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Abstract

Deep Reinforcement Learning (DRL) connects the classic Reinforcement Learning
algorithms with Deep Neural Networks. A problem in DRL is that CNNs are
black-boxes and it is hard to understand the decision-making process of agents. In
order to be able to use RL agents in highly dangerous environments for humans and
machines, the developer needs a debugging tool to assure that the agent does what
is expected. Currently, rewards are primarily used to interpret how well an agent is
learning. However, this can lead to deceptive conclusions if the agent receives more
rewards by memorizing a policy and not learning to respond to the environment. In
this work, it is shown that this problem can be recognized with the help of gradient
visualization techniques. This work brings some of the best-known visualization
methods from the field of image classification to the area of Deep Reinforcement
Learning. Furthermore, two new visualization techniques have been developed,
one of which provides particularly good results.
It is being proven to what extent the algorithms can be used in the area of Rein-
forcement learning. Also, the question arises on how well the DRL algorithms can
be visualized across different environments with varying visualization techniques.

1 Introduction

Due to the success achieved in recent years by Deep Reinforcement Learning [7] [2], Industrial
applications are becoming increasingly tangible [13]. Research is being conducted on 3D map
reconstruction for autonomous cars where DRL can be one of the solutions [18] and also in the
field of AUVs [3] as well as many other applications that interact with the real world. Once DRL
algorithms are implemented on physical systems and interact with the real world, these systems can
be dangerous for themselves and humans. For this reason, debugging tools are needed to understand
why the agent behaves that way and whether the agent is making the right decision for the correct
reason and not making a right decision for the wrong reason [11].

Deep reinforcement learning algorithms are nowadays interpreted and measured by the rewards the
agents can get. For this reason these agents are called black box algorithms and are criticized. This
makes them difficult to use in critical real-world applications.

This paper reveals that visualization techniques are a powerful debugging tool, that provides much
more information than interpreting rewards. With the help of Guided Backpropagation it is even
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possible to locate the error in a certain layer or stream in a neural network. Moreover it is shown that
Grad-Cam methods can deliver results very early in training in case of very badly trained networks.
This is a big advantage especially for off-policy algorithms that take a long time to explore at the
beginning of the learning process. With off-policy algorithms it can take a few days until the rewards
start to increase so that the developer can determine if the neural network is learning at all [14].

Contributions. For DRL, the claim made by Adebayo et al. [1], that Guided Backpropagation does
not visualize the desired regions, but through partial input recovery it works as a kind of edge detector,
is shown not to be accurate. Also, the claim that gradient methods can be difficult to interpret, because,
when answering the question "What perturbation to the input increases a particular output?", gradient
methods can choose perturbations which lack physical meaning [5], is shown not always to be an
issue.

Furthermore two new visualization techniques were developed, one of which provides particularly
good results. These were compared and analysed with 4 other popular visualization techniques. Their
advantages and disadvantages are discussed and different fields of application for the respective
visualizations are suggested.

2 Related Work

In this section, previous work is presented and discussed. As already mentioned, there is currently
not a lot of work dealing with the topic of visualization in the area of deep reinforcement learning
algorithms. First two works from the field of deep reinforcement learning are presented and then and
then visualization techniques from the field of image processing.

Semi Aggregated Markov Decision Processes. The authors which introduced Semi Aggregated
Markov Decision Processes [17] used the Atari 2600 environments as interpretable testbeds, they
developed a method of approximating the behavior of deep RL policies via Semi Aggregated Markov
Decision Processes (SAMDPs). They used the more interpretable SAMDPs to gain insights about the
higher-level temporal structure of the policy. From a user perspective, an issue with the explanations
is that they emphasize t-SNE clusters and state-action statistics which are uninformative to those
without a machine learning background.

Perturbation-based saliency methods. Another recently published work shows Perturbation-based
saliency methods for the visualization of learned policies by Greydanus et al. [5]. Their approach
is to answer the question, "How much does removing information from the region around location
change the policy?". The authors defined a saliency metric for image location as:

Sπ(t, i, j) =
1

2
‖πu (I1:t)− πu (I ′1:t)‖

2 (1)

The difference πu (I1:t) − πu (I ′1:t) can be interpreted as a finite differences approximation of the
directional gradient ∇v̂πu (I1:t) where the directional unit vector v̂ denotes the gradient in the
direction of I ′1:t.

In other words, is looking at how important were these pixels for the policy. By checking how
strong the policy changes after removing some informations from the image. They use the same
approach to construct Saliency Maps for the value estimate V π too. Greydanus et al. [5] claims
that gradient-based saliency methods do not yield well interpretable results. When answering the
question "What perturbation to the input increases a particular output?", gradient methods can choose
perturbations which lack physical meaning.

Gradients. The basic idea of backpropagation-based visualizations is to highlight relevant pixels by
propagating the network output back to the input image space. The intensity changes of these pixels
which have the most significant impact on network decisions. Despite its simplicity, the results of
saliency map are normally very noisy which makes the interpretation difficult. [8].

