

BOUND BY SEMANTICITY: UNIVERSAL LAWS GOVERNING THE GENERALIZATION-IDENTIFICATION TRADEOFF

Anonymous authors

Paper under double-blind review

ABSTRACT

Intelligent systems must form internal representations that support both broad generalization and precise identification. Here, we show that these two goals are fundamentally in tension with one another. We derive closed-form expressions proving that any model whose representations have a finite semantic resolution, impairing long-range similarity computations, must lie on a universal Pareto front linking its probability of correct generalization p_S and identification p_I . We extend this analysis to general input spaces and to parallel processing scenarios, predicting a sharp $1/n$ collapse in the capacity of processing multiple inputs at the same time. A minimal ReLU network reproduces these laws: a resolution boundary emerges during learning, and empirical (p_S, p_I) trajectories closely match the theory for linearly decaying similarity. Finally, we show that the same limits appear in far more complex systems, including a convolutional neural network and state-of-the-art vision–language models, indicating that learned finite-resolution similarity are broad and foundational informational constraints rather than toy-model artifacts. Together, these results provide a precise theory of the generalization–identification tradeoff and clarify how semantic resolution shapes the representational capacity of deep networks and brains alike.

1 INTRODUCTION

Background. Modern neural networks are surprisingly good at performing a variety of tasks, rivaling and often surpassing human performance. However, they still exhibit striking limitations in their capabilities to process information, often when they need to process multiple objects at the same time (Campbell et al., 2024; Gong and Zhang, 2024; Rahmazadehgervi et al., 2024; Rane et al., 2024; Zhang and Wang, 2024; Lewis et al., 2022). Similar limitations are also commonly observed in humans when performing working (short-term) memory tasks Miller (1956); Luck and Vogel (1997); Cowan (2001).

Neural networks employ distributed representations (Hinton et al., 1986; Hinton, 1986; Smolensky, 1990) to process inputs. They enable efficient generalization in unseen situations through, for instance, compositionality, but at the same time suffer from the binding problem —the inability to maintain associations between features when processing multiple inputs simultaneously (Roskies, 1999; Greff et al., 2020; Treisman and Gelade, 1980).

Cognitive science offers a rich literature about the ways in which internal representations can help to generalize. The celebrated Shepard's Universal Law of Generalization (Shepard, 1958a; 1987) states that representations should be arranged in the "psychological space" in a structured way, which echoes the real structure of the entities that are represented. This law has received through the years numerous empirical validations and theoretical support (Shepard, 1958b; Sims, 2018; Tenenbaum and Griffiths, 2001; Chater and Vitányi, 2003). This fundamental idea resonates with recent works in neural network interpretability, showing that feature vectors in the latent spaces of large neural networks are often organized in rich geometric structures (Arora et al., 2018; Engels et al., 2024; Liu et al., 2022; Zhong et al., 2023; Shai et al., 2024; Modell et al., 2025).

Frankland et al. (2021) proposed that these two facts—the striking information processing limitations, and the generalization through structured representations—are strongly related, and are at the heart of a fundamental trade-off which puts in tension generalization versus identification of representations.

054 **Our contribution.** We investigate the fundamental tradeoff between representational fidelity and
 055 distinctness under finite semantic resolution. More precisely, we provide:
 056

- 057 1. A framework that quantifies the exact Pareto front between identification and similarity perfor-
 058 mances, demonstrating how finite resolution creates an inescapable tradeoff;
- 059 2. Closed-form expressions for this tradeoff across multiple inputs, noise levels, and varying resolu-
 060 tions, revealing a sharp $1/n$ collapse in multi-item (n) processing capacity;
- 061 3. Empirical validation showing how this resolution boundary self-organizes during neural network
 062 training, with empirical trajectories closely following our theoretical predictions;
- 063 4. Confirmation that these limits persist across architectures from simple ReLU networks, to CNNs,
 064 to vision-language models, establishing emergent finite resolution as a universal constraint rather
 065 than a model-specific artifact.

067
 068 2 SETUP
 069

070 **Stimulus space and similarity functions.** Assume A to be a model processing stimuli coming
 071 from a set S the structure of which is encoded by a distance function d_S . For example, S can be the
 072 space of color hues or days of the week, naturally arranged in a circle, the set of positions of an item
 073 in physical space, or more complex topological spaces, such as a torus, or the Klein bottle of natural
 074 image patches (Carlsson et al., 2008).

075 The model processes the stimuli coming from S and builds representations by mapping them into a
 076 latent (or psychological) space M with a map $\Phi : S \rightarrow M$, which we assume to be a bijection: this
 077 induces naturally a distance d on M via $d(x, y) := d_S(\Phi^{-1}(x), \Phi^{-1}(y))$. In M , the representations
 078 are processed and compared through a non-negative similarity function $g : M \times M \rightarrow \mathbb{R}_+$. For
 079 example, if M is a vector space, we can choose $g(x, y) = h(\Phi(x)^\top \Phi(y))$ with $h(x) \geq 0 \forall x$. If
 080 $h(x) = \exp(-x)$, this encompasses, but is more general than, the standard self-attention mechanism
 081 of a transformer (Vaswani et al., 2017)¹.

082 The specific form of g is not uniquely specified by the distance d , allowing for different degrees
 083 of “semanticity” (how the metrical structure d is represented by g) with significant impacts on
 084 model capabilities. Localized functions $g_x := g(x, \cdot)$ reduce interference between representations,
 085 permitting more reliable distinction between them and thus accurate simultaneous processing of
 086 multiple representations. Conversely, more distributed g can reflect long-range relations of S , thus
 087 enhancing generalization capabilities, at the cost of potential interference among distinct but nearby
 088 stimuli. In the following, corroborated by seminal works in the cognitive psychology literature
 089 (Shepard, 1987), we assume for simplicity that g depends only on the distance between the stimuli:
 090 $g(x, y) = g(d(x, y))$.

091
 092 **Measures of identification and generalization accuracy.** Following Frankland et al. (2021), we
 093 introduce models of two simple tasks that have previously been used to measure identification and
 094 generalization accuracy, and that we use in our theoretical analyses below.

095 We measure the generalization capabilities of A using a *similarity task* in which the model is asked
 096 to perform similarity judgments that respect the metric structure of the stimulus space. The model
 097 is shown n stimuli $x_1, \dots, x_n \in S$ and an additional one, called the *probe*, $p \in S$. It is then asked
 098 to decide which of the n stimuli is the closest to p according to the distance d . Let $(x_1, \dots, x_n), p$
 099 be sampled independently from M according to a probability measure ν . We call X the random
 100 variable encoding the index of the closest item to the probe, i.e. $X = \arg\min_{i=1, \dots, n} d(x_i, p)$. Intuitively, the

101 decision function represents how the model assesses the evidence when determining which input is
 102 most similar to the probe. It formalizes the idea that the model’s choice depends on relative similarity
 103 strengths rather than absolute values. We call Y the random variable indicating the model’s decision,

104
 105 ¹Our similarity function includes common ML metrics: cosine similarity in embedding models, dot-product
 106 attention in transformers, and implicit similarity in contrastive learning (InfoNCE, triplet loss). While these
 107 mechanisms differ in implementation, they all measure semantic relatedness between representations and are
 108 subject to the resolution limits we identify in this work.

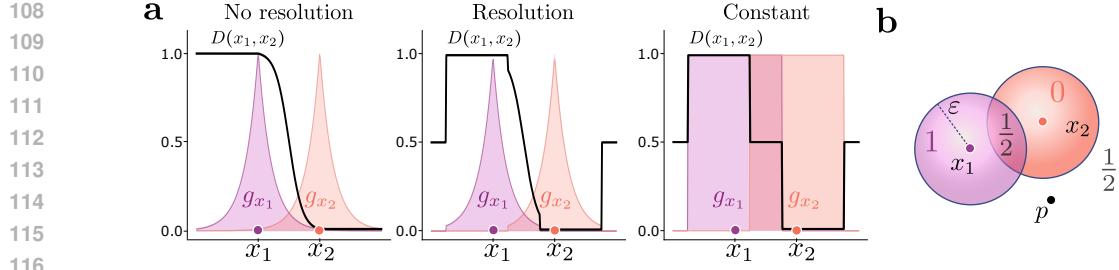


Figure 1: **a.** On the left, exponential similarity functions centered on two stimuli $x_1, x_2 \in M$, with the black line indicating the decision function $g(x_1, p)/(g(x_1, p) + g(x_2, p))$ with no resolution (see Section 2 for explanation). On the center and right, the same quantities are shown in the case of the presence of finite resolution. Notice that the model becomes uncertain for probes far away from stimuli x_1, x_2 . **b.** Visualization of the constant similarity functions of Definition 1.

that we model as follows (Luce, 1959):

$$D_i(x_1, \dots, x_n; p) := \mathbb{P}(Y = i | (x_1, \dots, x_n, p)) = \frac{g(x_i, p)}{\sum_{k=1}^n g(x_k, p)}. \quad (1)$$

We quantify the overall generalization capability as the probability of the model making the correct decision, i.e. $p_S := \mathbb{P}(Y = X)$.

The *identification* task is used to measure how accurately stimuli can distinguish from one another. The task is the same as the similarity task, but with the exception that the probe is always one of the input stimuli $p \in \{x_1, \dots, x_n\}$. This will result in the decision function of Equation (1) always being of the form

$$D_i(x_1, \dots, x_n; x_j) := \mathbb{P}(Y = i | (x_1, \dots, x_n, x_j)) = \frac{g(x_i, x_j)}{\sum_{k=1}^n g(x_k, x_j)}. \quad (2)$$

If now $X(x_1, \dots, x_n; x_j) = j$, we write $p_I := \mathbb{P}(Y = X)$ to indicate the probability of the model succeeding in the identification task. Equations (1) and (2) can be interpreted, independent of probabilities, in terms of relative similarity, where p_S is taken to represent the average *relative similarity* of stimuli that are close compared to stimuli that are further apart. In the same way, p_I is the average relative similarity of equal stimuli compared to different stimuli.

Importantly, when $g(x_i, x_j) = \exp(-\mu d(x_i, x_j))$, and the decay rate for the exponential is taken to infinity ($\mu \rightarrow \infty$), both p_S and p_I approach 1 (perfect performance); that is, identification and generalization accuracy both benefit by maximizing decay rate. Critically, however, it has been observed empirically that virtually *any* loss of precision (i.e., resolution) in computing the similarity function introduces a fundamental tension –referred to as "Miller's Law" (Frankland et al., 2021)– between p_S (generalization) and p_I (identification accuracy) with respect to decay rate, wherein generalization benefits by *decreases* in decay rate that dramatically degrade identification accuracy (Figure 1a). Here, we provide a formal analysis of this effect, showing that it generalizes to learning in neural networks, where it imposes a fundamental constraint on the interaction between representations and efficiency of processing.

The effect of resolution.² To show this, we formally consider how a limit in the precision with which the model can compute a similarity function impacts both identification and generalization accuracy. Such a limit might arise from any number of factors: computational noise, finite precision, ReLU activations clamping negative correlations to zero (see Section 4), or imprecisely coded distant relationships. These can all be formalized as a *resolution* $\varepsilon > 0$ such that $g(x, y) \approx \Delta$ if $d(x, y) > \varepsilon$, where Δ is a noise parameter. As shown in Figure 1a, the resolution drastically affects decision boundaries (the **black** line): for probes sufficiently far from both stimuli, the decision function approaches 1/2 indicating maximal uncertainty. Resolution thus represents the model's inherent limitation in gauging low similarities between distant stimuli.

²Note on terminology: "resolution" (ε) in this paper strictly refers to the parameter controlling the distance threshold beyond which similarities collapse to noise level Δ . Higher ε values mean the model preserves similarity information across greater distances.

162 **Generalization-Identification Tradeoff (Miller’s Law).** To analyze this, we use a simplified
 163 similarity function. If $\mathbb{1}_A$ is the indicator function over the set A , and $B_r(x)$ is the closed ball
 164 of center x and radius r over M , $B_r(x) = \{y \in M : d(x, y) \leq r\}$, the similarity function can be
 165 defined as follows:

166 **Definition 1.** *The constant similarity function with resolution ε and noise Δ is $g_{\varepsilon; \Delta}(x, y) =$*
 167 $\mathbb{1}_{B_\varepsilon(x)}(y) + \Delta \mathbb{1}_{M \setminus B_\varepsilon(x)}(y)$.

169 According to this function, the model will judge two things to be similar ($g_{\varepsilon; \Delta}(x, y) = 1$) if and only
 170 if they are closer than a certain threshold $\varepsilon > 0$. Outside of this “resolution region” the similarity
 171 value is fixed to a noise value $\Delta > 0$.

172 This simplified model aligns with Shepard’s Universal Law of Generalization (Shepard, 1987),
 173 where similarity decays exponentially with distance: $g(x, y) = \exp(-\mu d(x, y))$. In Shepard’s
 174 formulations, the parameter μ controls the sensitivity to distance, with larger μ creating sharper
 175 similarity boundaries. This is conceptually similar to controlling the temperature parameter in a
 176 softmax function, in which lower temperatures induce sharper probability distributions, while higher
 177 temperatures make them more uniform. In our framework, ε serves an analogous role, controlling
 178 the distance of the similarity functions or the spatial range of entanglement (or *semanticity*) of the
 179 representations. In standard kernel terminology, ε plays a role akin to a kernel bandwidth, determining
 180 how decays with distance. Below, we use this to quantify the generalization-identification tradeoff as
 181 a function of ε .

183 3 THEORETICAL RESULTS

185 We use the constant similarity function defined above to derive closed form solutions for the values
 186 of p_S and p_I over a broad class of stimulus spaces and probability distributions over them.

187 Accordingly, we denote $b_p(\varepsilon)$ as the probability measure of the closed ball of radius ε centered in
 188 p , $b_p(\varepsilon) := \nu(B_\varepsilon(p))$. Furthermore, let $\langle b(\varepsilon) \rangle = \mathbb{E}_{p \sim \nu}[b_p(\varepsilon)]$ be the average measure of a ball of
 189 radius ε in M , and $\text{Var}(b(\varepsilon))$ its variance. The variance term $\text{Var}(b(\varepsilon))$ captures how the probability
 190 mass of ε -balls varies across space. Intuitively, this measures the heterogeneity of the stimulus space,
 191 that is, how differently ‘crowded’ regions are, which, in turn, compromises similarity judgments.
 192 Additional assumptions and notations are described in Appendix A.2.

