
Learning incomplete factorization preconditioners for GMRES

Paul Häusner∗1, Aleix Nieto Juscafresa†1, and Jens Sjölund1

1Department of Information Technology, Uppsala University, Sweden
{paul.hausner, aleix.nieto-juscafresa, jens.sjolund}@it.uu.se

Abstract

Incomplete LU factorizations of sparse matrices are
widely used as preconditioners in Krylov subspace
methods to speed up solving linear systems. Unfor-
tunately, computing the preconditioner itself can be
time-consuming and sensitive to hyper-parameters.
Instead, we replace the hand-engineered algorithm
with a graph neural network that is trained to ap-
proximate the matrix factorization directly. To ap-
ply the output of the neural network as a precondi-
tioner, we propose an output activation function that
guarantees that the predicted factorization is invert-
ible. Further, applying a graph neural network archi-
tecture allows us to ensure that the output itself is
sparse which is desirable from a computational stand-
point. We theoretically analyze and empirically eval-
uate different loss functions to train the learned pre-
conditioners and show their effectiveness in decreas-
ing the number of GMRES iterations and improving
the spectral properties on synthetic data. The code
is available at https://github.com/paulhausner/
neural-incomplete-factorization.

1 Introduction

The generalized minimal residual method (GMRES)
[1] is one of the most popular iterative methods to
solve large-scale and sparse linear equation systems
of the form Ax = b. Throughout the paper, we as-
sume the square system matrix A to be real-valued
and full rank. Therefore, the unique solution to the
equation system is given by A−1b. However, invert-
ing the matrix directly, or equivalently computing
a full matrix factorization, scales computationally
poorly and suffers from numerical instabilities. In-
stead, iterative Krylov subspace methods, such as
GMRES, which refine an approximation of the solu-
tion in each step are the most common solving tech-
nique for large-scale and sparse matrices. The con-
vergence of these methods depends on the condition-
ing and singular value distribution of the system ma-
trix and the right-hand side b. Therefore, the choice
of appropriate preconditioner – designed to improve
the system properties – is critical to obtain a fast
and accurate solution for the equation system [2].

∗Joint first and corresponding author.
†Joint first author.

One of the most common choices of precondition-
ers is the incomplete LU factorization (ILU). As the
name suggests, the matrix A is factorized into lower
(L) and upper (U) triangular factors allowing an ef-
ficient matrix inversion. To decrease the storage and
computational time not all elements of the factoriza-
tion are computed for the preconditioner leading to
a sparse but incomplete factorization. The compu-
tation of the preconditioner is time-consuming, diffi-
cult to parallelize, and can suffer from numerical in-
stabilities [3, 4]. In this work, we replace the numer-
ical computation of the incomplete LU factors with
a graph neural network (GNN). The GNN learns to
predict the corresponding incomplete factors of the
matrix directly by training against data. The main
contributions of our paper are the following:

• We design a GNN architecture that outputs a
sparse and non-singular incomplete LU factor-
ization.

• We theoretically analyze existing loss functions
from the literature and derive their connection
to large and small singular values.

• Building on these insights, we derive a novel loss
function for training learned preconditioners
that combines the benefits of prior approaches.

In numerical experiments, we validate the effective-
ness of our model in reducing GMRES iterations in
combination with the different loss functions and val-
idate the theoretical results on a synthetic dataset.

Related work Most similar to our work, Häusner
et al. [5] and Li et al. [6] both learn an incomplete
factorization for the conjugate gradient method.
Trifonov et al. [7] extend this to combine data-driven
and classical algorithms by correcting the output of
the incomplete Cholesky factorization with a learned
component. However, all of these methods assume
the matrix to be symmetric and positive definite and
utilize the incomplete Cholesky factorization as the
underlying preconditioning technique. In contrast,
we rather focus on the more general incomplete LU
factorization, which does not require positive defi-
niteness or symmetry, within the GMRES algorithm
similar to the recently proposed GraphPAN [8].
In previous work, Chen [9] instead proposes di-

rectly estimating the inverse of the matrix using a
non-linear neural network as a preconditioner, requir-
ing the use of the flexible GMRES method, which

Proceedings of the 6th Northern Lights Deep Learning Conference (NLDL), PMLR 265, 2025.
LM 2025 Paul Häusner, Aleix Nieto Juscafresa, & Jens Sjölund. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/paulhausner/neural-incomplete-factorization
https://github.com/paulhausner/neural-incomplete-factorization
http://creativecommons.org/licenses/by/4.0/

has a more complex convergence behavior. However,
the proposed method requires retraining for each
new problem. In contrast, we propose leveraging the
similarity within a class of linear equation systems
to first train the model offline and then generate
preconditioners for new problems with a negligible
computational overhead during inference time.
For the class of sparse approximate inverse pre-

conditioners, B̊ankestad et al. [10] learn the sparsity
pattern of the approximate inverse matrix for which
the preconditioner can be computed efficiently. Li et
al. [11] instead propose to learn auto-encoder-based
generative models to generate preconditioners. In
this paper, we focus instead on learning factorized
preconditioners that allow easy inversion rather than
learning the inverse matrix directly.

2 Background

We start by providing a brief overview of the GM-
RES algorithm, emphasizing the critical role of pre-
conditioners in accelerating convergence. Then, we
describe graph neural networks which parameterize
the mapping to learn data-driven preconditioners.

2.1 GMRES algorithm

We focus on GMRES [1], a popular and widely
adopted iterative Krylov subspace method to solve
general linear equation systems of the form Ax = b
where A is a n×n non-singular and real valued ma-
trix, i.e. A ∈ GL(n,R). The core idea of Krylov sub-
space methods is to iteratively refine an approxima-
tion of the solution to the problem starting from an
initial guess x0. At each iteration, the approximate
solution is computed by minimizing the Euclidean
norm of the residual vector within the corresponding
Krylov subspace:

xk = argmin
x∈x0+Kk(A,r0)

∥b−Ax∥2, (1)

where the k-th Krylov subspace Kk(A, r0) =
span{r0,Ar0,A

2r0, . . . ,A
k−1r0} of A is generated

by the initial residual r0 = b−Ax0 [2]. By adding
elements Air0 to the subspace basis, the dimen-
sionality of the Krylov subspace increases with each
iteration.1 This allows GMRES to further reduce
the minimal residual norm in Equation (1) with
more iterations. The GMRES algorithm is guaran-
teed to find the exact solution to the original linear
equation system in at most n steps.
Given the previous solution xk the next iterate

can be computed efficiently by solving a reduced un-
constrained system in the subspace. Each iteration
consists of two main steps. In the first step of the

1If the vector is linearly dependent to the basis the dimen-
sionality remains the same but the exact solution to the linear
equation system can be found within the existing subspace.

algorithm, an orthonormal basis for the subspace
Kk is computed. This can be achieved, for exam-
ple, using Arnoldi’s algorithm which is based on the
Gram-Schmidt procedure. In the second step, an
unconstrained least squares problem is solved via
the QR factorization of the subspace basis obtained
in the first step. Based on these two steps, the solu-
tion of Equation (1) can be constructed efficiently.
The detailed algorithm is shown in Appendix A.

