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ABSTRACT

Intelligent systems must form internal representations that support both broad
generalization and precise identification. Here, we show that these two goals are
fundamentally in tension with one another. We derive closed-form expressions
proving that any model whose representations have a finite semantic resolution,
impairing long-range similarity computations, must lie on a universal Pareto front
linking its probability of correct generalization pS and identification pI . We extend
this analysis to general input spaces and to parallel processing scenarios, predicting
a sharp 1/n collapse in the capacity of processing multiple inputs at the same time.
A minimal ReLU network reproduces these laws: a resolution boundary emerges
during learning, and empirical (pS , pI) trajectories closely match the theory for
linearly decaying similarity. Finally, we show that the same limits appear in far
more complex systems, including a convolutional neural network and state-of-the-
art vision–language models, indicating that learned finite-resolution similarity are
broad and foundational informational constraints rather than toy-model artifacts.
Together, these results provide a precise theory of the generalization–identification
tradeoff and clarify how semantic resolution shapes the representational capacity
of deep networks and brains alike.

1 INTRODUCTION

Background. Modern neural networks are surprisingly good at performing a variety of tasks,
rivaling and often surpassing human performance. However, they still exhibit striking limitations in
their capabilities to process information, often when they need to process multiple objects at the same
time (Campbell et al., 2024; Gong and Zhang, 2024; Rahmanzadehgervi et al., 2024; Rane et al.,
2024; Zhang and Wang, 2024; Lewis et al., 2022). Similar limitations are also commonly observed in
humans when performing working (short-term) memory tasks Miller (1956); Luck and Vogel (1997);
Cowan (2001).

Neural networks employ distributed representations (Hinton et al., 1986; Hinton, 1986; Smolensky,
1990) to process inputs. They enable efficient generalization in unseen situations through, for instance,
compositionality, but at the same time suffer from the binding problem —the inability to maintain
associations between features when processing multiple inputs simultaneously (Roskies, 1999; Greff
et al., 2020; Treisman and Gelade, 1980).

Cognitive science offers a rich literature about the ways in which internal representations can help
to generalize. The celebrated Shepard’s Universal Law of Generalization (Shepard, 1958a; 1987)
states that representations should be arranged in the "psychological space" in a structured way, which
echoes the real structure of the entities that are represented. This law has received through the years
numerous empirical validations and theoretical support (Shepard, 1958b; Sims, 2018; Tenenbaum
and Griffiths, 2001; Chater and Vitányi, 2003). This fundamental idea resonates with recent works
in neural network interpretability, showing that feature vectors in the latent spaces of large neural
networks are often organized in rich geometric structures (Arora et al., 2018; Engels et al., 2024; Liu
et al., 2022; Zhong et al., 2023; Shai et al., 2024; Modell et al., 2025).

Frankland et al. (2021) proposed that these two facts —the striking information processing limitations,
and the generalization through structured representations— are strongly related, and are at the heart of
a fundamental trade-off which puts in tension generalization versus identification of representations.
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Our contribution. We investigate the fundamental tradeoff between representational fidelity and
distinctness under finite semantic resolution. More precisely, we provide:

1. A framework that quantifies the exact Pareto front between identification and similarity perfor-
mances, demonstrating how finite resolution creates an inescapable tradeoff;

2. Closed-form expressions for this tradeoff across multiple inputs, noise levels, and varying resolu-
tions, revealing a sharp 1/n collapse in multi-item (n) processing capacity;

3. Empirical validation showing how this resolution boundary self-organizes during neural network
training, with empirical trajectories closely following our theoretical predictions;

4. Confirmation that these limits persist across architectures from simple ReLU networks, to CNNs,
to vision-language models, establishing emergent finite resolution as a universal constraint rather
than a model-specific artifact.

2 SETUP

Stimulus space and similarity functions. Assume A to be a model processing stimuli coming
from a set S the structure of which is encoded by a distance function dS . For example, S can be the
space of color hues or days of the week, naturally arranged in a circle, the set of positions of an item
in physical space, or more complex topological spaces, such as a torus, or the Klein bottle of natural
image patches (Carlsson et al., 2008).

The model processes the stimuli coming from S and builds representations by mapping them into a
latent (or psychological) space M with a map Φ : S → M , which we assume to be a bijection: this
induces naturally a distance d on M via d(x, y) := dS(Φ

−1(x),Φ−1(y)). In M , the representations
are processed and compared through a non-negative similarity function g : M × M → R+. For
example, if M is a vector space, we can choose g(x, y) = h(Φ(x)⊤Φ(y)) with h(x) ≥ 0 ∀x. If
h(x) = exp(−x), this encompasses, but is more general than, the standard self-attention mechanism
of a transformer (Vaswani et al., 2017) 1.

The specific form of g is not uniquely specified by the distance d, allowing for different degrees
of “semanticity” (how the metrical structure d is represented by g) with significant impacts on
model capabilities. Localized functions gx := g(x, ·) reduce interference between representations,
permitting more reliable distinction between them and thus accurate simultaneous processing of
multiple representations. Conversely, more distributed g can reflect long-range relations of S, thus
enhancing generalization capabilities, at the cost of potential interference among distinct but nearby
stimuli. In the following, corroborated by seminal works in the cognitive psychology literature
(Shepard, 1987), we assume for simplicity that g depends only on the distance between the stimuli:
g(x, y) = g(d(x, y)).

Measures of identification and generalization accuracy. Following Frankland et al. (2021), we
introduce models of two simple tasks that have previously been used to measure identification and
generalization accuracy, and that we use in our theoretical analyses below.

We measure the generalization capabilities of A using a similarity task in which the model is asked
to perform similarity judgments that respect the metric structure of the stimulus space. The model
is shown n stimuli x1, . . . , xn ∈ S and an additional one, called the probe, p ∈ S. It is then asked
to decide which of the n stimuli is the closest to p according to the distance d. Let (x1, . . . , xn), p
be sampled independently from M according to a probability measure ν. We call X the random
variable encoding the index of the closest item to the probe, i.e. X = argmin

i=1,...,n
d(xi, p). Intuitively, the

decision function represents how the model assesses the evidence when determining which input is
most similar to the probe. It formalizes the idea that the model’s choice depends on relative similarity
strengths rather than absolute values. We call Y the random variable indicating the model’s decision,

1Our similarity function includes common ML metrics: cosine similarity in embedding models, dot-product
attention in transformers, and implicit similarity in contrastive learning (InfoNCE, triplet loss). While these
mechanisms differ in implementation, they all measure semantic relatedness between representations and are
subject to the resolution limits we identify in this work.
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Figure 1: a. On the left, exponential similarity functions centered on two stimuli x1, x2 ∈ M , with
the black line indicating the decision function g(x1, p)/(g(x1, p) + g(x2, p)) with no resolution (see
Section 2 for explanation). On the center and right, the same quantities are shown in the case of the
presence of finite resolution. Notice that the model becomes uncertain for probes far away from
stimuli x1, x2. b. Visualization of the constant similarity functions of Definition 1.

that we model as follows (Luce, 1959):

Di(x1, . . . , xn; p) := P(Y = i|(x1, . . . , xn, p)) =
g(xi, p)∑n

k=1 g(xk, p)
. (1)

We quantify the overall generalization capability as the probability of the model making the correct
decision, i.e. pS := P(Y = X).

The identification task is used to measure how accurately stimuli can distinguished from one another.
The task is the same as the similarity task, but with the exception that the probe is always one of the
input stimuli p ∈ {x1, . . . , xn}. This will result in the decision function of Equation (1) always being
of the form

Di(x1, . . . , xn;xj) := P(Y = i|(x1, . . . , xn, xj)) =
g(xi, xj)∑n

k=1 g(xk, xj)
. (2)

If now X(x1, . . . , xn;xj) = j, we write pI := P(Y = X) to indicate the probability of the model
succeeding in the identification task. Equations (1) and (2) can be interpreted, independent of
probabilities, in terms of relative similarity, where pS is taken to represent the average relative
similarity of stimuli that are close compared to stimuli that are further apart. In the same way, pI is
the average relative similarity of equal stimuli compared to different stimuli.

Importantly, when g(xi, xj) = exp(−µd(xi, xj)), and the decay rate for the exponential is taken
to infinity (µ → ∞), both pS and pI approach 1 (perfect performance); that is, identification and
generalization accuracy both benefit by maximizing decay rate. Critically, however, it has been
observed empirically that virtually any loss of precision (i.e., resolution) in computing the similarity
function introduces a fundamental tension –referred to as "Miller’s Law" (Frankland et al., 2021)–
between pS (generalization) and pI (identification accuracy) with respect to decay rate, wherein
generalization benefits by decreases in decay rate that dramatically degrade identification accuracy
(Figure 1a). Here, we provide a formal analysis of this effect, showing that it generalizes to learning in
neural networks, where it imposes a fundamental constraint on the interaction between representations
and efficiency of processing.

The effect of resolution. 2 To show this, we formally consider how a limit in the precision with
which the model can compute a similarity function impacts both identification and generalization
accuracy. Such a limit might arise from any number of factors: computational noise, finite precision,
ReLU activations clamping negative correlations to zero (see Section 4), or imprecisely coded distant
relationships. These can all be formalized as a resolution ε > 0 such that g(x, y) ≈ ∆ if d(x, y) > ε,
where ∆ is a noise parameter. As shown in Figure 1a, the resolution drastically affects decision
boundaries (the black line): for probes sufficiently far from both stimuli, the decision function
approaches 1/2 indicating maximal uncertainty. Resolution thus represents the model’s inherent
limitation in gauging low similarities between distant stimuli.