193 **Theorem 1** (2-item tests). *Let (M, d, Σ, ν) be a separable metric probability space. If, for every*
 194 *$p \in M$, b_p is absolutely continuous on every closed sub-interval of $[0, \infty)$, then, for the noise-free*
 195 *constant similarity function $g = g_{\varepsilon; 0}$ it holds that*

$$197 p_S(\varepsilon) = \frac{1}{2} + \langle b(\varepsilon) \rangle - \langle b(\varepsilon) \rangle^2 - \text{Var}(b(\varepsilon)), \quad (3)$$

$$199 p_I(\varepsilon) = 1 - \frac{1}{2} \langle b(\varepsilon) \rangle. \quad (4)$$

201 The proofs can be found in Appendix A.3.

203 These results have implications for neural architecture design and quantify how much identification
 204 performance must be sacrificed to gain generalization ability. These results, being independent of
 205 model choices, provide multiple insights on how p_S, p_I depend on the resolution ε and on their
 206 relation.

207 First, note that the variance of the ball volume appears in Equation (3) as a term responsible for
 208 decreasing the probability of success in the similarity test. This happens when the probability distri-
 209 bution is non-uniform or the space is heterogeneous (as for a manifold with boundary). Spaces which
 210 are homogeneous (in Haar measure) with uniform probability distributions will have $\text{Var}(b(\varepsilon)) = 0$,
 211 hence performing similarity tests on them will be easier. Therefore, models will perform better on
 212 uniform data manifolds (such as rotations), than on manifolds with varying density (such as natural
 213 images).

214 The specific values of $p_I(\varepsilon)$ and $p_S(\varepsilon)$ can vary depending on the space chosen. However, assuming
 215 $\text{Var}(b(\varepsilon)) = 0$, they are both parametrized by $\langle b(\varepsilon) \rangle$, which is always a non-decreasing function of
 ε from 0 to 1. This means that, in the (p_S, p_I) plane, there is a “universal” Pareto curve relating

identification to generalization accuracy that is independent of M and ν (Figure 2a). Indeed, as we will show in Section 4, the distance of empirical performances from the Pareto front directly quantifies the additional ‘difficulty’ introduced by the heterogeneity of the stimuli space (Figure 2b).

This curve exhibits three regimes as a function of the ball’s resolution ε .

Low ε regime. For small resolutions, the similarity functions act like Dirac deltas, meaning that representations do not interfere with one another and thus are perfectly distinguishable ($p_I \approx 1$). However, small resolutions mean that the model is able to recognize two objects as similar only if they are very close, limiting generalization ($p_S \approx 0.5$, chance level).

Medium ε regime. Increasing ε elicits the similarity-identification tradeoff: As ε increases, the similarity measure for more distant stimuli becomes more robust, and thus the structure of the space can be more accurately represented. However, this comes at the cost of nearby stimuli becoming more similar, thereby producing interference that decreases p_I . Importantly, p_S reaches a maximum at $\langle b(\varepsilon) \rangle = \frac{1}{2}$, i.e. when the average ball covers half of the space.

High ε regime. Once ε increases beyond $\langle b(\varepsilon) \rangle > \frac{1}{2}$, the cases in which stimuli interfere $d(x_1, p) \leq \varepsilon, d(x_2, p) \leq \varepsilon$ outweigh the ones in which the probe is too far away $d(x_1, p) > \varepsilon, d(x_2, p) > \varepsilon$, resulting in a decrease in both p_S and p_I .

The effect of noise. The result of Theorem 1 can be readily extended to take into account the presence of nonzero noise outside the resolution region.

Theorem 2 (Noise). *Under the same assumptions of Theorem 1, for the two-item similarity and identification tests with constant similarity functions $g = g_{\varepsilon; \Delta}$ with noise level $\Delta \geq 0$ it holds that*

$$p_S(\varepsilon, \Delta) = \frac{1}{2} + \frac{1 - \Delta}{1 + \Delta} (\langle b(\varepsilon) \rangle - \langle b(\varepsilon)^2 \rangle), \quad (5)$$

$$p_I(\varepsilon, \Delta) = \frac{2 - (1 - \Delta)\langle b(\varepsilon) \rangle}{2 + 2\Delta}. \quad (6)$$

Proof. The proof can be found in Appendix A.4. \square

The effect of noise can be appreciated in Figure 2a as a monotonous decrease in both p_S and p_I .

Processing of multiple stimuli. The foregoing analyses may provide a formal account of why humans and large neural networks alike exhibit dramatic processing constraints in simple tasks (e.g. visual working memory tasks and numerosity judgments), that demand simultaneous processing of multiple stimuli (Campbell et al., 2024). On the one hand, these tasks typically demand generalization (e.g., the processing of stimuli that involve arbitrary combinations of features, such as color, shape and position). On the other hand, performance is typically evaluated based on identification accuracy by identifying individual stimuli. The results above thus suggest that these competing demands run up against the fundamental tension between identification and generalization accuracy, irrespectively of scale or architecture (i.e., even in systems with billions of parameters, such as VLMs or the human brain). When such systems intrinsically value and/or are trained explicitly for generalization, then they will position themselves into the **low-medium** resolution/semanticity regime (Figure 2a). Indeed, we can show this is the case by explicitly deriving probabilities of success for n -item similarity and identification tasks.

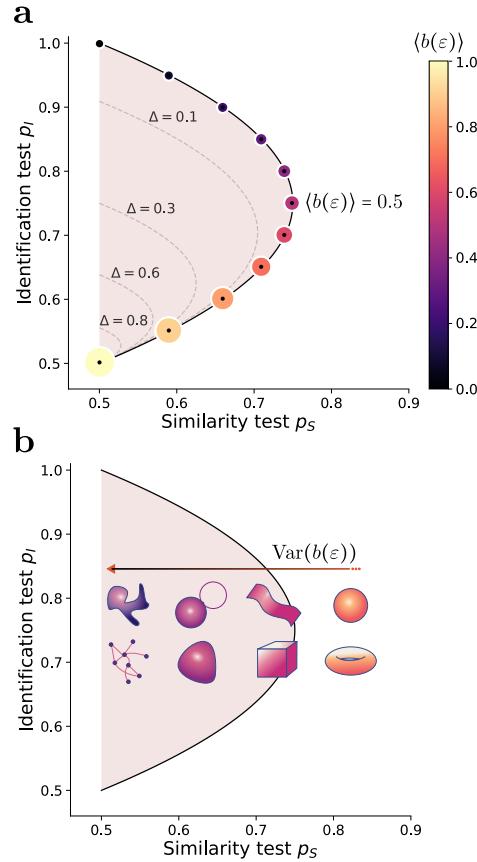


Figure 2: **a.** The region in (p_S, p_I) plane where the model’s performances lie (Theorem 1). The black line is parameterized by the resolution ε and represents the behaviour of the model in homogeneous spaces. **b.** Effect of heterogeneity $\text{Var}(b(\varepsilon))$ on the similarity test performance.

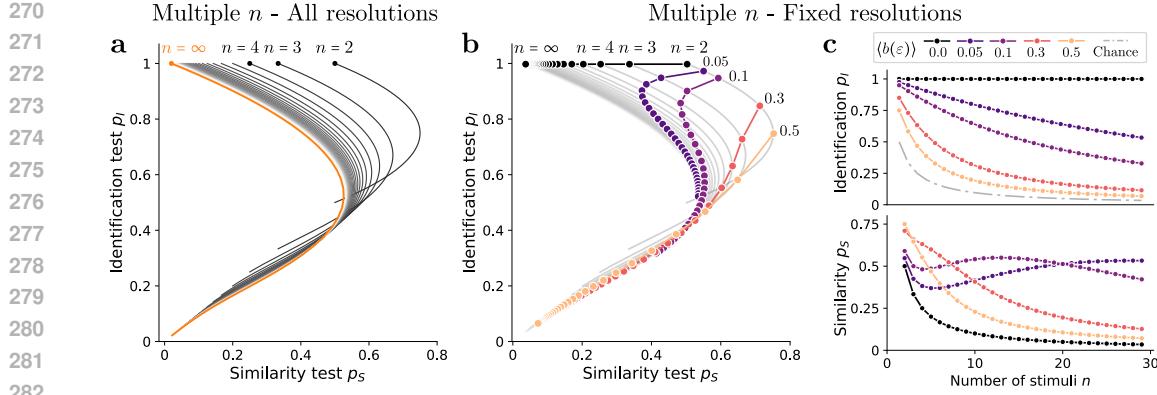


Figure 3: **a.** Similarity-identification curves for different values of n and parameterized by $b_p(\varepsilon) \in [0, 1]$, as described by Equations (7) and (8). **b.** The colored curves correspond to similarity-identification values as the number of inputs n varies, for some fixed values of $b_p(\varepsilon)$. **c.** Similarity (top) and identification (bottom) dependence on n for different resolutions.

Theorem 3 (n -item tests). *Under the same assumptions of Theorem 1, for the constant noise-free ($\Delta = 0$) similarity function $g = g_{\varepsilon;0}$ we have that*

$$p_S^n(\varepsilon) = \mathbb{E}_{p \sim \nu} \left[\frac{1}{n} + \sum_{k=1}^{n-1} \frac{(1 - b_p(\varepsilon))^{n-k} - (1 - b_p(\varepsilon))^n}{k} \right], \quad (7)$$

$$p_I^n(\varepsilon) = \mathbb{E}_{p \sim \nu} \left[\frac{1 - (1 - b_p(\varepsilon))^n}{nb_p(\varepsilon)} \right]. \quad (8)$$

Proof. The proof can be found in Appendix A.5. \square

First, note that, despite their apparently complicated formulations, Equations (7) and (8) are polynomials in $b_p(\varepsilon)$ for any fixed n and, given their non-linearity, the expected value over the probes cannot be simplified in general. Thus, for simplicity, we focus on the *homogeneous* case where $b_p(\varepsilon) = b(\varepsilon) \forall p \in M$ and \mathbb{E} disappears.

Under this assumption, both similarity and identification performances are once again parameterized by $b(\varepsilon)$, yielding universal pareto curves independent of M . Figure 3a shows the shape of the Pareto front for different values of n . As a sanity check, note that, as the resolution goes to $b(\varepsilon) = 0$, performance approaches perfect identification for any number of simultaneous inputs with no capacity to generalize $p_S^n(0) = 1/n$ (chance level).

As shown in Figure 3(b,c), the mapping of one curve into the next is not “uniform”. For any fixed $\varepsilon > 0$, increasing the number of inputs quickly degrades both identification and generalization performances. Furthermore, Equation (8) shows that for large n , $p_I^n(\varepsilon) \approx (b(\varepsilon)n)^{-1}$: identification performance decrease as $1/n$ with a rate given by $b(\varepsilon)$. For a model tasked with learning structured representations of the input space, and thus optimizing for generalization (say, $b(\varepsilon) \approx 1/2$ for $n = 2$), our analyses predict that the capacity to accurately process multiple representations at the same time will be strongly constrained (Figure 3c).

Interestingly, the bottom panel of Figure 3c shows that the probability of success in the similarity test is non-monotonic in n when $b(\varepsilon)$ is small. Thus, when the model has to deal with a high number of items, it is convenient for it to pick low resolutions. The cost, however, is paid by the significant increase in error for low numbers of items.

These observations provide an elegant explanation for why even large neural network models struggle with multi-object reasoning Campbell et al. (2024): they likely have developed representations that support generalization, but this brings a $1/n$ decrease in identification probability as the number n of objects increase, thus generating the striking capacity limits observed in both humans and large vision-language models. In the next section, we provide empirical evidence that neural networks obey these constraints, first in a simple toy model, and then in multiple large scale networks.

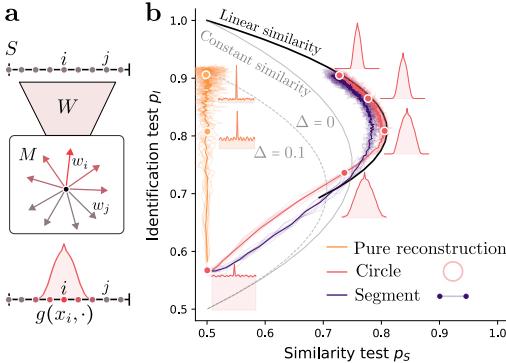
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
4 TOY NEURAL NETWORK IMPLEMENTATION

Figure 4: **Emergent resolution and tradeoff in toy architecture.** (p_S, p_I) results for the toy model (a) of Section 4 with 50 inputs. b. The orange curve shows the average training trajectory for a purely reconstruction loss. The orange insets show the learned (average) similarity function at two epochs. The gray and dashed lines show the curves of Theorem 1 with noise levels $\Delta = 0, 0.1$, respectively. The red curve shows the average training trajectory when the loss is based on the similarity test on a circle while the purple one is trained on stimuli coming from a segment. The black line shows the theoretical performances obtained with linearly decaying similarity functions, as in Proposition 1.

We start from the toy architecture of Elhage et al. (2022), that permits a direct comparison with the analyses above. The input vector $x \in \mathbb{R}_+^l$, whose entries we identify with features, is linearly encoded by $W \in \mathbb{R}^{m \times l}$, decoded by W^\top , and then the ReLU activation function σ is applied elementwise $f(x) = \sigma(W^\top W x)$ (Figure 4a). When trained with reconstruction MSE loss and sparse inputs, this model displays the phenomenon known as *superposition*: features associated with input dimensions are represented as orthogonally (or *dissimilarly*) as possible to minimize their interference in reconstruction (Elhage et al., 2022). This, in turn, means striving for good identification performance and thus the capability of processing a large number of features simultaneously.

We contrast this with the effect of inducing the model to learn representations with simple forms of metric (semantic) structure. To do so, we consider two spaces of stimuli made of l points $\{x_1, \dots, x_l\}$ equally spaced in the interval $[0, 1]$: a (flat) circle, with distance $d(x, y) = \min(|x-y|, 1-|x-y|)$, and a segment, with distance $d(x, y) = |x-y|$. The model was trained to perform 3-items similarity tests (as explained in Section 2) on the metric space by encoding its points, the stimuli, as l -dimensional one-hot vectors. Given this last assumption, the i -th column of W , w_i , can be interpreted as the latent embedding of x_i , and the model’s output $f(x_i)_j = \sigma(w_j^\top w_i) := g(x_i, x_j)$ as the non-negative similarity between x_i and x_j . The model was trained to convergence 10 times and, for each epoch, we recorded the average similarity and identification ratios p_S, p_I of Equations (1) and (2) using the learned g .

Figure 4b shows the resulting training trajectories for three different runs in the similarity-identification plane: the orange run corresponds to trainings with pure reconstruction loss, in red the run with pure similarity task loss on the circle and in purple on the segment. In all cases, we used $l = 50$ stimuli, a hidden dimension of $m = 10$ and repeated the experiment 10 times. See Appendix A.8 for additional details.

