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Abstract

We introduce RoMQA, the first benchmark
for robust, multi-evidence, multi-answer ques-
tion answering (QA). RoMQA contains clus-
ters of questions that are derived from re-
lated constraints mined from the Wikidata
knowledge graph. RoMQA evaluates robust-
ness of QA models to varying constraints
by measuring worst-case performance within
each question cluster. Compared to prior QA
datasets, RoMQA has more human-written
questions that require reasoning over more ev-
idence text and have, on average, many more
correct answers. In addition, human annota-
tors rate RoMQA questions as more natural
or likely to be asked by people. We evalu-
ate state-of-the-art large language models in
zero-shot, few-shot, and fine-tuning settings,
and find that RoMQA is challenging: zero-
shot and few-shot models perform similarly
to naive baselines, while supervised retrieval
methods perform well below gold evidence up-
per bounds. Moreover, existing models are not
robust to variations in question constraints, but
can be made more robust by tuning on clus-
ters of related questions. Our results show
that RoMQA is a challenging benchmark for
large language models, and provides a quantifi-
able test to build more robust QA methods.

1 Introduction

A high quality compositional question answering
(QA) model should exhibit robustness to subtle
variations in the underlying meaning of input ques-
tions. For exmaple, consider the question “which
pianists born in Paris play Western classical music?”
To show robust understanding, a QA model should
not only be able to correctly answer this direct ques-
tion, but also a wide range of related queries that
differ in only a few constraints (e.g. who was a
pianist born in Paris?, who was a Western classical
pianist, not born in Paris?). Prior compositional
QA datasets do not evaluate the robustness of QA
models to variations in question constraints.

We introduce RoMQA, a benchmark for Robust,
Multi-evidence, multi-answer QA, that explicitly
evaluates for robustness to small question pertur-
bations. RoMQA, shown in Figure 1, differs from
previous work in a number of ways.

Evaluates robustness to constraint variations.
RoMQA contains clusters of related questions that
are used to measure robustness to varying implicit
question constraints. For each cluster, we compute
a robustness score that is the minimum score over
the questions it contains. In order to perform well
on RoMQA robustness evaluation, a model must
be able to understand many different combinations
of the implicit constraints that define the cluster,
such as what it means to be a pianist, to be born
in Paris, and to play Western classical music. To
our knowledge, RoMQA is the first QA benchmark
that evaluates this type of robustness.

More complex questions. Natural questions of-
ten have many answers and cannot be answered
from a single text. When compared to existing
datasets, RoMQA questions have more answers
(mean 108.6, median 11, as shown in Figure 2),
cover a wider range of diverse topics (as depicted
in Figure 3), and necessitate a higher amount of ev-
idence text (mean 41.6, median 24). RoMQA also
contains entity-linked, relation-extracted text that
provide provenance for constraints, showing that
the questions are answerable with multi-evidence
reasoning from the text corpus.

More natural human written questions. Con-
trary to previous multi-answer compositional QA
datasets, RoMQA provides a significantly larger
pool of 28k human-written questions. This rep-
resents a ten-fold increase when compared to the
previous leading dataset QAMParI (Amouyal et al.,
2022)), which features a mere 2k human-written
questions. Human evaluations show that ques-
tions in RoMQA are more natural, as gauged by



+ occupation pianist subj
+ born_in Paris subj
+ genre western_classical subj 

Lily Maisky (born July 28, 1987 in Paris) is a classical pianist.
Anne Queffélec (born 17 January 1948) is a French classical pianist, born in Paris.
…

Lily Musky
Anne Queffélec
…

Implicit constraints Example evidence Answers

+ occupation pianist subj
+ born_in Paris subj

Claude Helffer (June 18, 1922 – October 27, 2004) was a French pianist noted 
particularly for his advocacy of 20th-century music…Helffer was born in Paris, 
and began piano lessons at the age of five and from the age of ten until the 
outbreak of World War II he studied with Robert Casadesus…
…

Gilbert Amy
Claude Helffer
…

+ genre western_classical subj 
+ occupation pianist subj
- born_in Paris subj

David Fray (born 24 May 1981) is a French classical pianist…David Fray was born 
in Tarbes, near the Pyrenees.
André Watts (born June 20, 1946) is an American classical pianist and professor 
at the Jacobs School of Music of Indiana University…Born in Nuremberg, 
Germany, Watts is the son of a Hungarian mother…
…

David Fray
André Watts
…

Which pianists born in 
Paris play Western 
classical music?