2Note on terminology: “resolution" (ε) in this paper strictly refers to the parameter controlling the distance
threshold beyond which similarities collapse to noise level ∆. Higher ε values mean the model preserves
similarity information across greater distances.
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Generalization-Identification Tradeoff (Miller’s Law). To analyze this, we use a simplified
similarity function. If 1A is the indicator function over the set A, and Br(x) is the closed ball
of center x and radius r over M , Br(x) = {y ∈ M : d(x, y) ≤ r}, the similarity function can be
defined as follows:

Definition 1. The constant similarity function with resolution ε and noise ∆ is gε;∆(x, y) =
1Bε(x)(y) + ∆1M\Bε(x)(y).

According to this function, the model will judge two things to be similar (gε;∆(x, y) = 1) if and only
if they are closer than a certain threshold ε > 0. Outside of this “resolution region” the similarity
value is fixed to a noise value ∆ > 0.

This simplified model aligns with Shepard’s Universal Law of Generalization (Shepard, 1987),
where similarity decays exponentially with distance: g(x, y) = exp(−µd(x, y)). In Shepard’s
formulations, the parameter µ controls the sensitivity to distance, with larger µ creating sharper
similarity boundaries. This is conceptually similar to controlling the temperature parameter in a
softmax function, in which lower temperatures induce sharper probability distributions, while higher
temperatures make them more uniform. In our framework, ε serves an analogous role, controlling
the distance of the similarity functions or the spatial range of entanglement (or semanticity) of the
representations. In standard kernel terminology, ε plays a role akin to a kernel bandwidth, determining
how decays with distance. Below, we use this to quantify the generalization-identification tradeoff as
a function of ε.

3 THEORETICAL RESULTS

We use the constant similarity function defined above to derive closed form solutions for the values
of pS and pI over a broad class of stimulus spaces and probability distributions over them.

Accordingly, we denote bp(ε) as the probability measure of the closed ball of radius ε centered in
p, bp(ε) := ν(Bε(p)). Furthermore, let ⟨b(ε)⟩ = Ep∼ν [bp(ε)] be the average measure of a ball of
radius ε in M , and Var(b(ε)) its variance. The variance term Var(b(ε)) captures how the probability
mass of ε-balls varies across space. Intuitively, this measures the heterogeneity of the stimulus space,
that is, how differently ‘crowded’ regions are, which, in turn, compromises similarity judgments.
Additional assumptions and notations are described in Appendix A.2.

Theorem 1 (2-item tests). Let (M,d,Σ, ν) be a separable metric probability space. If, for every
p ∈ M , bp is absolutely continuous on every closed sub-interval of [0,∞), then, for the noise-free
constant similarity function g = gε;0 it holds that

pS(ε) =
1

2
+ ⟨b(ε)⟩ − ⟨b(ε)⟩2 −Var(b(ε)), (3)

pI(ε) = 1− 1

2
⟨b(ε)⟩. (4)

The proofs can be found in Appendix A.3.

These results have implications for neural architecture design and quantify how much identification
performance must be sacrificed to gain generalization ability. These results, being independent of
model choices, provide multiple insights on how pS , pI depend on the resolution ε and on their
relation.

First, note that the variance of the ball volume appears in Equation (3) as a term responsible for
decreasing the probability of success in the similarity test. This happens when the probability distri-
bution is non-uniform or the space is heterogeneous (as for a manifold with boundary). Spaces which
are homogeneous (in Haar measure) with uniform probability distributions will have Var(b(ε)) = 0,
hence performing similarity tests on them will be easier. Therefore, models will perform better on
uniform data manifolds (such as rotations), than on manifolds with varying density (such as natural
images).

The specific values of pI(ε) and pS(ε) can vary depending on the space chosen. However, assuming
Var(b(ε)) = 0, they are both parametrized by ⟨b(ε)⟩, which is always a non-decreasing function of
ε from 0 to 1. This means that, in the (pS , pI) plane, there is a “universal” Pareto curve relating
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identification to generalization accuracy that is independent of M and ν (Figure 2a). Indeed, as
we will show in Section 4, the distance of empirical performances from the Pareto front directly
quantifies the additional ‘difficulty’ introduced by the heterogeneity of the stimuli space (Figure 2b).

Figure 2: a. The region in (pS , pI)
plane where the model’s performances
lie (Theorem 1). The black line is pa-
rameterized by the resolution ε and rep-
resents the behaviour of the model in
homogeneous spaces. b. Effect of het-
erogeneity Var(b(ε)) on the similarity
test performance.

This curve exhibits three regimes as a function of the ball’s
resolution ε.

Low ε regime. For small resolutions, the similarity func-
tions act like Dirac deltas, meaning that representations do
not interfere with one another and thus are perfectly distin-
guishable (pI ≈ 1). However, small resolutions mean that
the model is able to recognize two objects as similar only
if they are very close, limiting generalization (pS ≈ 0.5,
chance level).

Medium ε regime. Increasing ε elicits the similarity-
identification tradeoff: As ε increases, the similarity mea-
sure for more distant stimuli becomes more robust, and
thus the structure of the space can be more accurately rep-
resented. However, this comes at the cost of nearby stimuli
becoming more similar, thereby producing interference
that decreases pI . Importantly, pS reaches a maximum at
⟨b(ε)⟩ = 1

2 , i.e. when the average ball covers half of the
space.

High ε regime. Once ϵ increases beyond ⟨b(ε)⟩ > 1
2 , the

cases in which stimuli interfere d(x1, p) ≤ ε, d(x2, p) ≤ ε
outweigh the ones in which the probe is too far away
d(x1, p) > ε, d(x2, p) > ε, resulting in a decrease in both
pS and pI .
The effect of noise. The result of Theorem 1 can be read-
ily extended to take into account the presence of nonzero
noise outside the resolution region.
Theorem 2 (Noise). Under the same assumptions of The-
orem 1, for the two-item similarity and identification tests
with constant similarity functions g = gε;∆ with noise
level ∆ ≥ 0 it holds that

pS(ε,∆) =
1

2
+

1−∆

1 +∆
(⟨b(ε)⟩ − ⟨b(ε)2⟩), (5)

pI(ε,∆) =
2− (1−∆)⟨b(ε)⟩

2 + 2∆
. (6)

Proof. The proof can be found in Appendix A.4.

The effect of noise can be appreciated in Figure 2a as a
monotonous decrease in both pS and pI .

Processing of multiple stimuli. The foregoing analyses may provide a formal account of why
humans and large neural networks alike exhibit dramatic processing constraints in simple tasks (e.g.
visual working memory tasks and numerosity judgments), that demand simultaneous processing of
multiple stimuli (Campbell et al., 2024). On the one hand, these tasks typically demand generalization
(e.g., the processing of stimuli that involve arbitrary combinations of features, such as color, shape
and position). On the other hand, performance is typically evaluated based on identification accuracy
by identifying individual stimuli. The results above thus suggest that these competing demands run
up against the fundamental tension between identification and generalization accuracy, irrespectively
of scale or architecture (i.e., even in systems with billions of parameters, such as VLMs or the human
brain). When such systems intrinsically value and/or are trained explicitly for generalization, then
they will position themselves into the low-medium resolution/semanticity regime ( Figure 2a). Indeed,
we can show this is the case by explicitly deriving probabilities of success for n-item similarity and
identification tasks.

5
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Figure 3: a. Similarity-identification curves for different values of n and parameterized by bp(ε) ∈
[0, 1], as described by Equations (7) and (8). b. The colored curves correspond to similarity-
identification values as the number of inputs n varies, for some fixed values of bp(ε). c. Similarity
(top) and identification (bottom) dependence on n for different resolutions.

Theorem 3 (n-item tests). Under the same assumptions of Theorem 1, for the constant noise-free
(∆ = 0) similarity function g = gε;0 we have that

pnS(ε) = Ep∼ν

[
1

n
+

n−1∑
k=1

(1− bp(ε))
n−k − (1− bp(ε))

n

k

]
, (7)

pnI (ε) = Ep∼ν

[
1− (1− bp(ε))

n

nbp(ε)

]
. (8)

Proof. The proof can be found in Appendix A.5.

First, note that, despite their apparently complicated formulations, Equations (7) and (8) are poly-
nomials in bp(ε) for any fixed n and, given their non-linearity, the expected value over the probes
cannot be simplified in general. Thus, for simplicity, we focus on the homogeneous case where
bp(ε) = b(ε) ∀p ∈ M and E disappears.

Under this assumption, both similarity and identification performances are once again parameterized
by b(ε), yielding universal pareto curves independent of M . Figure 3a shows the shape of the
Pareto front for different values of n. As a sanity check, note that, as the resolution goes to b(ε) = 0,
performance approaches perfect identification for any number of simultaneous inputs with no capacity
to generalize pnS(0) = 1/n (chance level).

As shown in Figure 3(b,c), the mapping of one curve into the next is not “uniform”. For any fixed
ε > 0, increasing the number of inputs quickly degrades both identification and generalization
performances. Furthermore, Equation (8) shows that for large n, pnI (ε) ≈ (b(ε)n)−1: identification
performance decrease as 1/n with a rate given by b(ε). For a model tasked with learning structured
representations of the input space, and thus optimizing for generalization (say, b(ε) ≈ 1/2 for n = 2),
our analyses predict that the capacity to accurately process multiple representations at the same time
will be strongly constrained (Figure 3c).