Preconditioning Arguably, the most important
design choice for any Krylov subspace method is
the choice of preconditioner [3]. The goal of precon-
ditioning is to replace the original linear equation
system with a new preconditioned system that ex-
hibits a better clustering of singular values, which in
turn can lead to faster convergence of the iterative
scheme [12]. For a non-singular and easy-to-invert
matrix P , the linear equation system AP−1y = b is
solved instead of the original problem. The solution
to the original problem is then given by x = P−1y.2

Constructing a preconditioner involves trading off
the time required to compute the preconditioner it-
self and the resulting speedup in the iterative scheme
[3]. Since the original system A is typically sparse,
we restrict the preconditioning matrix P to be sub-
ject to sparsity constraints as well.
Algebraic preconditioners do not assume any

additional problem information and compute the
preconditioning matrix solely based on the structure
and values of the matrix A. In contrast, geometric
methods take into account the underlying problem
domain. In the simplest case, the Jacobi precondi-
tioner approximates the matrix A using a diagonal
matrix. More advanced methods such as incomplete
factorizations or the Gauss-Seidel method compute
approximate factorizations of the original system A
which implicitly give rise to preconditioners as they
allow efficient inversions [3, 13]. Most commonly,
the approximation utilizes triangular factorizations
since efficient inversion in at most O(n2) operations
can be achieved and sparsity can be exploited [14].
However, It is also possible to approximate the
preconditioning matrix P−1 directly [15].

2.2 Graph neural networks

Graph neural networks (GNNs) are a recently pop-
ularized family of neural network architectures de-
signed to process data represented on unstructured
grids or graphs [16].
A graph is a tuple G = (V, E) consisting of

vertices (or nodes) V and a bivariate relation of
edges E ⊆ V × V . With slight abuse of notation, we
refer to the edge features of the edge e = (i, j) ∈ E
as eij ∈ Rm and node features of node i ∈ V as

2Here, we use right preconditioning, other formulations
use left- or split-preconditioning instead and often lead to
similar but not equivalent results.

2

ni ∈ Rk. The message-passing framework updates
the initial edge and node features – representing
the input data – in each layer l as follows:

el+1
ij = ψθ(e

l
ij ,n

l
i,n

l
j), (2a)

ml+1
i =

⊕
j∈N (i)

el+1
ji , (2b)

nl+1
i = ϕθ(n

l
i,m

l+1
i). (2c)

Here, the functions ψ and ϕ, which update the node
and edge features respectively, are parameterized by
neural networks, and their respective parameters θ
are learned during the model training. Note that all
feature vectors within a single layer must be of the
same size, although the embedding size can vary
between different layers. Equation (2b) shows the
aggregation of the adjacent edges features for each
vertex i ∈ V called the neighborhood N (i). Any
permutation invariant function ⊕, such as sum and
mean, can be utilized for this aggregation step [17].

3 Method

Throughout this paper, we are interested in solving
linear equation systems that share an underlying
structure. Instead of having direct access to a
probability distribution over the problems from a
specific problem class, we obtain a dataset D with a
finite number of i.i.d. samples A1,A2, . . .A|D|. As
previously stated, we assume each Ai to be square,
non-singular and sparse.

3.1 Network architecture

The goal of this paper is to learn a mapping fθ, pa-
rameterized by a graph neural network, that takes
a non-singular matrix A ∈ GL(n,R) as input and
outputs the corresponding preconditioner P for the
equation system. In order to ensure that the pre-
conditioning system is easily invertible – such that
we can apply it within the GMRES algorithm – we
learn the LU factorization of the preconditioner P
instead, by mappingA to two real matrices L and U .
The output matrices are lower and upper triangular,
respectively, with non-zero diagonal entries to guar-
antee their invertibility by utilizing a suitable activa-
tion function. For notational simplicity, we do not ex-
plicitly mention the dependence of the factors on the
original matrix A and the neural network parame-
ters θ when the relationship is clear from the context.

Sparsity The two output factors, L and U , are sub-
ject to sparsity constraints. Similar to incomplete
LU factorization methods without fill-ins, ILU(0),
we enforce the same sparsity patterns to the ele-
ments of L and U as the original matrix A. This
sparsity constraint is directly encoded in the graph
neural network architecture.

2.4 0 2.2
0.5 3.2 0
2.1 1.7 0

 1 3

2

0.5

2.2
2.4

1.7

3.2

0

2.1

Figure 1. Non-symmetric matrix A (left) and the
corresponding sparse Coates graph representation (right).
Additionally to the non-zero elements in the matrix, the
graph has been modified by adding edges for all missing
diagonal elements, corresponding to self-loops.

Network parameterization To parameterize the
function fθ that outputs the preconditioner, we ex-
ploit the strong connection of matrices and linear
algebra with graph neural networks [18, 19].

We treat the system A as the adjacency matrix
of a corresponding graph that we use directly within
the message-passing framework. This transforma-
tion is known in the literature as Coates graph rep-
resentation is depicted in Figure 1 [20]. Similar to
Häusner et al. [5] and Tang et al. [21], we use node
features describing the structural properties of the
corresponding rows and columns of the matrix. We
use the non-zero elements of A as the input edge
features of the graph.

Compared to previous approaches which only out-
put a single lower triangular factor, our model out-
puts two separate matrices L and U . Häusner et
al. [5] incorporate positional encoding by modifying
the Coates graph representation, allowing them to
output the lower triangular factor as the message
passing is only executed over this subset of edges. In
contrast, we add positional encoding directly to the
input data by adding an edge feature to each directed
edge in the graph. This feature indicates whether
the final output embedding of the corresponding
edge belongs to the upper- or lower-triangular part
(±1 respectively) without changing the underlying
graph structure used for message passing.

Invertibility To obtain a valid preconditioner for
the GMRES method during inference, the predicted
factors L and U from the model’s forward pass must
be invertible. Therefore, we need to enforce non-zero
elements on each diagonal.

Since the input matrix A is not guaranteed to
have non-zero diagonal elements, we add the corre-
sponding edges to the graph if necessary before the
message passing. This is visualized for the matrix
element A33 in Figure 1.

However, it is still possible that the output of the
GNN results in a singular matrix as the final edge
representations, obtained from message passing, can
result in zero diagonal elements. Through additional

3

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

0

0.2

x

ζ ϵ
(x
)

Activation
Relaxation

Figure 2. Plot of the activation function (3) for ϵ = 0.1
and the corresponding relaxation (4).

measures, we avoid this in both factors and enforce
non-singularity. Inspired by the classical LU factor-
ization, we enforce a unit diagonal for the U factor.
For the diagonal elements in the lower triangular
factor L we are using the activation function

ζϵ(x) =

x, if |x| > ϵ,

ϵ, if 0 ≤ x ≤ ϵ,
−ϵ, if − ϵ ≤ x < 0.

(3)

In our experiments, we use the fixed hyper-
parameter ϵ = 10−4. This guarantees that the
output matrix L is invertible as diagonal elements
with a small magnitude are shifted away from zero.
However, this function is discontinuous at x = 0
making it difficult to optimize using gradient-based
methods. Therefore, we use the following continuous
approximation of the activation function:

ζ̂ϵ(x) = x ·
(
1 + exp

(
−
∣∣∣∣4xϵ

∣∣∣∣+ 2

))
(4)

during training. The plots for the activation function
and the proposed relaxation are shown in Figure 2.

3.2 Model training

The goal of the learned preconditioner P = LU is
to improve the spectral properties of the precondi-
tioned linear equation system AP−1. However, as
Sappl et al. [22] suggest, directly optimizing the sys-
tem’s condition number κ becomes computationally
intractable for large-scale problems. For computa-
tional tractability, we are also not taking the whole
spectrum of the equation system into account but
concentrating on the edges of the spectrum. In other
words, we consider only the largest and smallest sin-
gular values of the preconditioned equation system.

Lemma 1 The largest singular value of the matrix
AP−1 is upper bounded by the Frobenius norm:
σmax(AP−1) ≤ ϵ−1 ∥A− P ∥F + 1.

