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ABSTRACT

Intelligent systems must deploy internal representations that are simultaneously
structured—to support broad generalization—and selective—to preserve input
identity. We expose a fundamental limit on this tradeoff. For any model whose
representational similarity between inputs decays with finite semantic resolution
€, we derive closed-form expressions that pin its probability of correct general-
ization pg and identification p; to a universal Pareto front independent of input
space geometry. Extending the analysis to noisy, heterogeneous spaces and to
n > 2 inputs predicts a sharp 1/n collapse of multi-input processing capacity and
a non-monotonic optimum for ps. A minimal ReLU network trained end-to-end
reproduces these laws: during learning a resolution boundary self-organizes and
empirical (pg, pr) trajectories closely follow theoretical curves for linearly decay-
ing similarity. Finally, we demonstrate that the same limits persist in two markedly
more complex settings—a convolutional neural network and state-of-the-art vi-
sion—language models—confirming that finite-resolution similarity is a fundamen-
tal emergent informational constraint, not merely a toy-model artifact. Together,
these results provide an exact theory of the generalization-identification trade-off
and clarify how semantic resolution shapes the representational capacity of deep
networks and brains alike.

1 INTRODUCTION

Background. Modern neural networks are surprisingly good at performing a variety of tasks,
rivaling and often surpassing human performance. However, they still exhibit striking limitations in
their capabilities to process information, often when they need to process multiple objects at the same
time (Campbell et al., [2024; |Gong and Zhang, 2024} Rahmanzadehgervi et al.| [2024; Rane et al.,
2024} Zhang and Wang| [2024; [Lewis et al.||2022)). Similar limitations are also commonly observed in
humans when performing working (short-term) memory tasks Miller| (1956); |Luck and Vogell (1997);
Cowan|(2001).

Neural networks employ distributed representations (Hinton et al.| [1986; Hintonl |1986} [Smolenskyl
1990) to process inputs. They enable efficient generalization in unseen situations through, for instance,
compositionality, but at the same time suffer from the binding problem —the inability to maintain
associations between features when processing multiple inputs simultaneously (Roskies| |1999] |Greff]
et al.l [2020; Treisman and Geladel [1980).

Cognitive science offers a rich literature about the ways in which internal representations can help
to generalize. The celebrated Shepard’s Universal Law of Generalization (Shepard, [1958a};|[1987)
states that representations should be arranged in the "psychological space" in a structured way, which
echoes the real structure of the entities that are represented. This law has received through the years
numerous empirical validations and theoretical support (Shepard, [1958b; Sims, [2018}; [Tenenbaum
and Griffiths}, 2001} |Chater and Vitanyi, [2003). This fundamental idea resonates with recent works
in neural network interpretability, showing that feature vectors in the latent spaces of large neural
networks are often organized in rich geometric structures (Arora et al., 2018} [Engels et al., 2024; [Liu
et al.,[2022; |[Zhong et al.l 2023 |Shai et al.,|2024; Modell et al., 2025).

Frankland et al.| (2021) proposed that these two facts —the striking information processing limitations,
and the generalization through structured representations— are strongly related, and are at the heart of
a fundamental trade-off which puts in tension generalization versus identification of representations.
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Our contribution. We investigate the fundamental tradeoff between representational fidelity and
distinctness under finite semantic resolution. More precisely, we provide:

1. A framework that quantifies the exact Pareto front between identification and similarity perfor-
mances, demonstrating how finite resolution creates an inescapable tradeoff;

2. Closed-form expressions for this tradeoff across multiple inputs, noise levels, and varying resolu-
tions, revealing a sharp 1/n collapse in multi-item (n) processing capacity;

3. Empirical validation showing how this resolution boundary self-organizes during neural network
training, with empirical trajectories closely following our theoretical predictions;

4. Confirmation that these limits persist across architectures from simple ReLU networks, to CNNss,
to vision-language models, establishing emergent finite resolution as a universal constraint rather
than a model-specific artifact.

2 SETUP

Stimulus space and similarity functions. Assume A to be a model processing stimuli coming
from a set S the structure of which is encoded by a distance function dg. For example, S can be the
space of color hues or days of the week, naturally arranged in a circle, the set of positions of an item
in physical space, or more complex topological spaces, such as a torus, or the Klein bottle of natural
image patches (Carlsson et al., [ 2008)).

The model processes the stimuli coming from S and builds representations by mapping them into a
latent (or psychological) space M with a map ® : S — M, which we assume to be a bijection: this
induces naturally a distance d on M via d(z,y) := ds(®~!(x),®~(y)). In M, the representations
are processed and compared through a non-negative similarity function g: M x M — R,. For
example, if M is a vector space, we can choose g(z,y) = h(®(z) ®(y)) with h(x) > 0Vx. If
h(z) = exp(—x), this encompasses, but is more general than, the standard self-attention mechanism
of a transformer (Vaswani et al., 2017) []_1

The specific form of g is not uniquely specified by the distance d, allowing for different degrees
of “semanticity”~how the metrical structure d is represented by g— with significant impacts on
model capabilities. Localized functions g,. := ¢(z, -) reduce interference between representations,
permitting more reliable distinction between them and thus accurate simultaneous processing of
multiple representations. Conversely, more distributed g can reflect long-range relations of .S, thus
enhancing generalization capabilities, at the cost of potential interference among distinct but nearby
stimuli. In the following, corroborated by seminal works in the cognitive psychology literature
(Shepard, |1987), we assume for simplicity that g depends only on the distance between the stimuli:

g(z,y) = g(d(x,y)).

Measures of identification and generalization accuracy. Following Frankland et al.|(2021)), we
introduce models of two simple tasks that have previously been used to measure identification and
generalization accuracy, and that we use in our theoretical analyses below.

We measure the generalization capabilities of A using a similarity task in which the model is asked
to perform similarity judgments that respect the metric structure of the stimulus space. The model
is shown n stimuli z1,...,x, € S and additional one, called the probe, p € S. It is then asked
to decide which of the n stimuli is the closest to p according to the distance d. Let (z1,...,2,),p
be sampled independently from M according to a probability measure v. We call X the random
variable encoding the index of the closest item to the probe, i.e. X = argmin d(z;, p). Intuitively, the
i=1,...,n
decision function represents how the model assesses the evidence when determining which input is
most similar to the probe. It formalizes the idea that the model’s choice depends on relative similarity
strengths rather than absolute values. We call Y the random variable indicating the model’s decision,

'Our similarity function includes common ML metrics: cosine similarity in embedding models, dot-product
attention in transformers, and implicit similarity in contrastive learning (InfoNCE, triplet loss). While these
mechanisms differ in implementation, they all measure semantic relatedness between representations and are
subject to the resolution limits we identify in this work.
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Figure 1: a. On the left, exponential similarity functions centered on two stimuli x1, x2 € M, with
the black line indicating the decision function g(z1,p)/(g(x1,p) + g(z2,p)) with no resolution (see
Section 2] for explanation). On the center and right, the same quantities are shown in the case of the
presence of finite resolution. Notice that the model becomes uncertain for probes far away from
stimuli z1, x2. b. Visualization of the constant similarity functions of Deﬁnitionm

that we model as follows (Lucel |1959):
— g(‘r’ia p)
ZZ:l g(xka p)

We quantify the overall generalization capability as the probability of the model making the correct
decision, i.e. ps :=P(Y = X).

Di(l‘h---,xn;p) = P(Y=i|(x1,...,xn,p)) (1)

The identification task is used to measure how accurately stimuli can distinguished from one another.
The task is the same as the similarity task, but with the exception that the probe is always one of the
input stimuli p € {1, ..., 2, }. This will result in the decision function of Equation (1)) always being
of the form

Di(z1,...,xp;25) =P =i|(x1,...,25,2j)) = ”g(ail—,x,) 2)

> k=1 9(Tk, ;)

If now X (z1,...,2,;2;) = j, we write p; := P(Y = X)) to indicate the probability of the model
succeeding in the identification task. Equations and can be interpreted, independent of
probabilities, in terms of relative similarity, where pg is taken to represent the average relative
similarity of stimuli that are close compared to stimuli that are further apart. In the same way, py is
the average relative similarity of equal stimuli compared to different stimuli.

Importantly, when g(x;,2;) = exp(—pd(x;, x;)), and the decay rate for the exponential is taken
to infinity (u — o0), both pg and p; approach 1, (perfect performance); that is, identification and
generalization accuracy both benefit by maximizing decay rate . Critically, however, it has been
observed empirically that virtually any loss of precision (i.e., resolution) in computing the similarity
function introduces a fundamental tension —referred to as "Miller’s Law" (Frankland et al.| 2021)—
between pg (generalization) and p; (identification accuracy) with respect to decay rate, wherein
generalization benefits by decreases in decay rate that dramatically degrade identification accuracy
(Figure[Th). Here, we provide a formal analysis of this effect, showing that it generalizes to learning in
neural networks, where it imposes a fundamental constraint on the interaction between representations
and efficiency of processing.

The effect of resolution. To show this, we formally consider how a limit in precision with
which the model can compute a similarity function impacts both identification and generalization
accuracy. Such a limit might arise from any number of factors: computational noise, finite precision,
ReLU activations clamping negative correlations to zero (see Sectiond)), or imprecisely coded distant
relationships. These can all be formalized as a resolution ¢ > 0 such that g(x,y) = A if d(z,y) > ¢,
where A is a noise parameter. As shown in Figure [Th, the resolution drastically affects decision
boundaries (the black line): for probes sufficiently far from both stimuli, the decision function
approaches 1/2 indicating maximal uncertain. Resolution thus represents the model’s inherent
limitation in gauging low similarities between distant stimuli.