Interestingly, the bottom panel of Figure 3c shows that the probability of success in the similarity test
is non-monotonic in n when b(ε) is small. Thus, when the model has to deal with a high number
of items, it is convenient for it to pick low resolutions. The cost, however, is paid by the significant
increase in error for low numbers of items.

These observations provide an elegant explanation for why even large neural network models struggle
with multi-object reasoning Campbell et al. (2024): they likely have developed representations that
support generalization, but this brings a 1/n decrease in identification probability as the number n
of objects increase, thus generating the striking capacity limits observed in both humans and large
vision-language models. In the next section, we provide empirical evidence that neural networks
obey these constraints, first in a simple toy model, and then in multiple large scale networks.
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4 TOY NEURAL NETWORK IMPLEMENTATION

Figure 4: Emergent resolution and tradeoff in
toy architecture. (pS , pI ) results for the toy model
(a) of Section 4 with 50 inputs. b. The orange
curve shows the average training trajectory for a
purely reconstruction loss. The orange insets show
the learned (average) similarity function at two
epochs. The gray and dashed lines show the curves
of Theorem 1 with noise levels ∆ = 0, 0.1, respec-
tively. The red curve shows the average training
trajectory when the loss is based on the similarity
test on a circle while the purple one is trained on
stimuli coming from a segment. The black line
shows the theoretical performances obtained with
linearly decaying similarity functions, as in Propo-
sition 1.

We start from the toy architecture of Elhage et al. (2022), that permits a direct comparison with
the analyses above. The input vector x ∈ Rl

+, whose entries we identify with features, is linearly
encoded by W ∈ Rm×l, decoded by W⊤, and then the ReLU activation function σ is applied
elementwise f(x) = σ(W⊤Wx) (Figure 4a). When trained with reconstruction MSE loss and
sparse inputs, this model displays the phenomenon known as superposition: features associated
with input dimensions are represented as orthogonally (or dissimilarly) as possible to minimize their
interference in reconstruction (Elhage et al., 2022). This, in turn, means striving for good identification
performance and thus the capability of processing a large number of features simultaneously.

We contrast this with the effect of inducing the model to learn representations with simple forms of
metric (semantic) structure. To do so, we consider two spaces of stimuli made of l points {x1, . . . , xl}
equally spaced in the interval [0, 1]: a (flat) circle, with distance d(x, y) = min(|x−y|, 1−|x−y|), and
a segment, with distance d(x, y) = |x− y|. The model was trained to perform 3-items similarity tests
(as explained in Section 2) on the metric space by encoding its points, the stimuli, as l-dimensional
one-hot vectors. Given this last assumption, the i-th column of W , wi, can be interpreted as the
latent embedding of xi, and the model’s output f(xi)j = σ(w⊤

j wi) := g(xi, xj) as the non-negative
similarity between xi and xj . The model was trained to convergence 10 times and, for each epoch,
we recorded the average similarity and identification ratios pS , pI of Equations (1) and (2) using the
learned g.

Figure 4b shows the resulting training trajectories for three different runs in the similarity-
identification plane: the orange run corresponds to trainings with pure reconstruction loss, in red
the run with pure similarity task loss on the circle and in purple on the segment. In all cases, we
used l = 50 stimuli, a hidden dimension of m = 10 and repeated the experiment 10 times. See
Appendix A.8 for additional details.

As expected, when the network is trained only on reconstruction loss, there is no improvement in
pS but a steady increase in pI . Features are arranged as orthogonally as possible but, due to the low
number of hidden dimensions, some interference between them remains. If features are arranged on a
line, visualizing the learned similarity function g(x, ·) for a fixed x at the last training step shows
that it is close to being a Dirac delta on x, with smaller-scale random-like noise on other features.
Estimating this noise scale ∆ and using that in the equations given by Theorem 2, shows that the
corresponding dashed curve accurately predicts the value of pI at which the training stops.

In contrast, when the network is trained on the semantic task, Figure 4b shows that (starting from
the bottom left corner) both pS and pI increasing up until the “boundary” is reached, after which
similarity begins to decrease. Note that the learned similarity functions g(x, ·) for a fixed x = 0.5
(the red insets) exhibit a transition from noise to a semantic function that respects the structure of the
circle. Furthermore, this structure also exhibits sensitivity to resolution: the model arranges features
associated with points further than a certain threshold to have a negative inner product, which is then
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mapped to zero by the ReLU activation. Moreover, we see that this resolution decreases as training
progresses, resulting in an increase of pI and a decrease in pS .

Not surprisingly, the neural network does not learn constant similarity functions (Section 2), and thus
the predictions given by Theorem 1 (in gray) only provide a qualitative prediction. However, the
learned similarity function g(x, ·) appears to be approximately linearly decaying with distance on
the circle. Based on this observation, we can analytically derive the values of pS and pI for linearly
decaying similarities in a circle, finding formulae that approximate Theorem 1.
Proposition 1 (Linear decay). On the flat circle [0, 1] with d(x, y) = min(|x − y|, 1 − |x − y|)
sampled with the uniform measure, for the two-item similarity and identification tests with linearly
decaying similarity g(x, y) = max

(
0, 1− d(x,y)

ε

)
,

pS(ε) =
1

2
+ b(ε)−

(
3

2
− log(2)

)
b(ε)2, pI(ε) = 1− (1− log(2))b(ε), (9)

with b(ε) = 2ε, ε ∈ [0, 1/2].

The proof can be found in Appendix A.6. Figure 4 shows how the resulting curve (in black) provides
a good fit to the empirical result. Finally, when the metric space is a segment instead of a circle
(purple), the heterogeneity given by the presence of the two endpoints results in an overall reduced
pS , as qualitatively predicted by Theorem 1.

5 EVIDENCE OF TRADEOFF IN REALISTIC NEURAL NETWORKS

Finally, we summarize experiments and results showing that the effects described above are also
observed in networks at scale. We report details on implementations and additional results in
Appendix A.8.

CNNs and evolutionary distance We fine-tuned a ResNet-50 model (He et al., 2016) to analyze the
generalization-identification tradeoff on bird species images (Wah et al., 2011) using a weighted loss
function L = (1−α)Lid+αLsim, where α controls the bias between identification and generalization.
Both tasks employed a triplet design (x1, x2, and p): for generalization, the model judged which
reference is evolutionarily closer to the probe, using phylogenetic distances as ground truth (Kumar
et al., 2022); for identification, it determined the reference species to which the probe belonged. We
found that increasing α, as a manipulation of similarity, improved generalization while reducing
identification accuracy, conforming to the relationships reported above (Figure 5a). Models with
higher α values consistently showed enhanced generalization, confirming the ability to manipulate
this tradeoff through both training and threshold parameters (see Figure 10 in the SI for the full
tradeoff curves as a function of ε and alpha).

gemma-3-12b-it Qwen2.5-VL-7B-Instruct

Figure 5: Empirical resolution tradeoffs across realistic neural architectures. a. A CNN fine-
tuned on bird recognition shows the tradeoff between species identification and generalization to
phylogenetic similarity as a function of the weights of generalization α and of the resolution ϵ. b.
LLMs tasked with comparing years of birth show different regimes of performances, compatible with
the existence of an emergent finite resolution (∼ 70–80 years). c. VLMs tasked with spatial proximity
tasks show decreased accuracy beyond a model-specific resolution scale. Details in appendix A.8.
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Year similarity task in LLMs. We then evaluated three open-source large language models (LLMs)
(gemma-2b-it (Team et al., 2024), Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-7B-
Instruct (Yang et al., 2024)) on a similarity task requiring temporal discriminations on the scale of
years. The models were prompted to answer questions of the following type “A was born in x1. B
was born in x2. Who was born closest to p?”, where A, B are randomized names, a center year c
is sampled in [1500, 1700], x1 = c− δx, x2 = c+ δx for δx ∈ {20, 50, 100, 200} and p = c+ δp
takes all years in [c− 300, c+ 300]. Figure 5b shows the decision curves indicating the empirical
probability with which each model responded with the correct answer. This shows that the models’
year representations closely follow our assumptions about resolution: all models showed decreased
performance as probe dates moved further from reference dates, similar to what we observed with
exponentially decaying similarities with noise g(x1, x2) = exp(−µd(x1, x2)) + ∆ (bottom row).

Spatial similarity task in VLMs. Finally, we tested the effects of resolution in two Vision-Language
Models (VLMs) (gemma-3-12b-it (Team et al., 2024; Team, 2025a) and Qwen2.5-VL-7B-Instruct
(Yang et al., 2024; Team, 2025b)), on a visual spatial similarity task. Four different black shapes
were presented to the model in the four corners of the image (Figure 5c), together with a red cross in
a random position. The model was tasked with indicating which black shape was closest to the red
cross, and we recorded accuracy for each sampled position. Figure 5c shows that, once again, the
models display clear resolution limits in their generalization capabilities, similar to those observed in
the year task.

6 DISCUSSION

We have provided a formal theory of the tradeoff between identification and generalization in systems
constrained by finite semantic resolution, building on the formal framework of Frankland et al.
(2021). Our closed form expressions reveal a universal Pareto front determined by resolution scale
and stimulus geometry, a fundamental limit that is obeyed in empirical tests of model architectures
both small and large. Our analysis identifies the optimal resolution for generalization, at which
semantic similarity functions tile approximately half of the representational space in discrimination
tasks (Sorscher et al., 2022). Beyond this point, increasing resolution impairs identification as
representations become too broadly generalized. Below it, representations are discriminable, but fail
to capture meaningful similarities, thus compromising generalization. This offers an explanation for
why both humans and state-of-the-art neural network models struggle with multi-object reasoning,
despite their vast computational resources and remarkable capabilities in other domains.