Guided Backpropagation. The idea behind guided backpropagation is that neurons act like detectors
of particular image features. It is interesting in what image features the neuron detects and not in what
kind of features it doesn’t detect. That means when propagating the gradient, the ReLu function set
all the negative gradients to zero. [8] With other ways we only backpropagate positive error signals
and we also restrict to only positive inputs.
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Gradient-weighted Class Activation Mapping. One of the problems when it comes to using CAM
is that a modern neural network not only consists of convolution layers but of different layers such
as LSTM, MaxPooling, etc. GradCAM is an extension of CAM and it is broadly applicable to any
CNN-based architectures. In order to obtain the class-discriminative localization map Grad-CAM
LcGrad−CAM ∈ Ru×v of width u and height v for any class c. First, the gradients yc of class c are
calculated up to the desired convolution feature map activations Ak. An average pooling over the
width and height dimensions is then carried out [9].

αck =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂yc

∂Akij︸ ︷︷ ︸
gradients via backprop

(2)

Weight αck represents a partial linearization of the deep network downstream from A, and captures
the "importance" of feature map k for a target class c. On the end it performs a weighted combination
of forward activation maps with a ReLU fuction. [9]

LcGrad−CAM = ReLU

(∑
k

αckA
k

)
︸ ︷︷ ︸
linear combination

(3)

The result is a heatmap of the same size as the convolutional feature map. This feature map must
then be enlarged to the size of the original image and place it over the image to get the final result.
If Grad-Cam is multiplied by Guided Backpropagation with the Hadamard product we get Guided
Grad-Cam [9].

Gradient Methods. Adebayo et al. [1] deals with the informative value of visualization techniques.
In this work, various visualization techniques were compared and checked whether the techniques
actually depend on the model, the training data or whether it partially reconstructs the image. In
other words, their work claims that Guided Backpropagation and Guided GradCam act like an edge
detector, which means that they show the desired positions without showing the learned model.

In their work they randomize the weights of a model starting from the top layer, successively, all
the way to the bottom layer. This procedure destroys the learned weights from the top layers to
the bottom ones. Their results indicate that Guided backpropagation and Guided GradCam do not
visualize the learned model, but instead partially reconstruct the image. They interpret their findings
through an analogy with edge detection in images, a technique that requires neither training data nor
model.

Laplacian Operator in Image Processing. To understand one of the results we will derive the
kernel of the Laplacian filter which is used for edge detection. One approach for the design of
directionally invariant high-pass filters for image processing (also called edge detectors) is to use
second-order derivation operators, e.g. the Laplace operator [16]. For continuous functions, the
Laplace operator is defined by:

L =
∂2I[x, y]

∂x2
+
∂2I[x, y]

∂y2
(4)

We approximate the partial derivatives by difference equations and thus obtain :

d2I[x, y]

dx2
= {I[x + ∆x, y]− 2I[x, y] + I[x−∆x, y]}/∆x2 (5)

d2I[x, y]

dy2
≈ {I[x, y + ∆y]− 2I[x, y] + I[x, y −∆y]}/∆y2 (6)

Thus with ∆x,∆y = 1 (except for the sign) the mask for the Laplace operator is :

L1 =

[
0 −1 0
−1 4 −1

0 −1 0

]
(7)
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Numerous other approximations of the Lapace operator are possible. Examples are the following
masks (their transfer functions have the form known from the Gaussian and binomial distributions)[16]

L2 =

[
0 −1 −1
−1 8 −1
−1 −1 0

]
L3 =

[
1 −2 1
−2 4 −2
1 −2 1

]
L4 =

[ −1 −2 −1
−2 12 −2
−1 −2 −1

]
(8)

3 Experimental Setup

Experiments were performed in two different environments a simple (Breakout-v0) and a complex one
(Seaquest-v0) from OpenAI Gym [4]. Four different agents were implemented. DDDQN (4 frames
as input) [10], Splitted Attention DDDRQN (with LSTM), and two on Policy gradient algorithms
A3C (3 frames as input) [6] and an A3C Agent with LSTM.

The Splitted Attention DDDRQN was by far the best trained agent and receives most of the points
(Seaquest-v0 9521 Points) that is why most of the results are referring to this agent [12].

In order to better examine the visualization methods and to enable better interpretation, the original
frames of the games are placed over the gradients with a 50% opacity. In this way it is possible to
assign the gradients to the features and to better interpret the results.

With the off policy algorithms not only the output is visualized but also the Q-value and the Advantage
stream. To proof the results of Ziyu Wang et al. [15]. In order to maintain comparability between the
visualization techniques, the same state was always visualized in this work. This also applies to the
visualization of the actor and critic agents, as well as the visualization of the value and advantage
streams. Two new visualization techniques have been developed and the following visualization
methods have been implemented. Some features of the implementation are discussed below.