“Note on terminology: “resolution” (¢) in this paper strictly refers to the parameter controlling the distance
threshold beyond which similarities collapse to noise level A. Higher £ values mean the model preserves
similarity information across greater distances.
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Generalization-Identification Tradeoff (Miller’s Law). To analyze this, we use a simplified
similarity function. If 1, is the indicator function over the set A, and B,(z) is the closed ball
of center  and radius r over M, B, (z) = {y € M : d(z,y) < r}, the similarity function can be
defined as follows:

Definition 1. The constant similarity function with resolution ¢ and noise A is ge.a(x,y) =
1B () (¥) + Alan\B.(2)(Y)-

According to this function, the model will judge two things to be similar (g.;a (x,y) = 1) if and only
if they are closer than a certain threshold € > 0. Outside of this “resolution region” the similarity
value is fixed to a noise value A > 0.

This simplified model aligns with Shepard’s Universal Law of Generalization (Shepard, [1987),
where similarity decays exponentially with distance: g(z,y) = exp(—ud(z,y)). In Shepard’s
formulations, the parameter p controls the sensitivity to distance, with larger y creating sharper
similarity boundaries. This is conceptually similar to controlling the temperature parameter in a
softmax function, in which lower temperatures induce sharper probability distributions, while higher
temperatures make them more uniform. In our framework, ¢ serves an analogous role, controlling
the distance of the similarity functions or the spatial range of entanglement (or semanticity) of the
representations. Below, we use this to quantify the generalization-identification tradeoff as a function
of e.

3 THEORETICAL RESULTS

We use the constant similarity function defined above to derive closed form solutions for the values
of ps and p; over a broad class of stimulus spaces and probability distributions over them.

Accordingly, we denote b, (¢) as the probability measure of the closed ball of radius & centered in p,
by () := v(B:(p)). Furthermore, let (b(¢)) = E, ., [b,(¢)] be the average measure of a ball of radius
ein M, and Var(b(¢)) its variance. The variance term Var(b(e)) captures how the probability mass of
e-balls varies across space. Intuitively, this measures the heterogeneity of the stimulus space—that is,
how differently ‘crowded’ regions are, which, in turn, compromises similarity judgments. Additional
assumptions and notations are described in Appendix[A.2]

Theorem 1 (2-item tests). Let (M,d, X, v) be a separable metric probability space. If, for every
p € M, b, is absolutely continuous on every closed sub-interval of [0, 00), then, for the noise-free
constant similarity function g = ge.o it holds that

ps(e) = 5 + () — (4(e))? — Vax(b(e)), ®
pr(e) = 1= 3 b(e)). @

The proofs can be found in Appendix [A.3]

These results have implications for neural architecture design and quantify how much identification
performance must be sacrificed to gain generalization ability. These results, being independent of
model choices, provide multiple insights on how pg, p; depend on the resolution ¢ and on their
relation.

First, note that the variance of the ball volume appears in Equation (3] as a term responsible for
decreasing the probability of success in the similarity test. This happens when the probability distri-
bution is non-uniform or the space is heterogeneous (as for a manifold with boundary). Spaces which
are homogeneous (in Haar measure) with uniform probability distributions will have Var(b(g)) = 0,
hence performing similarity tests on them will be easier. Therefore, models will perform better on
uniform data manifolds (such as rotations), than on manifolds with varying density (such as natural
images).

The specific values of p;(¢) and pg(e) can vary depending on the space chosen. However, assuming
Var(b(e)) = 0, they are both parametrized by (b(¢)), which is always a non-decreasing function of
e from O to 1. This means that, in the (pg, pr) plane, there is a “universal” Pareto curve relating
identification to generalization accuracy that is independent of M and v (Figure [2h). Indeed, as
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we will show in Section ] the distance of empirical performances from the Pareto front directly
quantifies the additional ‘difficulty” introduced by the heterogeneity of the stimuli space (Figure [2b).

This curve exhibits three regimes as a function of the ball’s
resolution €.

Low ¢ regime. For small resolutions, the similarity func- 1.04 .\ (b(e))

tions act like Dirac deltas, meaning that representations do .
not interfere with one another and thus are perfectly distin-
guishable (p; ~ 1). However, small resolutions mean that SN
the model is able to recognize two objects as similar only
if they are very close, limiting generalization (pg ~ 0.5,
chance level).

o
©
®

o
©

o
N

Medium ¢ regime. Increasing ¢ elicits the similarity-
identification tradeoff: As ¢ increases, the similarity mea- 5
sure for more distant stimuli becomes more robust, and a=o08 .~
thus the structure of the space can be more accurately rep- o5l . —~
resented. However, this comes at the cost of nearby stimuli ‘ ‘ ‘ ‘ ‘
becoming more similar, thereby producing interference 0.5 Soi'rs‘nilarit)?gest ps 0.8 0.9
that decreases py. Importantly, ps reaches a maximum at |

(b(e)) = 3, i.e. when the average ball covers half of the 104
space.

Identification test p,

o
o

o
©

regime. Once e increases beyond (b(¢)) > 2, the
cases in which stimuli interfere d(x1, p) < €, d(x2, pg <e
outweigh the ones in which the probe is too far away
d(z1,p) > €,d(z2,p) > €, resulting in a decrease in both
ps and py.
The effect of noise. The result of Theorem[T]can be read-
ily extended to take into account the presence of nonzero
noise outside the resolution region.

Var(b(e))

d o

o
©

Identification test p,
o
o

o
o

Theorem 2 (Noise). Under the same assumptions of The- 0:51
orem[l] for the two-item similarity and identification tests 05 0.6 0.7 08 0.9
with constant similarity functions g = g..n with noise Similarity test ps

level A > 0 it holds that

1 1-A Figure 2: a. The region in (pg,pr)

ps(e,A) = 5T ﬁ((b(@) —(b()®)), (5 plane where the model’s performances
+ lie (Theorem [I). The black line is pa-

2—(1-2){()) ] (6) rameterized by the resolution € and rep-
2+2A resents the behaviour of the model in

pr(e,A) =

. . homogeneous spaces. b. Effect of het-
Proof. The proof can be found in Appendix[A.4] O erogencity Var(b(=)) on the similarity

test performance.
The effect of noise can be appreciated in Figure [Za as a
monotonous decrease in both pg and p;.

Processing of multiple stimuli. The foregoing analyses may provide a formal account of why
humans and large neural networks alike exhibit dramatic processing constraints in simple tasks (e.g.
visual working memory tasks and numerosity judgments), that demand simultaneous processing of
multiple stimuli (Campbell et al.,2024)). On the one hand, these tasks typically demand generalization
(e.g., the processing of stimuli that involve arbitrary combinations of features, such as color, shape
and position). On the other hand, performance is typically evaluated based on identification accuracy
by identifying individual stimuli. The results above thus suggest that these competing demands run
up against the fundamental tension between identification and generalization accuracy, irrespectively
of scale or architecture (i.e., even in systems with billions of parameters, such as VLMs or the human
brain). When such systems intrinsically value and/or are trained explicitly for generalization, then
they will position themselves into the low-medium resolution/semanticity regime ( Figure[2h). Indeed,
we can show this is the case by explicitly deriving probabilities of success for n-item similarity and
identification tasks.
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Figure 3: a. Similarity-identification curves for different values of n and parameterized by b,(¢) €
[0,1], as described by Equations and . b. The colored curves correspond to similarity-
identification values as the number of inputs n varies, for some fixed values of b, (¢). ¢. Similarity
(top) and identification (bottom) dependence on n for different resolutions.

Theorem 3 (n-item tests). Under the same assumptions of Theorem([l} for the constant noise-free
(A = 0) similarity function g = g.,o we have that

n—1
nooy — 1 (1= bp(e))" " = (1 = by(e)"
P5(e) = Epy | =+ ; - : @
1-(1- bp(E))"}
pie) =Epun { . ®)
I( ) P nbp(s)
Proof. The proof can be found in Appendix [A.5] O

First, note that, despite their apparently complicated formulations, Equations (7) and (8) are poly-
nomials in b, (¢) for any fixed n and, given their non-linearity, the expected value over the probes
cannot be simplified in general. Thus, for simplicity, we focus on the homogeneous case where
by(e) = b(e) Yp € M and E disappears.

Under this assumption, both similarity and identification performances are once again parameterized
by b(e), yielding universal pareto curves independent of M. Figure [3p shows the shape of the
Pareto front for different values of n. As a sanity check, note that, as the resolution goes to b(g) = 0,
performance approaches perfect identification for any number of simultaneous inputs with no capacity
to generalize p(0) = 1/n (chance level).

As shown in Figure [3[b,c), the mapping of one curve into the next is not “uniform”. For any fixed
e > 0, increasing the number of inputs quickly degrades both identification and generalization
performances. Furthermore, Equation (8) shows that for large n, p7 (¢) = (b(¢)n)~!: identification
performance decrease as 1/n with a rate given by b(e). For a model tasked with learning structured
representations of the input space, and thus optimizing for generalization (say, b(¢) =~ 1/2 for n = 2),
our analyses predict that the capacity to accurately process multiple representations at the same time
will be strongly constrained (Figure [3c).

Interestingly, the bottom panel of Figure Bt shows that the probability of success in the similarity test
is non-monotonic in n when b(¢) is small. Thus, when the model has to deal with a high number
of items, it is convenient for it to pick low resolutions. The cost, however, is paid by the significant
increase in error for low numbers of items.