The spontaneous emergence of this tradeoff across architectures, from minimal ReLU networks to
vision-language models, is consistent with our analyses and our empirical findings, that are unified
under the hypothesis that finite semantic resolution constitutes an information-theoretic constraint
rather than implementation artifact. This, in turn, provides a rigorous mathematical foundation for
understanding capacity limits in both artificial and biological systems.

Our theory also indicates how competing representational strategies of intelligent systems are tied
to one another: identification demands sharp, distinct representations, while generalization requires
coarse, overlapping ones. This tension is echoed in neuroscience literature on representational
efficiency (coding related items compactly) versus processing efficiency (handling multiple items
jointly) (Petri et al., 2024; 2021; Lesnick et al., 2020). Our analyses also provide a formal explanation
for empirical observations in neural population coding (Cohen et al., 2020; Ganmor et al., 2015),
where semantically clustered "neural thesaurus" structures emerge as optimal strategies under noise
constraints, connecting to earlier models of representational redundancy (Curto et al., 2013).

Limitations and future work. The present model focuses on non-compositional representa-
tions, which do not capture phenomena such as hierarchical syntax, analogical reasoning, or arith-
metic—where representations are formed by systematic combinations of simpler parts (Lake and
Baroni, 2023; Fodor and Pylyshyn, 1998). Extending our framework to compositional coding schemes
remains an important future direction (we provide an initial approach possibility in the SI, see Fig. 6).
In addition, while we were able to directly demonstrate the presence of the tradeoff in the toy and
CNN models, showing its presence in large language-vision models is still outstanding (despite we
provided evidence for finite resolution in them, as also indirectly suggested by Modell et al. (2025).

9
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Future work could further extend our results by: (1) using synergy–redundancy decompositions
(Proca et al., 2024) to examine how generalization shapes the joint encoding of multiple stimuli;
(2) adopting techniques from mechanistic interpretability Bereska and Gavves (2024) to distill the
similarity functions directly from internal representations; (3) developing resolution-based diagnostic
tools for optimizing neural architectures by targeting task-appropriate generalization-identification
balance; and finally (4) testing whether neural manifolds from fMRI or electrophysiology exhibit
comparable resolution bounds, potentially establishing semantic resolution as a measurable link
between neural geometry and behavioral generalization.

Reproducibility Statement. We describe our theoretical framework with complete derivations
and provide detailed descriptions of all experimental settings, including architectures, datasets, and
training procedures. Hyperparameters, random seed usage, and evaluation protocols are specified in
the appendix. Code and data preprocessing scripts to reproduce all results will be released publicly
upon publication, but can be found now at the anonymous repository https://anonymous.
4open.science/r/generalization-7155.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LLM USAGE

LLMs (ChatGPT) were used to aid in polishing the paper after writing.

A.2 TECHNICAL DETAILS

In this section, we formalize the technical aspects and assumptions required for the results of the
paper.

We assume (M,d,Σ, ν) to be a separable metric measure space equipped with the standard metric
space topology, the Borel σ-algebra Σ generated by balls in M and with a probability measure ν.
This measure ν, which is such that ν(M) = 1, determines how we are sampling stimuli from the
stimulus space M .

In the following derivations, we will make use of two objects:

• bp(ε) = ν(Bε(p)), the measure of the ball of radius ε centered in p;

• Sp, the push-forward measure on [0,∞] of the distance function in p, dp(·) = d(p, ·) i.e.,
for any measurable subset of R, Sp(E) = ν(d−1

p (E)).

Note that bp is the cumulative distribution function of Sp as Sp((−∞, ε]) = Sp([0, ε]) = bp(ε) and
therefore it is non-decreasing. We also have that bp(∞) := limϵ→∞ bp(ε) = 1.

We assume that bp is an absolutely continuous function on every closed sub-interval of [0,∞)
i.e. such that for every ϵ > 0 there exists δ > 0 such that for any finite set of disjoint intervals
(α1, β1), . . . , (αN , βN )

N∑
i=1

(βi − αi) < δ =⇒
N∑
i=1

(bp(β)− bp(α)) < ϵ.

By Nielsen (1997) (Theorem 20.10), the absolute continuity of bp(ε) implies that Sp is an absolutely
continuous measure w.r.t. the Lebesgue measure µ. This implies, by Radon-Nikodym theorem, that
Sp admits a density f , Sp =

∫
fdµ, with f(ε) = b′p(ε) almost everywhere. In fact, we can think of

absolute continuity as a stronger notion of continuity, as the fundamental theorem of calculus for
Lebesgue integrals (Folland (1999), Theorem 3.35) tells us that, on every interval [c, d], bp is almost
everywhere differentiable, and bp(ε)− bp(c) =

∫ ε

c
b′p(r)dµ(r).

We now see how these assumptions allow us to notably simplify the derivations of the probability
of success in both similarity and identification tasks, while still not being too restrictive. In fact,
most non-pathological cases of interest, like probability distributions with differentiable densities on
manifolds, satisfy the assumption.

Lemma 1. Let X be the random variable of the correct answer to the n-item similarity or identifica-
tion task X = argmin {d(x1, p), . . . , d(xn, p)}. If, for every p ∈ M , bp is absolutely continuous on
every closed interval [c, d] ⊆ [0,∞), then P(|X| > 1) = 0.

1
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Proof. Let |X| be the cardinality of the set X .

P(|X| > 1) =

n∑
k=2

(
n

k

)
P(d(x1, p) = · · · = d(xk, p), d(xk+1, p) > d(x1, p), . . . , d(xn, p) > d(x1, p))

(1)

≤
n∑

k=2

(
n

k

)
P(d(x1, p) = · · · = d(xk, p)) ≤

n∑
k=2

(
n

k

)
P(d(x1, p) = d(x2, p)) (2)

=

n∑
k=2

(
n

k

)∫ ∞

0

P(d(x1, p) = d(x2, p) = r)dµ(r) ≤
n∑

k=2

(
n

k

)∫ ∞

0

P(d(x1, p) = r)dµ(r)

(3)

=

n∑
k=2

(
n

k

)∫ ∞

0

Sp({r})dµ(r) = 0, (4)

where the last equality comes from the absolute continuity of Sp w.r.t. µ, as µ({r}) = 0.

This result tells us that, under the assumptions, there is a probability of 0 that there are multiple
correct answers to the similarity and identification tasks. Therefore, in the following derivations we
will always only have to deal with the case |X| = 1.

A.3 PROOF OF THEOREM 1

A.3.1 SIMILARITY TASK

Proof. Let us derive the probability of succeeding in the similarity task in the case of 2 items. The
following proof will be a subcase of the more general one for n items but, given its complexity, it is
useful to analyze this subcase separately.

Let x1, x2, p be sampled independently from M according to the probability measure ν. Let
X(x1, x2, p) = argmin

i∈{1,2}
d(xi, p). Notice that X can have three different values


X(x1, x2, p) = {1} if d(x1, p) < d(x2, p)

X(x1, x2, p) = {2} if d(x2, p) < d(x1, p)

X(x1, x2, p) = {1, 2} if d(x1, p) = d(x2, p).

In this last case, when x1, x2 are equidistant from p, any answer to the task will be correct. By
Lemma 1, we only need to focus on the first two as the probability that more than one answer is
correct is 0.

We have that

P(Y = X) =

2∑
i=1

P(Y = i|X = i)P(X = i). (5)

Let us now rewrite the probability P(Y = i|X = i) by conditioning over all possible results of the
samplings of x1, x2 and the probe p.

For this, given the independence assumption, we assume that the event (x1, x2, p) is an element of
the measure space (M3, ν⊗3) equipped with the standard product measure.

P(Y = i|X = i) =

∫
M3

P(Y = i|X = i, (x1, x2, p))dP (x1, x2, p|X = i),

where dP (x1, x2, p|X = i) is the conditional measure of the sampling of x1, x2, p given the event
that X = i which, by Bayes theorem, can be rewritten as

dP (x1, x2, p|X = i) =
1[X(x1, x2, p) = i]dν(x1)dν(x2)dν(p)

P(X = i)
,

where 1[X(x1, x2, p) = i] coincides with the conditional law of the (deterministic) variable
X|(x1, x2, p).
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Replacing this in Equation (5) we get

P(X = Y ) =

2∑
i=1

∫
M3

P(Y = i|X = i, (x1, x2, p))1[X(x1, x2, p) = i]dν(x1)dν(x2)dν(p) (6)

The independence of the samplings of x1 and x2 means that all indices are equally likely to be the
correct answer P(Y = i|X = i) = P(Y = j|X = j) ∀i, j ∈ {1, 2}.

P(X = Y ) = 2

∫
M3

P(Y = 1, X = 1, (x1, x2, p))1[X(x1, x2, p) = 1]dν(x1)dν(x2)dν(p) (7)

= 2

∫
M

∫
M

∫
x2∈M :d(x2,p)>d(x1,p)

g(x1, p)

g(x1, p) + g(x2, p)
dν(x2)dν(x1)dν(p) (8)

Given the fact that we are considering constant similarity functions g(x, y) = gε;0(x, y) which
depend only on the distance between x and y, g(x, y) = g(d(x, y)), we perform the following change
of coordinates d(x1, p) 7→ r1, d(x2, p) 7→ r2,

P(X = Y ) = 2

∫
M

dν(p)

∫
[0,∞]

dSp(r1)

∫
(r1,∞]

dSp(r2)
g(r1)

g(r1) + g(r2)
, (9)

where Sp is the pushforward measure induced by the distance function from the probe p.