Here, ϵ is the hyper-parameter of the preconditioner
chosen in Equation (3). Further, we can estimate
the Frobenius norm using Hutchinson’s trace
estimator [23] which allows us to express the loss to

minimize the upper bound on the largest singular
value of the system in the following form:

Lmax(P ;A) = ∥Aw − Pw∥22, (5)

where w is a standard normal distributed vector.
This loss function has been previously applied by
Häusner et al. [5] as an unbiased estimator of the
squared Frobenius norm distance.

Lemma 2 The smallest singular value of AP−1 is
lower bounded by the following inequalities:
σmin(AP−1) ≥ ∥PA−1∥−1

F ≥ (∥PA−1−I∥F+1)−1.

Based on this lemma, we obtain the following loss
function3 by using a similar approximation as in
the previous step and optimizing over the inverse:

Lmin(P ;A) = ∥PA−1w −w∥22. (6)

The drawback of this loss is that it requires
computing A−1w during training. In other words,
training the learned preconditioner requires solving
many potentially ill-conditioned linear systems.
To maintain computational efficiency and avoid

the need to solve equation systems online during
training, we can instead utilize a supervised dataset
composed of tuples (Ai,xi, bi), where each tuple
satisfies Aixi = bi. This requires us to solve each
training problem only once which can be computed
beforehand in an offline fashion. We replace the
standard distributed samples w in Equation (6) with
the available training samples, resulting in a biased
approximation of the original loss function:

L̂min(P ;A) = ∥PA−1b− b∥22 = ∥Px− b∥22. (7)

This loss function has been previously introduced by
Li et al. [6] as an inductive bias introduced by the
dataset for the Frobenius norm. Recently, Trifonov
et al. [7] derived this loss function and the unbiased
variant from Equation (6) based on reweighing the
result from Lemma 1 using the inverse matrix as
weights. They conjecture that optimizing this loss
leads to minimizing the low-frequency components
in the preconditioned equation system resulting in
larger small singular values.
By combining the two previous loss functions

from Equation (6) and Equation (5), we introduce a
novel combined loss with the goal to further improve
the conditioning by taking into account both ends
of the spectrum. The combined loss function, along
with its approximation using a supervised dataset
similar to Equation (7), is defined as:

Lcom(P ;A) =∥Aw − Pw∥22 + α∥PA−1w∥22
≈∥Aw − Pw∥22 + α∥Px∥22,

(8)

where α is a hyper-parameter that controls the
trade-off between the two loss components. During

3By convention, we always minimize the loss function.

4

training, we are minimizing the empirical risk
over the corresponding unsupervised or supervised
dataset to learn the parameters:

θ̂ ∈ argmin
θ

|D|∑
i=1

L(Pθ;Ai,xi, bi). (9)

The proofs for the lemmas and the Froebnius norm
approximation can be found in Appendix C.

4 Experiments & Results

We evaluate our method on a synthetic dataset of
problems arising from the discretization of the Pois-
son equation. The problem size in our experiments
is n = 2500. We train on 200 and evaluate the
preconditioner on 10 unseen problems. It takes 5
minutes to train the model for 100 epochs excluding
the time for the dataset generation. The implemen-
tation details can be found in Appendix B.

Comparison of loss functions In Table 1, we
present the performance of the learned precondi-
tioner given different loss functions corresponding
to the bounds derived in the previous section. We
can see that minimizing Lmax and Lmin decrease the
largest and increase the smallest singular value of
the system respectively and the models achieve the
lowest loss for the respective functions. This shows
that during training, we are able to minimize the
loss functions and by that implicitly optimize the
bounds for the singular values.

Optimizing the biased approximation L̂min still
performs well in terms of decreasing the original un-
biased loss function. However, when computing the
preconditioner inverse and singular value decomposi-
tion, numerical instabilities prevent the application
of the learned output due to poor conditioning. This
leads, in turn, to significantly worse performance in
terms of GMRES iterations.

Optimizing the combined loss Lcom reduces both
individual loss functions slightly compared to the
non-preconditioned case but leads to worse perfor-
mance on nearly all metrics besides the acceleration
of the iterative solver. Additionally, the training of
this loss can be numerically unstable as the two loss
functions conflict with each other.

Note that, the problem at hand is unbalanced
as the spectrum of the original system is already
skewed towards small singular values. In terms of
GMRES iterations, the performance of the different
loss functions also depends on the initial distribu-
tion of singular values. In Figure 3 we show this
distribution for different preconditioners compared
to the original distribution. Note that the original
distribution is shifted to small singular values. We
discuss the results in more detail in Appendix D.1.

0 500 1000 1500 2000 2500
Index of ordered singular value m

−2

0

2

4

lo
g 1

0
σ
m

None

Lmax
Lmin
Lcom

Figure 3. Descending log-scale plot of ordered
singular values of a single problem instance for learned
preconditioners derived from the different loss functions.

Comparison with data-driven preconditioners
We additionally compare our method with previously
developed data-driven preconditioners for incom-
plete Cholesky factorizations (Learned IC) with an
exp-activation function for the diagonal elements to
ensure invertibility. We use the loss function Lmax

to train the method, similar to previous approaches
[5], and choose the same hyper-parameters as our
model for a fair comparison. The details of the
baseline architecture are provided in Appendix B.3.

The results indicate that, although the Learned IC
method reduces the number of iterations compared
to the unpreconditioned GMRES solver, it performs
worse in terms of both loss and conditioning when
compared to our proposed method. Further, the
GMRES performance is significantly worse than our
proposed LU factorization-based techniques. This is,
however, not very surprising as the LU factorization
offers more flexibility to approximate the true matrix
factorization as two separate factors are learned.

Comparison with classical preconditioners Ad-
ditionally, we compare in Table 1 the performance of
the learned preconditioner against the classical Ja-
cobi and incomplete LU method without fill-ins, as
well as the case where no preconditioner is applied.
In general, the results show the vital importance
of selecting an appropriate preconditioner. For the
problem considered, ILU and the learned precondi-
tioner perform nearly on par in terms of required
iterations to solve the problem instances. We can
see that even though the conditioning in terms of
the largest and smallest singular value of the ILU
method is by far inferior to the other preconditioners,
it still manages to substantially reduce the number
of iterations for convergence.

This shows that the spectrum edges, while impor-
tant, are not the only factor affecting the method’s
efficiency. Further, this underscores the importance
of considering the entire spectrum of the precondi-
tioned system when analyzing the method’s conver-
gence as well as the alignment of the right-hand side
b of the system with the singular vectors of A [3, 24].

5

Table 1. Average performance of classical and data-driven preconditioners with different loss functions evaluated
on 10 test samples. We show the conditioning of the right-preconditioned system AP−1 in the first three columns
indicating the smallest (σmin) and largest (σmax) singular values as well as the condition number (κ). For each
preconditioner, we compute different Frobenius norm loss functions proportional to the bounds in Lemma 1 and
Lemma 2. Further, we compare the convergence of the preconditioner in the GMRES algorithm in terms of the
total time (including both the time to compute the preconditioner and solve the systems) and the number of
iterations. For the unpreconditioned method, we compute the loss for P = I.