Gradient and Guided Backpropagation. Compared to image processing, where the gradients of
the guided backpropagation or gradient method are normalized over the image, the gradients in a
video can also be normalized over the entire video. For this reason, both have been implemented and
tested. First, the gradients output were normalized for each state. Then the gradient and guided back
propagation method around the whole video was normalized and tested.
In the visualizations, the gradients were checked in relation to different output layers. In particular,
this work examines the advantage and the value stream in the off-policy algorithms in more detail, as
well as the last layer that delivered the best results. In the actor critic methods both outputs of the NN
were examined.

Grad-Cam and Guided Grad-Cam. With the Grad-Cam and Guided Grad-Cam method, the
visualization can be applied to different convolutional layers. An example of what the differences
look like is also shown. The best results were achieved on the first convolutional layer across all
agents and across all environments. For this reason, the results of the Grad-Cam methods are usually
applied to the first convolutional layer.

G1Grad-Cam and G2Grad-Cam. Two new visualization techniques were developed and
will be presented in this work, which are also compared. Both visualization techniques are a further
development of Grad-Cam and Guided Grad-Cam. The idea behind it is the same as for guided back
propagation, that neurons act like detectors of particular image features. And we are interested in
what image features the neuron detects and not in what kind of features it does not detect. That
means when propagating the gradient, we set all the negative gradients to 0. In the further course,
Grad-Cam with the Guided Model is called G1Grad-Cam and GradCam with the Guided Model
multiplied by Guided backpropagation is called G2Grad-Cam.

4 Experimental Results

Since a state usually contains several frames, the results of the gradient methods (unless other-wise
stated) are related to the last frame in the sequence. With the Grad-Cam methods the results (unless
otherwise stated) relate to the first convolutional layer. Furthermore, the word stable is defined in the
context of visualization techniques in this paper as follows: gradients or visual highlights that can be
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seen on most frames in a video. Gradients or visual highlights that can be seen on every 4th, 5th (or
even less) frame in a video are called not stable.

First we discuss the visualization techniques, then we look closer at the class discriminative visual-
ization algorithms and finally we make a hypothesis about the importance of negative gradients in
backpropagation algorithms. Detailed results are all provided in the appendix (Figures 2 to 78).

4.1 Visualization Algorithms

Gradient. Gradients method delivers a lot of noise which often mixed with the important features. It
is only very poorly suited for debugging neural networks in the deep reinforcement learning area. We
get similar results with the agent in all environments. This can be seen in Figures: 2, 13, 14, 21, 29,
31, and 50.

Guided Backpropagation. Guided backpropagation delivers the best and most stable results under
all environments and among all agents. Also, that it shows negative gradients is a very good indication
of how well an agent is trained. It can be seen that the better the agent has been trained, the stronger
the transition between negative and positive gradients.

Another interesting observation that guided back propagation (compared to the Grad-Cam methods)
did not visualize the agent so well during the breakout game. Even in the DDDQN network, where
the agent was well trained, only weak gradients could be recognized on the agent himself on Figures
19 and 3. In contrast, on Seaquest, which is a much more complex environment and the agent was
not well trained, very strong gradients were displayed on the agent itself, as Figures 13 and 14 show.

Another comparison that has been made in this work is how the visualization of the guided backprop-
agation algorithm changes with respect to normalization. In other words, how does the visualization
change when the normalization of the gradients is carried out over a frame compared to when the
normalization was created over the entire video.

The results showed that when the frame was normalized, the gradients in the video flashed more
strongly. With normalization across the entire video, the transitions from the frames were smoother.
In this way, the less known / visited states can be recognized because the gradients on which are
weaker to recognize. This method is also the most suitable for visualizing the differences between
the advantage and the value stream in the off-policy algorithms. Guided back propagation was able to
identify most of the features in any environment and these were also very stable across the video.

During the development of the split attention DDDQN agent, the guided back propagation method for
debugging was also used. An interesting finding that was made during development was that although
the neural network had several errors, results were still very good (over 3000-3500 points, similar
results were achieved by the normal attention DDDRQN network). Only after the Advantage and
Value Stream was visualized did it become apparent that the network only learned on the Advantage
side and that the gradients on the value side were very strong but chaotic. Based on the points, the
errors that were made during programming would not have been noticed. Altogether two errors could
be discovered and they could even be localized in the value stream. One mistake was incorrectly
linking the layer and another when merging the two streams.

When developing the A3C with LSTM network, guided back propagation was also used to debug the
network. Before a working A3C with LSTM was developed in this work, attempts were first made to
train the agent with bidirectional layers. This was unsuccessful. In the visualization, no gradients
were displayed when the gradients from the output layer to the input layer were calculated (the output
gradients during printing were also 0). Then the network with guided backpropagation was examined
more precisely with this visualization technique, because in contrast to the Grad-Cam methods, the
gradient methods calculate the gradients from each individual layer to the input, this means that the
individual layers can be examined. It turned out that the agent started to learn in the first three layers
and no longer from the bidirectional layers. When these layers were replaced by LSTMs, the agent
immediately began to learn even in the higher layers.