We decompose Equation (9) into two cases: a. when r1 > ε and thus both items fall outside the
resolution region of the probe p, and b. when r1 ≤ ε and thus the closest item falls inside.

a. In the first case, given that r2 > r1, we will have that both x1 and x2 are too far from the probe to
be recognized as similar, resulting in both numerator and denominator in Equation (9) to be 0. Here
we adopt the convention 0/(0 + 0) = 1/2 to describe the model being maximally uncertain in its
decision.

2

∫
M

dν(p)

∫
(ε,∞]

dSp(r1)

∫
(r1,∞]

1

2
dSp(r2) =

∫
M

dν(p)

∫
(ε,∞]

∫
(r1,∞]

dSp(r1)dSp(r2)

To compute this integral, we leverage the almost-everywhere differentiability of bp and apply the
fundamental theorem of calculus∫

(ε,∞]

∫
(r1,∞]

dSp(r1)dSp(r2) =

∫
(ε,+∞]

(1− bp(r1))dSp(r1) (10)

=

∫
(ε,+∞]

(1− bp(r1))b
′
p(r1)dµ(r1) =

[
− (1− bp(r1))

2

2

]∞
ε

=
(1− bp(ε))

2

2
. (11)

b. When r1 ≤ ε the first item will be considered to be similar to the probe g(r1) = 1, while the
second can be both similar and dissimilar.

2

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(r1,∞]

dSp(r2)
1

1 + g(r2)
(12)

= 2

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(r1,ε]

1

2
dSp(r2)︸ ︷︷ ︸

I

+2

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(ε,∞]

dSp(r2)︸ ︷︷ ︸
II

. (13)

The term I, just like above, can be computed in the following way∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(r1,ε]

dSp(r2) (14)

=

∫
dν(p)

∫
[0,ε]

(bp(ε)− bp(r1))b
′
p(r1)dµ(r1) (15)

=

∫
M

bp(ε)
2

2
dν(p) (16)

3
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The term II is simply given by 2
∫
M

bp(ε)(1− bp(ε))dν(p).

Summing together a. and b. we arrive at the following:

P(Y = X) =

∫
M

1

2
(1− bp(ε))

2 +
1

2
bp(ε)

2 + 2bp(ε)(1− bp(ε))dν(p) (17)

=

∫
M

1

2
+ bp(ε)− bp(ε)

2dν(p). (18)

We obtain the formula for the probability of succeeding the similarity task:

P(Y = X) =
1

2
+ ⟨b(ε)⟩ − ⟨b(ε)2⟩. (19)

A.3.2 IDENTIFICATION TASK

Proof. The identification task can be seen as a subset of the similarity task, in which the probe
is uniformly picked among the input stimuli. This means that the correct response will be
X(x1, x2, p) = {i ∈ {1, 2} : xi = p} and both answers will be correct only in the case that x1 = x2.

Retracing the first steps outlined in Appendix A.3.1, we find that the probability of the model being
correct will be

P(Y = X) = 2

∫
M

∑
p∈{x1,x2}

1

2
P(Y = 1|X = 1, (x1, x2, p))1[X(x1, x2, p) = 1]dν(x1)dν(x2)

(20)

=

∫
M2

g(x1, x1)

g(x1, x1) + g(x2, x1)
dν(x1)dν(x1). (21)

Note that we used the fact that p = x1 with probability 1/2 and p = x2 with probability 1/2. Given
that g(x, x) = 1 and, by the definition of metric space, d(x, y) = 0 ⇐⇒ x = y, we change
coordinates d(x1, x2) 7→ r and rewrite Equation (20) as

P(X = Y ) =

∫
M

dν(x1)

∫
(0,∞]

1

1 + g(r)
dSx1

(r). (22)

When r > ε, the second item does not interfere with the probe p = x1 and the model will choose x1

with certainty, while, if r ≤ ε, g(r) = 1 and it will instead be maximally uncertain.∫
M

dν(x1)

∫
(0,∞]

1

1 + g(r)
dSx1

(r) =

∫
M

dν(x1)

∫
(0,ε]

1

2
dSx1

(r) +

∫
dν(x1)

∫
(ε,∞]

1dSx1
(r).

(23)

=
1

2

∫
M

bx1
(ε)dν(x1) +

∫
M

(1− bx1
(ε))dν(x1) = 1− 1

2
⟨b(ε)⟩. (24)

A.4 PROOF OF THEOREM 2

The proof proceeds by retracting the proof of the noiseless case with some adjusted constants.

We start from the similarity task success probability, as rewritten in Equation (9). Once again, the
integral can be decomposed into two cases: a. when r1 > ε and thus both items fall outside the
resolution region of the probe p and b. when r1 ≤ ε and thus the closest item falls inside.

a. When r2 > r1 > ε, we have that g(r1) = g(r2) = ∆ and thus the ratio g(r1)/(g(r1) + g(r2)) =
1/2 resulting in the same term of Equation (11) (1− bp(ε))

2/2.

b. When r1 ≤ ε and r2 ≤ ε both items are similar to the probe and thus we get the same contribution
of the term bp(ε)

2/2 in Equation (16).

4



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The only difference from the proof of the noiseless case is when r1 ≤ ε and r2 > ε. In this case, the
first item is similar to the probe while the second is not, but the noise erodes the probability of the
model picking the first item. Therefore we get the following contribution to P(Y = X).

2

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(ε,∞]

dSp(r2)
1

1 + ∆
=

2

1 +∆

∫
M

bp(ε)(1− bp(ε))dν(p).

Putting all the terms together we get

P(Y = X) =

∫
M

1

2
(1− bp(ε))

2 +
1

2
bp(ε)

2 +
2

1 +∆
bp(ε)(1− bp(ε))dν(p) (25)

=

∫
M

1

2
+

(
2

1 + ∆
− 1

)
(bp(ε)− bp(ε)

2)dν(p) (26)

=
1

2
+

1−∆

1 +∆
(⟨bp(ε)⟩ − ⟨bp(ε)2⟩) (27)

For the identification task, we start from Equation (22). Now, when r > ε, the second item is outside
of the resolution region of x1 but the noise will still make the model’s decision not certain.

P(Y = X) =

∫
M

dν(x1)

∫
(0,∞]

1

1 + g(r)
dSx1(r) (28)

=

∫
M

dν(x1)

∫
(0,ε]

1

2
dSx1(r) +

∫
dν(x1)

∫
(ε,∞]

1

1 + ∆
dSx1(r). (29)

=
1

2

∫
M

bx1(ε)dν(x1) +
1

1 +∆

∫
M

(1− bx1(ε))dν(x1) =
1

1 +∆
− 1−∆

2(1 + ∆)
⟨b(ε)⟩. (30)

A.5 PROOF OF THEOREM 3

Lemma 2.
n∑

j=1

(
n

j

)
1

j
xj(1− x)n−j =

n∑
j=1

(1− x)n−j − (1− x)n

j
.

Proof. Let us call fn the left-hand side of the identity and gn the right-hand side. We prove the result
by showing that the generating functions of the series (fn)n, (gn)n are equal.

Let us start with (fn)n.

F (z) =

∞∑
n=0

fnz
n =

∞∑
n=0

n∑
j=1

(
n

j

)
1

j
xj(1− x)n−jzn =

∞∑
j=1

∞∑
n=j

(
n

j

)
1

j
xj(1− x)n−jzn (31)

=

∞∑
j=1

xj

j

 ∞∑
n=j

(
n

j

)
(1− x)n−jzn

 =

∞∑
j=1

xj

j

( ∞∑
k=0

(
j + k

j

)
(1− x)kzk+j

)
(32)

=

∞∑
j=1

xj

j
zj(1− z + xz)−j−1 =

1

(1− z + xz)

∞∑
j=1

1

j

(
xz

1− z + xz

)j

(33)

= −
log
(
1− xz

1−z+xz

)
1− z + xz

= −
log
(

1−z
1−z+xz

)
1− z + xz

, (34)

where we used the generating function identity for the binomial, see (Graham et al., 1989) (Equation
5.56) and the power series expansion of log(1− x).
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Let us proceed in the same way for gn:

G(z) =

∞∑
n=0

gnz
n =

∞∑
n=0

n∑
j=1

1

j
((1− x)n−j − (1− x)n)zn (35)

=

∞∑
j=1

1

j

 ∞∑
n=j

(1− x)n−jzn −
∞∑
n=j

(1− x)nzn

 (36)

=

∞∑
j=1

1

j

(1− x)−j
∞∑
n=j

(z − zx)n −
∞∑
n=j

(z − zx)n

 (37)

=

∞∑
j=1

1

j

(
(1− x)−j (z − zx)j

1− z + zx
− (z − zx)j

1− z + zx

)
(38)

=
1

1− z + zx

 ∞∑
j=1

1

j

(
z − zx

1− x

)j

−
∞∑
j=1

1

j
(z − zx)j

 (39)

=
− log

(
1− z−zx

1−x

)
+ log(1− z + zx)

1− z + xz
= −

log
(

1−z
1−z+xz

)
1− z + xz

(40)

A.5.1 SIMILARITY TASK

Recall that in the n-item similarity task, we are sampling independently n stimuli x1, . . . , xn and a
probe p and we ask the model to find which among the stimuli is the closest to p. Recall that Lemma 1
tells us that the probability of having more than a correct answer is 0.

Retracing the first steps in Appendix A.3, we find that

P(Y = X) =

n∑
i=1

P(Y = i|X = i)P(X = i) (41)

(42)
By the symmetry induced by the independence of the sampling, we see that P(Y = i|X = i) =
P(Y = j|X = j) = P(Y = 1|X = 1) ∀i, j and P (X = i) = P (X = 1) ∀i, and thus we can
restrict to the case when the closest stimulus is the first one.