Method σmin ↑ σmax ↓ κ ↓ ∥P −A∥F ↓ ∥PA−1 − I∥F ↓ Time ↓ Iterations ↓

P
re

c
o
n
d
. No preconditioner 0.0014 20.70 31 152.94 255.26 1 577.65 30.85 1 153

Jacobi 0.0003 5.16 31 166.13 205.83 6 319.45 30.12 1 152
ILU(0) 0.0006 30.32 120 740.90 138.31 3 688.45 3.33 413

Learned IC 0.0006 7.58 27 405.57 143.23 3 719.47 12.84 692

L
o
ss

Lmax: Equation (5) 0.0007 5.00 16 139.46 88.76 3 261.23 3.67 437
Lmin: Equation (6) 1.1375 20 318.88 37 030.72 287.62 50.05 24.41 1 054

L̂min: Equation (7) - - - 287.71 50.30 130.01 2 192
Lcom: Equation (8) 0.0017 52.92 66 691.71 197.82 1 240.60 3.42 418

5 Discussion & Conclusion

In this paper, we learn incomplete LU factoriza-
tions of sparse matrices directly from data using
graph neural networks. When applied as a precondi-
tioner our approach leads to a significant reduction
in terms of iterations compared to the unprecon-
ditioned GMRES and performs similar to classical
incomplete factorization methods. Combining data-
driven methods with existing numerical algorithms
has a huge potential since it allows obtaining the
best results from both worlds: guarantees about the
convergence are obtained from classical analysis of
the methods while the data-driven components allow
us to learn directly from data to improve upon the
existing algorithms on specific data distributions.

Limitations Our approach assumes having access
to a distribution of linear equation systems that
share similarities between the problem instances.
However, in practice, it is not always trivial to obtain
such a distribution of problems. Further, the initial
cost of training the network needs to be amortized
over many future problems that need to be solved.
However, given the initial sample problems, new
problems can be solved faster in an online setting
which is important for time-critical applications.

In our experiments, we only train and evaluate our
method on a single dataset of very limited size which
is inspired by numerical computations. Applying
the method to more diverse problem classes with
different initial distributions of singular values is
required in the future to obtain more general results
about the performance.

Although the combined loss function Lcom acceler-
ates GMRES convergence, the conflicting loss terms
can introduce instability during training. Addition-
ally, finding an appropriate balance between the two
components using the hyper-parameter α is challeng-
ing, as a poorly chosen value might emphasize one
part of the spectrum more than intended, resulting

in a similar performance to using one of the loss
functions individually.

Future work Our GNN is designed such that the
learned preconditioner matches the sparsity pattern
of the input matrix A. While dynamically learning
the sparsity pattern and matrix elements could im-
prove preconditioner quality, the large search space
and combinatorial complexity make this challenging.

Our proposed loss function accounts for the edges
of the spectrum in the preconditioned system. How-
ever, beyond the edges and condition number, the
distribution of singular values as well as the right-
hand side also affects the convergence of Krylov
subspace methods [24]. Designing loss functions
that consider these additional aspects can further
improve the performance of learned preconditioners.

An interesting idea for future work is to combine
our data-driven incomplete LU factorization with
classical ILU methods along the lines of the method
proposed by Trifonov et al. [7] combining the ad-
vantages of classical and data-driven methods. The
theoretical analysis of the different loss functions
from our results can then be applied to construct
novel hybrid preconditioners.

Acknowledgments

We thank Daniel Hernández Escobar and Sebastian
Mair for helpful discussions and feedback. This work
was supported by the Göran Gustafsson Foundation
and the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

References

[1] Y. Saad and M. H. Schultz. “GMRES: A Gen-
eralized Minimal Residual Algorithm for Solv-
ing Nonsymmetric Linear Systems”. In: SIAM

6

Journal on Scientific and Statistical Comput-
ing 7.3 (1986), pp. 856–869. doi: 10.1137/
0907058.

[2] Y. Saad. Iterative Methods for Sparse Linear
Systems. Second. Society for Industrial and
Applied Mathematics, 2003. doi: 10.1137/1.
9780898718003.

[3] M. Benzi. “Preconditioning techniques for
large linear systems: a survey”. In: Journal of
computational Physics 182.2 (2002), pp. 418–
477. doi: 10.1006/jcph.2002.7176.

[4] J. Scott and M. Tuma. Algorithms for sparse
linear systems. Springer Nature, 2023. doi:
10.1007/978-3-031-25820-6.

[5] P. Häusner, O. Öktem, and J. Sjölund. “Neu-
ral incomplete factorization: learning precondi-
tioners for the conjugate gradient method”. In:
Transactions on Machine Learning Research
(2024).

[6] Y. Li, P. Y. Chen, T. Du, and W. Matusik.
“Learning preconditioners for conjugate gradi-
ent PDE solvers”. In: International Conference
on Machine Learning. PMLR. 2023, pp. 19425–
19439.

[7] V. Trifonov, A. Rudikov, O. Iliev, I. Oseledets,
and E. Muravleva. “Learning from Linear Al-
gebra: A Graph Neural Network Approach to
Preconditioner Design for Conjugate Gradient
Solvers”. In: arXiv preprint arXiv:2405.15557
(2024).

[8] S. Yusuf, J. E. Hicken, and S. Pan. “Con-
structing ILU preconditioners for advection-
dominated problems using graph neural net-
works”. In: AIAA AVIATION FORUM AND
ASCEND 2024. 2024, p. 3613. doi: 10.2514/
6.2024-3613.

[9] J. Chen. “Graph Neural Preconditioners for
Iterative Solutions of Sparse Linear Systems”.
In: arXiv preprint arXiv:2406.00809 (2024).

[10] M. B̊ankestad, J. Andersson, S. Mair, and J.
Sjölund. “Ising on the Graph: Task-specific
Graph Subsampling via the Ising Model”. In:
Learning on Graphs Conference (2024).

[11] M. Li, H. Wang, and P. K. Jimack. “Genera-
tive Modeling of Sparse Approximate Inverse
Preconditioners”. In: Computational Science –
ICCS 2024. Cham: Springer Nature Switzer-
land, 2024, pp. 378–392. doi: 10.1007/978-
3-031-63759-9_40.

[12] G. H. Golub and C. F. Van Loan. Matrix
computations. JHU press, 2013.

[13] J. W. Pearson and J. Pestana. “Precondi-
tioners for Krylov subspace methods: An
overview”. In: GAMM-Mitteilungen 43.4
(2020). doi: 10.1002/gamm.202000015.

[14] T. A. Davis, S. Rajamanickam, and W. M.
Sid-Lakhdar. “A survey of direct methods
for sparse linear systems”. In: Acta Numer-
ica 25 (2016), pp. 383–566. doi: 10.1017/
S0962492916000076.

[15] M. Benzi and M. Tuma. “A comparative study
of sparse approximate inverse precondition-
ers”. In: Applied Numerical Mathematics 30.2-
3 (1999), pp. 305–340. doi: 10.1016/S0168-
9274(98)00118-4.

[16] M. M. Bronstein, J. Bruna, T. Cohen, and P.
Veličković. “Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges”. In:
arXiv preprint arXiv:2104.13478 (2021).

[17] P. W. Battaglia, J. B. Hamrick, V. Bapst,
A. Sanchez-Gonzalez, V. Zambaldi, M. Mali-
nowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, et al. “Relational inductive bi-
ases, deep learning, and graph networks”. In:
arXiv preprint arXiv:1806.01261 (2018).

[18] J. Sjölund and M. B̊ankestad. “Graph-
based neural acceleration for nonnegative
matrix factorization”. In: arXiv preprint
arXiv:2202.00264 (2022).

[19] N. S. Moore, E. C. Cyr, P. Ohm, C. M. Siefert,
and R. S. Tuminaro. “Graph neural networks
and applied linear algebra”. In: arXiv preprint
arXiv:2310.14084 (2023).