Who was a pianist born 
in Paris?

Who was a Western 
classical mucic pianist, 
not born in Paris?

Question

Figure 1: A cluster of related questions, implicit constraints, evidence text, and answers from RoMQA. Within
a RoMQA cluster, related questions differ in implicit constraints. In addition to evaluating model performance across
questions, RoMQA evaluates robustness to variations in question constraints by scoring worst-case performance
among related questions.

how likely a person is to ask the question (Fig-
ure 4). Qualitatively, RoMQA questions contain
fewer overly precise constraints, unusual attribute
comparisons, and overly large numbers of referen-
tial hops.

We evaluate state-of-the-art large language mod-
els (LMs) on RoMQA in zero-shot prompting, few-
shot in-context learning, and supervised learning
settings. In the closed setting where the model
selects among 100 candidate entities, zero-shot
and few-shot LMs perform on par (e.g. 38.5 F1 by
8-shot OPT-175B, Zhang et al. (2022)) with sim-
ple baselines such as predicting all candidate enti-
ties (33.5 F1). RoMQA also remains very chal-
lenging for state-of-the-art supervised methods,
with the best retrieve-then-classify model achiev-
ing 63.8 F1 compared to a gold-evidence upper
bound of 95.0 F1. The open setting, where no
candidates are given, is even more challenging to
existing methods — the state-of-the-art Instruct-
GPT3 (text-davinci-002, Ouyang et al. (2022))
obtains 12.6 Pr@10 (precision at 10) while super-
vised retrieve-then-generate obtains 58.6 Pr@10.

Finally, no test model is robust to variations in
question constraints. The best performing retrieval
method obtains a worse-case related question test
score of 37.9 F1 in the closed setting — a 25.9
F1 absolute drop compared to evaluating questions
independently. Training on clusters of related ques-
tions, such as RoMQA clusters, improves model ro-
bustness over training on unrelated questions. How-
ever, the robustness gap remains large — closing
this gap will likely require significant advances in
natural language understanding. We open-source
RoMQA at anonymous.url.

2 RoMQA

We describe RoMQA construction and how it dif-
fers from prior compositional QA datasets.

2.1 Dataset construction

RoMQA construction has three goals. First, we
want a diverse selection of question topics. Sec-
ond, these questions should require reasoning over
multiple pieces of evidence. Third, we need to
understand what implicit constraints the questions
contain in order to evaluate robustness to varying
constraints. At a high level, RoMQA construction
involves 1) sampling constraints from knowledge
base (KB) triples, 2) clustering related constraints,
3) sampling implicit constraints that form logical
queries, and 4) annotating language questions.

Sampling constraints from a KB. We cre-
ate RoMQA questions from Wikidata (Vrandečić
and Krötzsch, 2014) that are answerable given
entity-linked and relation-extracted text (Elsa-
har et al., 2018). Wikidata consists of subject-
proposition-object triples such as Gilbert_Amy
occupation pianist. We convert these triples
into entity-relation constraints. For instance, the
previous example is decomposed into constraints
Gilbert_Amy occupation obj and pianist
occupation subj.