P(Y = 1|X = 1) =

∫
Mn×M

P(Y = 1|X = 1, (x1, . . . , xn, p))dP (x1, . . . , xn, p|X = 1) (43)

=

∫
Mn×M

P(Y = 1|X = 1, (x1, . . . , xn, p))
1[X(x1, . . . , xn, p) = 1]

P(X = 1)
dν(x1) · · · dν(xn)dν(p).

(44)

P(Y = X) (45)

= n

∫
Mn×M

P(Y = 1|X = 1, (x1, . . . , xn, p))1[X(x1, . . . , xn, p) = 1]dν(x1) · · · dν(xn)dν(p)

(46)

= n

∫
M

dν(p)

∫
M

dν(x1)

∫
d(x2,p)>d(x1,p)

· · ·
∫
d(xn,p)>d(x1,p)

g(x1, p)∑n
i=1 g(xi, p)

dν(x2) · · · dν(xn).

(47)
Given that g is a constant similarity function g(x, y) = gε;0(x, y) which depends only on the distance
between x and y, we perform the change of coordinates d(xi, p) 7→ ri with Sp being the pushforward
measure induced by the distance function from the probe p.

P(X = Y ) = n

∫
M

dν(p)

∫
[0,∞]

dSp(r1)

∫
(r1,∞]

dSp(r2) · · ·
∫
(r1,∞]

dSp(rn)
g(r1)∑n
i=1 g(ri)

. (48)
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We now consider two cases separately. a. If r1 > ε, no item falls close enough to the probe and thus
g(xi, p) = 0 ∀i = 1, . . . , n and the model’s response is random:

n

∫
M

dν(p)

∫
(ε,∞]

dSp(r1)

∫
(r1,∞]

dSp(r2) · · ·
∫
(r1,∞]

dSp(rn)
1

n
(49)

=

∫
M

dν(p)

∫
(ε,∞]

(1− bp(r1))
n−1dSp(r1) =

∫
M

dν(p)

∫
(ε,∞]

(1− bp(r1))
n−1b′p(r1)dµ(r1)

(50)

Notice now that bp absolutely continuous implies that (1 − bp(r1))
n−1 is absolutely continuous

and, by Lebesgue’s theorem, it is differentiable almost everywhere and the fundamental theorem of
calculus holds (see Appendix A.2). We thus deduce that∫

M

dν(p)

∫
(ε,∞]

(1− bp(r1))
n−1b′p(r1)dµ =

∫
M

dν(p)

[
− (1− bp(r1))

n

n

]∞
ε

(51)

=

∫
M

(1− bp(ε))
n

n
dν(p). (52)

b. If r1 ≤ ε, then the closest stimulus is similar to the probe g(r1) = 1 and we write

n

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

∫
(r1,∞]

dSp(r2) · · ·
∫
(r1,∞]

dSp(rn)
1

1 +
∑n

i=2 g(ri)
. (53)

Each item i > 1 can fall either inside of Bε(p) and contribute to the denominator of the decision
function, or fall outside. Given that the denominator only depends on the number of stimuli which
fall in Bε(p) and not on their index, we can write Equation (53) as

n

∫
M

dν(p)

∫
[0,ε]

dSp(r1)

n−1∑
k=0

(
n− 1

k

)
(bp(ε)− bp(r1))

k(1− bp(ε))
n−1−k 1

k + 1
(54)

= n

∫
M

dν(p)

n−1∑
k=0

(
n− 1

k

)
(1− bp(ε))

n−1−k 1

k + 1

∫
[0,ε]

(bp(ε)− bp(r1))
kb′p(r1)dµ(r1) (55)

= n

∫
M

dν(p)

n−1∑
k=0

(
n− 1

k

)
(1− bp(ε))

n−1−k 1

k + 1

bp(ε)
k+1

k + 1
(56)

= n

∫
M

dν(p)

n−1∑
k=0

(
n− 1

k

)
1

(k + 1)2
(1− bp(ε))

n−1−kbp(ε)
k+1 (57)

=

∫
M

dν(p)

n∑
j=1

(
n

j

)
1

j
(1− bp(ε))

n−jbp(ε)
j , (58)

where the last is performed by re-indexing j = k + 1 and applying the property of the binomial
coefficient

(
n−1
j−1

)
= j

n

(
n
j

)
. Applying Lemma 2, we rewrite the result in a more convenient form

∫
M

n∑
k=1

(1− bp(ε))
n−k − (1− bp(ε))

n

k
dν(p). (59)

and summing Equation (52) with Equation (59), we get our final expression

pnS(ε) = Ep∼ν

[
1

n
+

n−1∑
k=1

(1− bp(ε))
n−k − (1− bp(ε))

n

k

]
.
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A.5.2 IDENTIFICATION TASK

Re-tracing the first steps of Appendix A.5.1 and Appendix A.3.2

P(X = Y ) = n

∫
M

∑
p∈{x1,...,xn}

1

n
P(Y = 1|X = 1, (x1, . . . , xn, p))1[X(x1, . . . , xn, p) = 1]dν(x1) · · · dν(xn)

(60)

=

∫
M

dν(x1)

∫
Mn−1

g(x1, x1)

g(x1, x1) +
∑n

i=2 g(xi, x1)
dν(x2) · · · dν(xn) (61)

=

∫
M

dν(x1)

∫
(0,∞]

dSp(r2) · · ·
∫
(0,∞]

dSp(rn)
1

1 +
∑n

i=2 g(ri)
. (62)

Just like we saw in the proof of the similarity task, here any stimulus different from the probe will
contribute to the denominator of the decision function if and only if it falls in Bε(x1). Moreover, the
decision function depends only on the number of such stimuli and not on which ones contribute to
the denominator. Therefore, we can write

P(X = Y ) =

∫
M

dν(x1)

n−1∑
k=0

(
n− 1

k

)
bx1

(ε)k(1− bx1
(ε))n−1−k 1

k + 1
(63)

=

∫
M

dν(x1)
j

n

n∑
j=1

1

j

(
n

j

)
bx1

(ε)j−1(1− bx1
(ε))n−j (64)

= Ep∼ν

[
1− (1− bp(ε))

n

nbp(ε)

]
, (65)

where we used the property of the binomial coefficient
(
n−1
j−1

)
= j

n

(
n
j

)
.

A.6 PROOF OF PROPOSITION 1

We want to compute pS and pI for the uniform measure on the flat circle M = [0, 1] with d(x, y) =
min(|x − y|, 1 − |x − y|) for the linearly decaying similarity function with resolution ε, g(r) =
σ
(
1− r

ε

)
, where σ(x) = max(x, 0).

First, note that for the uniform measure, we have that

bx(ε) = ν(Bε(x)) =

{
2ε if ε ≤ 1

2

1 if ε > 1
2

= b(ε),

i.e. the length of the interval [−ε, ε] on the circle. Accordingly, we have that the measure Sx is such
that

Sx(E) = S(E)

∫
E

b′(r)dµ(r) = 2µ(E),

if E ⊆ [0, 1
2 ].

Similarity task. We start from Equation (9) and, once again, consider the different cases. If
r1, r2 > ε, there is no difference from the constant case: the probe has similarity 0 with both x1

and x2, therefore the model is maximally uncertain. This term will contribute (1 − b(ε))2/2 to
P(Y = X).

If r1 ≤ ε and r2 > ε, there is no difference from the constant case as the probe is similar to x1 with
no interference from x2. We get a contribution of 2b(ε)(1− b(ε)).

If r1 ≤ ε, r2 ≤ ε, we need to compute

2

∫
[0,ε]

dS(r1)

∫
(r1,ε]

dS(r2)
g(r1)

g(r1) + g(r2)
= 8

∫
[0,ε]

∫
(r1,ε]

1− r1/ε

1− r1/ε+ 1− r2/ε
dµ(r1)dµ(r2)

(66)

= 8

∫
[0,ε]

(ε− r1) log(2)dµ(r2) = 8 · 1
2
ε2 log(2) = (2ε)2 log(2) = log(2)b(ε)2. (67)

8
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Figure 6: Top row. Generalization pS and identification pI accuracy curves for inputs sampled from
a higher-dimensional torus equipped with ℓ1 (left column) and ℓ2 distance metric (right column)
and linearly decaying similarity functions (depicted above). Bottom row. Generalization and
identification accuracies as functions of the number of dimensions, for ϵ fixed to the maximum-
achieving resolution of pS on the 1-dimension torus.

Putting together the three contributions, we get

P(Y = X) =
1

2
−b(ε)+

1

2
b(ε)2+2b(ε)−2b(ε)2+log(2)b(ε)2 =

1

2
+b(ε)− (3/2− log(2))b(ε)2.

Identification task. We start from Equation (22) and consider two cases. If r > ε, then x2 does not
interfere with the probe and thus the model will choose x1 with probability 1. Just like the constant
case, we get a contribution of 1− b(ε).

If r ≤ ε, we need to compute∫
(0,ε]

1

1 + g(r)
dS(r) =

∫
(0,ε]

2
1

1 + 1− r/ε
dµ(r) = 2 log(2)ε = log(2)b(ε). (68)

In total, we get

P(Y = X) = 1− b(ε) + log(2)b(ε) = 1− (1− log(2))b(ε).