Grad-Cam. This method also showed stable results (based on the first convolutional layer), even if
the results were often issued in inventory, especially with less well-trained agents, as seen in Figure
46.
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Looking at the higher layers, some features could also be visualized, but here the visualization
was inverted more often, as shown in Figure 41, and the specified position of the features in the
visualization algorithm was less precise, shown in Figures 33 and 37.
One advantage over the guided backpropagation method which is noticeable, is that with less well
trained agents, the visualization (even if mostly often inventoried) was able to visualize the features
faster and without interference. However the G1Grad-Cam could beat these results.

Grad-Cam was able to achieve better results in the Breakout environment (see Figure: 4), where the
agent could be visualized relatively poorly with guided backpropagation. Another advantage of the
grad cam method (at least for neural networks without LSTM) compared to guided backpropagation
is that, as can be seen in Figure 4, the time flow can be visualized. Means how important the previous
frames were.

Due to the negative gradients that exist in guided backpropagation, a superimposition or averaging
of the gradients from all input frames would not provide a similar result, since the gradients would
cancel each other out with guided backpropagation.

Since the Grad-Cam has a ReLU function, only positive results are displayed. However, this has
the disadvantage that we cannot differentiate as well if an agent is well trained. The visualization
differences are minimal as can be seen in the Actor Critic between Figures 69 and 70 and different
between the Splitted Attention DDDRQN (See Figure 23) and the DDDQN Agent . However, the
results with Grad-Cam are better with poorly trained agents and have less disruption than with
guided backpropagation. One reason for this could be that the grad-cam carried an average pooling
across the height and width of the dimension are carried out. With average pooling, the tendencies
could be displayed better and there would be fewer disturbances due to averaging. This could be
the reason why by Grad-Cam by weakly trained networks achieve better results than with guided
backpropagation.

A disadvantage compared to guided back propagation, which can be seen in all agents is that not all
features can be visualized. By the breakout environment the area of the image where the agent breaks
through the last line and receives many points could be not visualized (see Figure 3 and Figure 4). In
Seaquest, Grad-Cam was unable to visualize the oxygen bar, nor the divers collected.

Guided Grad-Cam and G2Grad-Cam. The combination of guided back propagation and one of the
Grad-Cam methods has proven to be very unstable. One reason is that not all features are displayed
in the Grad-Cam method, as has already been mentioned. But the main reason is that the results are
shown often inverted by the Grad-Cam method. Due to the inversion, the areas with the features have
a value of 0, which means that the multiplication with the guided back propagation also results in 0.

Basically, with these two methods, no additional knowledge can be obtained that has already been
obtained with guided back propagation or Grad-cam.

G1Grad-Cam The G1Grad-cam method gave much better results for the DDDQN agent in the game
breakout and also the time flow than with the Grad-Cam method, as shown in Figure 6 (G1Grad-Cam)
versus Figure 4 (Grad-Cam). Interestingly, the G1Grad-Cam method has problems visualizing the
features in game Seaquest.

The G1Grad-Cam method shows less inverted results than the Grad-Cam method. However, especially
with less well-trained agents, the results are not stable or not exactly in position. Basically, the method
only convinced the DDDQN agent in the game Breakout. Here G1grad-Cam was able to display the
ball and the agent as well as their past positions very clearly than all other visualization techniques.

However, the upper breakthrough area could not be visualized as the guided back propagation method
did.

An interesting aspect of the poorly trained splitted attention agent is that in Seaquest the
G1Grad-Cam method gives the best interpretable results over all visualization methods, as shown
in Figure 47 (in contrast to the well trained one, where it gives no results). The neural network
was saved after 325 episodes (for comparison, the well-trained neural network was saved after
5300 episodes). After 325 episodes the neural network has done about 250 000 steps and 75% of
them have chosen a random action (because of exploration). After this short period of time, the
G1Grad-Cam method was able to deliver well interpretable results.
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For comparison: After 1500 episodes it can be determined via the rewards that the neural network
is learning. This means that with the G1Grad-Cam method it is possible to recognize up to 5 times
faster if the neural network is learning at all. This makes it a helpful debugging tool.

4.2 Action Discriminative Visualization Algorithms

The fact that the agent has learned to recognize features does not mean that the agent has learned how
to behave. The agent recognizes e.g. the oxygen bar and understand when it ends that the episode will
end, but it has not learned what to do about it. It is similar with the fishes that the agent recognizes
them but does not necessarily mean that the agent will avoid the fish or knows what to do with it. For
this reason, action discriminative algorithms were examined more closely.

The investigations did not give any indication that Grad-Cam and G1Grad-Cam, which are action
discriminative algorithms, have a visible visual relationship between the state and the action taken.
The expectation that Grad-Cam would emphasize a particular fish because the agent would swim
away from a fish or target a fish, could not be confirmed.

4.3 Hypothesis about Negative Gradients in Guided Backpropagation and their Meaning

Apparently negative gradients also play a role. With the DDDQN agent, the negative gradients were
time-dependent. The newest frame has the most positive and the oldest most negative gradients and
the negative gradients are always shown where the ball was or will be. One reason for this could
be the different architecture of the neural network which only calculates the error of the selected
action but not the error of the non-selected actions compared to the other developed CNN. With the
other agents, it can be observed that the negative gradients did not form in a time-dependent but
position-dependent manner. The strong negative gradients have formed around the features. It can
also be seen that the stronger the positive and negative gradients, the better the agent.