Clustering related constraints. A cluster of re-
lated constraints shares at least two answer en-
tities. For example, occupation pianist subj
and place_of_birth Paris subj are in the same
cluster because they share the same answers
Gilbert_Amy and Claude_Helffer (Paris-born pi-
anists). As Wikidata has a skewed proposition
distribution, we resample cluster constraints with
probability inversely proportional to their propo-

anonymous.url


RoMQA

A film composed by S. Thaman and produced by Ganesh Babu.
Who did not play for the Carolina Panthers but was a linebacker and was on the Chicago Bears?
Which members of the Royal Society received the Order of Australia, but were not employed by the University of Oxford?
Sub-orbital spaceflight that launched from Cape Canaveral Air Force Station Launch Complex 5. Launched by Mercury-
Redstone Launch Vehicle
Who is an athlete who participated in diving, and was born in Stockholm?

HotpotQA

Are Random House Tower and 888 7th Avenue both used for real estate?
Which American singer and songwriter has a mezzo-soprano vocal range, Tim Armstrong or Tori Amos?
WFMT FM radio transmits from the second tallest building in the United States, which is located where?
Who was the recipient of a prize also given to a player for Chinese club Tianjin Quanjian?
Which of Tara Strong major voice role in animated series is an American animated television series based on the DC Comics
fictional superhero team, the "Teen Titans"?

ComplexWebQuestions

What university has more than 15,835 undergraduates and is the university Derek Fisher attended?
Who influenced Whitman’s poetry who was the public speaker who spoke about the American Civil War?
What is the main train station called in the governmental jurisdiction where the government includes the position Mayor of
San Francisco?
Which country that borders Russia has the smallest ISO?
What country that’s a neighbor of Russia is a governmental jurisdiction where Erik Asanbayev holds a governmental office?

QAMParI

Where did a Roman Catholic archbishop of San Francisco attend school?
At what institution did a Bishop of Derby receive their education?
For which movie did Mani Ratnam work on the script and serve as producer?
What Type VII C/41 and Type VII ships was in both the vessel classes of German?
Philip Kaufman was responsible for both writing and directing of which movie?

Table 1: Randomly sampled examples from RoMQA and other compositional QA datasets. Human evaluations
show that people are more likely to ask RoMQA questions than those from other compositional QA datasets. Quali-
tatively, RoMQA questions exhibit fewer artifacts such as overly precise constraints (e.g. 15,835 undergraduates),
overly numerous references (e.g. is an American animated. . . based on. . . the “Teen Titans”), and unusual attribute
comparisons (e.g. smallest ISO).

sition frequency in the KB (Appendix A). This
down-samples over-represented propositions such
as country. We keep clusters with ≥3 constraints
to be able to generate many related questions from
each cluster. We discard clusters of potentially
spuriously related constraints with a single shared
answer. 10k clusters are randomly chosen for train-
ing and 15k clusters for evaluation.

Sampling constraints to form logical queries.
We generate ≤5 logical queries using each clus-
ter. For each logical query, we copy the cluster
and remove constraints with probability 0.1 and
negate with 0.1. We negate sparingly because
large numbers of negative constraints result in
unnatural questions. We further remove redun-
dant constraints (e.g. American presidents born
in the US), and uniformly subsample up to 4 con-
straints. This constitutes a logical query with mul-
tiple conjunctions and subtractions. For instance,
the cluster {occupation pianist subj, born_in
Paris subj} can form a logical query occupation

pianist subj AND born_in Paris subj. We dis-
card overly general queries with ≥5000 answers.

Creating natural language questions. Mechan-
ical Turk workers annotate logical queries marked
with Wikidata titles, descriptions, and aliases
into questions. Appendix B Figure 11 shows the
interface. Two more annotators verify each annota-
tion to confirm that it matches the logical query. We
keep only annotations with 100% agreement, re-
sulting in 11% being discarded. After verification,
we additionally discard clusters with ≤2 questions.

2.2 Dataset analyses and comparison
We compare RoMQA to prior compositional QA
datasets: HotpotQA (Yang et al., 2018), Com-
plexWebQuestions (CWQ; Talmor and Berant,
2018), and QAMParI (Amouyal et al., 2022).