As expected, when the network is trained only on reconstruction loss, there is no improvement in p_S but a steady increase in p_I . Features are arranged as orthogonally as possible but, due to the low number of hidden dimensions, some interference between them remains. If features are arranged on a line, visualizing the learned similarity function $g(x, \cdot)$ for a fixed x at the last training step shows that it is close to being a Dirac delta on x , with smaller-scale random-like noise on other features. Estimating this noise scale Δ and using that in the equations given by Theorem 2, shows that the corresponding dashed curve accurately predicts the value of p_I at which the training stops.

In contrast, when the network is trained on the semantic task, Figure 4b shows that (starting from the bottom left corner) both p_S and p_I increasing up until the “boundary” is reached, after which similarity begins to decrease. Note that the learned similarity functions $g(x, \cdot)$ for a fixed $x = 0.5$ (the red insets) exhibit a transition from noise to a semantic function that respects the structure of the circle. Furthermore, this structure also exhibits sensitivity to resolution: the model arranges features associated with points further than a certain threshold to have a negative inner product, which is then

378 mapped to zero by the ReLU activation. Moreover, we see that this resolution decreases as training
 379 progresses, resulting in an increase of p_I and a decrease in p_S .
 380

381 Not surprisingly, the neural network does not learn constant similarity functions (Section 2), and thus
 382 the predictions given by Theorem 1 (in gray) only provide a qualitative prediction. However, the
 383 *learned* similarity function $g(x, \cdot)$ appears to be approximately linearly decaying with distance on
 384 the circle. Based on this observation, we can analytically derive the values of p_S and p_I for linearly
 385 decaying similarities in a circle, finding formulae that approximate Theorem 1.

386 **Proposition 1** (Linear decay). *On the flat circle $[0, 1]$ with $d(x, y) = \min(|x - y|, 1 - |x - y|)$*
 387 *sampled with the uniform measure, for the two-item similarity and identification tests with linearly*
 388 *decaying similarity $g(x, y) = \max\left(0, 1 - \frac{d(x, y)}{\varepsilon}\right)$,*

$$389 \quad p_S(\varepsilon) = \frac{1}{2} + b(\varepsilon) - \left(\frac{3}{2} - \log(2)\right) b(\varepsilon)^2, \quad p_I(\varepsilon) = 1 - (1 - \log(2))b(\varepsilon), \quad (9)$$

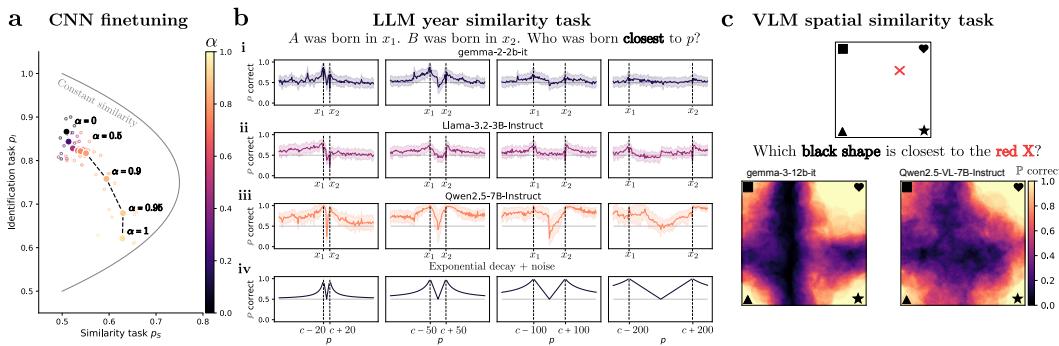
392 with $b(\varepsilon) = 2\varepsilon$, $\varepsilon \in [0, 1/2]$.

393 The proof can be found in Appendix A.6. Figure 4 shows how the resulting curve (in **black**) provides
 394 a good fit to the empirical result. Finally, when the metric space is a segment instead of a circle
 395 (**purple**), the heterogeneity given by the presence of the two endpoints results in an overall reduced
 396 p_S , as qualitatively predicted by Theorem 1.

398 5 EVIDENCE OF TRADEOFF IN REALISTIC NEURAL NETWORKS

400 Finally, we summarize experiments and results showing that the effects described above are also
 401 observed in networks at scale. We report details on implementations and additional results in
 402 Appendix A.8.

404 **CNNs and evolutionary distance** We fine-tuned a ResNet-50 model (He et al., 2016) to analyze the
 405 generalization-identification tradeoff on bird species images (Wah et al., 2011) using a weighted loss
 406 function $\mathcal{L} = (1 - \alpha) \mathcal{L}_{\text{id}} + \alpha \mathcal{L}_{\text{sim}}$, where α controls the bias between identification and generalization.
 407 Both tasks employed a triplet design (x_1 , x_2 , and p): for generalization, the model judged which
 408 reference is evolutionarily closer to the probe, using phylogenetic distances as ground truth (Kumar
 409 et al., 2022); for identification, it determined the reference species to which the probe belonged. We
 410 found that increasing α , as a manipulation of similarity, improved generalization while reducing
 411 identification accuracy, conforming to the relationships reported above (Figure 5a). Models with
 412 higher α values consistently showed enhanced generalization, confirming the ability to manipulate
 413 this tradeoff through both training and threshold parameters (see Figure 10 in the SI for the full
 414 tradeoff curves as a function of ε and α).
 415



427 **Figure 5: Empirical resolution tradeoffs across realistic neural architectures.** **a.** A CNN fine-
 428 tuned on bird recognition shows the tradeoff between species identification and generalization to
 429 phylogenetic similarity as a function of the weights of generalization α and of the resolution ε . **b.**
 430 LLMs tasked with comparing years of birth show different regimes of performances, compatible with
 431 the existence of an emergent finite resolution (~ 70 – 80 years). **c.** VLMs tasked with spatial proximity
 432 tasks show decreased accuracy beyond a model-specific resolution scale. Details in appendix A.8.

Year similarity task in LLMs. We then evaluated three open-source large language models (LLMs) (gemma-2b-it (Team et al., 2024), Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-7B-Instruct (Yang et al., 2024)) on a similarity task requiring temporal discriminations on the scale of years. The models were prompted to answer questions of the following type “*A was born in x_1 . B was born in x_2 . Who was born closest to p ?*”, where A, B are randomized names, a center year c is sampled in $[1500, 1700]$, $x_1 = c - \delta x$, $x_2 = c + \delta x$ for $\delta x \in \{20, 50, 100, 200\}$ and $p = c + \delta p$ takes all years in $[c - 300, c + 300]$. Figure 5b shows the decision curves indicating the empirical probability with which each model responded with the correct answer. This shows that the models’ year representations closely follow our assumptions about resolution: all models showed decreased performance as probe dates moved further from reference dates, similar to what we observed with exponentially decaying similarities with noise $g(x_1, x_2) = \exp(-\mu d(x_1, x_2)) + \Delta$ (bottom row).

Spatial similarity task in VLMs. Finally, we tested the effects of resolution in two Vision-Language Models (VLMs) (gemma-3-12b-it (Team et al., 2024; Team, 2025a) and Qwen2.5-VL-7B-Instruct (Yang et al., 2024; Team, 2025b)), on a visual spatial similarity task. Four different black shapes were presented to the model in the four corners of the image (Figure 5c), together with a red cross in a random position. The model was tasked with indicating which black shape was closest to the red cross, and we recorded accuracy for each sampled position. Figure 5c shows that, once again, the models display clear resolution limits in their generalization capabilities, similar to those observed in the year task.

6 DISCUSSION

We have provided a formal theory of the tradeoff between identification and generalization in systems constrained by finite semantic resolution, building on the formal framework of Frankland et al. (2021). Our closed form expressions reveal a universal Pareto front determined by resolution scale and stimulus geometry, a fundamental limit that is obeyed in empirical tests of model architectures both small and large. Our analysis identifies the optimal resolution for generalization, at which semantic similarity functions tile approximately half of the representational space in discrimination tasks (Sorscher et al., 2022). Beyond this point, increasing resolution impairs identification as representations become too broadly generalized. Below it, representations are discriminable, but fail to capture meaningful similarities, thus compromising generalization. This offers an explanation for why both humans and state-of-the-art neural network models struggle with multi-object reasoning, despite their vast computational resources and remarkable capabilities in other domains.

The spontaneous emergence of this tradeoff across architectures, from minimal ReLU networks to vision-language models, is consistent with our analyses and our empirical findings, that are unified under the hypothesis that finite semantic resolution constitutes an information-theoretic constraint rather than implementation artifact. This, in turn, provides a rigorous mathematical foundation for understanding capacity limits in both artificial and biological systems.

Our theory also indicates how competing representational strategies of intelligent systems are tied to one another: identification demands sharp, distinct representations, while generalization requires coarse, overlapping ones. This tension is echoed in neuroscience literature on *representational efficiency* (coding related items compactly) versus *processing efficiency* (handling multiple items jointly) (Petri et al., 2024; 2021; Lesnick et al., 2020). Our analyses also provide a formal explanation for empirical observations in neural population coding (Cohen et al., 2020; Ganmor et al., 2015), where semantically clustered “neural thesaurus” structures emerge as optimal strategies under noise constraints, connecting to earlier models of representational redundancy (Curto et al., 2013).

Limitations and future work. The present model focuses on non-compositional representations, which do not capture phenomena such as hierarchical syntax, analogical reasoning, or arithmetic—where representations are formed by systematic combinations of simpler parts (Lake and Baroni, 2023; Fodor and Pylyshyn, 1998). Extending our framework to compositional coding schemes remains an important future direction (we provide an initial approach possibility in the SI, see Fig. 6). In addition, while we were able to directly demonstrate the presence of the tradeoff in the toy and CNN models, showing its presence in large language-vision models is still outstanding (despite we provided evidence for finite resolution in them, as also indirectly suggested by Modell et al. (2025)).

486 Future work could further extend our results by: (1) using *synergy-redundancy decompositions*
 487 (Proca et al., 2024) to examine how generalization shapes the joint encoding of multiple stimuli;
 488 (2) adopting techniques from mechanistic interpretability Bereska and Gavves (2024) to distill the
 489 similarity functions directly from internal representations; (3) developing resolution-based diagnostic
 490 tools for optimizing neural architectures by targeting task-appropriate generalization-identification
 491 balance; and finally (4) testing whether neural manifolds from fMRI or electrophysiology exhibit
 492 comparable resolution bounds, potentially establishing semantic resolution as a measurable link
 493 between neural geometry and behavioral generalization.

494 **Reproducibility Statement.** We describe our theoretical framework with complete derivations
 495 and provide detailed descriptions of all experimental settings, including architectures, datasets, and
 496 training procedures. Hyperparameters, random seed usage, and evaluation protocols are specified in
 497 the appendix. Code and data preprocessing scripts to reproduce all results will be released publicly
 498 upon publication, but can be found now at the anonymous repository <https://anonymous.4open.science/r/generalization-7155>.

500

501 REFERENCES

503 Declan Campbell, Sunayana Rane, Tyler Gialanza, Camillo Nicolò De Sabbata, Kia Ghods, Amogh
 504 Joshi, Alexander Ku, Steven Frankland, Tom Griffiths, Jonathan D Cohen, et al. Understanding the
 505 limits of vision language models through the lens of the binding problem. *Advances in Neural*
 506 *Information Processing Systems*, 37:113436–113460, 2024.

507 Dongyu Gong and Hantao Zhang. Self-attention limits working memory capacity of transformer-based
 508 models. *ArXiv*, 2024. URL <https://arxiv.org/pdf/2409.10715.pdf>.

510 Pooyan Rahmazadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
 511 language models are blind: Failing to translate detailed visual features into words. *arXiv preprint*
 512 *arXiv:2407.06581*, 2024.

513 Sunayana Rane, Alexander Ku, Jason Baldridge, Ian Tenney, Tom Griffiths, and Been Kim. Can
 514 generative multimodal models count to ten? In *Proceedings of the Annual Meeting of the Cognitive*
 515 *Science Society*, volume 46, 2024.

517 Chenhui Zhang and Sherrie Wang. Good at captioning bad at counting: Benchmarking gpt-4v on
 518 earth observation data. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 519 *Pattern Recognition*, pages 7839–7849, 2024.

520 Martha Lewis, Nihal V Nayak, Peilin Yu, Qinan Yu, Jack Merullo, Stephen H Bach, and Ellie
 521 Pavlick. Does clip bind concepts? probing compositionality in large image models. *arXiv preprint*
 522 *arXiv:2212.10537*, 2022.

524 George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
 525 processing information. *Psychological review*, 63(2):81, 1956.

526 Steven J Luck and Edward K Vogel. The capacity of visual working memory for features and
 527 conjunctions. *Nature*, 390(6657):279–281, 1997.

529 Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
 530 capacity. *Behavioral and brain sciences*, 24(1):87–114, 2001.

531 G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. *Parallel distributed processing: Explorations*
 532 *in the microstructure of cognition*. MIT Press, 1986.

534 Geoffrey E. Hinton. Learning distributed representations of concepts. In *Proceedings of Eighth*
 535 *Annual Conference of the Cognitive Science Society*, 1986. URL <https://www.cs.toronto.edu/~hinton/absps/families.pdf>.

538 Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
 539 connectionist systems. *Artificial Intelligence*, 46(1–2):159–216, 1990. doi: 10.1016/0004-3702(90)
 90007-M.

540 Adina L. Roskies. The binding problem. *Neuron*, 24, 1999. URL [https://www.cell.com/neuron/fulltext/S0896-6273\(00\)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue](https://www.cell.com/neuron/fulltext/S0896-6273(00)80817-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS089662730080817X%3Fshowall%3Dtrue).

541

542

543

544 Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial

545 neural networks. *ArXiv*, 2020. URL <https://arxiv.org/pdf/2012.05208.pdf>.

546

547 Anne M Treisman and Garry Gelade. A feature-integration theory of attention. *Cognitive psychology*,

548 12(1):97–136, 1980.

549

550 Roger Shepard. Stimulus and response generalization: Deduction of the generalization gradient from

551 a trace model. *Psychological Review*, 1958a. URL <https://psycnet.apa.org/record/1959-09346-001>.

552

553 Roger N Shepard. Toward a universal law of generalization for psychological science. *Science*, 237

554 (4820):1317–1323, 1987.

555

556 Roger N Shepard. Stimulus and response generalization: deduction of the generalization gradient

557 from a trace model. *Psychological Review*, 65(4):242, 1958b.

558

559 Chris R. Sims. Efficient coding explains the universal law of generalization in human perception.

560 *Science*, 360, 2018. URL <https://www.science.org/doi/10.1126/science.aaq1118>.

561

562 Joshua B. Tenenbaum and Thomas L. Griffiths. Generalization, similarity, and Bayesian inference.

563 *Behavioral and Brain Sciences*, 24(4):629–640, August 2001. doi: 10.1017/s0140525x01000061.

564

565 Nick Chater and Paul MB Vitányi. The generalized universal law of generalization. *Journal of*

566 *Mathematical Psychology*, 47(3):346–369, 2003.