A.7 DIMENSIONALITY ANALYSIS

Here we numerically check how the results change when the input space is multi-dimensional.
We consider a d-dimensional (flat) torus whose points are d-tuples x = (x1, . . . , xd) ∈ [0, 1]d.
Each coordinate thus lives on a circular space. Following classical work describing similarity in
multi-dimensional spaces Nosofsky (1986), we consider the Minkowski metric on such space

d(x, y) =

(
d∑

i=1

min(|yi − xi|, 1− |yi − xi|)p
)1/p

(69)

with p = 1, 2 and an agent implementing linearly decaying similarity functions g(r) = max(1− r, 0)
with respect to that metric.

In the top row of Figure 6, we show pS , pI curves as the dimension d of the space increases from 1 to
8. We see how, for both ℓ1 and ℓ2 metrics, the curve shift towards higher identification performances

9
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while staying approximately constant in generalization. Fixing a single resolution value ε and
checking how performances depend on dimension (bottom row of Figure 6) shows fast decaying
generalization and fast increasing identification. We can interpret this as an effect of the curse/blessing
of dimensionality. In higher-dimensional spaces the volume covered by the similarity function (whose
“radius” ε is fixed) decreases. This results in a reduction in interference between representations, i.e.
higher identification capabilities but, at the same time, the similarities are not wide enough to support
generalization.

A.8 DETAILS ON NUMERICAL EXPERIMENTS

All the code used to produce the results can be found in https://anonymous.4open.
science/r/generalization-7155.

A.8.1 TOY MODEL

The architecture of the toy model we used is the following linear bias-less autoencoder with a
nonlinearity at the end

f(x) = σ(W⊤Wx),

where σ is the ReLU activation function σ(x) = max(x, 0) and W ∈ Rm×l.

In both the pure-reconstruction and semantic experiments, the inputs were chosen to be l = 50
one-hot vectors x = ei ∀i = 1, . . . ,m. The hidden space dimension was chosen to be m = 10.

The pure reconstruction experiment is performed by minimizing the MSE loss between input one-hot
and its reconstruction through the network

Lrec =

l∑
i=1

∥∥ei − σ(W⊤Wei)
∥∥2 =

l∑
i=1

∥∥ei − σ(W⊤wi)
∥∥2.

In the semantic case, the loss is built in the following way. Three different indices i, j, k are picked
randomly and their associated one-hots are built ei, ej , ek. Then, we compute the ratio of similarities

Di =
σ(w⊤

i wk)

σ(w⊤
i wk) + σ(w⊤

j wk)
, Dj =

σ(w⊤
j wk)

σ(w⊤
i wk) + σ(w⊤

j wk)
.

The index î ∈ {i, j} of the correct answer is computed by taking the minimum between d(xi, xk)
and d(xj , xk), where the distance function is given as a training input in the form of a distance
matrix. The loss, finally, is computed by taking the Negative Log Likelihood Loss (NLL) between
the distribution (Di, Dj) and the one hot vector encoding the correct response.

Lsim = −1

2
Dî.

For all experiments, each epoch is made of 2000 samples, with batch size 128. The models are trained
for 500 epochs with the Adam optimizer, with learning rate 0.0007 and 0 weight decay.

Given that random vectors in high-dimensional space tend to be close to orthogonal, biasing the
model towards high pI , we initialize the weight matrix with i.i.d. uniform in the interval [0, 2].

At each epoch, the model is evaluated by performing similarity and identification tasks. 1,000 triplets
(i, j, k) (k ∈ {i, j} for the identification) are extracted, and the average Dî is recorded to obtain the
values of pS and pI shown in Figure 4. The average similarity functions shown in the figure’s insets
are obtained as gi(j) = σ(w⊤

i wj) for every j ∈ 1, . . . , l. Leveraging the symmetry of the circular
structure, each vector gi is circularly shifted so that the index i goes to the center of the circle gi 7→ g̃i.
Finally, we take the average over i, g̃ = 1

l

∑l
i=1 g̃i.

We show the distance matrices for the circle and line experiments, together with the full learned
similarity matrices for a single run in Figure 7.

In Figure 8, moreover, we see the results of the three different trainings for three values of the neural
network’s latent dimension. As it increases, we see how the model is able to have less interference
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Figure 7: Visualization of the distance matrix (left) and the learned similarity matrices through
training for the circle (top row) and the segment (bottom row).

Figure 8: Different training trajectories of the toy model with different latent dimensions, visualized
as in Figure 4.

between representations, signified by pI being able to reach higher values. Visualizing the average
learned similarity functions and estimating the noise value, we are able in all cases to predict the
maximum pI using Theorem 2.

A.8.2 CONVOLUTIONAL NEURAL NETWORK FINE-TUNED ON EVOLUTIONARY DISTANCES
AMONG BIRD SPECIES

Experimental setup. To test our theoretical predictions in a realistic computer vision setting, we
fine-tuned a ResNet-50 model (He et al., 2016) pre-trained on ImageNet. We used the Caltech-UCSD
Birds-200-2011 dataset (Wah et al., 2011), which contains 11,788 images of 200 bird species, paired
with evolutionary distance data from the TimeTree database (Kumar et al., 2022). The experimental
design involved two tasks with a consistent triplet-based evaluation format:

• Identification task: Given images of two reference species (x1, x2) and a probe image,
determine which reference species the probe belongs to.

• Similarity task: Given images of two reference species (x1, x2) and a probe species (p),
determine which reference species is evolutionarily closer to the probe.

Using a contrastive loss that encouraged embedding bird images closer to their evolutionary relatives,
we fine-tuned the model using a composite loss:

L = (1− α)Lid + αLsim,

11
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where Lid is a cross-entropy loss for species identification, and Lsim aligns the embedding space
with evolutionary distances. The parameter α controls the balance between identification and
generalization objectives. During evaluation, we defined similarity using a threshold ϵ on feature
distances, where distances below ϵ indicated similarity. This allowed us to systematically study the
generalization-identification tradeoff by varying both α and ϵ.

Figure 9: Evolutionary similarity between species obtained from (a) bird phylogeny and (b) the
feature vector similarities as α is tuned.

Training details. We trained the model for 15 epochs using SGD with momentum 0.9, weight decay
1e− 4, and an initial learning rate of 0.001, reduced by a factor of 0.1 when validation performance
plateaued. To handle GPU memory constraints, we used a batch size of 8 with gradient accumulation
over 4 steps (effective batch size 32). We tested α values ranging from 0.0 to 1.0 with several random
seeds (42-46) to ensure robust results.

The birds dataset was split 64-16-20% for training, validation, and testing, with an additional 15% of
species held out completely as out-of-distribution test data. The evolutionary distance loss (Lsim) was
implemented by computing pairwise distances in feature space and aligning them with normalized
evolutionary distances derived from the phylogenetic tree. This explicitly encouraged the CNN to
map visual features into a space that preserved evolutionary relationships as shown in Figure 9.

Theoretical connections. Our experimental framework directly maps to the theoretical constructs
in Miller’s Law. The identification task measures pI (probability of correct identification), while the
similarity task measures pS (probability of correct similarity judgment). The threshold ε corresponds
to the resolution parameter in our theoretical framework, controlling the ball measure b(ε) that
determines which items are considered similar.

Evolution during training. We monitored how the identification-generalization constraints evolved
during training by tracking both scores across epochs. With α = 0 (pure identification objective),
models rapidly optimized for identification at the expense of generalization. As α increased, especially
beyond 0.5, models traced distinct trajectories through (ps, pI) (or G-I) space, with higher α values
showing earlier and more pronounced shifts toward generalization.

The final equilibrium position in G-I space was primarily determined by α, with higher α values
reliably producing models with better generalization capabilities. Out-of-distribution testing revealed
that models with higher α values demonstrated substantially better generalization to unseen bird
species, confirming that the similarity-based training objective promotes more robust feature learning
that captures fundamental biological relationships rather than superficial correlations.

Results. As shown in Figure 5a, the bird CNN exhibits a clear tradeoff between generalization
and identification. We expand these results in Figure 10, in which (a) shows how the G-I tradeoff is

12
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b

c d

a

Figure 10: (a) Generalization-identification tradeoff parametrized by threshold resolution (ε) for
various α values, showing how different regularization strengths shape the Pareto frontier. (b) Per-
formance landscapes showing generalization (left) and identification (right) as continuous functions
of α and log(ε). (c) Training trajectories in the G-I performance space for different α values, show-
ing how higher α produces increasingly horizontal progressions that prioritize generalization over
identification during learning. (d) Percentage change in generalization (left) and identification (right)
relative to the pure reconstruction baseline (α = 0), revealing a critical range of ε values where
positive deviations occur for both tasks.

parametrized by threshold resolution ε for different α values, with each curve tracing the performance
as ε varies while α remains fixed. Panel (b) presents the full performance landscapes, showing
generalization (left) and identification (right) scores as continuous functions of both α and log(ε).
Panel (c) illustrates the training dynamics: as α increases, the training trajectories become increas-
ingly horizontal, indicating that the learning process prioritizes generalization improvements over
identification accuracy. Panel (d) quantifies the performance deviations from the pure reconstruction
baseline (α = 0) through heatmaps. For low thresholds (ε ≤ 20) and high thresholds (ε ≥ 80),
deviations remain minimal across all α values. However, for intermediate thresholds (30 ≤ ε ≤ 50),
we observe a critical regime: higher α values yield substantial positive deviations in generalization
(up to 25% improvement) while identification shows moderate negative deviations (typically 10-20%
decrease), most pronounced in the α ≥ 0.8 range. Notably, there exists a narrow band around ε = 40
where both landscapes show positive deviations for moderate α values, confirming our theoretical
prediction that optimal threshold selection enables simultaneous enhancement of both generalization
and identification beyond the pure reconstruction baseline.