Dataset size and question complexity Ta-
ble 2 shows that only RoMQA evaluates robustness
to input variations. Moreover, only RoMQA and
QAMParI are human-written with multiple answers



Dataset Train Dev Test Human
written

Multi
answer

Gold
evidence

Robustness
evaluation

RoMQA (Ours) 11k 7k 11k Yes Yes Yes Yes
HotpotQA 90k 7k 7k Yes No Yes No
CWQ 28k 3k 3k Yes Yes No No
QAMParI 64k 1k 1k Eval only Yes Yes No

Table 2: Dataset size and question complexity.
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Figure 2: Dataset comparison over question, evidence, and answer size distributions.
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Figure 3: Question diversity as measured # unique noun-
phrases in 500 randomly sampled questions from the
development set of each dataset. The batches are ran-
domly sampled 4 times to compute standard deviation.

and gold evidence. QAMParI provides 2k human-
written evaluation questions while RoMQA pro-
vides 11k training and 17k evaluation questions.

Figure 2 shows the distribution of answer, ev-
idence, and question sizes. First, RoMQA ques-
tions require finding many answers. On aver-
age, RoMQA questions have 108 answers — at
least 10x larger than others. Second, RoMQA re-
quires reasoning over a much more evidence docu-
ments. On average, entities in the RoMQA answer
set combine for a total of 52 evidence sentences.
Third, RoMQA questions are longer with more
words. Figure 3 shows that, in a random sample
of 500 questions, RoMQA refers to more unique
noun phrases apart from HotpotQA.

Naturalness human evaluation Prior work
sometimes sacrifice question naturalness in pur-
suit of complexity. Table 1 illustrates artifacts
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Figure 4: The distribution of questions naturalness rat-
ings by 3 annotators on 1,000 randomly sampled ques-
tions from the development set of each dataset. Each
annotator rates four questions shuffled in random order,
one from each dataset. he annotator is asked whether
they would ask the question themselves, and if they
think someone else would ask the question.

in randomly sampled questions from HotpotQA,
ComplexWebQuestions, and QAMParI. They in-
clude unusual constraints such as IDs (e.g. . . . has
the smallest ISO?1), overly precise constraints
(e.g. . . . is an American animated television series
based on the DC Comics fictional superhero team,
the “Teen Titans”) and an excessive number of ref-
erential expressions (e.g. . . . in the governmental
jurisdiction where the government includes the po-
sition Mayor of San Francisco). We compare the
naturalness of 1,000 randomly sampled human writ-
ten questions from each dataset. Each annotator
is shown a randomly sampled question from each

1ISO codes are 2-3 character-long codes that represent
names of countries and their subdivisions.



Model class Setting Input format

Zero-shot Closed Gilbert Amy [SEP] Who was a pianist born in Paris?
Open Who was a pianist born in Paris?

Few-shot Closed Katie Bell [SEP] Who is an athlete who participated in diving, and was born in Stockholm?
[SEP] False [newline] . . . Gilbert Amy [SEP] Who was a pianist born in Paris? [SEP] True

Open Who is an athlete who participated in diving, and was born in Stockholm? [SEP] Johan Jansson
. . . [newline] . . . Who was a pianist born in Paris? [SEP]

Supervised Closed Gilbert Amy [SEP] Who was a pianist born in Paris?
Open Who was a pianist born in Paris?

Sup+evidence Closed Gilbert Amy [SEP] Who was a pianist born in Paris? [SEP] Gilbert Amy (born 29 August 1936)
is a French composer and conductor . . .

Open Who was a pianist born in Paris? [SEP] Gilbert Amy (born 29 August 1936) is a French composer
and conductor . . .