567

568 Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure

569 of word senses, with applications to polysemy. *Transactions of the Association for Computational*

570 *Linguistics*, 6:483–495, 2018.

571

572 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model

573 features are one-dimensionally linear. *arXiv preprint arXiv:2405.14860*, 2024.

574

575 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.

576 Towards understanding grokking: An effective theory of representation learning. *Advances in*

577 *Neural Information Processing Systems*, 35:34651–34663, 2022.

578

579 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories

580 in mechanistic explanation of neural networks. *Advances in neural information processing systems*,

581 36:27223–27250, 2023.

582

583 Adam Shai, Lucas Teixeira, Alexander Oldenziel, Sarah Marzen, and Paul Riechers. Transformers

584 represent belief state geometry in their residual stream. *Advances in Neural Information Processing*

585 *Systems*, 37:75012–75034, 2024.

586

587 Alexander Modell, Patrick Rubin-Delanchy, and Nick Whiteley. The origins of representation

588 manifolds in large language models. *arXiv preprint arXiv:2505.18235*, 2025.

589

590 Steven M Frankland, Taylor Webb, Richard L Lewis, and Jonathan D Cohen. No coincidence,

591 george: Processing limits in cognitive function reflect the curse of generalization, Oct 2021. URL

592 osf.io/preprints/psyarxiv/cjuxb_v1.

593

594 Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra Zomorodian. On the local behavior of

595 spaces of natural images. *International journal of computer vision*, 76:1–12, 2008.

596

597 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

598 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*

599 *systems*, 30, 2017.

594 R Duncan Luce. *Individual choice behavior*, volume 4. Wiley New York, 1959.
 595

596 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 597 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
 598 *arXiv preprint arXiv:2209.10652*, 2022.

599 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 600 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 601 pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

602 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
 603 UCSD Birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of
 604 Technology, 2011.

605 Sudhir Kumar, Morgan Suleski, Jessica M Craig, Anna E Kasprowicz, Maxwell Sanderford, Mingfeng
 606 Li, Glen Stecher, and S Blair Hedges. TimeTree 5: An expanded resource for species divergence
 607 times. *Molecular Biology and Evolution*, 39(8):msac174, 2022. doi: 10.1093/molbev/msac174.

608

609 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
 610 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
 611 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,
 612 2024.

613

614 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 615 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 616 models. *arXiv preprint arXiv:2407.21783*, 2024.

617

618 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 619 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 620 arXiv:2412.15115*, 2024.

621

622 Gemma Team. Gemma 3. 2025a. URL <https://goo.gle/Gemma3Report>.

623

624 Qwen Team. Qwen2.5-vl, January 2025b. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

625

626 Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. Neural theory for few-shot learning of
 627 naturalistic stimuli. *Proceedings of the National Academy of Sciences*, 119(12):e2112410119,
 628 2022. doi: 10.1073/pnas.2112410119.

629

630 Giovanni Petri, Sebastian Musslick, and Jonathan D. Cohen. An information-theoretic approach
 631 to reward rate optimization in the tradeoff between controlled and automatic processing in
 632 neural network architectures. *eLife*, 13, 2024. URL <https://elifesciences.org/reviewed-preprints/93251>.

633

634 Giovanni Petri, Sebastian Musslick, Biswadip Dey, Kayhan Özçimder, David Turner, Nesreen K
 635 Ahmed, Theodore L Willke, and Jonathan D Cohen. Topological limits to the parallel processing
 636 capability of network architectures. *Nature Physics*, 17(5):646–651, 2021.

637

638 Michael Lesnick, Sebastian Musslick, Biswadip Dey, and Jonathan D. Cohen. A formal framework
 639 for cognitive models of multitasking. *PsyArXiv*, 2020. URL https://osf.io/preprints/psyarxiv/7yzdn_v1.

640

641 Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry
 642 of object manifolds in deep neural networks. *Nature Communications*, 11(1):746, 2020. doi:
 643 10.1038/s41467-020-14578-5.

644

645 Elad Ganmor, Ronen Segev, and Elad Schneidman. A thesaurus for a neural population code. *eLife*,
 646 2015. URL <https://elifesciences.org/articles/06134.pdf>.

647

648 Carina Curto, Vladimir Itskov, Katherine Morrison, Zachary Roth, and Judy L Walker. Combinatorial
 649 neural codes from a mathematical coding theory perspective. *Neural computation*, 25(7):1891–
 1925, 2013.

648 Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
649 learning neural network. *Nature*, 623, 2023. URL <https://www.nature.com/articles/s41586-023-06668-3>.
650

651 Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
652 *Cognition*, 28, 1998. URL <https://www.sciencedirect.com/science/article/abs/pii/0010027788900315>.
653

654 Alexandra M Proca, Fernando E Rosas, Andrea I Luppi, Daniel Bor, Matthew Crosby, and Pedro AM
655 Mediano. Synergistic information supports modality integration and flexible learning in neural
656 networks solving multiple tasks. *PLoS computational biology*, 20(6):e1012178, 2024.
657

658 Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety—a review. *arXiv
659 preprint arXiv:2404.14082*, 2024.
660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX / SUPPLEMENTAL MATERIAL
703
704705 A.1 LLM USAGE
706
707708 LLMs (ChatGPT) were used to aid in polishing the paper after writing.
709
710
711712 A.2 TECHNICAL DETAILS
713
714715 In this section, we formalize the technical aspects and assumptions required for the results of the
716 paper.717 We assume (M, d, Σ, ν) to be a separable metric measure space equipped with the standard metric
718 space topology, the Borel σ -algebra Σ generated by balls in M and with a probability measure ν .
719 This measure ν , which is such that $\nu(M) = 1$, determines how we are sampling stimuli from the
720 stimulus space M .721 In the following derivations, we will make use of two objects:
722
723724

- $b_p(\varepsilon) = \nu(B_\varepsilon(p))$, the measure of the ball of radius ε centered in p ;
- S_p , the push-forward measure on $[0, \infty]$ of the distance function in p , $d_p(\cdot) = d(p, \cdot)$ i.e.,
725 for any measurable subset of \mathbb{R} , $S_p(E) = \nu(d_p^{-1}(E))$.

726730 Note that b_p is the cumulative distribution function of S_p as $S_p((-\infty, \varepsilon]) = S_p([0, \varepsilon]) = b_p(\varepsilon)$ and
731 therefore it is non-decreasing. We also have that $b_p(\infty) := \lim_{\varepsilon \rightarrow \infty} b_p(\varepsilon) = 1$.
732733 We assume that b_p is an absolutely continuous function on every closed sub-interval of $[0, \infty)$
734 i.e. such that for every $\epsilon > 0$ there exists $\delta > 0$ such that for any finite set of disjoint intervals
735 $(\alpha_1, \beta_1), \dots, (\alpha_N, \beta_N)$

736
737
$$\sum_{i=1}^N (\beta_i - \alpha_i) < \delta \implies \sum_{i=1}^N (b_p(\beta_i) - b_p(\alpha_i)) < \epsilon.$$

738
739
740

741 By Nielsen (1997) (Theorem 20.10), the absolute continuity of $b_p(\varepsilon)$ implies that S_p is an absolutely
742 continuous measure w.r.t. the Lebesgue measure μ . This implies, by Radon-Nikodym theorem, that
743 S_p admits a density f , $S_p = \int f d\mu$, with $f(\varepsilon) = b'_p(\varepsilon)$ almost everywhere. In fact, we can think of
744 absolute continuity as a stronger notion of continuity, as the fundamental theorem of calculus for
745 Lebesgue integrals (Folland (1999), Theorem 3.35) tells us that, on every interval $[c, d]$, b_p is almost
746 everywhere differentiable, and $b_p(\varepsilon) - b_p(c) = \int_c^\varepsilon b'_p(r) d\mu(r)$.
747748 We now see how these assumptions allow us to notably simplify the derivations of the probability
749 of success in both similarity and identification tasks, while still not being too restrictive. In fact,
750 most non-pathological cases of interest, like probability distributions with differentiable densities on
751 manifolds, satisfy the assumption.752
753 **Lemma 1.** *Let X be the random variable of the correct answer to the n -item similarity or identifica-
754 tion task $X = \arg\min \{d(x_1, p), \dots, d(x_n, p)\}$. If, for every $p \in M$, b_p is absolutely continuous on
755 every closed interval $[c, d] \subseteq [0, \infty)$, then $\mathbb{P}(|X| > 1) = 0$.*

Proof. Let $|X|$ be the cardinality of the set X .

$$\mathbb{P}(|X| > 1) = \sum_{k=2}^n \binom{n}{k} \mathbb{P}(d(x_1, p) = \dots = d(x_k, p), d(x_{k+1}, p) > d(x_1, p), \dots, d(x_n, p) > d(x_1, p)) \quad (1)$$

$$\leq \sum_{k=2}^n \binom{n}{k} \mathbb{P}(d(x_1, p) = \dots = d(x_k, p)) \leq \sum_{k=2}^n \binom{n}{k} \mathbb{P}(d(x_1, p) = d(x_2, p)) \quad (2)$$

$$= \sum_{k=2}^n \binom{n}{k} \int_0^\infty \mathbb{P}(d(x_1, p) = d(x_2, p) = r) d\mu(r) \leq \sum_{k=2}^n \binom{n}{k} \int_0^\infty \mathbb{P}(d(x_1, p) = r) d\mu(r) \quad (3)$$

$$= \sum_{k=2}^n \binom{n}{k} \int_0^\infty S_p(\{r\}) d\mu(r) = 0, \quad (4)$$

where the last equality comes from the absolute continuity of S_p w.r.t. μ , as $\mu(\{r\}) = 0$.

This result tells us that, under the assumptions, there is a probability of 0 that there are multiple correct answers to the similarity and identification tasks. Therefore, in the following derivations we will always only have to deal with the case $|X| = 1$.

A.3 PROOF OF THEOREM 1

A.3.1 SIMILARITY TASK

Proof. Let us derive the probability of succeeding in the similarity task in the case of 2 items. The following proof will be a subcase of the more general one for n items but, given its complexity, it is useful to analyze this subcase separately.

Let x_1, x_2, p be sampled independently from M according to the probability measure ν . Let $X(x_1, x_2, p) = \operatorname{argmin}_{i \in \{1, 2\}} d(x_i, p)$. Notice that X can have three different values

$$\begin{cases} X(x_1, x_2, p) = \{1\} & \text{if } d(x_1, p) < d(x_2, p) \\ X(x_1, x_2, p) = \{2\} & \text{if } d(x_2, p) < d(x_1, p) \\ X(x_1, x_2, p) = \{1, 2\} & \text{if } d(x_1, p) = d(x_2, p). \end{cases}$$

In this last case, when x_1, x_2 are equidistant from p , any answer to the task will be correct. By Lemma 1, we only need to focus on the first two as the probability that more than one answer is correct is 0.

We have that

$$\mathbb{P}(Y = X) = \sum_{i=1}^2 \mathbb{P}(Y = i | X = i) \mathbb{P}(X = i). \quad (5)$$

Let us now rewrite the probability $\mathbb{P}(Y = i|X = i)$ by conditioning over all possible results of the samplings of x_1, x_2 and the probe p .

For this, given the independence assumption, we assume that the event (x_1, x_2, p) is an element of the measure space $(\mathcal{M}^3, \nu^{\otimes 3})$ equipped with the standard product measure.

$$\mathbb{P}(Y = i|X = i) = \int_{\mathcal{M}^2} \mathbb{P}(Y = i|X = i, (x_1, x_2, p))dP(x_1, x_2, p|X = i),$$

where $dP(x_1, x_2, p|X = i)$ is the conditional measure of the sampling of x_1, x_2, p given the event that $X = i$ which, by Bayes theorem, can be rewritten as

$$dP(x_1, x_2, p | X = i) = \frac{\mathbb{1}[X(x_1, x_2, p) = i] d\nu(x_1) d\nu(x_2) d\nu(p)}{\mathbb{P}(X = i)},$$

where $\mathbb{1}[X(x_1, x_2, p) = i]$ coincides with the conditional law of the (deterministic) variable $X(x_1, x_2, p)$.

Replacing this in Equation (5) we get

$$\mathbb{P}(X = Y) = \sum_{i=1}^2 \int_{M^3} \mathbb{P}(Y = i | X = i, (x_1, x_2, p)) \mathbb{1}[X(x_1, x_2, p) = i] d\nu(x_1) d\nu(x_2) d\nu(p) \quad (6)$$

The independence of the samplings of x_1 and x_2 means that all indices are equally likely to be the correct answer $\mathbb{P}(Y = i | X = i) = \mathbb{P}(Y = j | X = j) \forall i, j \in \{1, 2\}$.

$$\mathbb{P}(X = Y) = 2 \int_{M^3} \mathbb{P}(Y = 1, X = 1, (x_1, x_2, p)) \mathbb{1}[X(x_1, x_2, p) = 1] d\nu(x_1) d\nu(x_2) d\nu(p) \quad (7)$$

$$= 2 \int_M \int_M \int_{x_2 \in M: d(x_2, p) > d(x_1, p)} \frac{g(x_1, p)}{g(x_1, p) + g(x_2, p)} d\nu(x_2) d\nu(x_1) d\nu(p) \quad (8)$$

Given the fact that we are considering constant similarity functions $g(x, y) = g_{\varepsilon, 0}(x, y)$ which depend only on the distance between x and y , $g(x, y) = g(d(x, y))$, we perform the following change of coordinates $d(x_1, p) \mapsto r_1$, $d(x_2, p) \mapsto r_2$,

$$\mathbb{P}(X = Y) = 2 \int_M d\nu(p) \int_{[0, \infty]} dS_p(r_1) \int_{(r_1, \infty]} dS_p(r_2) \frac{g(r_1)}{g(r_1) + g(r_2)}, \quad (9)$$

where S_p is the pushforward measure induced by the distance function from the probe p .