[20] M. Doob. “Applications of graph theory in lin-
ear algebra”. In: Mathematics Magazine 57.2
(1984), pp. 67–76. doi: 10.2307/2689586.

[21] Z. Tang, H. Zhang, and J. Chen. “Graph Neu-
ral Networks for Selection of Preconditioners
and Krylov Solvers”. In: NeurIPS 2022 Work-
shop: New Frontiers in Graph Learning. 2022.

[22] J. Sappl, L. Seiler, M. Harders, and W. Rauch.
“Deep learning of preconditioners for conjugate
gradient solvers in urban water related prob-
lems”. In: arXiv preprint arXiv:1906.06925
(2019).

[23] M. F. Hutchinson. “A stochastic estimator of
the trace of the influence matrix for Lapla-
cian smoothing splines”. In: Communica-
tions in Statistics-Simulation and Computa-
tion 18.3 (1989), pp. 1059–1076. doi: 10.1080/
03610919008812866.

[24] E. Carson, J. Liesen, and Z. Strakoš. “Towards
understanding CG and GMRES through exam-
ples”. In: Linear Algebra and its Applications
692 (2024), pp. 241–291. doi: 10.1016/j.laa.
2024.04.003.

[25] L. N. Trefethen and D. Bau III. Nu-
merical Linear Algebra. SIAM, 1997. isbn:
978-0898713619. doi: 10 . 1137 / 1 .

9780898719574.

7

https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1006/jcph.2002.7176
https://doi.org/10.1007/978-3-031-25820-6
https://doi.org/10.2514/6.2024-3613
https://doi.org/10.2514/6.2024-3613
https://doi.org/10.1007/978-3-031-63759-9_40
https://doi.org/10.1007/978-3-031-63759-9_40
https://doi.org/10.1002/gamm.202000015
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1016/S0168-9274(98)00118-4
https://doi.org/10.1016/S0168-9274(98)00118-4
https://doi.org/10.2307/2689586
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1080/03610919008812866
https://doi.org/10.1016/j.laa.2024.04.003
https://doi.org/10.1016/j.laa.2024.04.003
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574

[26] H. P. Langtangen and A. Logg. “Solving PDEs
in minutes-the FEniCS tutorial”. In: The FEn-
iCS Book 1 (2016). doi: 10.1007/978-3-319-
52462-7.

[27] M. Fey and J. E. Lenssen. “Fast graph repre-
sentation learning with PyTorch Geometric”.
In: arXiv preprint arXiv:1903.02428 (2019).

[28] N. Nytko, A. Taghibakhshi, T. U. Zaman, S.
MacLachlan, L. N. Olson, and M. West. “Op-
timized sparse matrix operations for reverse
mode automatic differentiation”. In: arXiv
preprint arXiv:2212.05159 (2022).

[29] J. Mayer. “ILU++: A new software package
for solving sparse linear systems with iterative
methods”. In: PAMM: Proceedings in Applied
Mathematics and Mechanics. Vol. 7. 1. Wiley
Online Library. 2007, pp. 2020123–2020124.
doi: 10.1002/pamm.200700911.

[30] C. Hofreither. ilupp – ILU algorithms for C++
and Python. 2020. url: https : / / github .

com/c-f-h/ilupp.

8

https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1007/978-3-319-52462-7
https://doi.org/10.1002/pamm.200700911
https://github.com/c-f-h/ilupp
https://github.com/c-f-h/ilupp

A GMRES algorithm

The right-preconditioned GMRES is shown in Algo-
rithm A.1. The non-preconditioned version can be
obtained by using the identity matrix as a precon-
ditioner (P = I). Operations where the precondi-
tioner is applied are highlighted for better readability
in this section.

Algorithm A.1 Right-preconditioned GM-
RES [1]

1: Inputs:
2: Non-singular matrix A ∈ Rn×n

3: Preconditioner P ∈ Rn×n

4: Right-hand side b ∈ Rn

5: Initial guess x0 ∈ Rn

6: Tolerance ϵ for the residual norm
7: Maximum number of iterations kmax

8: Output: Approximate solution xk

9: k = 0
10: ▷ Compute the initial residual
11: r0 = (b−Ax0)
12: ρ0 = ∥r0∥2
13: β = ρ0
14: while ρk > ϵρ0 and k < kmax do
15: k ← k + 1
16: Arnoldi (A,P , r0, k) → Vk+1,Hk+1,k

17: ▷ Compute the QR factorization of Hk+1,k

18: ρk = |βq1,k+1|
19: ▷ Solve using the QR factorization of Hk+1,k

20: yk = argmin
y∈Rn

∥βe1 −Hk+1,ky∥2
21: ▷ Construct the solution
22: xk = x0 + P−1Vkyk

23: return xk

Arnoldi method In each step of the iterative
scheme (line 16 in Algorithm A.1), the Arnoldi
method is used to construct an orthonormal basis
of the Krylov subspace Kk of the current iteration
shown in Equation (1). This method is crucial as it
ensures that the basis vectors are orthogonal, which
in turn allows the GMRES algorithm to efficiently
minimize the residual over the Krylov subspace.
For a given number of iterations k, the Arnoldi

method (Algorithm A.2) produces an upper Hessen-
berg matrix Hk,k+1, which is related to the matrix
A through the orthonormal basis Vk+1 as

AVk = Vk+1Hk,k+1, (10)

where Vk consists of the first k columns of the matrix
Vk+1, forming an orthonormal basis for the Krylov
subspace.

Based on this factorization of this basis, the resid-
ual and approximate solution can be efficiently ob-
tained by solving a smaller and upper-triangular
system derived from the QR factorization of Hk,k+1,
as shown in line 20 of the GMRES algorithm.

In lines 21–23 of Algorithm A.2, the situation
where the element hk+1,k in the upper Hessenberg
matrix Hk+1,k becomes zero is addressed. If this
condition is met, the loop breaks, indicating that
the algorithm has prematurely found an invariant
Krylov subspace. When this occurs, the (k + 1)-
th column of Vk+1 does not exist because the last
row of Hk+1,k is zero. As a result, Equation (10)
simplifies to

AVk = VkHk.

This indicates that the Krylov subspace has reached
its full dimension, and no further vectors can be
generated. Consequently, the GMRES algorithm
can terminate early, as the exact solution lies within
the current subspace. This premature convergence
is referred to as “lucky” because it implies that the
solution has been found in less than n iterations.

Also, note that in practice, it is not necessary
to run the full Arnoldi algorithm in each iteration
but the basis vectors found in the previous itera-
tions can be reused and only the most recent ortho-
normalization step needs to be executed.

Algorithm A.2 Arnoldi’s Modified Gram-
Schmidt Implementation

1: Inputs:
2: Non-singular matrix A ∈ Rn×n

3: Preconditioner P ∈ Rn×n

4: Initial residual r0 ∈ Rn

5: Number of iterations k
6: Outputs:
7: Orthonormal basis Vk+1 = {vj}k+1

j=1 , vj ∈ Rn

8: Hessenberg matrix Hk+1,k ∈ R(k+1)×k

9: ▷ Initialize the Arnoldi basis
10: β = ∥r(0)∥2
11: v1 = β−1r(0)

12: for i = 1 to k do
13: wi+1 = AP−1vi

14: ▷ Gram-Schmidt ortho-normalization
15: for j = 1 to i do
16: hj,i = wT

i+1vj

17: wi+1 = wi+1 − hj,ivj

18: hi+1,i = ∥wi+1∥2
19: if hi+1,i ̸= 0 then
20: vi+1 = wi+1/hi+1,i

21: else
22: ▷ Exact solution found (lucky breakdown)
23: break
24: return Vk+1,Hk+1,k

Preconditioning The preconditioning matrix P
(or its inverse) does not need to be stored explicitly.
Instead, it is sufficient to have access to an implicit
representation of the matrix which can be applied to
a vector v to evaluate the product P−1v as in line 22
of Algorithm A.1 and Algorithm A.2 respectively.