Table 3: Input format for question “Who was a pianist born in Paris”. For closed setting, “Gilbert Amy” is used as
example candidate. Evidence includes retrieved sentences for retrieval methods or gold evidence for upperbound.

dataset, shuffled in random order. The annotator
is asked “how likely would you ask this question?”
and “how likely do you think another person would
ask this question?” Each question is annotated
by 3 crowdworkers. The breakdown of ratings
across questions is shown for each dataset in Fig-
ure 4. On average, annotators consider RoMQA to
be significantly more natural than HotpotQA and
ComplexWebQuestions.

3 Experiments

How do existing QA systems perform on RoMQA?
Are they robust to variations in question con-
straints? We answer these questions by experi-
menting with state-of-the-art models in zero-shot,
few-shot, and supervised learning settings.

3.1 Evaluation
Open vs closed settings Given a question in
RoMQA, a QA system should produce a set of
answer entities. In the closed setting, the system
is given 100 candidate entities and must identify
which ones answer the question. Negative candi-
dates are potentially difficult for a model because
they can match any constraint in the question. In
the open setting, candidates are not given.

Evaluation metrics RoMQA questions have
many answers. For the closed setting, we evaluate
predictions using F1 and accuracy. F1 measures set
overlap between predicted and gold answers, while
accuracy measures whether they match exactly. For
the open setting, we evaluate precision@K (P10)
for two reasons. First, precision gives partial credit
when it is too hard to enumerate the full set. Sec-
ond, the user may ask a question with many an-
swers (e.g. hundreds or thousands) with the intent

of only seeing some examples (e.g. list British foot-
ballers). For each score, we additionally have a ro-
bustness variant. Let Q = {q1, q2 . . . qn} denote
a cluster of n related questions. The question qi has
the corresponding predicted answer set pi and gold
answer set gi. A robustness score is the worst-case
score across the cluster. For instance, the robust
F1 is F1

R(Q) = mini (F1(pi, gi)). We compute
similar robustness scores for accuracy and preci-
sion@K.

3.2 Models
We evaluate three classes of models. The input
format for each class is shown in Table 3.

Zero-shot. We consider a naive closed setting
baseline that predicts all candidates as answers.
We also include state-of-the-art prompting mod-
els tk-instruct-3B (Wang et al., 2022) and
opt-instruct-175B (Zhang et al., 2022). In the
closed setting, they generate yes/no given the ques-
tion and a candidate. In the open setting, they
generate answers given the question.

Few-shot in-context learning. We eval-
uate tk-instruct-3B (Wang et al., 2022),
opt-instruct-175B (Zhang et al., 2022), and
GPT3 (text-davinci-002; Brown et al. (2020))
with as many in-context examples as the model
allows (4, 8, and 8 respectively). Input format is
similar to the zero-shot setting, with the addition of
in-context examples. In closed setting, the context
includes an equal number of randomly sampled
positive and negative examples. We compare
the scores for the candidate answering vs. not
answering the current question. These scores are
calibrated using channel calibration (Min et al.,
2022). In open setting, the model context includes



Model Dev Test

F1 F1
R acc accR F1 F1

R acc accR

Zero-shot
predict all 34.1 13.1 0.0 0.0 33.5 12.8 0.0 0.0
tk-instruct-3b-0shot 34.5 13.2 0.0 0.0 34.0 12.8 0.0 0.0
opt-instruct-0shot 36.0 14.0 0.0 0.0 36.0 14.0 0.0 0.0

Few-shot
tk-instruct-3b-4shot 33.5 12.9 0.0 0.0 33.1 12.5 0.0 0.0
opt-8shot 38.9 16.1 0.0 0.0 38.5 15.5 0.0 0.0

Supervised
binary 35.9±0.7 10.9±0.6 2.3±0.1 0.3±0.1 35.5±1.8 10.2±1.3 2.5±0.3 0.3±0.1
binary+retrieval 64.0±0.6 38.6±1.1 7.0±0.3 0.3±0.1 63.8±0.5 37.9±1.1 7.0±0.1 0.7±0.1
binary+gold evidence 95.3±0.3 83.5±0.8 72.3±1.8 39.2±2.6 95.0±0.3 83.4±0.9 71.5±0.9 38.2±1.2