We decompose Equation (9) into two cases: **a.** when $r_1 > \varepsilon$ and thus both items fall outside the resolution region of the probe p , and **b.** when $r_1 \leq \varepsilon$ and thus the closest item falls inside.

a. In the first case, given that $r_2 > r_1$, we will have that both x_1 and x_2 are too far from the probe to be recognized as similar, resulting in both numerator and denominator in Equation (9) to be 0. Here we adopt the convention $0/(0 + 0) = 1/2$ to describe the model being maximally uncertain in its decision.

$$2 \int_M d\nu(p) \int_{(\varepsilon, \infty]} dS_p(r_1) \int_{(r_1, \infty]} \frac{1}{2} dS_p(r_2) = \int_M d\nu(p) \int_{(\varepsilon, \infty]} \int_{(r_1, \infty]} dS_p(r_1) dS_p(r_2)$$

To compute this integral, we leverage the almost-everywhere differentiability of b_p and apply the fundamental theorem of calculus

$$\int_{(\varepsilon, \infty]} \int_{(r_1, \infty]} dS_p(r_1) dS_p(r_2) = \int_{(\varepsilon, +\infty]} (1 - b_p(r_1)) dS_p(r_1) \quad (10)$$

$$= \int_{(\varepsilon, +\infty]} (1 - b_p(r_1)) b'_p(r_1) d\mu(r_1) = \left[-\frac{(1 - b_p(r_1))^2}{2} \right]_{\varepsilon}^{\infty} = \frac{(1 - b_p(\varepsilon))^2}{2}. \quad (11)$$

b. When $r_1 \leq \varepsilon$ the first item will be considered to be similar to the probe $g(r_1) = 1$, while the second can be both similar and dissimilar.

$$2 \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(r_1, \infty]} dS_p(r_2) \frac{1}{1 + g(r_2)} \quad (12)$$

$$= \underbrace{2 \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(r_1, \varepsilon]} \frac{1}{2} dS_p(r_2)}_{\mathbf{I}} + \underbrace{2 \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(\varepsilon, \infty]} dS_p(r_2)}_{\mathbf{II}}. \quad (13)$$

The term **I**, just like above, can be computed in the following way

$$\int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(r_1, \varepsilon]} dS_p(r_2) \quad (14)$$

$$= \int d\nu(p) \int_{[0, \varepsilon]} (b_p(\varepsilon) - b_p(r_1)) b'_p(r_1) d\mu(r_1) \quad (15)$$

$$= \int_M \frac{b_p(\varepsilon)^2}{2} d\nu(p) \quad (16)$$

864 The term **II** is simply given by $2 \int_M b_p(\varepsilon)(1 - b_p(\varepsilon))d\nu(p)$.
 865

866 Summing together **a.** and **b.** we arrive at the following:
 867

$$\mathbb{P}(Y = X) = \int_M \frac{1}{2}(1 - b_p(\varepsilon))^2 + \frac{1}{2}b_p(\varepsilon)^2 + 2b_p(\varepsilon)(1 - b_p(\varepsilon))d\nu(p) \quad (17)$$

$$= \int_M \frac{1}{2} + b_p(\varepsilon) - b_p(\varepsilon)^2 d\nu(p). \quad (18)$$

872 We obtain the formula for the probability of succeeding the similarity task:
 873

$$\mathbb{P}(Y = X) = \frac{1}{2} + \langle b(\varepsilon) \rangle - \langle b(\varepsilon)^2 \rangle. \quad (19)$$

876 \square
 877

878 A.3.2 IDENTIFICATION TASK

879 *Proof.* The identification task can be seen as a subset of the similarity task, in which the probe
 880 is uniformly picked among the input stimuli. This means that the correct response will be
 881 $X(x_1, x_2, p) = \{i \in \{1, 2\} : x_i = p\}$ and both answers will be correct only in the case that $x_1 = x_2$.
 882

883 Retracing the first steps outlined in Appendix A.3.1, we find that the probability of the model being
 884 correct will be

$$\mathbb{P}(Y = X) = 2 \int_M \sum_{p \in \{x_1, x_2\}} \frac{1}{2} \mathbb{P}(Y = 1 | X = 1, (x_1, x_2, p)) \mathbb{1}[X(x_1, x_2, p) = 1] d\nu(x_1) d\nu(x_2) \quad (20)$$

$$= \int_{M^2} \frac{g(x_1, x_1)}{g(x_1, x_1) + g(x_2, x_1)} d\nu(x_1) d\nu(x_2). \quad (21)$$

891 Note that we used the fact that $p = x_1$ with probability $1/2$ and $p = x_2$ with probability $1/2$. Given
 892 that $g(x, x) = 1$ and, by the definition of metric space, $d(x, y) = 0 \iff x = y$, we change
 893 coordinates $d(x_1, x_2) \mapsto r$ and rewrite Equation (20) as
 894

$$\mathbb{P}(X = Y) = \int_M d\nu(x_1) \int_{(0, \infty]} \frac{1}{1 + g(r)} dS_{x_1}(r). \quad (22)$$

895 When $r > \varepsilon$, the second item does not interfere with the probe $p = x_1$ and the model will choose x_1
 896 with certainty, while, if $r \leq \varepsilon$, $g(r) = 1$ and it will instead be maximally uncertain.
 897

$$\int_M d\nu(x_1) \int_{(0, \infty]} \frac{1}{1 + g(r)} dS_{x_1}(r) = \int_M d\nu(x_1) \int_{(0, \varepsilon]} \frac{1}{2} dS_{x_1}(r) + \int d\nu(x_1) \int_{(\varepsilon, \infty]} 1 dS_{x_1}(r). \quad (23)$$

$$= \frac{1}{2} \int_M b_{x_1}(\varepsilon) d\nu(x_1) + \int_M (1 - b_{x_1}(\varepsilon)) d\nu(x_1) = 1 - \frac{1}{2} \langle b(\varepsilon) \rangle. \quad (24)$$

906 \square
 907

908 A.4 PROOF OF THEOREM 2

909 The proof proceeds by retracting the proof of the noiseless case with some adjusted constants.
 910

911 We start from the similarity task success probability, as rewritten in Equation (9). Once again, the
 912 integral can be decomposed into two cases: **a.** when $r_1 > \varepsilon$ and thus both items fall outside the
 913 resolution region of the probe p and **b.** when $r_1 \leq \varepsilon$ and thus the closest item falls inside.
 914

915 **a.** When $r_2 > r_1 > \varepsilon$, we have that $g(r_1) = g(r_2) = \Delta$ and thus the ratio $g(r_1)/(g(r_1) + g(r_2)) =$
 916 $1/2$ resulting in the same term of Equation (11) $(1 - b_p(\varepsilon))^2/2$.
 917

b. When $r_1 \leq \varepsilon$ and $r_2 \leq \varepsilon$ both items are similar to the probe and thus we get the same contribution
 918 of the term $b_p(\varepsilon)^2/2$ in Equation (16).
 919

918 The only difference from the proof of the noiseless case is when $r_1 \leq \varepsilon$ and $r_2 > \varepsilon$. In this case, the
 919 first item is similar to the probe while the second is not, but the noise erodes the probability of the
 920 model picking the first item. Therefore we get the following contribution to $\mathbb{P}(Y = X)$.
 921

$$922 \quad 2 \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(\varepsilon, \infty]} dS_p(r_2) \frac{1}{1 + \Delta} = \frac{2}{1 + \Delta} \int_M b_p(\varepsilon)(1 - b_p(\varepsilon)) d\nu(p).$$

925 Putting all the terms together we get
 926

$$927 \quad \mathbb{P}(Y = X) = \int_M \frac{1}{2}(1 - b_p(\varepsilon))^2 + \frac{1}{2}b_p(\varepsilon)^2 + \frac{2}{1 + \Delta}b_p(\varepsilon)(1 - b_p(\varepsilon)) d\nu(p) \quad (25)$$

$$929 \quad = \int_M \frac{1}{2} + \left(\frac{2}{1 + \Delta} - 1 \right) (b_p(\varepsilon) - b_p(\varepsilon)^2) d\nu(p) \quad (26)$$

$$931 \quad = \frac{1}{2} + \frac{1 - \Delta}{1 + \Delta} (\langle b_p(\varepsilon) \rangle - \langle b_p(\varepsilon)^2 \rangle) \quad (27)$$

934 For the identification task, we start from Equation (22). Now, when $r > \varepsilon$, the second item is outside
 935 of the resolution region of x_1 but the noise will still make the model's decision not certain.
 936

$$937 \quad \mathbb{P}(Y = X) = \int_M d\nu(x_1) \int_{(0, \infty]} \frac{1}{1 + g(r)} dS_{x_1}(r) \quad (28)$$

$$940 \quad = \int_M d\nu(x_1) \int_{(0, \varepsilon]} \frac{1}{2} dS_{x_1}(r) + \int d\nu(x_1) \int_{(\varepsilon, \infty]} \frac{1}{1 + \Delta} dS_{x_1}(r). \quad (29)$$

$$942 \quad = \frac{1}{2} \int_M b_{x_1}(\varepsilon) d\nu(x_1) + \frac{1}{1 + \Delta} \int_M (1 - b_{x_1}(\varepsilon)) d\nu(x_1) = \frac{1}{1 + \Delta} - \frac{1 - \Delta}{2(1 + \Delta)} \langle b(\varepsilon) \rangle. \quad (30)$$

945 A.5 PROOF OF THEOREM 3

947 Lemma 2.

$$949 \quad \sum_{j=1}^n \binom{n}{j} \frac{1}{j} x^j (1 - x)^{n-j} = \sum_{j=1}^n \frac{(1 - x)^{n-j} - (1 - x)^n}{j}.$$

953
 954 *Proof.* Let us call f_n the left-hand side of the identity and g_n the right-hand side. We prove the result
 955 by showing that the generating functions of the series $(f_n)_n, (g_n)_n$ are equal.

956 Let us start with $(f_n)_n$.
 957

$$958 \quad F(z) = \sum_{n=0}^{\infty} f_n z^n = \sum_{n=0}^{\infty} \sum_{j=1}^n \binom{n}{j} \frac{1}{j} x^j (1 - x)^{n-j} z^n = \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \binom{n}{j} \frac{1}{j} x^j (1 - x)^{n-j} z^n \quad (31)$$

$$961 \quad = \sum_{j=1}^{\infty} \frac{x^j}{j} \left(\sum_{n=j}^{\infty} \binom{n}{j} (1 - x)^{n-j} z^n \right) = \sum_{j=1}^{\infty} \frac{x^j}{j} \left(\sum_{k=0}^{\infty} \binom{j+k}{j} (1 - x)^k z^{k+j} \right) \quad (32)$$

$$965 \quad = \sum_{j=1}^{\infty} \frac{x^j}{j} z^j (1 - z + xz)^{-j-1} = \frac{1}{(1 - z + xz)} \sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{xz}{1 - z + xz} \right)^j \quad (33)$$

$$968 \quad = -\frac{\log\left(1 - \frac{xz}{1 - z + xz}\right)}{1 - z + xz} = -\frac{\log\left(\frac{1-z}{1-z+xz}\right)}{1 - z + xz}, \quad (34)$$

971 where we used the generating function identity for the binomial, see (Graham et al., 1989) (Equation
 5.56) and the power series expansion of $\log(1 - x)$.

972 Let us proceed in the same way for g_n :
 973

$$974 G(z) = \sum_{n=0}^{\infty} g_n z^n = \sum_{n=0}^{\infty} \sum_{j=1}^n \frac{1}{j} ((1-x)^{n-j} - (1-x)^n) z^n \quad (35)$$

$$977 = \sum_{j=1}^{\infty} \frac{1}{j} \left(\sum_{n=j}^{\infty} (1-x)^{n-j} z^n - \sum_{n=j}^{\infty} (1-x)^n z^n \right) \quad (36)$$

$$980 = \sum_{j=1}^{\infty} \frac{1}{j} \left((1-x)^{-j} \sum_{n=j}^{\infty} (z-zx)^n - \sum_{n=j}^{\infty} (z-zx)^n \right) \quad (37)$$

$$983 = \sum_{j=1}^{\infty} \frac{1}{j} \left((1-x)^{-j} \frac{(z-zx)^j}{1-z+zx} - \frac{(z-zx)^j}{1-z+zx} \right) \quad (38)$$

$$986 = \frac{1}{1-z+zx} \left(\sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{z-zx}{1-x} \right)^j - \sum_{j=1}^{\infty} \frac{1}{j} (z-zx)^j \right) \quad (39)$$

$$990 = \frac{-\log \left(1 - \frac{z-zx}{1-x} \right) + \log(1-z+zx)}{1-z+zx} = -\frac{\log \left(\frac{1-z}{1-z+zx} \right)}{1-z+zx} \quad (40)$$

□

994 A.5.1 SIMILARITY TASK 995

996 Recall that in the n -item similarity task, we are sampling independently n stimuli x_1, \dots, x_n and a
 997 probe p and we ask the model to find which among the stimuli is the closest to p . Recall that Lemma 1
 998 tells us that the probability of having more than a correct answer is 0.

999 Retracing the first steps in Appendix A.3, we find that
 1000

$$1001 \mathbb{P}(Y = X) = \sum_{i=1}^n \mathbb{P}(Y = i | X = i) \mathbb{P}(X = i) \quad (41)$$

(42)

1004 By the symmetry induced by the independence of the sampling, we see that $\mathbb{P}(Y = i | X = i) =$
 1005 $\mathbb{P}(Y = j | X = j) = \mathbb{P}(Y = 1 | X = 1) \forall i, j$ and $P(X = i) = P(X = 1) \forall i$, and thus we can
 1006 restrict to the case when the closest stimulus is the first one.

$$1008 \mathbb{P}(Y = 1 | X = 1) = \int_{M^n \times M} \mathbb{P}(Y = 1 | X = 1, (x_1, \dots, x_n, p)) dP(x_1, \dots, x_n, p | X = 1) \quad (43)$$

$$1010 = \int_{M^n \times M} \mathbb{P}(Y = 1 | X = 1, (x_1, \dots, x_n, p)) \frac{\mathbb{1}[X(x_1, \dots, x_n, p) = 1]}{\mathbb{P}(X = 1)} d\nu(x_1) \cdots d\nu(x_n) d\nu(p). \quad (44)$$

$$1013 \mathbb{P}(Y = X) \quad (45)$$

$$1015 = n \int_{M^n \times M} \mathbb{P}(Y = 1 | X = 1, (x_1, \dots, x_n, p)) \mathbb{1}[X(x_1, \dots, x_n, p) = 1] d\nu(x_1) \cdots d\nu(x_n) d\nu(p) \quad (46)$$

$$1018 = n \int_M d\nu(p) \int_M d\nu(x_1) \int_{d(x_2, p) > d(x_1, p)} \cdots \int_{d(x_n, p) > d(x_1, p)} \frac{g(x_1, p)}{\sum_{i=1}^n g(x_i, p)} d\nu(x_2) \cdots d\nu(x_n). \quad (47)$$

1021 Given that g is a constant similarity function $g(x, y) = g_{\varepsilon, 0}(x, y)$ which depends only on the distance
 1022 between x and y , we perform the change of coordinates $d(x_i, p) \mapsto r_i$ with S_p being the pushforward
 1023 measure induced by the distance function from the probe p .

$$1024 \mathbb{P}(X = Y) = n \int_M d\nu(p) \int_{[0, \infty]} dS_p(r_1) \int_{(r_1, \infty]} dS_p(r_2) \cdots \int_{(r_1, \infty]} dS_p(r_n) \frac{g(r_1)}{\sum_{i=1}^n g(r_i)}. \quad (48)$$