9

In the case of preconditioner given by triangular
factorizations such as ILU and our learned ap-
proach, the matrix is obtained by solving the system
LUv = r which can be achieved in O(n2) opera-
tions using the forward-backward substitution and
can be further accelerated by exploiting the sparse
structure of the matrices. The solution to solving
these systems is equivalent to explicitly inverting the
matrices and computing the matrix-vector product
U−1L−1r which forms the preconditioning matrix
as P−1 = (LU)−1. However, solving the triangular
systems is more efficient in practice as the generally
non-sparse inverse matrices do not need to be stored.

Convergence Obtaining descriptive convergence
bound is in general non-trivial due to the complex
nature of GMRES. For non-symmetric matrices, sin-
gular values provide a more complete understand-
ing of a matrix’s behavior across all directions in
space compared to eigenvalues. Eigenvalues are tied
to specific directions – eigenvectors – that remain
unchanged under transformation by the matrix A.
However, non-symmetric matrices may lack suffi-
cient eigenvectors to describe their impact across all
directions, particularly if they are defective or not
diagonalizable. In contrast, singular values offer a
full directional picture. The matrix can be decom-
posed, using singular value decomposition (SVD),
as A = UΣV T, where Σ is a diagonal matrix of sin-
gular values, and U and V are orthogonal matrices
containing left and right singular vectors, respec-
tively. These singular vectors capture A’s scaling
effects across all directions, making singular values
especially valuable for analyzing convergence and
stability in iterative methods that require complete
directional information [1, 12]. As the generated
Krylov subspace in GMRES highly depends on the
matrix’s scaling behavior, SVD offers the tools to
understand the iterative process through the trans-
formations of A [25].

The condition number, κ(A) = σmax(A)
σmin(A) , defined

by the largest and smallest singular values of A
is a popular metric to assess the convergence of
iterative methods. This metric describes how well-
conditioned the matrix is, with a lower κ(A) indi-
cating better clustering of singular values, typically
around 1 in well-conditioned systems. A smaller
κ(A) often leads to faster convergence since all di-
rections contribute meaningfully to residual reduc-
tion. However, if κ(A) is large due to a very small
σmin(A), convergence slows as the matrix has limited
influence in the directions corresponding to small
singular values. This condition can cause stagna-
tion, requiring more iterations to meet convergence
criteria as κ(A) grows [1, 12].
Preconditioning addresses this by adjusting the

singular value spectrum, ideally reducing κ(A) to
cluster singular values more effectively and ensuring
significant influence in all directions of the subspace.

A well-chosen preconditioner modifies A’s singular
values to improve conditioning, thus lowering the
number of iterations needed to achieve a desired
tolerance. This approach makes GMRES particu-
larly effective for systems that are well-conditioned
or well-preconditioned, solidifying singular values as
the preferred metric over eigenvalues for evaluating
convergence and stability in this context [3].

Right-hand side Apart from the condition num-
ber and singular value distribution, the right-hand
side b in the system also plays a crucial role in GM-
RES convergence through its interaction with the
singular value decomposition of A or the precondi-
tioned system. Decomposing b =

∑n
i=1 αiui, with

{ui} as the left singular vectors of A, reveals how b
aligns with A’s left-singular values. The coefficients
αi = uT

i b measure b’s alignment with each left singu-
lar vector ui. Strong alignment with directions tied
to small singular values σi causes these directions
to dominate the residual and slow down GMRES
convergence [3, 12].
Our data-driven preconditioning method in-

directly addresses the interaction between the
right-hand side b and the singular values of A by
sampling b from a distribution in the approximate
loss functions. This ensures robustness by forcing
the preconditioner to handle diverse right-hand sides
and target weakly scaled directions of A. However,
our method does not explicitly exploit the alignment
of a specific right-hand side b with the singular
vectors of A. To refine this approach, the loss func-
tion can be enhanced in future work to incorporate
the dependence of a specific right-hand side and its
alignment with the singular values explicitly.

B Implementation details

Here, we provide additional details for the implemen-
tation of the dataset, our learned preconditioner, and
the baseline preconditioners used in the experiments.

B.1 Dataset

Our goal with the provided dataset is not to solve
a real-world problem. Rather, we focus on a highly
ill-conditioned synthetic dataset which allows us
to systematically test the different loss functions
derived. For the problem scale used, direct methods
are much superior compared to the shown results.

Poisson problem The Poisson equation is an
elliptic partial differential equation (PDE) and one
of the most fundamental problems in numerical
computational science [26]. The general form of the
Poisson equation is given by:

−∇2u(x) = f(x) x ∈ Ω, (11)

u(x) = uD(x) x ∈ ∂Ω, (12)

10

where f(x) is the source function and u(x) is the
unknown function to be solved for.

In our study, we generate the matrix A using
pyamg.gallery.poisson, which implicitly assumes
unit spacing and Dirichlet boundary conditions, typ-
ically set to zero. The right-hand side of the linear
equation system, b, is derived from the source func-
tion f(x, y) = sin(πx) sin(πy). By discretizing the
problem using the finite element method, we obtain
a system of linear equations of the form Ax = b,
where the stiffness matrix A is sparse and symmetric
positive definite. Throughout our experiments, we
use matrices of size n = 2500.

Noisy data However, we are not specifically inter-
ested in symmetric and positive definite matrices
that are generated through finite element discretiza-
tion. Therefore, to obtain a distribution A over a
large number of Poisson equation PDE problems
with more general structure that can be efficiently
solved using GMRES, we perturb all the non-zero
entries with standard Gaussian noise, which yields
arbitrary matrices not necessarily spd. Let us de-
note the perturbed matrix as A′ = (a′ij). We can
represent this mathematically by:

a′ij =

{
aij +Xij if aij ̸= 0,

0 if aij = 0,

where Xij ∼ N (0, 1) are i.i.d. random variables.

By introducing randomness into A, we are ef-
fectively modeling a scenario where the system’s
properties are not perfectly regular, which could
represent, for example, some form of physical or
numerical irregularity or perturbation in the grid
or medium. During testing, we use a deterministic
right-hand side b as described previously. However,
for the supervised training dataset we sample the
vectors b to be normally distributed in order to
avoid overfitting as this would lead to a significant
decrease in model performance.

Problem instances All problem instances gen-
erated come from the same distribution but using
non-overlapping random seeds we ensure that there
is no data leakage between the training and test data.
We create 200 problem instances for training and 10
instances for validation and testing respectively.

All problems are of size n = 2500 with approx-
imately 50 000 − 150 000 non-zero elements. The
condition number κ of the unpreconditioned system
is in the range between 5 000 to 50 000. Thus, even
though the problem parameters only vary slightly,
the resulting conditioning and potential performance
of the different loss functions can be very different
between the individual problem instances.

B.2 Network architecture

We implement the neural network based on the
pytorch-geometric framework which offers direct
support for computing the node features and util-
ity functions such as adding remaining self-loops
[27]. During inference, we utilize the numml sparse
matrix package to efficiently compute the forward-
backward substitution [28]. The pseudocode for the
forward pass of the learned preconditioner is shown
in Algorithm B.1.