These observations provide an elegant explanation for why even large neural network models struggle
with multi-object reasoning Campbell et al.|(2024)): they likely have developed representations that
support generalization, but this brings a 1/n decrease in identification probability as the number n
of objects increase, thus generating the striking capacity limits observed in both humans and large
vision-language models. In the next section, we provide empirical evidence that neural networks
obey these constraints, first in a simple toy model, and then in multiple large scale networks.
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4 TOY NEURAL NETWORK IMPLEMENTATION

Figure 4: Emergent resolution and tradeoff in

toy architecture. (pg, py) results for the toy model

a b, Ly \ (a) of Section 4| with 50 inputs. b. The orange
S L curve shows the average training trajectory for a
et purely reconstruction loss. The orange insets show
the learned (average) similarity function at two
epochs. The gray and dashed lines show the curves
of Theoremﬂ] with noise levels A = 0, 0.1, respec-
tively. The red curve shows the average training
trajectory when the loss is based on the similarity
Pure reconstruction  tegt on a circle while the purple one is trained on
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We start from the toy architecture of [Elhage et al.|(2022)), that permits a direct comparison with
the analyses above. The input vector z € R, , whose entries we identify with features, is linearly

encoded by W € R™*!, decoded by W, and then the ReLU activation function o is applied
elementwise f(z) = o(W T W) (Figure 4h). When trained with reconstruction MSE loss and
sparse inputs, this model displays the phenomenon known as superposition: features associated
with input dimensions are represented as orthogonally (or dissimilarly) as possible to minimize their
interference in reconstruction (Elhage et al.;,|2022)). This, in turn, means striving for good identification
performance and thus the capability of processing a large number of features simultaneously.

We contrast this with the effect of inducing the model to learn representations with simple forms of
metric (semantic) structure. To do so, we consider two spaces of stimuli made of [ points {x1,...,2;}
equally spaced in the interval [0, 1]: a (flat) circle, with distance d(z, y) = min(|z—y|, 1—|x—y]|), and
a segment, with distance d(x,y) = |z — y|. The model was trained to perform 3-items similarity tests
(as explained in Section [2) on the metric space by encoding its points, the stimuli, as {-dimensional
one-hot vectors. Given this last assumption, the i-th column of W, w;, can be interpreted as the
latent embedding of x;, and the model’s output f(z;); = a(w;rwi) := g(;, ;) as the non-negative
similarity between x; and x;. The model was trained to convergence 10 times and, for each epoch,
and we recorded the average similarity and identification ratios pg, p; of Equations (I)) and (2) using

the learned g.

Figure shows the resulting training trajectories for three different runs in the similarity-
identification plane: the run corresponds to trainings with pure reconstruction loss, in red
the run with pure similarity task loss on the circle and in purple on the segment. In all cases, we
used /| = 50 stimuli, a hidden dimension of m = 10 and repeated the experiment 10 times. See
Appendix for additional details.

As expected, when the network is trained only on reconstruction loss, there is no improvement in
ps but a steady increase in p;. Features are arranged as orthogonally as possible but, due to the low
number of hidden dimensions, some interference between them remains. If features are arranged on a
line, visualizing the learned similarity function g(x, -) for a fixed x at the last training step shows
that it is close to being a Dirac delta on x, with smaller-scale random-like noise on other features.
Estimating this noise scale A and using that in the equations given by Theorem [2} shows that the
corresponding dashed curve accurately predicts the value of p; at which the training stops.

In contrast, when the network is trained on the semantic task, Figure E}) shows that (starting from
the bottom left corner) both pg and p; increasing up until the “boundary” is reached, after which
similarity begins to decrease. Note that the learned similarity functions g(z, -) for a fixed z = 0.5
(the red insets) exhibit a transition from noise to a semantic function that respects the structure of the
circle. Furthermore, this structure also exhibits sensitivity to resolution: the model arranges features
associated with points further than a certain threshold to have a negative inner product, which is then
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mapped to zero by the ReLU activation. Moreover, we see that this resolution decreases as training
progresses, resulting in an increase of p; and a decrease in pg.

Not surprisingly, the neural network does not learn constant similarity functions (Section [2)), and thus
the predictions given by Theorem[I] (in gray) only provide a qualitative prediction. However, the
learned similarity function g(x, -) appears to be approximately linearly decaying with distance on
the circle. Based on this observation, we can analytically derive the values of pg and p; for linearly
decaying similarities in a circle, finding formulae that approximate Theorem T}

Proposition 1 (Linear decay). On the flat circle [0, 1] with d(x,y) = min(jJz — y|,1 — |z — y|)
sampled with the uniform measure, for the two-item similarity and identification tests with linearly

. . . . _ d(r, )
decaying similarity g(x,y) = max (07 1— Ty)

ps(e) = 5 +06) — (5 10w ) WP m© = 1- (- Tog2e). O
with b(e) = 2e, £ € [0,1/2].

The proof can be found in Appendix[A.6] Figure @ shows how the resulting curve (in black) provides
a good fit to the empirical result. Finally, when the metric space is a segment instead of a circle
(purple), the heterogeneity given by the presence of the two endpoints results in an overall reduced
ps. as qualitatively predicted by Theorem T}

5 EVIDENCE OF TRADEOFF IN REALISTIC NEURAL NETWORKS

Finally, we summarize experiments and results showing that the effects described above are also
observed in networks at scale. We report details on implementations and additional results in

Appendix[A.7]

CNNs and evolutionary distance We fine-tuned a ResNet-50 model (He et al., 2016) to analyze the
generalization-identification tradeoff on bird species images (Wah et al., 2011) using a weighted loss
function £ = (1—«) Lig+a Lgm, Where « controls the bias between identification and generalization.
Both tasks employed a triplet design (z1, x2, and p): for generalization, the model judged which
reference is evolutionarily closer to the probe, using phylogenetic distances as ground truth (Kumar|
et al.| 2022); for identification, it determined the reference species to which the probe belonged. We
found that increasing «, as a manipulation of similarity, improved generalization while reducing
identification accuracy, conforming to the relationships reported above (Figure [Sh). Models with
higher « values consistently showed enhanced generalization, confirming the ability to manipulate
this tradeoff through both training and threshold parameters.

a CNN finetuning b LLM year similarity task C VLM spatial similarity task
[ A was born in z;. B was born in 2. Who was born closest to p?
o gemma-2-2b-it
10 = :
1o :“}W‘ NMMMNH_MWW MWM‘
o8 “o0 i |
0.9 o T1 ry T T2 1
a=0 i Llama-3.2-3B-Instruct
. a=05 ' 10

A
08 ;" N 06 §us}~*~/‘”" M‘ ‘M\w[\ww‘ ‘MMM‘ ‘MWP‘"‘ Which black shape is closest to the red X?

gemma-3-12b-it Qwen2.5-VL-7B-Instruct P rnvlus't

| Ty Ty A 1
\‘\ / 111 Qwen2.5-7B-Instruct
07 \ a=095 / 04 “DJ H H ‘

Identification task p;
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Figure 5: Empirical resolution tradeoffs across realistic neural architectures. (a) a CNN fine-
tuned on bird recognition shows tradeoff between species identification and generalization to phylo-
genetic similarity as a function of the weights of generalization « and of the resolution e. (b) LLMs
tasked with comparing years of birth show different regimes of performances, compatible with the
existence of an emergent finite resolution (~ 70-80 years). (c) VLMs tasked with spatial proximity
tasks show decreased accuracy beyond a model-specific resolution scale. Details in appendix M
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Year similarity task in LLMs. We then evaluated three open-source large language models (LLMs)
(gemma-2b-it (Team et al.,|2024)), Llama-3.2-3B-Instruct (Grattafiori et al., |2024) and Qwen2.5-7B-
Instruct (Yang et al.| [2024))) on a similarity task requiring temporal discriminations on the scale of
years. The models were prompted to answer questions of the following type “A was born in x1. B
was born in xo. Who was born closest to p?”°, where A, B are randomized names, a center year ¢
is sampled in [1500, 1700], z; = ¢ — dx, x93 = ¢ + dz for dz € {20,50, 100,200} and p = ¢ + dp
takes all years in [¢ — 300, ¢ + 300]. Figure [5p shows the decision curves indicating the empirical
probability with which each model responded with the correct answer. This shows that the models’
year representations closely follow our assumptions about resolution: all models showed decreased
performance as probe dates moved further from reference dates, similar to what we observed with
exponentially decaying similarities with noise g(z1,z2) = exp(—pd(z1,x2)) + A (bottom row).

Spatial similarity task in VLMs. Finally, we tested the effects of resolution in two Vision-Language
Models (VLMs) (gemma-3-12b-it (Team et al.| 2024} Team) [2025a) and Qwen2.5-VL-7B-Instruct
(Yang et al.| |2024; [Team| 2025b)), on a visual spatial similarity task. Four different black shapes
were presented to the model in the four corners of the image (Figure [5t), together with a red cross in
a random position. The model was tasked with indicating which black shape was closest to the red
cross, and we recorded accuracy for each sampled position. Figure Sk shows that, once again, the
models display clear resolution limits in their generalization capabilities, similar to those observed in
the year task.

6 DISCUSSION

We have provided a formal theory of the tradeoff between identification and generalization in systems
constrained by finite semantic resolution, building on the formal framework of |[Frankland et al.
(2021)). Our closed form expressions reveal a universal Pareto front determined by resolution scale
and stimulus geometry—a fundamental limit that is obeyed in empirical tests of model architectures
both small and large. Our analysis identifies the optimal resolution for generalization, at which
semantic similarity functions tile approximately half of the representational space in discrimination
tasks (Sorscher et al. 2022). Beyond this point, increasing resolution impairs identification as
representations become too broadly generalized. Below it, representations are discriminable, but fail
to capture meaningful similarities, thus compromising generalization. This offers an explanation for
why both humans and state-of-the-art neural network models struggle with multi-object reasoning,
despite their vast computational resources and remarkable capabilities in other domains.

The spontaneous emergence of this tradeoff across architectures—from minimal ReLU networks to
vision-language models—is consistent with our analyses and our empirical findings, that are unified
under the hypothesis that finite semantic resolution constitutes an information-theoretic constraint
rather than implementation artifact. This, in turn, provides a rigorous mathematical foundation for
understanding capacity limits in both artificial and biological systems.