We now consider two cases separately. **a.** If $r_1 > \varepsilon$, no item falls close enough to the probe and thus $g(x_i, p) = 0 \forall i = 1, \dots, n$ and the model's response is random:

$$n \int_M d\nu(p) \int_{(\varepsilon, \infty]} dS_p(r_1) \int_{(r_1, \infty]} dS_p(r_2) \cdots \int_{(r_1, \infty]} dS_p(r_n) \frac{1}{n} \quad (49)$$

$$= \int_M d\nu(p) \int_{(\varepsilon, \infty]} (1 - b_p(r_1))^{n-1} dS_p(r_1) = \int_M d\nu(p) \int_{(\varepsilon, \infty]} (1 - b_p(r_1))^{n-1} b'_p(r_1) d\mu(r_1) \quad (50)$$

Notice now that b_p absolutely continuous implies that $(1 - b_p(r_1))^{n-1}$ is absolutely continuous and, by Lebesgue's theorem, it is differentiable almost everywhere and the fundamental theorem of calculus holds (see Appendix A.2). We thus deduce that

$$\int_M d\nu(p) \int_{(\varepsilon, \infty]} (1 - b_p(r_1))^{n-1} b'_p(r_1) d\mu = \int_M d\nu(p) \left[-\frac{(1 - b_p(r_1))^n}{n} \right]_{\varepsilon}^{\infty} \quad (51)$$

$$= \int_M \frac{(1 - b_p(\varepsilon))^n}{n} d\nu(p). \quad (52)$$

b. If $r_1 \leq \varepsilon$, then the closest stimulus is similar to the probe $g(r_1) = 1$ and we write

$$n \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \int_{(r_1, \infty]} dS_p(r_2) \cdots \int_{(r_1, \infty]} dS_p(r_n) \frac{1}{1 + \sum_{i=2}^n g(r_i)}. \quad (53)$$

Each item $i > 1$ can fall either inside of $B_\varepsilon(p)$ and contribute to the denominator of the decision function, or fall outside. Given that the denominator only depends on the *number* of stimuli which fall in $B_\varepsilon(p)$ and not on their index, we can write Equation (53) as

$$n \int_M d\nu(p) \int_{[0, \varepsilon]} dS_p(r_1) \sum_{k=0}^{n-1} \binom{n-1}{k} (b_p(\varepsilon) - b_p(r_1))^k (1 - b_p(\varepsilon))^{n-1-k} \frac{1}{k+1} \quad (54)$$

$$= n \int_M d\nu(p) \sum_{k=0}^{n-1} \binom{n-1}{k} (1 - b_p(\varepsilon))^{n-1-k} \frac{1}{k+1} \int_{[0, \varepsilon]} (b_p(\varepsilon) - b_p(r_1))^k b'_p(r_1) d\mu(r_1) \quad (55)$$

$$= n \int_M d\nu(p) \sum_{k=0}^{n-1} \binom{n-1}{k} (1 - b_p(\varepsilon))^{n-1-k} \frac{1}{k+1} \frac{b_p(\varepsilon)^{k+1}}{k+1} \quad (56)$$

$$= n \int_M d\nu(p) \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{1}{(k+1)^2} (1 - b_p(\varepsilon))^{n-1-k} b_p(\varepsilon)^{k+1} \quad (57)$$

$$= \int_M d\nu(p) \sum_{j=1}^n \binom{n}{j} \frac{1}{j} (1 - b_p(\varepsilon))^{n-j} b_p(\varepsilon)^j, \quad (58)$$

where the last is performed by re-indexing $j = k + 1$ and applying the property of the binomial coefficient $\binom{n-1}{j-1} = \frac{j}{n} \binom{n}{j}$. Applying Lemma 2, we rewrite the result in a more convenient form

$$\int_M \sum_{k=1}^n \frac{(1 - b_p(\varepsilon))^{n-k} - (1 - b_p(\varepsilon))^n}{k} d\nu(p). \quad (59)$$

and summing Equation (52) with Equation (59), we get our final expression

$$p_S^n(\varepsilon) = \mathbb{E}_{p \sim \nu} \left[\frac{1}{n} + \sum_{k=1}^{n-1} \frac{(1 - b_p(\varepsilon))^{n-k} - (1 - b_p(\varepsilon))^n}{k} \right].$$

1080 A.5.2 IDENTIFICATION TASK
1081

1082 Re-tracing the first steps of Appendix A.5.1 and Appendix A.3.2

1083
$$\mathbb{P}(X = Y) = n \int_M \sum_{p \in \{x_1, \dots, x_n\}} \frac{1}{n} \mathbb{P}(Y = 1 | X = 1, (x_1, \dots, x_n, p)) \mathbb{1}[X(x_1, \dots, x_n, p) = 1] d\nu(x_1) \cdots d\nu(x_n) \quad (60)$$

1084
1085
1086

1087
$$= \int_M d\nu(x_1) \int_{M^{n-1}} \frac{g(x_1, x_1)}{g(x_1, x_1) + \sum_{i=2}^n g(x_i, x_1)} d\nu(x_2) \cdots d\nu(x_n) \quad (61)$$

1088
1089

1090
$$= \int_M d\nu(x_1) \int_{(0, \infty]} dS_p(r_2) \cdots \int_{(0, \infty]} dS_p(r_n) \frac{1}{1 + \sum_{i=2}^n g(r_i)}. \quad (62)$$

1091
1092
1093
1094
1095

Just like we saw in the proof of the similarity task, here any stimulus different from the probe will contribute to the denominator of the decision function if and only if it falls in $B_\varepsilon(x_1)$. Moreover, the decision function depends only on the number of such stimuli and not on which ones contribute to the denominator. Therefore, we can write

1096
$$\mathbb{P}(X = Y) = \int_M d\nu(x_1) \sum_{k=0}^{n-1} \binom{n-1}{k} b_{x_1}(\varepsilon)^k (1 - b_{x_1}(\varepsilon))^{n-1-k} \frac{1}{k+1} \quad (63)$$

1097
1098

1099
$$= \int_M d\nu(x_1) \frac{j}{n} \sum_{j=1}^n \frac{1}{j} \binom{n}{j} b_{x_1}(\varepsilon)^{j-1} (1 - b_{x_1}(\varepsilon))^{n-j} \quad (64)$$

1100
1101

1102
$$= \mathbb{E}_{p \sim \nu} \left[\frac{1 - (1 - b_p(\varepsilon))^n}{nb_p(\varepsilon)} \right], \quad (65)$$

1103

1104 where we used the property of the binomial coefficient $\binom{n-1}{j-1} = \frac{j}{n} \binom{n}{j}$.
11051106 A.6 PROOF OF PROPOSITION 1
11071108 We want to compute p_S and p_I for the uniform measure on the flat circle $M = [0, 1]$ with $d(x, y) =$
1109 $\min(|x - y|, 1 - |x - y|)$ for the linearly decaying similarity function with resolution ε , $g(r) =$
1110 $\sigma(1 - \frac{r}{\varepsilon})$, where $\sigma(x) = \max(x, 0)$.1111 First, note that for the uniform measure, we have that
1112

1113
$$b_x(\varepsilon) = \nu(B_\varepsilon(x)) = \begin{cases} 2\varepsilon & \text{if } \varepsilon \leq \frac{1}{2} \\ 1 & \text{if } \varepsilon > \frac{1}{2} \end{cases} = b(\varepsilon),$$

1114

1115 i.e. the length of the interval $[-\varepsilon, \varepsilon]$ on the circle. Accordingly, we have that the measure S_x is such
1116 that

1117
$$S_x(E) = S(E) \int_E b'(r) d\mu(r) = 2\mu(E),$$

1118

1119 if $E \subseteq [0, \frac{1}{2}]$.
11201121 **Similarity task.** We start from Equation (9) and, once again, consider the different cases. If
1122 $r_1, r_2 > \varepsilon$, there is no difference from the constant case: the probe has similarity 0 with both x_1
1123 and x_2 , therefore the model is maximally uncertain. This term will contribute $(1 - b(\varepsilon))^2/2$ to
1124 $\mathbb{P}(Y = X)$.1125 If $r_1 \leq \varepsilon$ and $r_2 > \varepsilon$, there is no difference from the constant case as the probe is similar to x_1 with
1126 no interference from x_2 . We get a contribution of $2b(\varepsilon)(1 - b(\varepsilon))$.1127 If $r_1 \leq \varepsilon, r_2 \leq \varepsilon$, we need to compute

1128
$$2 \int_{[0, \varepsilon]} dS(r_1) \int_{(r_1, \varepsilon]} dS(r_2) \frac{g(r_1)}{g(r_1) + g(r_2)} = 8 \int_{[0, \varepsilon]} \int_{(r_1, \varepsilon]} \frac{1 - r_1/\varepsilon}{1 - r_1/\varepsilon + 1 - r_2/\varepsilon} d\mu(r_1) d\mu(r_2) \quad (66)$$

1129
1130
1131

1132
$$= 8 \int_{[0, \varepsilon]} (\varepsilon - r_1) \log(2) d\mu(r_2) = 8 \cdot \frac{1}{2} \varepsilon^2 \log(2) = (2\varepsilon)^2 \log(2) = \log(2) b(\varepsilon)^2. \quad (67)$$

1133

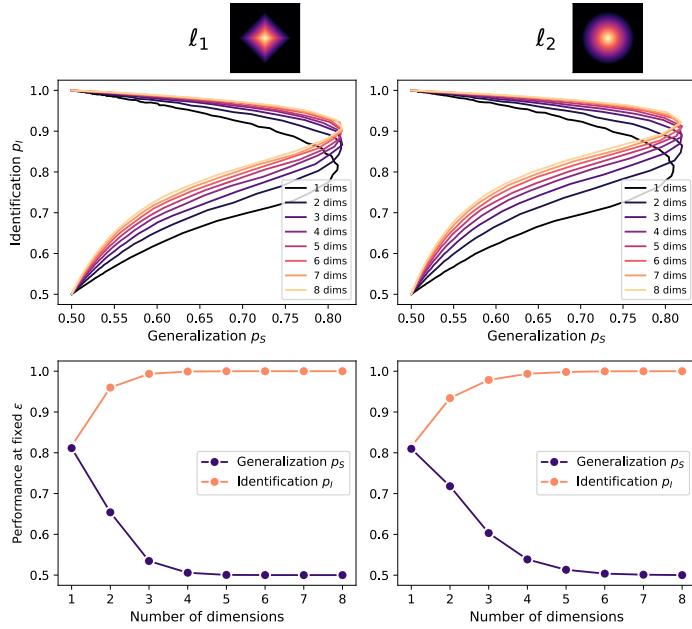


Figure 6: **Top row.** Generalization p_S and identification p_I accuracy curves for inputs sampled from a higher-dimensional torus equipped with ℓ_1 (left column) and ℓ_2 distance metric (right column) and linearly decaying similarity functions (depicted above). **Bottom row.** Generalization and identification accuracies as functions of the number of dimensions, for ϵ fixed to the maximum-achieving resolution of p_S on the 1-dimension torus.

Putting together the three contributions, we get

$$\mathbb{P}(Y = X) = \frac{1}{2} - b(\epsilon) + \frac{1}{2}b(\epsilon)^2 + 2b(\epsilon) - 2b(\epsilon)^2 + \log(2)b(\epsilon)^2 = \frac{1}{2} + b(\epsilon) - (3/2 - \log(2))b(\epsilon)^2.$$

Identification task. We start from Equation (22) and consider two cases. If $r > \epsilon$, then x_2 does not interfere with the probe and thus the model will choose x_1 with probability 1. Just like the constant case, we get a contribution of $1 - b(\epsilon)$.

If $r \leq \epsilon$, we need to compute

$$\int_{(0,\epsilon]} \frac{1}{1 + g(r)} dS(r) = \int_{(0,\epsilon]} 2 \frac{1}{1 + 1 - r/\epsilon} d\mu(r) = 2 \log(2)\epsilon = \log(2)b(\epsilon). \quad (68)$$

In total, we get

$$\mathbb{P}(Y = X) = 1 - b(\epsilon) + \log(2)b(\epsilon) = 1 - (1 - \log(2))b(\epsilon).$$

A.7 DIMENSIONALITY ANALYSIS

Here we numerically check how the results change when the input space is multi-dimensional. We consider a d -dimensional (flat) torus whose points are d -tuples $x = (x_1, \dots, x_d) \in [0, 1]^d$. Each coordinate thus lives on a circular space. Following classical work describing similarity in multi-dimensional spaces Nosofsky (1986), we consider the Minkowski metric on such space

$$d(x, y) = \left(\sum_{i=1}^d \min(|y_i - x_i|, 1 - |y_i - x_i|)^p \right)^{1/p} \quad (69)$$

with $p = 1, 2$ and an agent implementing linearly decaying similarity functions $g(r) = \max(1 - r, 0)$ with respect to that metric.

In the top row of Figure 6, we show p_S, p_I curves as the dimension d of the space increases from 1 to 8. We see how, for both ℓ_1 and ℓ_2 metrics, the curve shift towards higher identification performances

1188 while staying approximately constant in generalization. Fixing a single resolution value ε and
 1189 checking how performances depend on dimension (bottom row of Figure 6) shows fast decaying
 1190 generalization and fast increasing identification. We can interpret this as an effect of the curse/blessing
 1191 of dimensionality. In higher-dimensional spaces the volume covered by the similarity function (whose
 1192 “radius” ε is fixed) decreases. This results in a reduction in interference between representations, i.e.
 1193 higher identification capabilities but, at the same time, the similarities are not wide enough to support
 1194 generalization.

1195 **A.8 DETAILS ON NUMERICAL EXPERIMENTS**

1196 All the code used to produce the results can be found in <https://anonymous.4open.science/r/generalization-7155>.

1200 **A.8.1 TOY MODEL**

1202 The architecture of the toy model we used is the following linear bias-less autoencoder with a
 1203 nonlinearity at the end

$$1204 \quad f(x) = \sigma(W^\top W x),$$

1205 where σ is the ReLU activation function $\sigma(x) = \max(x, 0)$ and $W \in \mathbb{R}^{m \times l}$.

1207 In both the pure-reconstruction and semantic experiments, the inputs were chosen to be $l = 50$
 1208 one-hot vectors $x = e_i \forall i = 1, \dots, m$. The hidden space dimension was chosen to be $m = 10$.