Table 4: Model performance on closed setting RoMQA. Metrics are set F1, set accuracy, and their robustness
counterparts (i.e. worst case measure over cluster of related questions). Each model is given 100 candidate entities
and must decide which entity belongs to the answer set. The retrieval model additionally observes sentences retrieved
via BM25 followed by DPR. Zero-shot and few-shot are binary-classifiers calibrated with channel calibration.
Supervised models fine-tune BART-large on the training data to classify the answer set on a per-entity basis.

≤10 subsampled answers for each example.

Supervised learning. We tune BART-large with
and without retrieved evidence (Lewis et al., 2020)
and show standard deviation across 5 random seeds.
For the closed setting which considers a candidate
entity, we use a two-stage hybrid retrieval because
dense retrievers under-perform sparse retrievers on
rare, precise entities (Sciavolino et al., 2021). We
first retrieve documents with BM25 using entity
title as the query. We then use DPR (Karpukhin
et al., 2020) to retrieve document sentences whose
cosine similarity with the question exceed a thresh-
old (0.65). This threshold is tuned by maximizing
the retrieval hit rate on the validation set. Finally,
we fine-tune to classify whether each candidate
belongs to the answer set.

In the open setting, we do not use classification
models because it is computationally prohibitive to
decide over all possible (2.9M) entities per ques-
tion.2 Instead, we directly retrieve evidence with
DPR and fine-tune the model to generate the an-
swer set as a 1024-token sequence.

Upper bound with gold evidence. We provide
a performance upper bound by training supervised
models with gold evidence — sentences that pro-
vide provenance to an implicit question constraint.
For instance, consider the example in Figure 1.
Claude Hellfer is an answer to the question “Who
was a pianist born in Paris?”, whereas David Fray
is not. In this case, the gold evidence includes

2For reference, inference over the entire test set with 100
candidate entities per example using the classification model
requires 10 hours on a Volta 32GB GPU.

“Claude Helffer. . . was a French pianist”, “Helf-
fer was born in Paris”, and “David Fray. . . is a
French classical pianist”. Because the gold evi-
dence only contains sentences that provide prove-
nance to an implicit constraint, it does not contain
the sentence “David Fray was born in Tarbes, near
the Pyrenees.” In other words, given gold evidence,
the QA model does not need to filter out incorrect
answers in the candidate answers pool (e.g. David
Fray) because it only has to verify that the pro-
vided evidence supports all parts of the question
(e.g. born in Tarbes instead of Paris). Instead, it
only needs to verify that the evidence references
all implicit constraints. Consequently, the gold ev-
idence setting is overly optimistic in that part of
the reasoning is completed by a perfect retriever.
While no such retriever currently exists, this set-
ting nevertheless provides an upper bound estimate
for RoMQA.

3.3 Results

Table 4 and Table 5 show performance on
RoMQA closed and open settings. RoMQA is
challenging for state-of-the-art large-scale models.
Moreover, these models are not robust to variations
in question constraints. The best models signifi-
cantly trail the gold evidence upper bound, showing
there is significant room future work.

Zero-shot and few-shot models perform simi-
larly to naive predict-all baseline. In the closed
setting, each system is given a set of 100 candidate
entities and must identify which entity belong to
the answer set. We find that state-of-the-art pre-



Model Dev Test

F1 F1
R P10 P10

R F1 F1
R P10 P10

R

Zero-shot
tk-instruct-3b-0shot 0.2 0.0 1.7 0.0 0.3 0.0 1.8 0.0
opt-instruct-0shot 1.6 0.0 5.0 0.1 1.6 0.1 5.1 0.2