Our theory also indicates how competing representational strategies of intelligent systems are tied
to one another: identification demands sharp, distinct representations, while generalization requires
coarse, overlapping ones. This tension is echoed in neuroscience literature on representational
efficiency (coding related items compactly) versus processing efficiency (handling multiple items
jointly) (Petri et al.}[2024; 2021} Lesnick et al.;[2020). Our analyses also provide a formal explanation
for empirical observations in neural population coding (Cohen et al.| [2020; |Ganmor et al., [2015)),
where semantically clustered "neural thesaurus" structures emerge as optimal strategies under noise
constraints, connecting to earlier models of representational redundancy (Curto et al.,[2013).

Limitations and future work. The present model assumes non-compositional representations, which
cannot capture phenomena such as hierarchical syntax, analogical reasoning, or arithmetic—where
representations are formed by systematic combinations of simpler parts (Lake and Baroni,|2023}; [Fodor
and Pylyshynl [1998). Extending our framework to compositional coding schemes remains an impor-
tant future direction. Future work could further extend our results by: (1) using synergy—redundancy
decompositions (Proca et al.,[2024) to examine how generalization shapes joint encoding of multiple
stimuli; (2) developing resolution-based diagnostic tools for optimizing neural architectures by target-
ing task-appropriate generalization-identification balance; and (3) testing whether neural manifolds
from fMRI or electrophysiology exhibit comparable resolution bounds, potentially establishing
semantic resolution as a measurable link between neural geometry and behavioral generalization.
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Reproducibility Statement. We describe our theoretical framework with complete derivations
and provide detailed descriptions of all experimental settings, including architectures, datasets, and
training procedures. Hyperparameters, random seed usage, and evaluation protocols are specified in
the appendix. Code and data preprocessing scripts to reproduce all results will be released publicly
upon publication, but can be found now at the anonymous repository https://anonymous.
4open.science/r/generalization—-7155.

REFERENCES

Declan Campbell, Sunayana Rane, Tyler Giallanza, Camillo Nicoldo De Sabbata, Kia Ghods, Amogh
Joshi, Alexander Ku, Steven Frankland, Tom Griffiths, Jonathan D Cohen, et al. Understanding the
limits of vision language models through the lens of the binding problem. Advances in Neural
Information Processing Systems, 37:113436-113460, 2024.

Dongyu Gong and Hantao Zhang. Self-attention limits working memory capacity of transfomer-based
models. ArXiv, 2024. URL https://arxiv.orqg/pdf/2409.10715.

Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
language models are blind: Failing to translate detailed visual features into words. arXiv preprint
arXiv:2407.06581, 2024.

Sunayana Rane, Alexander Ku, Jason Baldridge, Ian Tenney, Tom Griffiths, and Been Kim. Can
generative multimodal models count to ten? In Proceedings of the Annual Meeting of the Cognitive
Science Society, volume 46, 2024.

Chenhui Zhang and Sherrie Wang. Good at captioning bad at counting: Benchmarking gpt-4v on
earth observation data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7839-7849, 2024.

Martha Lewis, Nihal V Nayak, Peilin Yu, Qinan Yu, Jack Merullo, Stephen H Bach, and Ellie
Pavlick. Does clip bind concepts? probing compositionality in large image models. arXiv preprint
arXiv:2212.10537, 2022.

George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

Steven J Luck and Edward K Vogel. The capacity of visual working memory for features and
conjunctions. Nature, 390(6657):279-281, 1997.

Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioral and brain sciences, 24(1):87-114, 2001.

G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Parallel distributed processing: Explorations
in the microstructure of cognition. MIT Press, 1986.

Geoffrey E. Hinton. Learning distributed representations of concepts. In Proceedings of Eighth
Annual Conference of the Cognitive Science Society, 1986. URL | https://www.cs.toronto,
edu/~hinton/absps/families.pdfl

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1-2):159-216, 1990. doi: 10.1016/0004-3702(90)
90007-M.

Adina L. Roskies. The binding problem. Neuron, 24, 1999. URL https://www.cell.com/
neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%$3A%2F%
2Flinkinghub.elsevier.com$2Fretrieves2Fpii%$2FS089662730080817X%
3Fshowall%3Dtrue.

Klaus Greff, Sjoerd van Steenkiste, and Jiirgen Schmidhuber. On the binding problem in artificial
neural networks. ArXiv, 2020. URL https://arxiv.orqg/pdf/2012.05208.

Anne M Treisman and Garry Gelade. A feature-integration theory of attention. Cognitive psychology,
12(1):97-136, 1980.

10


https://anonymous.4open.science/r/generalization-7155
https://anonymous.4open.science/r/generalization-7155
https://arxiv.org/pdf/2409.10715
https://www.cs.toronto.edu/~hinton/absps/families.pdf
https://www.cs.toronto.edu/~hinton/absps/families.pdf
https://www.cell.com/neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue
https://www.cell.com/neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue
https://www.cell.com/neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue
https://www.cell.com/neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue
https://arxiv.org/pdf/2012.05208

Under review as a conference paper at ICLR 2026

Roger Shepard. Stimulus and response generalization: Deduction of the generalization gradient from
a trace model. Psychological Review, 1958a. URL https://psycnet.apa.org/record/
1959-09346-001}

Roger N Shepard. Toward a universal law of generalization for psychological science. Science, 237
(4820):1317-1323, 1987.

Roger N Shepard. Stimulus and response generalization: deduction of the generalization gradient
from a trace model. Psychological Review, 65(4):242, 1958b.

Chris R. Sims. Efficient coding explains the universal law of generalization in human percep-
tion. Science, 360, 2018. URL https://www.science.org/doi/10.1126/sciencel
aagllls.

Joshua B. Tenenbaum and Thomas L. Griffiths. Generalization, similarity, and Bayesian inference.
Behavioral and Brain Sciences, 24(4):629-640, August 2001. doi: 10.1017/s0140525x01000061.

Nick Chater and Paul MB Vitdnyi. The generalized universal law of generalization. Journal of
Mathematical Psychology, 47(3):346-369, 2003.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure
of word senses, with applications to polysemy. Transactions of the Association for Computational
Linguistics, 6:483-495, 2018.

Joshua Engels, Eric ] Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
features are one-dimensionally linear. arXiv preprint arXiv:2405.14860, 2024.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651-34663, 2022.

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories
in mechanistic explanation of neural networks. Advances in neural information processing systems,
36:27223-27250, 2023.

Adam Shai, Lucas Teixeira, Alexander Oldenziel, Sarah Marzen, and Paul Riechers. Transformers
represent belief state geometry in their residual stream. Advances in Neural Information Processing
Systems, 37:75012-75034, 2024.

Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation
manifolds in large language models. arXiv preprint arXiv:2505.18235, 2025.

Steven M Frankland, Taylor Webb, Richard L. Lewis, and Jonathan D Cohen. No coincidence,
george: Processing limits in cognitive function reflect the curse of generalization, Oct 2021. URL
osf.io/preprints/psyarxiv/cjuxb_vl.

Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior of
spaces of natural images. International journal of computer vision, 76:1-12, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

R Duncan Luce. Individual choice behavior, volume 4. Wiley New York, 1959.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 770-778, 2016. doi: 10.1109/CVPR.2016.90.

11


https://psycnet.apa.org/record/1959-09346-001
https://psycnet.apa.org/record/1959-09346-001
https://www.science.org/doi/10.1126/science.aaq1118
https://www.science.org/doi/10.1126/science.aaq1118
osf.io/preprints/psyarxiv/cjuxb_v1

Under review as a conference paper at ICLR 2026

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
UCSD Birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

Sudhir Kumar, Morgan Suleski, Jessica M Craig, Anna E Kasprowicz, Maxwell Sanderford, Mingfeng
Li, Glen Stecher, and S Blair Hedges. TimeTree 5: An expanded resource for species divergence
times. Molecular Biology and Evolution, 39(8):msac174, 2022. doi: 10.1093/molbev/msac174.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dabhle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Gemma Team. Gemma 3. 2025a. URL https://goo.gle/Gemma3Report.

Qwen Team. Qwen2.5-vl, January 2025b. URL https://gwenlm.github.io/blog/
gwen2.5-v1/.

Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. Neural theory for few-shot learning of
naturalistic stimuli. Proceedings of the National Academy of Sciences, 119(12):e2112410119,
2022. doi: 10.1073/pnas.2112410119.

Giovanni Petri, Sebastian Musslick, and Jonathan D. Cohen. An information-theoretic approach
to reward rate optimization in the tradeoff between controlled and automatic processing in
neural network architectures. eLife, 13, 2024. URL https://elifesciences.org/
reviewed—-preprints/93251.

Giovanni Petri, Sebastian Musslick, Biswadip Dey, Kayhan Ozcimder, David Turner, Nesreen K
Ahmed, Theodore L Willke, and Jonathan D Cohen. Topological limits to the parallel processing
capability of network architectures. Nature Physics, 17(5):646-651, 2021.

Michael Lesnick, Sebastian Musslick, Biswadip Dey, and Jonathan D. Cohen. A formal framework
for cognitive models of multitasking. PsyArXiv, 2020. URL https://osf.io/preprints/
psyarxiv/7yzdn_vll

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry
of object manifolds in deep neural networks. Nature Communications, 11(1):746, 2020. doi:
10.1038/s41467-020-14578-5.

Elad Ganmor, Ronen Segev, and Elad Schneidman. A thesaurus for a neural population code. eLife,
2015. URLhttps://elifesciences.org/articles/06134.pdf.

Carina Curto, Vladimir Itskov, Katherine Morrison, Zachary Roth, and Judy L. Walker. Combinatorial
neural codes from a mathematical coding theory perspective. Neural computation, 25(7):1891—
1925, 2013.

Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
learning neural network. Nature, 623,2023. URL https://www.nature.com/articles/
s41586-023-06668-3.