A.8.3 LLMS PERFORMING DATE-OF-BIRTH IDENTIFICATION VS SIMILARITY TASK

Evidence of resolution

Experimental setup. We investigated whether large language models exhibit semantic resolution
when processing time information. We tested three models: gemma-2-2b-it (Team et al., 2024), Llama-
3.2-3B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Bai et al., 2023) on the following
task. The models are fed the system prompt "You are a useful chatbot assistant."
and are asked to respond to the prompt "A was born in x. B was born in y. Who
was born closest to p? Answer with a single name."

The variables A,B,x,y and p are generated in the following way:

1. A central year c is sampled uniformly from the set of integers {1500, 1501, . . . , 1699};

13



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Number of inputs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y 
of

 su
cc

es
s

Similarity task
gemma-2-2b-it
Llama-3.2-3B-Instruct
Qwen2.5-7B-Instruct
Chance

0 20 40 60 80 100
Number of inputs

0.0

0.2

0.4

0.6

0.8

1.0
Identification task

gemma-2-2b-it
Llama-3.2-3B-Instruct
Qwen2.5-7B-Instruct
Chance

Figure 11: Similarity and identification performances of three LLMs on the interval of years
[800, 1599]

2. For each value δx ∈ {20, 50, 100, 200}, we fix x = c −δx and y = c +δx with probability
0.5 and x = c +δx and y = c −δx with probability 0.5.

3. For each pair x,y chosen in this way, we run the prompt with every p = c + δp, δp ∈
{c− 300,c+ 300}.

4. The prompt with each value of p is ran 20 times, randomizing the variables
A and B, which are two different names sampled from the list [ "Alice",
"Bob", "Charlie", "David", "Eve", "Frank", "Grace", "Heidi",
"Ivan", "Judy", "Karl", "Liam", "Mallory", "Nina", "Oscar",
"Peggy", "Quentin", "Rupert", "Sybil", "Trent", "Uma",
"Victor", "Walter", "Xander", "Yvonne", "Zach", "Abigail",
"Benjamin", "Catherine", "Daniel", "Elena", "Frederick",
"Gabriella", "Henry", "Isabella", "Jack", "Katherine",
"Lucas", "Mia", "Nathan", "Olivia" ].

If the answer of the model belongs to the set of sampled names, then we check whether it is equal to
the name associated to the smallest year.

We repeat the process, sampling c 40 times and averaging the results. What we obtain is a function
from the probe displacement w.r.t. c, δp ∈ [−300, 300] to the probability of the model decision
function Ec[D1(x,y)] ∈ [0, 1].

Results. Figure 5b in the main text displays the probability of correct answers for both models
across date displacements. Several observations support our theory:

1. Both models show high performance when probe dates are near reference dates (small
displacements), but performance degrades as displacement increases.

2. The pattern follows our theoretical assumptions: the performance approaches chance level
(0.5) when the reference years are close and the probe falls between them and when the
reference years are far and probes is far form both.

Similarity and identification tasks

Experimental setup. We then performed similarity and identification tasks to gauge the perfor-
mance of these three models as the number of inputs provided increases.

For each number of inputs n ∈ {2, 4, . . . , 100}, we sample 1,000 prompts built in the following way

• Similarity task: "A1 was born in x1. A2 was born in x2."+ · · ·+"
An was born in xn." Who was born closest to p? Answer with
a single name.

14
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Figure 12: Examples of image inputs for the spatial resolution task.

• Identification task: "A1 was born in x1. A2 was born in x2."+ · · ·+"
An was born in xn." Who was born in p? Answer with a single
name.

Here A1, . . . ,An are names sampled from a list of 200 names similar to the one described above, and
x1, . . . ,xn are random integers in the interval [800, 1599]. The probe p is a random integer in the
same interval for the similarity task and, for the identification tasks, it is randomly chosen from the
set {x1, . . . ,xn}.

Results. In Figure 11, we plot the performances obtained for the three models. Overall, we see that
all models perform well on the identification task, with its performance decreasing with a small rate.
Instead, for the similarity task we see how the performances are definitely worse, never being greater
than 0.7 but decreasing in a much graceful way than the 1/n of random chance.

Interestingly, if we focus on Gemma and Qwen, we are able to qualitatively observe the same
behavior of the theoretical model in Figure 3 of the main text. In fact, it appears that Qwen is
favouring generalization, resulting in a good similarity task performance for a low number of items
but a steeper decrease for increasing n. Gemma, instead, achieves close to chance similarity task
performances when n is small but decreases less rapidly when n increases. If we map this to our
theoretical investigation, it appears that Gemma is adopting a smaller ε than Qwen, a conjecture
which is corroborated by the identification test performance decreasing faster for the latter.

A.8.4 VLM TASKS

To assess the presence of finite semantic resolution in vision–language models (VLMs), we designed
several spatial similarity/identification tasks using synthetic images. Two VLMs were evaluated:
gemma-3-12b-it and Qwen2.5-VL-7B-Instruct. Besides collecting the models’ textual
responses, we also logged the scores (logits) of selected, task-depending tokens, to inspect how each
model ranks different token choices before softmax.

Evidence of resolution

Dataset. We generated 1,000 images, each featuring four black stencils positioned at fixed loca-
tions on a white background. The stencils, chosen randomly between square, triangle, heart, star,
varied specific position across images. Additionally, each image included a randomly placed red X,
designated as the "target" (see Figure 12). We logged the distance between the target and each stencil.

Experimental setup. We showed each image to both Qwen and Gemma, together with a query
prompt: "The picture contains four black shapes: a square, triangle,
heart and a star. There is also a red X. Which black shape is the
closest to the X? Respond with only the shape’s name.". We logged the
models’ textual responses and the token scores for square, triangle, heart and a star. For each
sampled location, we recorded the model’s output and computed an accuracy map. A smoothed
version of this map was obtained by averaging over local neighbourhoods to reveal confidence
gradients.

Results. Figure 5c (main text) shows the accuracy maps for both models. In both cases, we
observe a central region around each shape where the model is consistently correct, surrounded by
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transition zones where accuracy rapidly deteriorates. This behavior mirrors the emergence of a finite
resolution scale: when the red cross is placed sufficiently far from all reference shapes, the models
are increasingly unable to resolve which object is closest.

Moreover, the spatial structure of the confusion regions reveals differences between models:
gemma-3-12b-it exhibits a tighter high-confidence core, while Qwen2.5-VL-7B-Instruct
shows broader transition bands, suggesting differences in their spatial encoding fidelity. The smoothed
accuracy maps further support the hypothesis that VLMs implement a distance-dependent proximity
function with finite support, analogous to the semantic similarity functions described in the theoretical
model (Section 2).

Color similarity task

Dataset. We created 5,000 images, each containing between 4 and 12 colored squares. Each square
was labeled with a unique letter, serving as an identifier, as shown in Figure 13. The colors of the
squares were generated using the HSV color model, where the hue (H) was assigned randomly, while
saturation (S) and value (V) were maximized to ensure vivid and bright colors.

(a) (b) (c) (d)

Figure 13: Examples of image inputs for the color similarity task. Panels (a) and (d) represent two
reference images, with four and twelve colours respectively. Given the reference image (a), a query
image for the identification task (color occurring in the reference image) is depicted in panel (b), and
a query image for the similarity task (color not occurring in the reference image) is depicted in panel
(c).

Experimental setup. In this task, we presented the models with a pair of images and a textual
query. The first image, dubbed reference image, contained 4 to 12 labelled color squares, as described
above. The second image (query image) displayed a single, centered square, whose color was either
one of the colors occurring in the reference image (identification task) or a completely random
one (similarity task). In both case, the query was: "In the first picture there are
squares of different colors, labelled with uppercase letters. the
second picture there is only one target square. Identify which
square in the first picture is most similar to the target square
in the second picture. Reply with the corresponding letter and
nothing else.". We logged the color of the target square and its similarity with respect to all
colors occurring in the paired reference image. We also logged the model’s textual answers and the
token score for each single letter (possible answers).

Results. In Figure 14a we show the similarity task and identification task performances as func-
tions of the number of input colored squares. In particular, we observe a decreasing identification
performance which, in both models, can be fitted using the theoretical curve of Theorem 3 (main
text). The fitted parameter b(ε) suggests the presence of a larger effective resolution for Gemma and
a lower one for Qwen.

To investigate this resolution, we gather, for each experiment, the scores each model assings to the
letters associated to the wrong colors (thus excluding the most similar ones), together with their
circular hue distance from the probe color, normalized to [0, 0.5]. We only take the scores associated
to the wrong colors in order to avoid the bias of the correct answer having always low distance.

We plot the model score as a function of the distance in Figure 14b. Both model display an emergent
resolution, with points with large hue distance being concentrated around a fixed “noise” level.
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Figure 14: a. Similarity and identification probabilities for the color test explained in Appendix A.8.4.
In the identification plot, the dashed curves are the theoretical curves of Theorem 3 (main text) fitted
to the data. b. Token score associated to the wrong responses, as a function of the hue distance
from the probe color. The dotted black lines represent the resolution values b(ε)/2 fitted using the
theoretical resul of Theorem 3 (main text) on the identification performances.

Moreover, the scores for Gemma display a step-like shape suggesting that the learned similarity
function may be similar to the constant similarity assumed in the theoretical analysis. Qwen, instead,
shows a more continuous decrease in score-similarity with distance, more in line with the results
obtained in Appendix A.8.3, and associated to higher performances (Figure 14a).
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