
on VOT-TIR2017, which benefitsfrom both the multi-level sim-
ilarity and the proposed TIR training dataset.

Attribute-based results: In order to show the effectiveness
of the proposed method for handling different challenges, we
compare the proposed method with the state-of-the-art meth-
ods on the five challenging attributes of the VOT-TIR2017 and
VOT-TIR2015 benchmarks, as shown in Table VV and Table VI
respectively. The results show that our method achieves the
best EAO on the dynamics change (0.285) and the camera mo-
tion (0.263) challenges of VOT-TIR2017. It also obtains the
best EAO, 0.482 and 0.588 on motion change and camera mo-
tion challenges of VOT-TIR2015 respectively. Compared with
CFNet [39], our method enhances EAO by 6.3% and 13.8%
on the dynamic change of VOT-TIR2017 and VOT-TIR2015
respectively. This shows that the proposed multi-level similar-
ity model is more robust to the dynamic change challenge. We
can see that our method obtains the competitive performance
on the size change challenge of two benchmarks. Compared
with Siamese-FC [33], our tracker achieves 6.2% and 12.8%
EAQO gains on size change of VOT-TIR2017 and VOT-TIR2015
respectively. This demonstrates that the multi-level similarity
model improves the robustness of the Siamese network re-
markably, since these two trackers use a same scale estimation
strategy. We also compare the proposed method with the ten
state-of-the-art deep trackers on the eight attribute subsets of
the PTB-TIR benchmark, as shown in Fig. 5. The results show
that the proposed method performs the best on most attributes,
such as background clutter, fast motion, out-of-view, and scale
variation. This is consistent with the results on VOT-TIR2017
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Fig. 7. Tracking results visualized comparison of the proposed method and the state-of -the-art methods on several challenging sequences. From left to right and
top to bottom, the sequences are ‘carl,’‘birds, ‘ excavator, ‘ mixed-distractors, ‘ street, ‘ sidewal k1, ‘ sidewalk2, ‘airplane,’ respectively. The first five sequences are
from VOT-TIR2017 and the last three are from PTB-TIR.

TABLEV TABLE VI
COMPARISON OF THE PROPOSED TRACKER AND THE STATE-OF-THE-ART COMPARISON OF THE PROPOSED TRACKER AND THE STATE-OF-THE-ART
METHODS ON THE FIVE CHALLENGES OF THE VOT-TIR2017 BENCHMARK METHODS ON THE FIVE CHALLENGES OF THE VOT-TIR2015 BENCHMARK
UNDER EAO EVALUATION CRITERION. THE BOLD AND UNDERLINE DENOTE UNDER EAO EVALUATION CRITERION

THE BEST AND THE SECOND-BEST SCORES RESPECTIVELY

| DC MC CM  SC  Oc

| DC MC CM  SC  Oc

MCFTS [25] 0.707 0257 0362 0214 0.483
MCFTS [25] 0.072 0278 0.156 0.212 0.181 HDT [50] 0689 0224 0215 0.187 0463
HDT [50] 0090 0258 0.167 0243 0.181 Siamese-FC [33] | 0.671 0319 0226 0273 0.406
deepMKCF [72] 0.074 0319 0.179 0.255 0.189 SiamRPN [47] 0725 0316 0372 0352 0404
Siamese-FC [33] 0.188 0.319 0.196 0277 0.222 CREST [73] 0708 0331 0475 0278 0.652
SiamRPN [47] 0.167 0339 0.215 0.303 0.226 CFNet [39] 0590 0387 0459 0326 0495
MDNet-N [63] | 0.209 0.381 0216 0290 0.280 DaSiamRPN [48] | 0.718 0.369 0370 0.443 0.457
CREST [73] 0.I30 0348 0.256 0300 0278 HSSNet [30] 0.661 0426 0407 0383 0.496
CFNet [39] 0222 0410 0219 0285 0.306 DeepSTRCF [74] | 0.693 0337 0277 0354 0492
DaSiamRPN [48] | 0.114 0.336 0.208 0.309 0.214 ECO-deep [57] 0745 0371 0335 0417 0614
HSSNet [30] 0.204 0430 0.204 0.309 0.317 VITAL [75] 0.435 0392 0.561 0358 0.526
DeepSTRCF [74] | 0.217 0359 0.233  0.370 0.268 MLSSNet-N-TIR | 0.732 0447 0.502 0436 0.554
Staple-TIR [63] | 0.164 0.414 0.186 0342 0.258 MLSSNet (Ours) | 0728 0482 0.588 0401  0.630
ECO-deep [57] 0.192 0387 0233 0344 0.280
VITAL [75] 0.157 0440 0254 0299 0.253
MLSSNet-N-TIR | 0.256 0436 0233 0315 0.281 , , ,
MLSSNet (Ours) | 0.285 0424 0263 0339 0285 strategy [80], [81] using the confidence of tracked object [82]

for further improving therobustnessof thetracker to handlethese
challenges. All of these attributes based results demonstrate that
our algorithm achieves a powerful discriminative capacity and
and VOT-TIR2015. We can also see that the proposed method  favorable performance.

performswell on the other attributes, such asthermal crossover, Visualized results: To show the tracking performance more
occlusion. It is easy to integrate an independent re-detection intuitionally, we compare the visualized tracking results of the
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proposed algorithm with severa state-of-the-art trackers on
eight challenging sequences, as shown in Fig. 7. The results
show that the proposed method tracks the objects more accurate
and robust in the most challenges. Especially, when two similar
objectscrosseach other, such as‘ mixed-distractors, * street,” and
‘airplane, most trackersdrift to distractors, while our algorithm
|ocates the object accurately. We attribute the good performance
to the proposed multi-level similarity network, which can rec-
ognize the intra-class objects from their subtle differences. In
addition, we can see that the proposed method also performs
better than most trackers when the background is clutter, such
as‘excavator, ‘sidewalkl, and ‘sidewak?’. This showsthat the
proposed method achieves favorably discriminative capacity.

V. CONCLUSION

This paper proposes a multi-level similarity model under the
Siamese framework for robust Thermal InfraRed (TIR) object
tracking. The network consists of a multi-level similarity net-
work and a relative entropy based adaptive ensemble network.
The structural correlation similarity network captures the local
structure information of the TIR object for the precise location.
While the semantic correlation similarity network enhances the
global semantic representation of the feature for robust identi-
fication. The multi-level similarity improves the discriminative
capacity of the Siamese network. In addition, to further enhance
the discriminative capacity, we construct alarge-scale TIR im-
age dataset to train the proposed model. The dataset not only
benefits the training for TIR object tracking but also can be ap-
plied to numerous TIR visual tasks such as classification and
detection. Extensive experimental results on three benchmarks
show that the proposed method performs favorably against the
state-of-the-art methods.
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