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28, 1998. URL https://www.sciencedirect.com/science/article/
abs/pii/0010027788900315)

Alexandra M Proca, Fernando E Rosas, Andrea I Luppi, Daniel Bor, Matthew Crosby, and Pedro AM
Mediano. Synergistic information supports modality integration and flexible learning in neural
networks solving multiple tasks. PLoS computational biology, 20(6):¢1012178, 2024.

12


https://goo.gle/Gemma3Report
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://elifesciences.org/reviewed-preprints/93251
https://elifesciences.org/reviewed-preprints/93251
https://osf.io/preprints/psyarxiv/7yzdn_v1
https://osf.io/preprints/psyarxiv/7yzdn_v1
https://elifesciences.org/articles/06134.pdf
https://www.nature.com/articles/s41586-023-06668-3
https://www.nature.com/articles/s41586-023-06668-3
https://www.sciencedirect.com/science/article/abs/pii/0010027788900315
https://www.sciencedirect.com/science/article/abs/pii/0010027788900315

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 LLM USAGE

LLMs (ChatGPT) were used to aid in polishing the paper after writing.

A.2 TECHNICAL DETAILS

In this section, we formalize the technical aspects and assumptions required for the results of the
paper.

We assume (M, d, ¥, v) to be a separable metric measure space equipped with the standard metric
space topology, the Borel o-algebra ¥ generated by balls in M and with a probability measure v.
This measure v, which is such that (M) = 1, determines how we are sampling stimuli from the
stimulus space M.

In the following derivations, we will make use of two objects:

* by(e) = v(B:(p)), the measure of the ball of radius ¢ centered in p;

* S, the push-forward measure on [0, co] of the distance function in p, d,(-) = d(p, -) i.e.,
for any measurable subset of R, S,,(E) = v(d, ' (E)).

Note that b,, is the cumulative distribution function of S, as S, ((—00, €]) = S,([0,€]) = b,(¢) and
therefore it is non-decreasing. We also have that b, (00) := lime_,o0 by(g) = 1.

We assume that b, is an absolutely continuous function on every closed sub-interval of [0, co0)
i.e. such that for every e > 0 there exists § > 0 such that for any finite set of disjoint intervals

(a1761)7"'5(aNaﬁN)

N

N
DB =) <6 = 3 (0y(8) ~ bpl) <.

i=1

By Nielsen|(1997) (Theorem 20.10), the absolute continuity of b, (¢) implies that .S}, is an absolutely
continuous measure w.r.t. the Lebesgue measure p. This implies, by Radon-Nikodym theorem, that
Sy admits a density f, S, = [ fdu, with f(g) = b/, (¢) almost everywhere. In fact, we can think of
absolute continuity as a stronger notion of continuity, as the fundamental theorem of calculus for
Lebesgue integrals (Folland| (1999), Theorem 3.35) tells us that, on every interval [c, d], b, is almost

everywhere differentiable, and by, (¢) — by(c) = [ b}, (r)du(r).

We now see how these assumptions allow us to notably simplify the derivations of the probability
of success in both similarity and identification tests, while still not being too restrictive. In fact,
most non-pathological cases of interest, like probability distributions with differentiable densities on
manifolds, satisfy the assumption.

Lemma 1. Let X be the random variable of the correct answer to the n-item similarity or identifica-
tion test X = argmin {d(z1,p),...,d(xn,p)}. If, for every p € M, b, is absolutely continuous on
every closed interval [c,d] C [0,00), then P(|X| > 1) = 0.
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Proof. Let | X| be the cardinality of the set X.

|X‘ >]. Z( ) xl, ):"':d(xk,p)vd(karl»p) >d(x1,p),...,d(:€n,p)>d(x1,p))

k=2
ey

VPt = = donp <Z<> dorp) = d@zp) @

¢
(1) [ Pt = dtan) = it Z( ) | Pt = nau)
(v

M:

ES
Il
N

[
M:

k=2
3
= )/ S, ({rHdu(r) = @

k=2
where the last equality comes from the absolute continuity of S, w.r.t. 41, as u({r}) = 0. O

This result tells us that, under the assumptions, there is a probability of 0 that there are multiple
correct answers to the similarity and identification tests. Therefore, in the following derivations we
will always only have to deal with the case | X| = 1.

A.3 PROOF OF THEOREMII

A.3.1 SIMILARITY TEST

Proof. Let us derive the probability of succeeding in the similarity test in the case of 2 items. The
following proof will be a subcase of the more general one for n items but, given its complexity, it is
useful to analyze this subcase separately.

Let z1, 29, p be sampled independently from M according to the probability measure v. Let

X (x1,x2,p) = argmin d(z;,p). Notice that X can have three different values
ie{1,2}

X (z1,%2,p) = {1} if d(x1,p) < d(x2,p)
X (w1, 20,p) = {2} if d(w2,p) < d(1,p)
X(xlv‘r%p) = {132} 1fd(x17p) = d($27p)

In this last case, when x1, x5 are equidistant from p, any answer to the test will be correct. By
Lemma|l} we only need to focus on the first two as the probability that more than one answer is
correct is 0.

We have that )

= ZP(Y =ilX =i)P(X =1i). &)
Let us now rewrite the probability P(Y = ¢|X = 4) by conditioning over all possible results of the
samplings of z1, x2 and the probe p.
For this, given the independence assumption, we assume that the event (1,2, p) is an element of
the measure space (M2, v®3) equipped with the standard product measure.

PO =X =) = [ (Y = ilX =i (01,22, p))dP(or, 22, p}X = 1),
M3

where dP(x1, x2,p|X = i) is the conditional measure of the sampling of 1, 22, p given the event
that X = ¢ which, by Bayes theorem, can be rewritten as

1[X (21, x5, p) = i]dv(z:1)dv(x2)dv(p)

P(X =) '
where 1[X (z1,x2,p) = 1] coincides with the conditional law of the (deterministic) variable
X|(z1, z2,p).

dP(z1,29,p|X =) =




Under review as a conference paper at ICLR 2026

Replacing this in Equation (5) we get
2
P(X = V) = Z/ P(Y = i|X = i, (21,02, p)) L[X (21, 7, p) = il (@1 )dv(zs)du(p) (6)
=1/ M?

The independence of the samplings of x; and x2 means that all indices are equally likely to be the
correct answer P(Y = ¢|X =14) =P(Y = j|X =j) Vi,j € {1,2}.

P(X=Y)= 2/ PY =1,X =1, (x1,22,p))1[X (21, x2,p) = 1]dv(z1)dv(z2)dv(p) (7)

M3
g9(x1,p)
=2 / / dv(z9)dv(x1)dv(p) 8)
M JM JxoeM:d(xza,p)>d(z1,p) g(xlap)+g(x2ap) : '

Given the fact that we are considering constant similarity functions g(x,y) = ge.0(z,y) which
depend only on the distance between x and y, g(z,y) = g(d(x,y)), we perform the following change
of coordinates d(x1,p) — 71, d(x2,p) — T,

= = 174 T T 79(711)
P -v) =2 f ) [ a5y [ asgSiies o

where S, is the pushforward measure induced by the distance function from the probe p.

We decompose Equation (9) into two cases: a. when 1 > ¢ and thus both items fall outside the
resolution region of the probe p, and b. when r; < ¢ and thus the closest item falls inside.

a. In the first case, given that o > r1, we will have that both x; and x5 are too far from the probe to
be recognized as similar, resulting in both numerator and denominator in Equation (9) to be 0. Here
we adopt the convention 0/(0 + 0) = 1/2 to describe the model being maximally uncertain in its
decision.

2/M dv(p) /(8700] dSp(Tl)/(rl,oo} %dSp(rg) = /M dv(p) /(a,oo] /(Tl?oo] dSp(r1)dSp(rs)

To compute this integral, we leverage the almost-everywhere differentiability of b, and apply the
fundamental theorem of calculus

dSp T dSp ro) = 17bp 1 dSp 1 10
/(mo]/(w (r1)dS, (r2) /E’m]( (r1))dS, (1) (10)
B ey [ b)) (1 ()2

= [ 0= np i) = | E=E ] BEREE

b. When r; < ¢ the first item will be considered to be similar to the probe ¢g(r1) = 1, while the
second can be both similar and dissimilar.

1
2 d dS dS. _ 12
/M v(p) (0,e] p(ﬁ)/(mm] p(r2)1+g(r2) (12

1
:2/ du(p)/ dSp(Tl)/ §d5p(r2)+2/ du(p)/ dSp(rl)/ dSy(re). (13)
M [0,¢] (r1,¢] M [0,¢] (e,00]

I 1I

The term I, just like above, can be computed in the following way

/M dv(p) /[078] dS,(r1) /(7-1,5} dSp(re) (14)
- / dv(p) / (bp(e) — by(r )V, (1) dp(ry) (15)
[0,e]

:/ bp(g)QdZ/(p) (16)
M 2
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The term II is simply given by 2 [, b,(¢)(1 — b,(e))dv(p).

Summing together a. and b. we arrive at the following:

1 1
B(Y = X) = / S =500 + 5by(e)? + 2y (€)1 — by(e))dv(p) (7)
M
1
_ / 5 bple) = by(e)2dup). (18)
M
We obtain the formula for the probability of succeeding the similarity test:
1
P(Y = X) = 5 + (b(e)) — (b(e)?), (19)

A.3.2 IDENTIFICATION TEST

Proof. The identification test can be seen as a subset of the similarity test, in which the probe
is uniformly picked among the input stimuli. This means that the correct response will be
X(x1,22,p) = {i € {1,2} : z; = p} and both answers will be correct only in the case that z; = x.