Figure 1: The agent is covered
with positive gradients fol-
lowed by negative and positve
again.

A possible explanation could be that with guided backpropagation
the gradients resemble a matrix or the kernel of an edge detector.
And the Laplacian Operator has strong positive and negative values
in the matrix to detect edges. Backpropagation could create a matrix
that has learned to better identify features with strong negative and
positive values, just like with a Laplace operator. Figure 1 shows that
strong positive gradients are followed by strongly negative gradients
and some small positve again (compare in Equations 7 and 8, Equa-
tion L1 and L3). The Laplace operator has a similar structure. The
difference is that the Laplace operator detects edges and not more
complex features. Guided backpropagation would create a kind of
Laplace matrix for features based on this hypothesis. This could be
a possible explanation for the role of negative gradients.

5 Conclusions and Future Work

Visualisation techniques. First of all, the assumptions made in the paper "Visualizing and Under-
standing Atari Agents" [5], that guided backpropagation cannot be used for visualization techniques
and the assertion made in the paper "Sanity Checks for Saliency Maps" [1], that guided backpropaga-
tion and guided Grad-Cam (at least in image processing) do not visualize the learned model but work
similarly to an edge detector do not seem apply to deep reinforcement learning policies.

Visualization methods are very well suited as an additional, if not main debugging tool. Especially
Guided Backpropagation was used during the development of Splitted Attention DDDQN with
bidirectional LSTM agents and the A3C with LSTM agent to detect various errors in the neural
network. Not only can errors be detected but also an assignment could be made in which stream the
error was located and which layer caused problems. This kind of debugging is not possible with the
usual reward evaluation. Especially since the faulty neural network could achieve better results than
the original one despite the errors it contains, these errors would not have been noticed.

Furthermore, it was also shown with two agents (Figure 68 and Figure 16) that Guided backpropaga-
tion can be used to detect if the agent has learned to avoid an area. The agent obtained a high reward,
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but this is not the expected behavior. The agent has learned to stay in the water at a certain height.
The agent always shoots to the left or to the right if something comes up there. This is an important
insight because it means that if the environment changes the agent will probably not be able to cope
with these changes as well as an agent that has a lower score, but swims specifically towards the
fishes. Here a simple reward function could even lead to misinterpretations. Guided backpropagation
could show the different strength of the gradients on the fish that swam at different heights, which
could lead to the conclusion that the agent does not visit certain areas of the environment.

The Grad-Cam and especially the G1Grad-Cam method achieves very early results. This is useful
during the training process of the neural network. For example, if an agent has to be trained for 14
days in a HPC cluster, G1Grad-Cam can quickly provide initial information after a few minutes /
hours as to whether the agent recognizes any features at all or whether there are indications of errors
in the neural network. The rewards that are currently used as the main debugging tool are hardly
usable at the beginning, especially with off-policy algorithms. Because the agent is exploring at the
beginning, the rewards are random, but the neural network learns to recognize the features even if it
does not yet know what they mean or how the agent has to behave. This is a big time advantage over
the Reward function that took 2 days with the Split Attention Agent to show the first signs that the
Rewards are increasing.

The error does not necessarily have to be in the neural network, but also a faulty implementations
can be detected in this way (during this work wrong stacking of the frames could be visualized on
the neural network and the error could be corrected by the DDDQN agent). The G1Grad-Cam and
Grad-Cam method can save time when designing neural networks during debugging compared to a
pure interpretation by the Reward function.

However, no evidence was found that using G1/Grad-Cam methods which are action discriminative
methods, can visualize the difference in importance between the features, that has the biggest impact
on the action (agent’s decision). No feature was highlighted that is more important for the decision of
an action.

Guided backpropagation was able to recognize most of the features. All features detected by the
Grad-Cam methods and more. Even though the gradients are sometimes hardly visible and only after
long training the DDDQN agent could visualize itself in the game Breakout.
This method is especially suitable to evaluate the agent at the end (Does the agent recognize all
important features? Are there differences in intensity between the same features in different states?
How strong are the gradients on the features?) or for debugging purposes. Guided backpropagation
is better suited for debugging than the Grade-Cam method, because individual streams could be
examined and individual layers. In this way the error can be identified more quickly under certain
circumstances (as in the development of the Split Attention Agent).

Negative gradients. A hypothesis about possible explanation for the importance of negative gradients
that forms around features were put forward in this work. The explanation was compared to a
Laplacian filter which revealed the edges. However, edges were not revealed here, but entire features
it was concluded that through backpropagation a kind of Laplacian kernel feature detector was
visualized. Where the negative gradients would be produced by a second derivative to better detect
the features.