Inputs and transformations As described in
Section 3, we transform the original linear equation
system matrix A into a graph G using the Coates
graph representation. We use the non-zero elements
of the matrix as edge features and add a second edge
feature as a positional encoding of the output. For
the node features, we utilize the same set of 8 input
features as previously applied by Häusner et al. [5]
describing the structural properties of the matrix:

• the node degree deg(v)

• the maximum degree of neighboring nodes

• the minimum degree of neighboring nodes

• the mean degree of neighboring nodes

• the variance of degrees of neighboring nodes

• the diagonal dominance

• the diagonal decay

• the position of the node in the linear system

Message-passing network In our implementation,
we use L = 3 message-passing steps. We define a
hidden size of n = 32 for the edge embeddings and
m = 16 for the node embeddings in the hidden layers
of the neural network allowing for sufficient flexibility
in the network’s parameterization. The incoming
messages at each node are aggregated using the
mean aggregation function, which ensures a balanced
contribution from neighboring nodes. Thus, our
GNN has a total of 4 889 parameters to train.

Output The final edge embedding is chosen to
be scalar by designing the edge update function to

produce a single output, i.e., e
(L)
ij ∈ R, allowing us

to directly transform the output into a lower- and
upper-triangular matrix. We enforce the diagonal
elements of U to be ones and apply the activation
function ζ from Equation (3) to the diagonal ele-
ments of L. Note that during training, we instead
use the approximation ζ̂ϵ from Equation (4) in line 25
as discussed in the main text. This allows zero diag-
onal elements but no matrix inversion of P during
training is required.

11

Algorithm B.1 Pseudo-code for the learned
LU factorization preconditioner

1: Input: Coates graph representation G = (V, E)
of the system matrix A.

2: Output: Lower and upper triangular matrices
L and U of the learned factorization.

3: ▷ Input transformations:
4: Add remaining self-loops to the graph G.
5: Compute node features ni ∈ R8.
6: Compute edge features eij ∈ R2.
7: ▷ Message passing layers
8: for l ∈ {0, 1, . . . , L− 1} do
9: for (i, j) ∈ E do

10: ▷ Compute updated edge features
11: el+1

ij = ψθ(e
l
ij ,n

l
i,n

l
j)

12: for i ∈ {1, . . . , n} do
13: ▷ Aggregate edge features per node
14: ml+1

i =
⊕

j∈N (i) e
l+1
ji

15: ▷ Compute updated node features
16: nl+1

i = ϕθ(n
k
i ,m

l+1
i)

17: if not final layer in the network then
18: ▷ Add skip connections
19: for (i, j) ∈ E do
20: el+1

ij ← [el+1
ij , aij]

⊤

21: ▷ Form the lower triangular matrix L = (lij):

(lij)←
{
e
(L)
ij , if (i, j) ∈ E and i > j,

0, otherwise.

22: ▷ Form the upper triangular matrix U = (uij):

(uij)←
{
e
(L)
ij , if (i, j) ∈ E and i < j,

0, otherwise.

23: ▷ Ensure invertibility
24: for i ∈ {1, . . . , n} do
25: lii ← ζ(e

(L)
ii)

26: uii ← 1
27: return (L, U)

Training Our model is trained on the dataset of
200 problem instances of size n = 2500 for 100 iter-
ations. The best-performing model during the train-
ing based on the validation GMRES performance is
chosen in order to avoid overfitting. As a validation
metric, we use the number of GMRES iterations of
the learned preconditioner on the validation data as
this is the downstream metric of interest.

We use an NVIDIA-A100 GPU with 80 GB of
memory for training. Each epoch, consisting of 200
parameter update steps using the Adam optimizer
with a learning rate of 0.001 and a batch size of 1,
requires 2 seconds. Thus, the total time required for
model training is approximately 5 minutes. Further
during training we use gradient clipping with pa-
rameter 1. We assume throughout that a supervised
dataset is readily available and we do not need to

0 5000 10000 15000 20000
Iteration

0

2

4

6

8

T
ra

in
in

g
lo

ss
(n

or
m

al
iz

ed
)

Lmin
Lmax

Figure B.1. Normalized training loss using different
loss functions from Section 3.

create samples for the loss function Equation (7)
before the training process. We use the right-hand
sides b are generated as described in Section B.1.

For loss functions that require solving the sys-
tem A−1w, training takes significantly longer with
approximately 20 minutes. However, solving the
systems can be implemented efficiently for the prob-
lem scale that we consider in our experiments. For
real-world examples, the additional time required
would increase significantly.

Tuning We only conducted a minimal level of hyper-
parameter tuning for the model architecture. Tuning
the loss function in Equation (8), optimization of
the objective becomes numerically more difficult as
the two terms are in conflict with each other. We
choose the hyper-parameter α = 1/7 based on the
validation set performance to balance out the two
loss terms of the combined loss.

B.3 Baselines

The GMRES algorithm and the Arnoldi method,
given in Algorithm A.1 and Algorithm A.2, respec-
tively, are implemented in pytorch directly. We
utilize an iterative implementation of the Arnoldi
method that only computes one orthogonal vector
in each iteration for computational efficiency. As
the considered problems here are of moderate size,
we apply a direct QR factorization to the matrix H
at each step, rather than incrementally updating the
factorization through Givens rotations. Although
Givens rotations are beneficial for larger or sparser
systems due to their ability to maintain efficiency
in incremental updates, a direct QR factorization is
computationally feasible here and simplifies imple-
mentation [12].

Classical Preconditioner The Jacobi precon-
ditioner can be implemented and applied very
efficiently using pytorch sparse data structures for
diagonal matrices. For the ILU(0) preconditioner,

12

we use the ILU++ implementation which is a
high-performance implementation of the algorithm
in C++ [29, 30].

Data-driven preconditioner The data-driven
baseline uses an architecture similar to the one pro-
posed by Li et al. [6]. The architecture by Häusner
et al. [5] is not directly applicable since it only takes
the lower triangular part of the matrix as an input
which would remove many input features as the ma-
trices in our dataset are non-symmetric. However,
we use a exp-activation function for the diagonal
elements instead of choosing the original elements
in A since the matrices in our dataset are not guar-
anteed to have non-zero diagonal elements. Further,
we use the same node and edge features as our GNN
described in the previous section.

Inference During inference, we run all operations –
including the neural network-driven preconditioner
– on the CPU in order to ensure a fair comparison
between the different methods. For all methods, the
time it takes to compute the preconditioner can be
neglected compared to the GMRES time.

C Proofs

In this section, we prove the lemmas from the main
text. The goal of Lemmas 1 and 2 is to optimize
the system’s spectral properties by minimizing the
upper and maximizing the lower spectral bounds
respectively. This approach allows our loss func-
tion to increase the smaller singular values of the
preconditioned system while decreasing the larger
singular values, thereby improving the clustering
of the singular values in the preconditioned matrix.
The proofs can easily be verified and rely on basic
norm transformations and norm inequalities.

Proof of Lemma 1 In the first lemma, we aim
to upper bound the largest singular value of the
preconditioned linear system. The bound is derived
as follows:

σmax(AP−1) = ∥AP−1∥2
= ∥(A− P + P)P−1∥2
= ∥(A− P)P−1 + I∥2
≤ ∥(A− P)P−1∥2 + ∥I∥2
≤ ∥A− P ∥2 ∥P−1∥2 + 1.

Now, we exploit the structure of the learned pre-
conditioner to obtain an upper bound for ∥P−1∥2.
Specifically, we use two key observations. First, the
matrix U has ones on the diagonal by construc-
tion. Second, the absolute values of the diagonal
elements on the matrix L are bounded from below
by ϵ, a property that arises from the specific choice
of activation function in Equation (3).