1209 The pure reconstruction experiment is performed by minimizing the MSE loss between input one-hot
 1210 and its reconstruction through the network

$$1212 \quad L_{\text{rec}} = \sum_{i=1}^l \|e_i - \sigma(W^\top W e_i)\|^2 = \sum_{i=1}^l \|e_i - \sigma(W^\top w_i)\|^2.$$

1215 In the semantic case, the loss is built in the following way. Three different indices i, j, k are picked
 1216 randomly and their associated one-hots are built e_i, e_j, e_k . Then, we compute the ratio of similarities

$$1218 \quad D_i = \frac{\sigma(w_i^\top w_k)}{\sigma(w_i^\top w_k) + \sigma(w_j^\top w_k)}, \quad D_j = \frac{\sigma(w_j^\top w_k)}{\sigma(w_i^\top w_k) + \sigma(w_j^\top w_k)}.$$

1220 The index $\hat{i} \in \{i, j\}$ of the correct answer is computed by taking the minimum between $d(x_i, x_k)$
 1221 and $d(x_j, x_k)$, where the distance function is given as a training input in the form of a distance
 1222 matrix. The loss, finally, is computed by taking the Negative Log Likelihood Loss (NLL) between
 1223 the distribution (D_i, D_j) and the one hot vector encoding the correct response.

$$1225 \quad L_{\text{sim}} = -\frac{1}{2} D_{\hat{i}}.$$

1228 For all experiments, each epoch is made of 2000 samples, with batch size 128. The models are trained
 1229 for 500 epochs with the Adam optimizer, with learning rate 0.0007 and 0 weight decay.

1230 Given that random vectors in high-dimensional space tend to be close to orthogonal, biasing the
 1231 model towards high p_I , we initialize the weight matrix with i.i.d. uniform in the interval $[0, 2]$.

1232 At each epoch, the model is evaluated by performing similarity and identification tasks. 1,000 triplets
 1233 (i, j, k) ($k \in \{i, j\}$ for the identification) are extracted, and the average $D_{\hat{i}}$ is recorded to obtain the
 1234 values of p_S and p_I shown in Figure 4. The average similarity functions shown in the figure’s insets
 1235 are obtained as $g_i(j) = \sigma(w_i^\top w_j)$ for every $j \in 1, \dots, l$. Leveraging the symmetry of the circular
 1236 structure, each vector g_i is circularly shifted so that the index i goes to the center of the circle $g_i \mapsto \tilde{g}_i$.
 1237 Finally, we take the average over i , $\tilde{g} = \frac{1}{l} \sum_{i=1}^l \tilde{g}_i$.

1238 We show the distance matrices for the circle and line experiments, together with the full learned
 1239 similarity matrices for a single run in Figure 7.

1241 In Figure 8, moreover, we see the results of the three different trainings for three values of the neural
 1242 network’s latent dimension. As it increases, we see how the model is able to have less interference

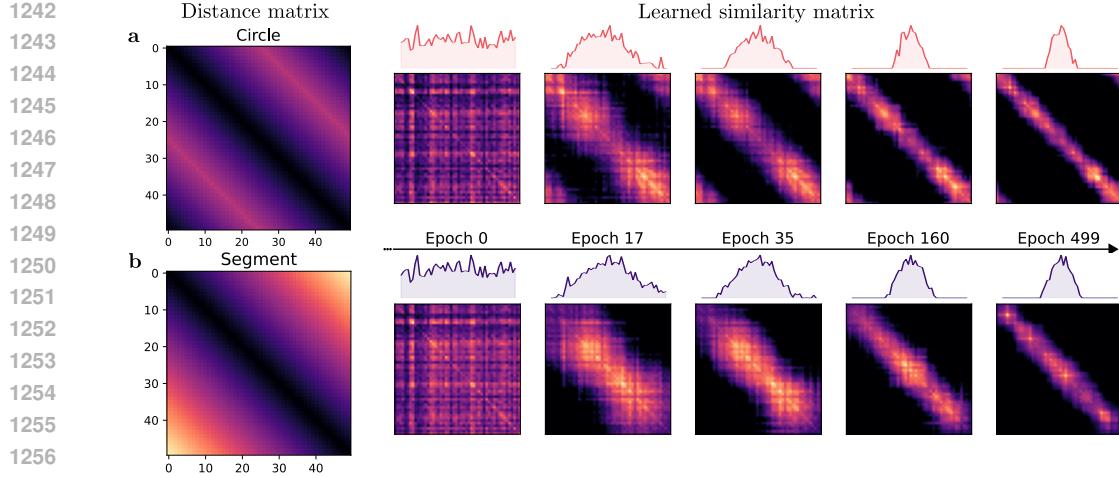


Figure 7: Visualization of the distance matrix (left) and the learned similarity matrices through training for the circle (top row) and the segment (bottom row).

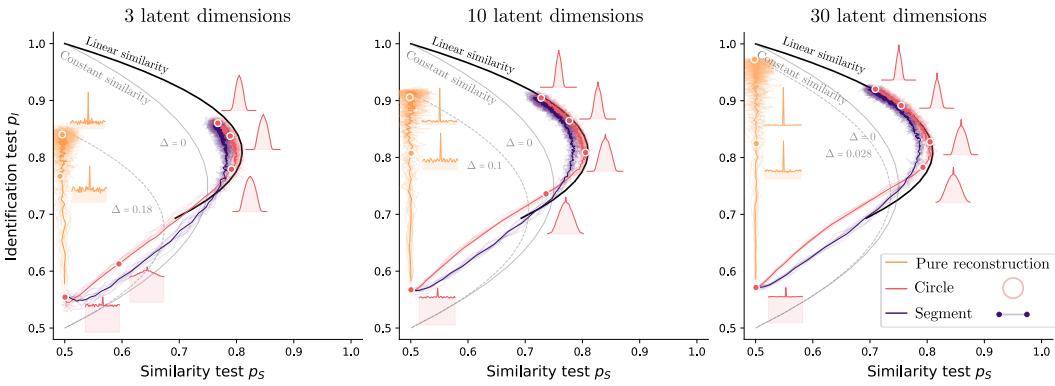


Figure 8: Different training trajectories of the toy model with different latent dimensions, visualized as in Figure 4.

between representations, signified by p_I being able to reach higher values. Visualizing the average learned similarity functions and estimating the noise value, we are able in all cases to predict the maximum p_I using Theorem 2.

A.8.2 CONVOLUTIONAL NEURAL NETWORK FINE-TUNED ON EVOLUTIONARY DISTANCES AMONG BIRD SPECIES

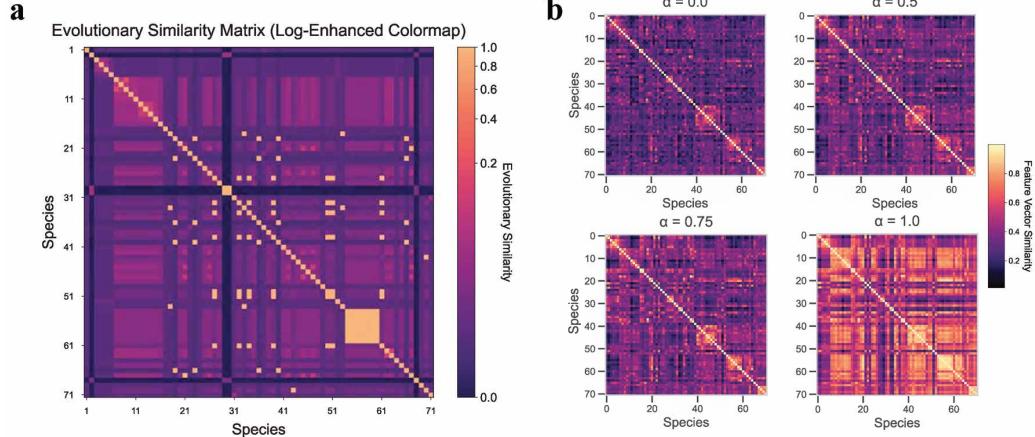
Experimental setup. To test our theoretical predictions in a realistic computer vision setting, we fine-tuned a ResNet-50 model (He et al., 2016) pre-trained on ImageNet. We used the Caltech-UCSD Birds-200-2011 dataset (Wah et al., 2011), which contains 11,788 images of 200 bird species, paired with evolutionary distance data from the TimeTree database (Kumar et al., 2022). The experimental design involved two tasks with a consistent triplet-based evaluation format:

- **Identification task:** Given images of two reference species (x_1, x_2) and a probe image, determine which reference species the probe belongs to.
- **Similarity task:** Given images of two reference species (x_1, x_2) and a probe species (p), determine which reference species is evolutionarily closer to the probe.

Using a contrastive loss that encouraged embedding bird images closer to their evolutionary relatives, we fine-tuned the model using a composite loss:

$$\mathcal{L} = (1 - \alpha) \mathcal{L}_{\text{id}} + \alpha \mathcal{L}_{\text{sim}},$$

1296 where \mathcal{L}_{id} is a cross-entropy loss for species identification, and \mathcal{L}_{sim} aligns the embedding space
 1297 with evolutionary distances. The parameter α controls the balance between identification and
 1298 generalization objectives. During evaluation, we defined similarity using a threshold ϵ on feature
 1299 distances, where distances below ϵ indicated similarity. This allowed us to systematically study the
 1300 generalization-identification tradeoff by varying both α and ϵ .



1317 Figure 9: Evolutionary similarity between species obtained from (a) bird phylogeny and (b) the
 1318 feature vector similarities as α is tuned.

1319
 1320 **Training details.** We trained the model for 15 epochs using SGD with momentum 0.9, weight decay
 1321 $1e - 4$, and an initial learning rate of 0.001, reduced by a factor of 0.1 when validation performance
 1322 plateaued. To handle GPU memory constraints, we used a batch size of 8 with gradient accumulation
 1323 over 4 steps (effective batch size 32). We tested α values ranging from 0.0 to 1.0 with several random
 1324 seeds (42-46) to ensure robust results.

1325 The birds dataset was split 64-16-20% for training, validation, and testing, with an additional 15% of
 1326 species held out completely as out-of-distribution test data. The evolutionary distance loss (\mathcal{L}_{sim}) was
 1327 implemented by computing pairwise distances in feature space and aligning them with normalized
 1328 evolutionary distances derived from the phylogenetic tree. This explicitly encouraged the CNN to
 1329 map visual features into a space that preserved evolutionary relationships as shown in Figure 9.

1330
 1331 **Theoretical connections.** Our experimental framework directly maps to the theoretical constructs
 1332 in Miller’s Law. The identification task measures p_I (probability of correct identification), while the
 1333 similarity task measures p_S (probability of correct similarity judgment). The threshold ϵ corresponds
 1334 to the resolution parameter in our theoretical framework, controlling the ball measure $b(\epsilon)$ that
 1335 determines which items are considered similar.

1336
 1337 **Evolution during training.** We monitored how the identification-generalization constraints evolved
 1338 during training by tracking both scores across epochs. With $\alpha = 0$ (pure identification objective),
 1339 models rapidly optimized for identification at the expense of generalization. As α increased, especially
 1340 beyond 0.5, models traced distinct trajectories through (p_S, p_I) (or G-I) space, with higher α values
 1341 showing earlier and more pronounced shifts toward generalization.

1342 The final equilibrium position in G-I space was primarily determined by α , with higher α values
 1343 reliably producing models with better generalization capabilities. Out-of-distribution testing revealed
 1344 that models with higher α values demonstrated substantially better generalization to unseen bird
 1345 species, confirming that the similarity-based training objective promotes more robust feature learning
 1346 that captures fundamental biological relationships rather than superficial correlations.

1347
 1348 **Results.** As shown in Figure 5a, the bird CNN exhibits a clear tradeoff between generalization
 1349 and identification. We expand these results in Figure 10, in which (a) shows how the G-I tradeoff is

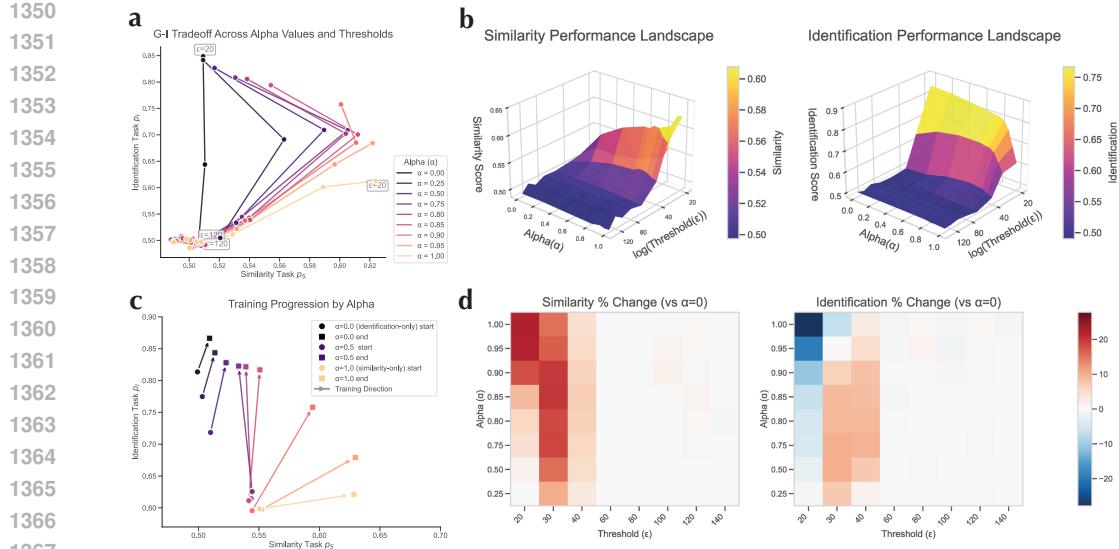


Figure 10: (a) Generalization-identification tradeoff parametrized by threshold resolution (ε) for various α values, showing how different regularization strengths shape the Pareto frontier. (b) Performance landscapes showing generalization (left) and identification (right) as continuous functions of α and $\log(\varepsilon)$. (c) Training trajectories in the G-I performance space for different α values, showing how higher α produces increasingly horizontal progressions that prioritize generalization over identification during learning. (d) Percentage change in generalization (left) and identification (right) relative to the pure reconstruction baseline ($\alpha = 0$), revealing a critical range of ε values where positive deviations occur for both tasks.

parametrized by threshold resolution ε for different α values, with each curve tracing the performance as ε varies while α remains fixed. Panel (b) presents the full performance landscapes, showing generalization (left) and identification (right) scores as continuous functions of both α and $\log(\varepsilon)$. Panel (c) illustrates the training dynamics: as α increases, the training trajectories become increasingly horizontal, indicating that the learning process prioritizes generalization improvements over identification accuracy. Panel (d) quantifies the performance deviations from the pure reconstruction baseline ($\alpha = 0$) through heatmaps. For low thresholds ($\varepsilon \leq 20$) and high thresholds ($\varepsilon \geq 80$), deviations remain minimal across all α values. However, for intermediate thresholds ($30 \leq \varepsilon \leq 50$), we observe a critical regime: higher α values yield substantial positive deviations in generalization (up to 25% improvement) while identification shows moderate negative deviations (typically 10-20% decrease), most pronounced in the $\alpha \geq 0.8$ range. Notably, there exists a narrow band around $\varepsilon = 40$ where both landscapes show positive deviations for moderate α values, confirming our theoretical prediction that optimal threshold selection enables simultaneous enhancement of both generalization and identification beyond the pure reconstruction baseline.