Future work. After having shown in this work that visualization techniques are a basic important
tool for debugging neural networks, there are still some important questions left. First of all the
features that are important for the agent could be visualized. What could not be shown in this paper
is that in action discriminative methods, the features that have a greater importance for the selected
action are more strongly emphasized. A possible reason for this could be that by averaging all
feature maps of the Grad-Cam methods the differences between the normal features and the features
that directly influenced the agent’s decision were very small. Here, a special implementation of
Guided backpropagation might help to better identify the differences, by reprogramming the Guided
backpropagation to an action discriminative algorithm. This would give a better understanding of the
advantages shown in this work, that guided backpropagation can better evaluate the intensity of how
well a neural network recognizes the feature. In combination with a modified action discriminative
Guided backpropagation algorithm, it might be possible to get more meaningful results if it is
possible to visualize the feature that had the greatest influence on the current action.
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A Detailed List of Experiments

The agent and the environment are shown on the left and the visualization techniques on the right.

Q-Values 1st conv. Layer
Agent Env. Gradient Guid. back. Grad-C. Guid. Grad-C. G1Grad-C. G2Grad-C.
DDDQN [10] Breakout-v0 � � � � � �
DDDQN [10] Seaquest-v0 � � � � � �
Split. At. DDDQN
(bi. LSTM)

Seaquest-v0 � � � � � �

A3C [6] Breakout-v0 � � � � � �
A3C [6] Seaquest-v0 � � � � � �
A3C with LSTM
[6]

Seaquest-v0 � � � � � �

Table 1: Combinations of visual explanation experiments

In addition, there are the different settings of the visualization techniques, e.g. which layer or stream
was visualized with gradient methods or up to which convolutional layers were the Grad-Cam
method applied:

Val. Stream Adv. Stream 1st conv. L. 2st conv. L. 3st conv. L.
Agent Env. Guided backpropagation Grad-Cam
DDDQN [10] Breakout-v0 � � �
Split. At. DDDQN
(bi. LSTM)

Seaquest-v0 � � � � �

Table 2: Combinations of different settings for visual explanation experiments

The past frames in the input of the neural network for the guided backpropagation algorithm are also
examined:

Agent Env. t-1 t-2 t-3 t-9
DDDQN [10] Breakout-v0 � � �
Split. At. DDDQN (bi. LSTM) Seaquest-v0 �

Table 3: Combinations of time-dependent visual explanation experiments

An other question also arises: When does the neural network show first signs of feature recognition?
Is it possible to find out faster if the neural network or the agent in general has been programmed
correctly? Than about the interpretation of the reward function, which is only possible after a long
time because of the exploration of the agent in off-policy algorithms.
For this reason, a neural network that was after only 325 episodes / 250 000 steps saved, is also tested
(for comparison: the well trained agent had trained over 5300 episodes and about 13 000 000 steps):

Agent Env. Gradient Guid. back. Grad-C. Guid. Grad-C. G1Grad-C. G2Grad-C.
Split. At.
DDDQN (bi.
LSTM)

Seaquest-v0 � � � � � �

Table 4: Combinations of time-dependent visual explanation experiments
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B Detailed Experimental Results

The visualized results are presented in red or green color. Meanwhile red is used for negative
gradients, green has been used for positive ones. Since the Grad-Cam methods have a ReLu function,
the results are always positive. All Images are taken at the same time for better comparison.

B.1 DDDQN: Breakout-v0

Figure 2: Gradient visualization method. In
the red oval you can see that the NN-Agent
started to understand which region gives him
higher future rewards and where it has to shot.
This is because if the agent breaks through
the last line, the ball will bounce off the box
and the ceiling and get a lot of reward.

Figure 3: Guided backpropagation visualiza-
tion method. The ball is with this method well
heighlighted. In the red oval you can see that
the NN-Agent started to understand which re-
gion gives him higher rewards and where it
has to shot
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Figure 4: Grad-Cam. Some visual highlights
on the agent as well as on the ball are clearly
visible. Furthermore you can see the direction
the ball is coming from as all 4 frames are
visualized with the Grad-Cam method.

Figure 5: Guided Grad-Cam. Since Guided
Grade-Cam is a multiplication of the Grade-
Cam method and backpropagation, it is also
obvious that we only visualize sub areas of
the original source. The negatives and posi-
tive gradients of the current frame calculated
by the guided backpropagation method are
multiplied by the degree-cam method, which
does its job on all frames. And only if both
have positive high values this area will be
highlighted.

Figure 6: G1Grad-Cam. Comaprad to the
Grad-Cam method we can see much more sta-
ble visualized features. We can see clearly the
old positions of the ball and when the agent
moves the old position of the Agent because
we have four frames as input. This is different
to the Gradient methods where we cant ovalep
the positive and negative gradients, thats why
we are using the gradient methods on the last
frame.