Retracing the first steps outlined in Appendix [A.3.1] we find that the probability of the model being
correct will be

P(Y = X) = 2/M > %IP(Y =1|X =1, (z1, 20, p)) 1[X (21, T2, p) = 1]dv(1)dr(z2)

pE{z1,z2}
(20)
_ g(xlaxl)
B /M2 g(x1, 1) + g(xg,xl)dy(xl)dy(xl)' 21

Note that we used the fact that p = 2y with probability 1/2 and p = x5 with probability 1/2. Given
that g(z,z) = 1 and, by the definition of metric space, d(z,y) = 0 <= =z = y, we change
coordinates d(x1,x3) + 7 and rewrite Equation as

1
,00] 1+ g(T)

When r > ¢, the second item does not interfere with the probe p = x; and the model will choose z;
with certainty, while, if » < ¢, g(r) = 1 and it will instead be maximally uncertain.

PX=Y)= y dv (1) /(0 dSy, (r). (22)

1 1
y dv() /(0100] Tg(r)dsm (r) = o dv(zy) /(o,s} idSm(r) + /du(a:l) /(s’oo] 1dS,, (r).
(23)
L 1
=5 y by, ()dv(x1) + /M(l — by, (€))dv(z1) =1— §<b(5)> 24)
[

A.4 PROOF OF THEOREM[2|

The proof proceeds by retracting the proof of the noiseless case with some adjusted constants.

We start from the similarity test success probability, as rewritten in Equation (9). Once again, the
integral can be decomposed into two cases: a. when r; > ¢ and thus both items fall outside the
resolution region of the probe p and b. when r; < € and thus the closest item falls inside.

a. When o > r1 > ¢, we have that g(r1) = g(r2) = A and thus the ratio g(r1)/(g(r1) + g(r2)) =
1/2 resulting in the same term of Equation (11) (1 — b,(¢))?/2.

b. When r; < ¢ and 2 < ¢ both items are similar to the probe and thus we get the same contribution
of the term by, (£)? /2 in Equation (16).
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The only difference from the proof of the noiseless case is when r; < € and ro > €. In this case, the
first item is similar to the probe while the second is not, but the noise erodes the probability of the
model picking the first item. Therefore we get the following contribution to P(Y = X).

1 2
2 [ vy /H S, (1) /( Ay =g, B b))

Putting all the terms together we get

P = X) = [ 086 +3h(0 + b0 - BB e

1+A
1 2
B /M 2 + <1+A ; 1) (bp(e) — bp(g)z)dl’(p) (26)
= 5+ Tra () — () @

For the identification test, we start from Equation @ Now, when r > ¢, the second item is outside
of the resolution region of x; but the noise will still make the model’s decision not certain.

1
PY =X) = /M dv(zq) /(0700] Tg(r)dsml(r) (28)
1 1
_ /A dv(a) /(075] 510 (1) + / dv(z1) /(m] xS (). (29)
=5 [ b + g [ (= @avlen) = g — 5 R 0O GO

A.5 PROOF OF THEOREM[3]

Lemma 2.

j=1

Proof. Let us call f,, the left-hand side of the identity and g,, the right-hand side. We prove the result
by showing that the generating functions of the series ( fy,)n, (gn )n are equal.

Let us start with (f,,)p-

F(z) = i fn2" i zn: ( > —gl(1—z)v I = i_o: i <n> l,scj(l —x)" " (31)

n=0 n=0 j=1 j=1n=j 17

S Dol (A TER ) I ot & Dol (o IR ) I
7j=1 J n=j J j=1 J k=0 J
oo !L‘j ) ) 1 oo 1 . j

= (1 — A — = 33
ij( @+ 2) (lz+xz)2j<1z+xz> 33)
Jj=1 j=1

. 1Og<]‘ - 17§ia:z> . log(ljz_Jerz) (34)

B l—z+2z2 l—z4az’

where we used the generating function identity for the binomial, see (Graham et al.,|1989) (Equation
5.56) and the power series expansion of log(1 — x).
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Let us proceed in the same way for g,,:

o0 o0 n 1
G(z) = Z gn2" Z Z 1-—z)"7 —(1—2)")" (35)
n=0 n=0 j=1 ‘7
= Z - Z(l —x)" I — Z(l —xz)" 2" (36)
j=1 J n=j n=j
:Zf (1—ax)™7 Z(z—zx)" —Z(z—zx)" (37)
j=1 J n=j n=j
> 1 (g — zx)d — ap)d
=> - ((1 ik A k) ) (38)
= l—z4+z2x 1—-—2z+4z2z
1 X1 fz—zz)] X1 ,
=T -1 = - —(z — zz)’ 39
s (2 () -2k )
j=1 Jj=1
“log (1-522) log(l— 2+ 20)  log (1155
= =— (40)
1—2z422 1l—2422
O
A.5.1 SIMILARITY TEST
Recall that in the n-item similarity test, we are sampling independently n stimuli zy,...,z, and a

probe p and we ask the model to find which among the stimuli is the closest to p. Recall that Lemma([]
tells us that the probability of having more than a correct answer is 0.

Retracing the first steps in Appendix [A.3] we find that
=Y P(Y =X =i)P(X =) 1)

(42)

By the symmetry induced by the independence of the sampling, we see that P(Y = | X = i) =
PY =jX =j)=PY =1/X =1)Vi,jand P(X = i) = P(X = 1) Vi, and thus we can
restrict to the case when the closest stimulus is the first one.

[P’(Y:1|X=1):/ PY =1|X =1,(z1,...,&n,p))dP(x1,...,2n,p|X =1)  (43)
M x M

_ _ o ]l[X(.Z‘l,...,,’L‘n,p):H
_/]wanP(Y_ 1|X - 17(371,--.,.%“7]7)) ]P(X: 1) dV(LL']) dV(l‘n)dl/(p)
(44)
P(Y = X) s
= n/ P(Y = 1|X = 17 (x17 . ,mn;p))]l[X(xh . ,l‘,,“p) = 1]dy(;1;1) . dl/(a?n)du(p)
M7 x M
(46)
= n/ dv(p) du(xl)/ / Mdy(@) o du ().
M M dzap)>d(arp)  Jd@np)>d(zp) 2oie1 9(TisP)
47)

Given that g is a constant similarity function g(z,y) = g..0(, y) which depends only on the distance
between x and y, we perform the change of coordinates d(z;, p) — r; with S, being the pushforward
measure induced by the distance function from the probe p.

= =n v T TQ) - T 75](7'1)
PX=Y)= /Md (p) /[O,oo] dS,( 1)/(%00] dSy(rs) /(Tl’oo] dS,( n)Z;l:lg(m). (48)
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We now consider two cases separately. a. If r; > ¢, no item falls close enough to the probe and thus

g(x;,p) = 0Vi=1,...,n and the model’s response is random:
1
n/ du(p)/ dSy(r1) / dSy(ra) - / dSy(rn)— (49)
M (e,00] (r1,00] (r1,00] n
— [ [ @y tas,i0 = [ o) [ 0= b0 by radutn)
M (g,00] M (e,00]

(50)

Notice now that b, absolutely continuous implies that (1 — b,(r1))" ! is absolutely continuous
and, by Lebesgue’s theorem, it is differentiable almost everywhere and the fundamental theorem of
calculus holds (see Appendix[A.2). We thus deduce that

[ [ =t [ e[S T s

€

:/ wdy() (52)
M

n

b. If 71 < ¢, then the closest stimulus is similar to the probe g(r1) = 1 and we write

1
n dv(p dS,(r / dsS,(r / dSy(rp) ——=7——- (53)
/M ) [0.€] lr1) (r1,00] b(72) (r1,00] 2 )1+Zi:2 g(ri)

Each item ¢ > 1 can fall either inside of B.(p) and contribute to the denominator of the decision
function, or fall outside. Given that the denominator only depends on the number of stimuli which
fall in B.(p) and not on their index, we can write Equation (53)) as

= n—1 . ki1 n-1—k 1
[ amS (") nEr e [ 6@ b e 65
_nM pk:O k pie k41 Jio,e P PATLIT Bl /B
_ (-1 o1k bp(e)**
= n—1 1 n—1— 1
~ ()1 n—ip (2}
-/ du(p)jz_:l(j>j(1—bp(s)) by(e), (58)

where the last is performed by re-indexing j = k + 1 and applying the property of the binomial

coefficient (7}~ =1 (7 ). Applying Lemma | we rewrite the result in a more convenient form

/MZ i 4 k_ ) (59)

k=1

and summing Equation (52)) with Equation (59), we get our final expression

ps(e) = Epvy

% n 7; (1- bp(é))””“k— (1= by(e))"
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A.5.2 IDENTIFICATION TEST

Re-tracing the first steps of Appendix [A.5.T]and Appendix [A.3.7]

P(X =Y) —n/ > %}P’( =1X =1,(x1,. .., 20, p))UX (21, ..., T0,p) = Udv(z1) - - - dr(z,,)

pE{T1,...;xn}

(60)
g(«Tlaf’Jl)
_ J d ood n 61
/]W V<x1) /Mn—1 g(xlaxl) +Z?:2 g(l'i,l'l) V(xz) V(I ) ( )
1
[ dSy(rs) -+ | dSy(rn) —e—— 62
M V(xl) /(0,00] P(T2) /(0,00] P(T ) 1+ Zi:Q g(’l"i) ©

Just like we saw in the proof of the similarity test, here any stimulus different from the probe will
contribute to the denominator of the decision function if and only if it falls in B.(x1). Moreover, the
decision function depends only on the number of such stimuli and not on which ones contribute to
the denominator. Therefore, we can write

P(X=Y)= /M dv(zy kz_: ( > (e)F(1 - bxl(e))”’kk%ﬂ (63)

= [ wien? ; : (J)bm ()11 = by, ()" (64)

where we used the property of the binomial coefficient (" 11) = %(?)