These properties, when combined with the fact
that the singular values of a triangular matrix coin-
cide with the absolute value of its diagonal elements,
allow us to derive the following upper bound on the
spectral norm of the preconditioner P :

∥P−1∥2
= ∥U−1L−1∥2
≤ ∥U−1∥2 ∥L−1∥2
=

1

σmin(U)
· 1

σmin(L)

≤ ϵ−1.

Combining this bound on ∥P−1∥2 with the previous
inequality, we obtain:

σmax(AP−1) ≤ ϵ−1∥A− P ∥2 + 1.

Proof of Lemma 2 In the second lemma, we show
how to obtain a lower bound on the smallest singular
value of the preconditioned system and it is derived
as follows:

σmin(AP−1) =
1

σmax(PA−1)

=
1

∥PA−1∥2
≥ 1

∥PA−1∥F
.

Previous learned preconditioner approaches in the
literature [6, 7] used the following additional steps
to obtain a weaker bound on the smallest singular
value of the system:

∥PA−1∥2 =∥PA−1∥2 − 1 + 1

=∥PA−1∥2 − ∥I∥2 + 1

≤
∣∣∥PA−1∥2 − ∥I∥2

∣∣+ 1

≤∥PA−1 − I∥2 + 1

≤∥PA−1 − I∥F + 1.

The reason for working with this second weaker
approximation is that optimizing the first approx-
imation directly leads to degenerate solutions as
the minimum is attained when P ≈ 0 which would
avoid having small singular values but the large sin-
gular value of the preconditioned system would be
unbounded. Therefore, one can see the additional
term involving I as a regularizer enforcing P to be
non-degenerate.

Frobenius norm approximation Equivalently to
optimizing over the Frobenius norm, we can opti-
mize the preconditioner over the squared Frobenius
norm instead as we are only interested in the best
parameters, not the best objective value. This has
the additional advantage that the loss function is
fully differentiable. Further, we can approximate the

13

squared Frobenius norm using Hutchinson’s trace
estimator which can be easily verified [23]. For a
random vector w that satisfies E [wwT] = I we can
approximate the squared Frobenius norm using the
following transformations:

∥M∥2F = trace(MTM)

= trace(MTM E [wwT])

= E [trace(MTMwwT)]

= E [trace(wTMTMw)]

= E [wTMTMw]

≈ wTMTMw

= ∥Mw∥22.

In practice, w is typically chosen to follow either
a standard normal distribution or a Rademacher
distribution.
While it is possible to use multiple samples

to obtain a more accurate approximation of the
Frobenius norm, we follow previous approaches by
estimating the norm using a single random vector to
limit computational resources to create the dataset.

D Additional results

Here, we present additional results for the singular
values, choice of activation function, and robustness
with respect to different hyper-parameters ϵ.

D.1 Singular value distribution

We provide additional results for the baseline and
learned preconditioners. In Figure D.1 we present
the descending log-scale plot of ordered singular
values for the baseline preconditioners, illustrating
the same problem previously depicted in Figure 3.
We can see that even though the ILU preconditioner
has a few very large singular values, most values are
clustered around 1 (Observe that the plot shows the
logarithmic singular values thus the cluster appears

0 500 1000 1500 2000 2500
Index of ordered singular value m

−4

−3

−2

−1

0

1

lo
g 1

0
σ
m

None

Jacobi

ILU(0)

Figure D.1. Descending log-scale plot of ordered singu-
lar values of single problem instance for different baseline
preconditioners.

−4 −3 −2 −1 0 1

Logarithm of singular value log σ

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

None

Jacobi

ILU(0)

−4 −2 0 2 4

Logarithm of singular value log σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

Lmax
Lmin
Lcom

Figure D.2. Density plot showing the distribution
of singular values for a single problem instance across
various preconditioners.

at 0 = log 1). This leads to a very fast convergence
as observed in Table 1 even though the condition
number κ of the problem is very high.

This fact gets even clearer when taking a look
at the distribution of singular values shown in Fig-
ure D.2 for both the learned preconditioner and the
baseline methods. We can see that the Jacobi precon-
ditioner does not change the distribution of singular
values significantly but only shifts the spectrum to-
wards 1. Therefore, no improved convergence can
be observed. The incomplete LU method leads to a
tighter clustering of the singular values with a fast
decay towards small singular values while some large
singular values remain. For the learned methods, we
can see that using the loss Lmin from Equation (6)
leads to a distribution far away from zero but the
singular values are not very clustered. The best clus-
tering is achieved using the loss corresponding to
large singular values Lmax. However, the spectrum
does not show a fast decay towards small singular
values. In the spectrum of the combined loss, we
can see the combined effect of the two approaches:
the spectrum is clustered around a single value and
the singular values are away from zero. These two
properties of the spectrum make the preconditioned

14

system easier to solve leading to better performance
observed in the experiments presented in Table 1 in
the main text.

D.2 Activation function

In order to evaluate the chosen activation function to
ensure invertability, we compare the performance of
the learned LU preconditioner with different values
of the hyper-parameter ϵ. Note that, the perfor-
mance of the loss function and the chosen hyper-
parameter also highly depends on the initial singular
value distribution which is shifted to small singular
values in our experiments as discussed previously.

The results of the learned preconditioner for 4
different values of ϵ are shown in Table D.1. We use
the combined loss function Lcom for all experiments.
We can see that with a larger ϵ parameter, both the
small singular values of the preconditioned system
as well as the large singular values decrease. The
best performance is achieved when balancing the
two different ends of the singular value spectrum.
Finally, we can see that all models trained with

the combined loss outperform the previous mod-
els trained on only one loss function showing the
robustness of our proposed method.

Connection to other data-driven techniques
Noteworthy, the method proposed by Li et al. [6]
employs the loss function Lmin, which leads to better
results compared to those observed in our experi-
ments. However, a crucial difference between this
method and our approach is the fact that the di-
agonal elements are not learned in the NeuralPCG
preconditioner. Instead, the square root of the orig-
inal elements of the matrix A is used. Since the ma-
trices considered are positive definite, the diagonal
elements are non-zero, and therefore, the incomplete
factorization is guaranteed to be invertible. For
general invertible matrices, that we explore in this
paper, this is, however, not the case. The theoretical
results presented here explain some of the discrepan-
cies between our results and the previously obtained
improvements. Implicitly, Li et al. [6] choose a large
ϵ for these matrices by construction of the diagonal
elements. This allows them to bound the largest
singular value under the assumption that the differ-

Table D.1. Performance of our method for different
values of ϵ controlling the activation function. The
columns presented here are a subset of the columns
shown in Table 1.

ϵ σmin ↑ σmax ↓ κ ↓ Its. ↓
0.0001 0.0022 39.12 37 513 420
0.001 0.0015 35.17 49 723 418
0.01 0.0012 17.26 30 349 428
0.1 0.0010 12.39 24 702 424

ence between the original matrix and the learned
factorization is not too large by applying Lemma 1.
Further, it is easy to integrate the method devel-
oped here with data-driven methods for incomplete
Cholesky methods [5]. This can be achieved by
adding the ϵ parameter directly to the diagonal ele-
ments in order to ensure a lower bound on the values.

15

	Introduction
	Background
	GMRES algorithm
	Graph neural networks

	Method
	Network architecture
	Model training

	Experiments & Results
	Discussion & Conclusion
	GMRES algorithm
	Implementation details
	Dataset
	Network architecture
	Baselines

	Proofs
	Additional results
	Singular value distribution
	Activation function