Figure 7: G2Grad-Cam. Since Guided Grade-
Cam is a multiplication of the Grade-Cam
method and backpropagation, it is also obvi-
ous that we only visualize sub areas of the
original source. The negatives and positive
gradients of the current frame calculated by
the guided backpropagation method are multi-
plied by the degree-cam method, which does
its job on all frames. And only if both have
positive high values this area will be high-
lighted.
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Figure 8: Guided backpropagation (advantage
stream). In the advatage straem we can see
that the NN is slightly more focusing on his
own position than in the value stream

Figure 9: Guided backpropagation (value
stream) . In the value stream we see that the
gradients are stronger on focused on the future
rewards. This is because if the agent breaks
through the last line, the ball will bounce off
the box and the ceiling and get a lot of reward.

Figure 10: Guided backpropagation (t-1). We
can see here that the old position of the ball
(frame t-1) has positive gradients, whereas
the current position of the ball is very much
wrapped in negative gradients.

Figure 11: Guided backpropagation (t-2). We
can see here that the old position of the ball
(frame t-2) has positive gradients, whereas
the current position of the ball is very much
wrapped in negative gradients.
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Figure 12: Guided backpropagation (t-3). We
can see here that the old position of the ball
(frame t-3) has positive gradients, whereas
the current position of the ball is very much
wrapped in negative gradients.

B.2 DDDQN: Seaquest-v0

Figure 13: Gradient (advantage stream). We
can see on the Agent some gradients more
than on the value Stream, but in general very
noisy results.

Figure 14: Gradient (value stream). We can
see on the Oxygen bar some gradients more
than on the advantage Stream, but in general
very noisy results.
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Figure 15: Guided backpropagation (advan-
tage stream). In this picture we can see that
the NN envelops more gradients around fish C
than on fish B or A which have hardly any gra-
dients. This is because the agent has learned
that if it stays on the height between the red
lines and only shoots to the left or right when
something comes up it survives longer and
pays no attention to the rest of the environ-
ment. The agent has learned his behaviour by
heart and would not be able to react as well
as an agent who makes less points but reacts
better to the environment. If the environment
were to change slightly (e.g. the fish would
suddenly swim from the top right to the bot-
tom left) the agent could hardly react to it
because it ignores everything that is not in the
area between the lines.

Figure 16: Guided backpropagation (value
stream). In the Value Stream there is a small
difference to the advatage stream. We see that
the agent has no oxygen and has to appear.
The DDDQN agent has never learned how to
surfaced in seaquest, however he realises that
the oxygen bar is an important feature that
is related to the end of the episode, but the
agent has not learned how to do what. And
since the agent has learned to leave the area
between the lines, he will not be able to learn
how to do it.

Figure 17: Grad-Cam Figure 18: Guided Grad-Cam
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Figure 19: G1Grad-Cam. Compared to
Breakout-v0, the DDDQN agent did not give
good results for Seaquest-v0.

Figure 20: G2Grad-Cam

B.3 Split At. DDDQN: Seaquest-v0

Figure 21: Gradient. Very noisy results. Figure 22: Guided backpropagation. Since
this agent has a very well trained NN network
and has achieved the best results in the game,
you can can see here very clearly how the pos-
itive gradients on the features are surrounded
by negative gradients.
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Figure 23: Grad-Cam. Good visible high-
lights of the most important features.

Figure 24: Guided Grad-Cam

Figure 25: G1Grad-Cam. No visible high-
lights over the whole video.

Figure 26: G2Grad-Cam. No visible high-
lights over the whole video.

17



Figure 27: Guided backpropagation (advan-
tage stream)

Figure 28: Guided backpropagation (value
stream). The agent has learned to pay more
attention to the collected divers in the Value
Stream. Here he has collected all 6 divers,
which means that when he shows up he will
get extra reward. Furthermore you can see
that the fish in the value stream has more gra-
dients than in the advantage stream.

Figure 29: Gradient. In this frame we see
that the agent also recognizes the divers that
contain a long term reward when the agent
collects 6 divers and brings them to the sur-
face.

Figure 30: Guided backpropagation. In this
frame we see that the agent also recognizes
the divers that contain a long term reward
when the agent collects 6 divers and brings
them to the surface.
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Figure 31: Gradient. Here we see that the
agent with the gradient method also pays at-
tention to the empty oxygen bar. This is also
the reason why the agent appeared.

Figure 32: Guided backpropagation. In this
figure we can see that the agent with the
gradient method also pays attention to the
empty oxygen bar - in contrast to the gradient
method the oxygen bar is completely wrapped
in gradients.

Figure 33: Grad-Cam 2nd convolutional layer.
When we visualise the second layer, with the
very well trained NN we always see no con-
nections that we can interpret but not as well
as we saw with the first layer

Figure 34: Guided Grad-Cam 2nd convolu-
tional layer
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Figure 35: G1Grad-Cam 2nd convolutional
layer. As in the first layer, this method does
not show well interpretable results

Figure 36: G2Grad-Cam 2nd convolutional
layer

Figure 37: Grad-Cam 3rd convolutional
layer. Hardly interpretable results. Partially
invented highlights of the features.

Figure 38: Guided Grad-Cam 3rd convolu-
tional layer
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Figure 39: G1Grad-Cam 3rd convolutional
layer. Better results in terms of agent posi-
tion than the Grad-Cam method.