A.8.3 LLMs PERFORMING DATE-OF-BIRTH IDENTIFICATION VS SIMILARITY TASK

Evidence of resolution

Experimental setup. We investigated whether large language models exhibit semantic resolution when processing time information. We tested three models: gemma-2-2b-it (Team et al., 2024), Llama-3.2-3B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Bai et al., 2023) on the following task. The models are fed the system prompt "You are a useful chatbot assistant." and are asked to respond to the prompt "A was born in x. B was born in y. Who was born closest to p? Answer with a single name."

The variables A,B,x,y and p are generated in the following way:

1. A central year c is sampled uniformly from the set of integers $\{1500, 1501, \dots, 1699\}$;

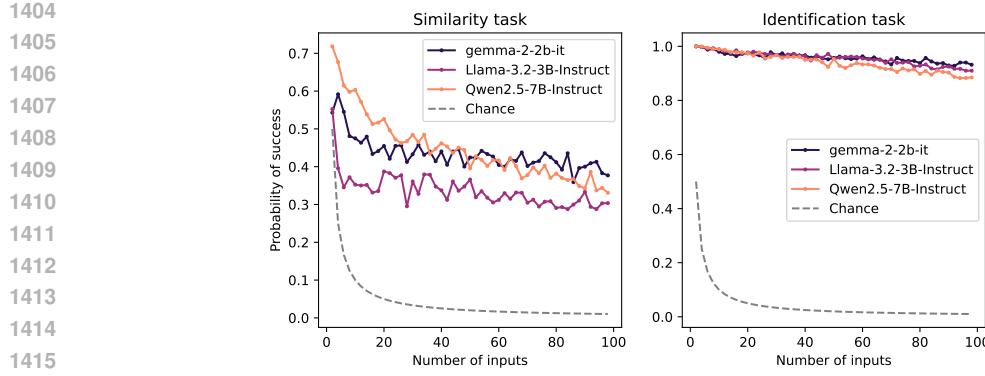


Figure 11: Similarity and identification performances of three LLMs on the interval of years [800, 1599]

2. For each value $\delta x \in \{20, 50, 100, 200\}$, we fix $x = c - \delta x$ and $y = c + \delta x$ with probability 0.5 and $x = c + \delta x$ and $y = c - \delta x$ with probability 0.5.
3. For each pair x, y chosen in this way, we run the prompt with every $p = c + \delta p, \delta p \in \{c - 300, c + 300\}$.
4. The prompt with each value of p is ran 20 times, randomizing the variables A and B, which are two different names sampled from the list ["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace", "Heidi", "Ivan", "Judy", "Karl", "Liam", "Mallory", "Nina", "Oscar", "Peggy", "Quentin", "Rupert", "Sybil", "Trent", "Uma", "Victor", "Walter", "Xander", "Yvonne", "Zach", "Abigail", "Benjamin", "Catherine", "Daniel", "Elena", "Frederick", "Gabriella", "Henry", "Isabella", "Jack", "Katherine", "Lucas", "Mia", "Nathan", "Olivia"].

If the answer of the model belongs to the set of sampled names, then we check whether it is equal to the name associated to the smallest year.

We repeat the process, sampling c 40 times and averaging the results. What we obtain is a function from the probe displacement w.r.t. c , $\delta p \in [-300, 300]$ to the probability of the model decision function $\mathbb{E}_c[D_1(x, y)] \in [0, 1]$.

Results. Figure 5b in the main text displays the probability of correct answers for both models across date displacements. Several observations support our theory:

1. Both models show high performance when probe dates are near reference dates (small displacements), but performance degrades as displacement increases.
2. The pattern follows our theoretical assumptions: the performance approaches chance level (0.5) when the reference years are close and the probe falls between them and when the reference years are far and probes is far from both.

Similarity and identification tasks

Experimental setup. We then performed similarity and identification tasks to gauge the performance of these three models as the number of inputs provided increases.

For each number of inputs $n \in \{2, 4, \dots, 100\}$, we sample 1,000 prompts built in the following way

- **Similarity task:** "A1 was born in x1. A2 was born in x2."+...+"An was born in xn." Who was born closest to p? Answer with a single name.

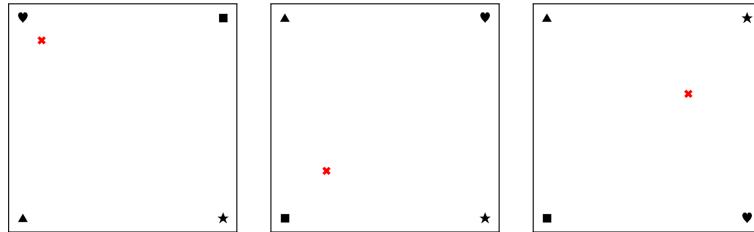


Figure 12: Examples of image inputs for the spatial resolution task.

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465

- **Identification task:** "A1 was born in x1. A2 was born in x2."+⋯+
 An was born in xn." Who was born in p? Answer with a single name.

1466
 1467
 1468
 1469
 1470
 1471

Here A1, ..., An are names sampled from a list of 200 names similar to the one described above, and x1, ..., xn are random integers in the interval [800, 1599]. The probe p is a random integer in the same interval for the similarity task and, for the identification tasks, it is randomly chosen from the set {x1, ..., xn}.

1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480

Results. In Figure 11, we plot the performances obtained for the three models. Overall, we see that all models perform well on the identification task, with its performance decreasing with a small rate. Instead, for the similarity task we see how the performances are definitely worse, never being greater than 0.7 but decreasing in a much graceful way than the $1/n$ of random chance.

1481
 1482
 1483
 1484
 1485
 1486
 1487

Interestingly, if we focus on Gemma and Qwen, we are able to qualitatively observe the same behavior of the theoretical model in Figure 3 of the main text. In fact, it appears that Qwen is favouring generalization, resulting in a good similarity task performance for a low number of items but a steeper decrease for increasing n . Gemma, instead, achieves close to chance similarity task performances when n is small but decreases less rapidly when n increases. If we map this to our theoretical investigation, it appears that Gemma is adopting a smaller ε than Qwen, a conjecture which is corroborated by the identification test performance decreasing faster for the latter.

1488
 1489

A.8.4 VLM TASKS

1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497

To assess the presence of finite semantic resolution in vision–language models (VLMs), we designed several spatial similarity/identification tasks using synthetic images. Two VLMs were evaluated: gemma-3-12b-it and Qwen2.5-VL-7B-Instruct. Besides collecting the models’ textual responses, we also logged the scores (logits) of selected, task-depending tokens, to inspect how each model ranks different token choices before softmax.

Evidence of resolution

1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509

Dataset. We generated 1,000 images, each featuring four black stencils positioned at fixed locations on a white background. The stencils, chosen randomly between square, triangle, heart, star, varied specific position across images. Additionally, each image included a randomly placed red X, designated as the "target" (see Figure 12). We logged the distance between the target and each stencil.

1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599

Experimental setup. We showed each image to both Qwen and Gemma, together with a query prompt: "The picture contains four black shapes: a square, triangle, heart and a star. There is also a red X. Which black shape is the closest to the X? Respond with only the shape's name.". We logged the models’ textual responses and the token scores for *square*, *triangle*, *heart* and *a star*. For each sampled location, we recorded the model’s output and computed an accuracy map. A smoothed version of this map was obtained by averaging over local neighbourhoods to reveal confidence gradients.

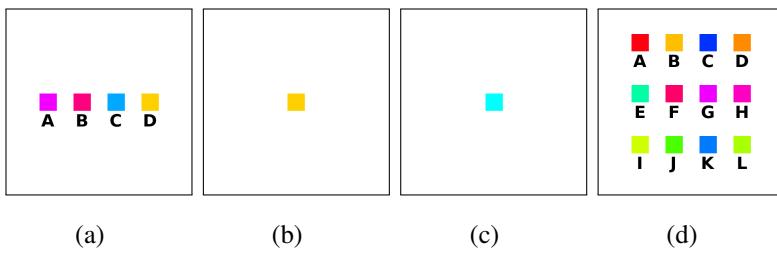
Results. Figure 5c (main text) shows the accuracy maps for both models. In both cases, we observe a central region around each shape where the model is consistently correct, surrounded by

1512 transition zones where accuracy rapidly deteriorates. This behavior mirrors the emergence of a finite
 1513 resolution scale: when the red cross is placed sufficiently far from all reference shapes, the models
 1514 are increasingly unable to resolve which object is closest.

1515 Moreover, the spatial structure of the confusion regions reveals differences between models:
 1516 gemma-3-12b-bit exhibits a tighter high-confidence core, while Qwen2.5-VL-7B-Instruct
 1517 shows broader transition bands, suggesting differences in their spatial encoding fidelity. The smoothed
 1518 accuracy maps further support the hypothesis that VLMs implement a distance-dependent proximity
 1519 function with finite support, analogous to the semantic similarity functions described in the theoretical
 1520 model (Section 2).

1522 Color similarity task

1524 **Dataset.** We created 5,000 images, each containing between 4 and 12 colored squares. Each square
 1525 was labeled with a unique letter, serving as an identifier, as shown in Figure 13. The colors of the
 1526 squares were generated using the HSV color model, where the hue (H) was assigned randomly, while
 1527 saturation (S) and value (V) were maximized to ensure vivid and bright colors.



1528
 1529 Figure 13: Examples of image inputs for the color similarity task. Panels (a) and (d) represent two
 1530 reference images, with four and twelve colours respectively. Given the reference image (a), a query
 1531 image for the identification task (color occurring in the reference image) is depicted in panel (b), and
 1532 a query image for the similarity task (color not occurring in the reference image) is depicted in panel
 1533 (c).
 1534

1542 **Experimental setup.** In this task, we presented the models with a pair of images and a textual
 1543 query. The first image, dubbed *reference* image, contained 4 to 12 labelled color squares, as described
 1544 above. The second image (*query image*) displayed a single, centered square, whose color was either
 1545 one of the colors occurring in the reference image (identification task) or a completely random
 1546 one (similarity task). In both case, the query was: "In the first picture there are
 1547 squares of different colors, labelled with uppercase letters. the
 1548 second picture there is only one target square. Identify which
 1549 square in the first picture is most similar to the target square
 1550 in the second picture. Reply with the corresponding letter and
 1551 nothing else.". We logged the color of the target square and its similarity with respect to all
 1552 colors occurring in the paired reference image. We also logged the model's textual answers and the
 1553 token score for each single letter (possible answers).

1555 **Results.** In Figure 14a we show the similarity task and identification task performances as
 1556 functions of the number of input colored squares. In particular, we observe a decreasing identification
 1557 performance which, in both models, can be fitted using the theoretical curve of Theorem 3 (main
 1558 text). The fitted parameter $b(\varepsilon)$ suggests the presence of a larger effective resolution for Gemma and
 1559 a lower one for Qwen.

1560 To investigate this resolution, we gather, for each experiment, the scores each model assings to the
 1561 letters associated to the *wrong* colors (thus excluding the most similar ones), together with their
 1562 circular hue distance from the probe color, normalized to $[0, 0.5]$. We only take the scores associated
 1563 to the wrong colors in order to avoid the bias of the correct answer having always low distance.

1564 We plot the model score as a function of the distance in Figure 14b. Both model display an emergent
 1565 resolution, with points with large hue distance being concentrated around a fixed "noise" level.

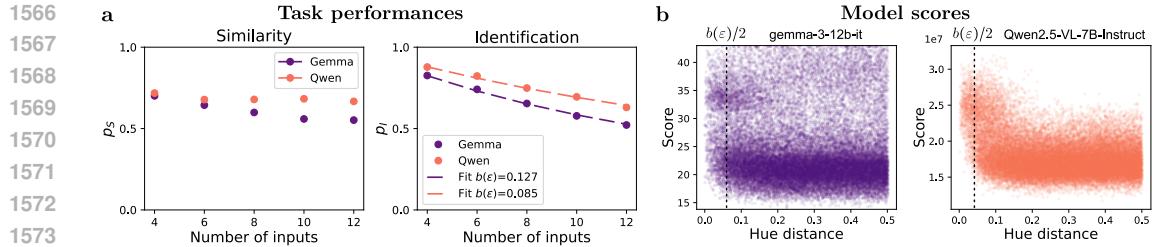


Figure 14: **a.** Similarity and identification probabilities for the color test explained in Appendix A.8.4. In the identification plot, the dashed curves are the theoretical curves of Theorem 3 (main text) fitted to the data. **b.** Token score associated to the *wrong* responses, as a function of the hue distance from the probe color. The dotted black lines represent the resolution values $b(\varepsilon)/2$ fitted using the theoretical resul of Theorem 3 (main text) on the identification performances.

Moreover, the scores for Gemma display a step-like shape suggesting that the learned similarity function may be similar to the constant similarity assumed in the theoretical analysis. Qwen, instead, shows a more continuous decrease in score-similarity with distance, more in line with the results obtained in Appendix A.8.3, and associated to higher performances (Figure 14a).

1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620 REFERENCES
1621

1622 Ole A Nielsen. An introduction to integration and measure theory. *(No Title)*, 1997.

1623 Gerald B Folland. *Real analysis: modern techniques and their applications*. John Wiley & Sons, 1624 1999.

1625 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics*. Addison-Wesley, 1626 1989. ISBN 0-201-14236-8.

1627 Robert M Nosofsky. Attention, similarity, and the identification–categorization relationship. *Journal 1628 of experimental psychology: General*, 115(1):39, 1986.

1629

1630 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 1631 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 1632 pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

1633

1634 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech- 1635 UCSD Birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of 1636 Technology, 2011.

1637

1638 Sudhir Kumar, Morgan Suleski, Jessica M Craig, Anna E Kasprowicz, Maxwell Sanderford, Mingfeng 1639 Li, Glen Stecher, and S Blair Hedges. TimeTree 5: An expanded resource for species divergence 1640 times. *Molecular Biology and Evolution*, 39(8):msac174, 2022. doi: 10.1093/molbev/msac174.

1641

1642 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya 1643 Bhupatiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. 1644 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.

1645

1646 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad 1647 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of 1648 models. *arXiv preprint arXiv:2407.21783*, 2024.

1649

1650 Jinze Bai, Yixuan Yang, Yingqi Chai, Victor Ling, Aohan Yang, Zhiyuan Lei, Junyang Huang, Yong- 1651 gang Tan, Xiubo Liu, Zhijian Yang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673