A.6 PROOF OF PROPOSITION[]]

We want to compute pg and p; for the uniform measure on the flat circle M = [0, 1] with d(x,y) =
min(|z — y|,1 — |z — y|) for the linearly decaying similarity function with resolution ¢, g(r) =
o (1—1), where o(2) = max(z,0).
First, note that for the uniform measure, we have that
2e ife <
bz(e) =v(B = e

i.e. the length of the interval [—e, €] on the circle. Accordingly, we have that the measure S, is such

that
E) [E Y (r)dp(r) = 2u(E),

Similarity test We start from Equation @]) and, once again, consider the different cases. If
r1,72 > €, there is no difference from the constant case: the probe has similarity 0 with both x
and o, therefore the model is maximally uncertain. This term will contribute (1 — b(¢))?/2 to
P(Y = X).

If r1 <eandry > ¢, there is no difference from the constant case as the probe is similar to 1 with
no interference from 3. We get a contribution of 2b(¢)(1 — b(¢)).

- b(E)v

N Do —
|

it £C[0,4].

If ry <e,r9 <e,weneedto compute
177’1/5
2 dS(r / dS(r / / r1)du(r
/M ) [ asta) ST +gr2 ot S g T 1y ()
(66)

= 8/ (e —ry)log(2)du(re) = 8- %52 log(2) = (2¢)?*1og(2) = log(2)b(e)%. (67)
[0,¢]
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Putting together the three contributions, we get
1

P(Y = X) = % —b(e)+ 5b(s)2 +2b(e) — 2b(e)? +1log(2)b(e)? = %—i—b(e) —(3/2—1og(2))b(e)*.

Identification test We start from Equation @]) and consider two cases. If 7 > ¢, then x5 does not
interfere with the probe and thus the model will choose x; with probability 1. Just like the constant
case, we get a contribution of 1 — b(g).

If r < g, we need to compute

1 1
/(o,a] Tg(r)ds(r) = /(0 : 2mdu(r) = 2log(2)e = log(2)b(e). (68)

In total, we get

P(Y = X) =1 — b(e) + log(2)b(e) = 1 — (1 — log(2))b(e).

A.7 DETAILS ON NUMERICAL EXPERIMENTS

All the code used to produce the results can be found in https://anonymous.4open,
science/r/generalization—7155.

A.7.1 ToOY MODEL

The architecture of the toy model we used is the following linear bias-less autoencoder with a
nonlinearity at the end

f(z) =o(W W),
where ¢ is the ReLU activation function o(x) = max(z,0) and W € R™*!,

In both the pure-reconstruction and semantic experiments, the inputs were chosen to be | = 50
one-hot vectors © = e; Vi = 1,...,m. The hidden space dimension was chosen to be m = 10.

The pure reconstruction experiment is performed by minimizing the MSE loss between input one-hot
and its reconstruction through the network

l l
Lice = Y [les = oW TWe) [ = |les = o (W Twy)||*
=1

=1

In the semantic case, the loss is built in the following way. Three different indices i, j, k are picked
randomly and their associated one-hots are built e;, e;, e.. Then, we compute the ratio of similarities
o (w] wy) o(w; wy)
D; = = = , D; =
o(w,; wg) + o(wj wy)

o(w; wg) + J(w;wk) ’

The index 7 € {#, 7} of the correct answer is computed by taking the minimum between d(x;, z)
and d(z;, zx), where the distance function is given as a training input in the form of a distance
matrix. The loss, finally, is computed by taking the Negative Log Likelihood Loss (NLL) between
the distribution (D;, D;) and the one hot vector encoding the correct response.

1
Lsm = —zD;.
97

For all experiments, each epoch is made of 2000 samples, with batch size 128. The models are trained
for 500 epochs with the Adam optimizer, with learning rate 0.0007 and 0 weight decay.

Given that random vectors in high-dimensional space tend to be close to orthogonal, biasing the
model towards high p;, we initialize the weight matrix with i.i.d. uniform in the interval [0, 2].

At each epoch, the model is evaluated by performing similarity and identification tests. 1,000 triplets
(4,4, k) (k € {1, j} for the identification) are extracted, and the average D); is recorded to obtain the
values of pg and p; shown in Figure[d] The average similarity functions shown in the figure’s insets
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Figure 6: Visualization of the distance matrix (left) and the learned similarity matrices through
training for the circle (top row) and the segment (bottom row).
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Figure 7: Different training trajectories of the toy model with different latent dimensions, visualized
as in Figure 4]

are obtained as ¢;(j) = o(w; w;) forevery j € 1,...,1. Leveraging the symmetry of the circular

structure, each vector g; is circularly shifted so that the index ¢ goes to the center of the circle g; — g;.
Finally, we take the average over i, § = % Zizl Ji-

We show the distance matrices for the circle and line experiments, together with the full learned
similarity matrices for a single run in Figure 6]

In Figure[7, moreover, we see the results of the three different trainings for three values of the neural
network’s latent dimension. As it increases, we see how the model is able to have less interference
between representations, signified by p; being able to reach higher values. Visualizing the average
learned similarity functions and estimating the noise value, we are able in all cases to predict the
maximum p; using Theorem 2]

A.7.2 CONVOLUTIONAL NEURAL NETWORK FINE-TUNED ON EVOLUTIONARY DISTANCES
AMONG BIRD SPECIES

Experimental setup. To test our theoretical predictions in a realistic computer vision setting, we
fine-tuned a ResNet-50 model (He et al.,|2016)) pre-trained on ImageNet. We used the Caltech-UCSD
Birds-200-2011 dataset (Wah et al.l 2011), which contains 11,788 images of 200 bird species, paired
with evolutionary distance data from the TimeTree database (Kumar et al.,[2022)). The experimental
design involved two tasks with a consistent triplet-based evaluation format:

10
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* Identification task: Given images of two reference species (x1, x2) and a probe image,
determine which reference species the probe belongs to.

 Similarity task: Given images of two reference species (z1, z2) and a probe species (p),
determine which reference species is evolutionarily closer to the probe.

Using a contrastive loss that encouraged embedding bird images closer to their evolutionary relatives,
we fine-tuned the model using a composite loss:

L= (1-a)Llig+ oL,

where L4 is a cross-entropy loss for species identification, and Lg, aligns the embedding space
with evolutionary distances. The parameter « controls the balance between identification and
generalization objectives. During evaluation, we defined similarity using a threshold e on feature
distances, where distances below e indicated similarity. This allowed us to systematically study the
generalization-identification tradeoff by varying both « and e.

Evolutionary Similarity Matrix (Log-Enhanced Colormap)

1 g

100 150
Species

Ruequig 1009/ oines

Species

a=0.75

Auejwig Areuonnjong

0.0 o 5 100 15 0 50 100 150
1 11 21 31 0 51 61 7 Species Species

Species

Figure 8: Evolutionary similarity between species obtained from (a) bird phylogeny and (b) the
feature vector similarities as « is tuned.

Training details. We trained the model for 15 epochs using SGD with momentum 0.9, weight decay
le — 4, and an initial learning rate of 0.001, reduced by a factor of 0.1 when validation performance
plateaued. To handle GPU memory constraints, we used a batch size of 8 with gradient accumulation
over 4 steps (effective batch size 32). We tested « values ranging from 0.0 to 1.0 with several random
seeds (42-46) to ensure robust results.

The birds dataset was split 64-16-20% for training, validation, and testing, with an additional 15% of
species held out completely as out-of-distribution test data. The evolutionary distance loss (L) was
implemented by computing pairwise distances in feature space and aligning them with normalized
evolutionary distances derived from the phylogenetic tree. This explicitly encouraged the CNN to
map visual features into a space that preserved evolutionary relationships as shown in Figure 8]

Theoretical connections. Our experimental framework directly maps to the theoretical constructs
in Miller’s Law. The identification task measures p; (probability of correct identification), while the
similarity task measures pg (probability of correct similarity judgment). The threshold € corresponds
to the resolution parameter in our theoretical framework, controlling the ball measure b(e) that
determines which items are considered similar.

Evolution during training. We monitored how the identification-generalization constraints evolved
during training by tracking both scores across epochs. With a = 0 (pure identification objective),
models rapidly optimized for identification at the expense of generalization. As « increased, especially
beyond 0.5, models traced distinct trajectories through (ps, pr) (or G-I) space, with higher « values
showing earlier and more pronounced shifts toward generalization.

11
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The final equilibrium position in G-I space was primarily determined by «, with higher a values
reliably producing models with better generalization capabilities. Out-of-distribution testing revealed
that models with higher o values demonstrated substantially better generalization to unseen bird
species, confirming that the similarity-based training objective promotes more robust feature learning
that captures fundamental biological relationships rather than superficial correlations.

a
Similarity Improvement Relative to a = 0 Identification Improvement Relative to a = 0

Threshold ()

— =0

— =10
— =20
— =30
£=40
£=60

Similarity test (ps) Improvement (%)
Identification test (p;) Improvement (%)
. \

Alpha (@) Alpha (a)

Percent Change in Similarity Scores (ps) Relative to a = 0 Percent Change in Identification Scores (p,) Relative to a = 0

=0

Alpha (a)
Alpha (a)

% Change Relative to a

10.0 20.0 40.0 50.0 60.0 10.0 20.0 40.0

30.0
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30.0
Threshold (&)

Figure 9: (a) Average generalization and identification performance for different fixed thresholds
(¢), showing how threshold choice affects the generalization-identification trade-off. (b) results for
parameter space swipe in both (g, ), highlighting the presence of a narrow band of ¢ values for
which both generalization and identification show relative improvements with respect to o = 0.