Figure 40: G2Grad-Cam 3rd convolutional
layer

Figure 41: Grad-Cam 2nd convolution layer
(inverted gradients). In the 3rd layer we
can often observe inverted gradients with the
Grad-Cam method as shown in this figure.

Figure 42: Guided backpropagation t-9. In
this layer we see the visualization of the frame
t-9 projected on the current frame.
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Figure 43: Gradient; episodes: 325. First
gradients form around the features. Although
the agent still plays randomly and does not
know what these features mean, he begins to
understand that they have an influence on the
decisions of the agent. There is little differ-
ence between the gradient method and Guided
backpropagation.

Figure 44: Guided backpropagation; episodes:
325. First gradients form around the features.
Although the agent still plays randomly and
does not know what these features mean, he
begins to understand that they have an influ-
ence on the decisions of the agent. There is
little difference between the gradient method
and Guided backpropagation.

Figure 45: Grad-Cam; episodes: 325 Figure 46: Guided Grad-Cam; episodes: 325.
The Grad-Cam method gives clearly better
and more interpretable results than the gradi-
ent methods.
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Figure 47: G1Grad-Cam; episodes: 325. The
G1Grad-Cam method gives the best results
we can on the fish and the agent and also on
the number of lives of the agent see some
highlights.

Figure 48: G2Grad-Cam; episodes: 325

B.4 A3C: Breakout-v0

Figure 49: Actor: Gradient. Gredients so
small that you can’t see them without a strong
multiplication factor.

Figure 50: Critc: Gradient. You can see some
arbitrary gradients around the ball.

23



Figure 51: Actor: Guided backpropagation.
Gredients so small that you can’t see them
without a strong multiplication factor.

Figure 52: Critc: Guided backpropagation.
Positive gradients are formed around the ball
followed by negative gradients.

Figure 53: Actor: Grad-Cam. Inverted gradi-
ents. Around the ball and the agent you can
see that the neural net recognizes the agent
and the ball (invented). This is the only visu-
alization method on the actor side that recog-
nizes both the ball and the agent.

Figure 54: Critic: Grad-Cam. The ball and
the agent are well highlighted by this visual-
ization technique.
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Figure 55: Actor: Guided Grad-Cam. Due to
the inverted results of the Grad-Cam method
no results will be shown here.

Figure 56: Critic: Guided Grad-Cam

Figure 57: Actor: G1grad-Cam. This method
shows us a very strong highlighting of the ball
which is also very stable. However, only the
ball is highlighted and not the agent.

Figure 58: Critic: G1grad-Cam. This method
shows us a very strong highlighting of the ball
which is also very stable. However, only the
ball is highlighted and not the agent.
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Figure 59: Actor: G2grad-Cam. As we have
not seen any gradients in the Guided Back-
propagation method we do not see any high-
lighting here either.

Figure 60: Critic: G2grad-Cam. Slight gradi-
ents can be seen on the ball.

Figure 61: Actor: Gradient. Visualization
of the actor gradient with a multiplication of
250.

Figure 62: Critic: Gradient.
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Figure 63: Actor: Guided backpropagation.
Visualization of the actor gradient with a mul-
tiplication of 250.

Figure 64: Critic: Guided backpropagation

B.5 A3C: Seaquest-v0

Figure 65: Actor: Gradient. Too small gra-
dients to visualize them just like in the game
Breakout-v0.

Figure 66: Critic: Gradient. Here you can see
very clearly that the agent has learned to turn
and shoot only left and right and never leaves
the red area. You can see that the fish in this
area are very strongly highlighted and outside
this area there are almost no gradients to be
seen. Sometimes gradients also appear on the
left and right sides of the agent, where no fish
can be seen (red circle).
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Figure 67: Actor: Guided backpropagation.
Too small gradients to visualize them just like
in the game Breakout-v0.

Figure 68: Critic: Guided backpropagation.
Here you can see very clearly that the agent
has learned to turn and shoot only left and
right and never leaves the red area. You can
see that the fish in this area are very strongly
highlighted and also the agent itself. Outside
this area there are almost no gradients to be
seen.

Figure 69: Actor: Grad-Cam. The fish and
the agent itself are clearly highlighted. This
method gives better results for the actor as
well as for the Speil Breakout-v0 than the gra-
dient methods, where the gradients are too
small to visualize them without a multiplica-
tion factor.

Figure 70: Critic: Grad-Cam. The fish and the
agent itself are clearly highlighted. The fish
and the agent itself are clearly highlighted.

28



Figure 71: Actor: G1Grad-Cam. Close to the
important features some gradients are visual-
ized.

Figure 72: Critic: G1Grad-Cam. Close to the
important features some gradients are visual-
ized.

B.6 A3C with LSTM: Seaquest-v0

Figure 73: Actor: Gradient Figure 74: Critic: Gradient
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Figure 75: Actor: guided backpropagation Figure 76: Critic: guided backpropagation

Figure 77: Actor: Grad-Cam Figure 78: Critic: Grad-Cam
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