Results. As shown in Figure Eh, the bird CNN exhibits a clear tradeoff between generalization and
identification. We expand these results in Figure[9] in which we show the performance improvement
for generalization (a, left) and the the decrease (a, right) in identification relative to the baseline o = 0
(pure identification), as a function of « and a few fixed values of e. Figure[Ob provides a parameter
scan, highlighting the presence of a critical scale that provides maximal improvements on both tasks.
In fact, for low thresholds (¢ < 10) and high thresholds (¢ > 50), generalization performance remains
similar across all « values, with minimal impact on identification. For threshold ¢ = 20, we see
generalization performance improvement at the cost of identification performance. For threshold
€ = 30, we see score improvements for both tasks, which are then lost for larger ¢ values. Indeed, for
thresholds between (20 < € < 50), we observe significant generalization improvements for higher
« values, accompanied by corresponding identification performance decreases, especially in the
a > 0.8 range. This confirms our theoretical prediction that increasing resolution (larger ¢) shifts the
balance toward better generalization at the expense of identification accuracy.

A.7.3 LLMS PERFORMING DATE-OF-BIRTH IDENTIFICATION VS SIMILARITY TASK

Evidence of resolution

Experimental setup. We investigated whether large language models exhibit semantic resolution
when processing time information. We tested three models: gemma-2-2b-it 2024), Llama-
3.2-3B-Instruct (Grattafiori et all,2024), Qwen2.5-7B-Instruct (Bai et al., [2023) on the following

12
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Figure 10: Similarity and identification performances of three LLMs on the interval of years
[800, 1599

task. The models are fed the system prompt "You are a useful chatbot assistant."
and are asked to respond to the prompt "A was born in x.

B was born in y. Who
was born closest to p?

Answer with a single name."

The variables A,B,x,y and p are generated in the following way:

1. A central year c is sampled uniformly from the set of integers {1500, 1501, ..., 1699};

2. For each value dz € {20, 50,100,200}, we fix x = ¢ —dx and y = c +dx with probability
0.5 and x = ¢ +dx and y = ¢ —§z with probability 0.5.

. For each pair x,y chosen in this way, we run the prompt with every p = ¢ + dp,dp €
{c =300, c + 300}.

The prompt with each value of p is ran 20 times, randomizing the variables
A and B, which are two different names sampled from the list [ "Alice",
"Bob", "Charlie", "David", "Eve", "Frank", "Grace", "Heidi",
"Ivan", "Judy", "Karl", "Liam", "Mallory", "Nina", "Oscar",
"Peggy", "Quentin", "Rupert", "Sybil", "Trent", "Uma",
"Victor", "Walter", "Xander", "Yvonne", "Zach", "Abigail",
"Benjamin", "Catherine", "Daniel", "Elena", "Frederick",
"Gabriella", "Henry", "Isabella", "Jack", "Katherine",
"Lucas", "Mia", "Nathan", "Olivia" 1].

4.

If the answer of the model belongs to the set of sampled names, then we check whether it is equal to
the name associated to the smallest year.

We repeat the process, sampling ¢ 40 times and averaging the results. What we obtain is a function

from the probe displacement w.r.t. c, dp € [—300,300] to the probability of the model decision
function E.[D;(x,y)] € [0,1].

Results. Figure b in the main text displays the probability of correct answers for both models
across date displacements. Several observations support our theory:

1. Both models show high performance when probe dates are near reference dates (small
displacements), but performance degrades as displacement increases.

2. The pattern follows our theoretical assumptions: the performance approaches chance level

(0.5) when the reference years are close and the probe falls between them and when the
reference years are far and probes is far form both.

Similarity and identification tasks

Experimental setup. We then performed similarity and identification tasks to gauge the perfor-
mance of these three models as the number of inputs provided increases.

13
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A * L] * L] v

Figure 11: Examples of image inputs for the spatial resolution task.

For each number of inputs n € {2,4,...,100}, we sample 1,000 prompts built in the following way

* Similarity task: "Al was born in xl1. A2 was born in x2."4---+"
An was born in xn." Who was born closest to p? Answer with
a single name.

¢ Identification task: "A1 was born in x1. A2 was born in x2."+4---4"

An was born in xn." Who was born in p? Answer with a single
name.
Here A1, ... ,An are names sampled from a list of 200 names similar to the one described above, and
x1,...,xn are random integers in the interval [800, 1599]. The probe p is a random integer in the

same interval for the similarity task and, for the identification tasks, it is randomly chosen from the
set {x1,...,xn}.

Results. In Figure |10} we plot the performances obtained for the three models. Overall, we see that
all models perform well on the identification task, with its performance decreasing with a small rate.
Instead, for the similarity task we see how the performances are definitely worse, never being greater
than 0.7 but decreasing in a much graceful way than the 1/n of random chance.

Interestingly, if we focus on Gemma and Qwen, we are able to qualitatively observe the same
behavior of the theoretical model in Figure [3] of the main text. In fact, it appears that Qwen is
favouring generalization, resulting in a good similarity task performance for a low number of items
but a steeper decrease for increasing n. Gemma, instead, achieves close to chance similarity task
performances when n is small but decreases less rapidly when n increases. If we map this to our
theoretical investigation, it appears that Gemma is adopting a smaller € than Qwen, a conjecture
which is corroborated by the identification test performance decreasing faster for the latter.

A.7.4 VLM TASKS

To assess the presence of finite semantic resolution in vision—-language models (VLMs), we designed
several spatial similarity/identification tasks using synthetic images. Two VLMs were evaluated:
gemma-3-12b-it and Qwen2.5-VL-7B-Instruct. Besides collecting the models’ textual
responses, we also logged the scores (logits) of selected, task-depending tokens, to inspect how each
model ranks different token choices before softmax.

Evidence of resolution

Dataset. We generated 1,000 images, each featuring four black stencils positioned at fixed loca-
tions on a white background. The stencils, chosen randomly between square, triangle, heart, star,
varied specific position across images. Additionally, each image included a randomly placed red X,
designated as the "target" (see Figure [[T). We logged the distance between the target and each stencil.

Experimental setup. We showed each image to both Qwen and Gemma, together with a query

prompt: "The picture contains four black shapes: a square, triangle,
heart and a star. There is also a red X. Which black shape is the
closest to the X? Respond with only the shape’s name.". We logged the

models’ textual responses and the token scores for square, triangle, heart and a star. For each
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sampled location, we recorded the model’s output and computed an accuracy map. A smoothed
version of this map was obtained by averaging over local neighbourhoods to reveal confidence
gradients.

Results. Figure |5¢ (main text) shows the accuracy maps for both models. In both cases, we
observe a central region around each shape where the model is consistently correct, surrounded by
transition zones where accuracy rapidly deteriorates. This behavior mirrors the emergence of a finite
resolution scale: when the red cross is placed sufficiently far from all reference shapes, the models
are increasingly unable to resolve which object is closest.

Moreover, the spatial structure of the confusion regions reveals differences between models:
gemma-3-12b-1it exhibits a tighter high-confidence core, while Qwen2 .5-VL-7B-Instruct
shows broader transition bands, suggesting differences in their spatial encoding fidelity. The smoothed
accuracy maps further support the hypothesis that VLMs implement a distance-dependent proximity
function with finite support, analogous to the semantic similarity functions described in the theoretical
model (Section [2).

Color similarity task

Dataset. We created 5,000 images, each containing between 4 and 12 colored squares. Each square
was labeled with a unique letter, serving as an identifier, as shown in Figure[I2] The colors of the
squares were generated using the HSV color model, where the hue (H) was assigned randomly, while
saturation (S) and value (V) were maximized to ensure vivid and bright colors.

[ | [ |
A B C D
mEEe er el
[ |
1 J) K L
(a) (b) (c) (d)

Figure 12: Examples of image inputs for the color similarity task. Panels (a) and (d) represent two
reference images, with four and twelve colours respectively. Given the reference image (a), a query
image for the identification task (color occurring in the reference image) is depicted in panel (b), and
a query image for the similarity task (color not occurring in the reference image) is depicted in panel

(©).

Experimental setup. In this task, we presented the models with a pair of images and a textual
query. The first image, dubbed reference image, contained 4 to 12 labelled color squares, as described
above. The second image (query image) displayed a single, centered square, whose color was either
one of the colors occurring in the reference image (identification task) or a completely random
one (similarity task). In both case, the query was: "In the first picture there are
squares of different colors, labelled with uppercase letters. the
second picture there is only one target square. Identify which
square in the first picture is most similar to the target square
in the second picture. Reply with the corresponding letter and
nothing else.". We logged the color of the target square and its similarity with respect to all
colors occurring in the paired reference image. We also logged the model’s textual answers and the
token score for each single letter (possible answers).

Results. In Figure we show the similarity task and identification task performances as func-
tions of the number of input colored squares. In particular, we observe a decreasing identification
performance which, in both models, can be fitted using the theoretical curve of TheoremE] (main
text). The fitted parameter b(¢) suggests the presence of a larger effective resolution for Gemma and
a lower one for Qwen.
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Figure 13: a. Similarity and identification probabilities for the color test explained in Appendix
In the identification plot, the dashed curves are the theoretical curves of Theorem@ (main text) fitted
to the data. b. Token score associated to the wrong responses, as a function of the hue distance
from the probe color. The dotted black lines represent the resolution values b(e)/2 fitted using the
theoretical resul of Theorem@ (main text) on the identification performances.

To investigate this resolution, we gather, for each experiment, the scores each model assings to the
letters associated to the wrong colors (thus excluding the most similar ones), together with their
circular hue distance from the probe color, normalized to [0, 0.5]. We only take the scores associated
to the wrong colors in order to avoid the bias of the correct answer having always low distance.

We plot the model score as a function of the distance in Figure[T3p. Both model display an emergent
resolution, with points with large hue distance being concentrated around a fixed “noise” level.
Moreover, the scores for Gemma display a step-like shape suggesting that the learned similarity
function may be similar to the constant similarity assumed in the theoretical analysis. Qwen, instead,
shows a more continuous decrease in score-similarity with distance, more in line with the results
obtained in Appendix [A.7.3] and associated to higher performances (Figure [T3p).
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