Few-shot
tk-instruct-3b-4shot 0.3 0.0 1.9 0.0 0.4 0.0 2.0 0.0
opt-8shot 2.1 0.0 5.5 0.2 2.2 0.1 5.6 0.1
gpt3-8shot 4.3 0.4 13.3 1.2 4.4 0.4 12.6 1.0

Supervised
seq2seq 32.2±0.9 11.2±0.5 47.3±1.2 20.3±1.2 32.6±1.0 11.5±0.7 45.7±0.8 19.7±1.1
seq2seq+retrieval 41.6±0.8 19.1±0.7 58.6±1.5 38.3±2.4 41.0±0.5 18.4±0.6 56.8±1.4 36.0±2.3

Table 5: Model performance on open setting RoMQA. Metrics are set F1, precision at 10, and their robustness
counterparts (i.e. worst case measure over cluster of logically related questions). Each model is given the question
and must generate the answer set as a sequence. The retrieval model additionally observes sentences retrieved
by DPR. Supervised models fine-tune BART-large on the training data. All models generate the answer set as a
sequence. We do not evaluate upperbound gold evidence method because it necessarily provides candidate entities
and therefore is no longer open domain.
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Figure 5: Correlation with model performance (F1) on the closed setting. Imprecise questions with many answers
are easier to answer (higher F1). Questions based on general propositions that co-occur with many different entities
are easier to answer. Questions with more constraints are more difficult to answer.

trained instruction prompting models perform on
par with the naive baseline of simply predicting that
every candidate belongs to the answer set. This oc-
curs both with instructing prompting and in-context
learning models, and suggests that they can not ef-
fectively reason about the types of compositional
questions found in RoMQA.

Both closed and open settings remain challeng-
ing with supervised training. When given 11k
annotated examples, large retrieval models perform
better than zero-shot and few-shot LMs. However,
supervised performance also trails the gold evi-
dence upper bound. This suggests that there is
significant room for modeling improvements that
retrieve and compose evidence in order to answer
compositional questions.

What types of questions do the best-performing
supervised systems struggle with? Figure 5 plots
Pearson correlation with F1 in the closed setting,
and shows that systems generally struggle with

more precise questions.3 First, when the question
has many answers, the model has an easier time pro-
ducing some correct answers. Second, the model
performs better on more general propositions that
co-occur with many different unique entities. Third,
the model struggles with questions with more im-
plicit constraints.

Methods are not robust to question constraint
variations. All methods drop in performance
when considering the worst-case performance
among clusters of related questions. This suggests
that large LM-based QA systems are not robust to
variations in question constraints. Figure 6 shows
what types of questions result in robustness drops.
Compared to other questions in the same cluster, a
question is easier if it contains more answers, and
harder if it specifies more implicit constraints.

Training on clusters of related questions
3Pearson correlation is a measure of linear correlation. A

Pearson coefficient of 1 or -1 implies positive or negative
linear correlation, while 0 implies no linear dependency.
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Figure 6: Correlation with robustness drop (F1 - cluster
mean F1) in closed setting. The axes denote deviation
from the cluster means. Among a cluster of related
questions, a more precise question with more constraints
or fewer answers tend to be harder for the model than
related questions with more answers or less constraints.

(e.g. RoMQA clusters) is one way to improve
model robustness. Given clusters of questions with
related implicit constraints, in the first setting we
train on unrelated questions — one question from
each cluster for a total of K training examples. In
the second setting, we train on related questions —
K consecutive examples from entire clusters. Ta-
ble 6 shows that while the diversity from training
on unrelated questions marginally improves overall
performance, training on clusters of related ques-
tions results in more robust models. Nevertheless,
the robustness drops remain significant. Consider-
ing that variations in RoMQA questions are reason-
able questions humans would write, as opposed to
artificially created adversarial questions, our find-
ings suggests that there is a practical need for de-
veloping more robust QA systems.

Building context for open setting is very chal-
lenging. While the closed setting RoMQA chal-
lenges current state-of-the-art models, the open
setting remains an even greater challenge. A key
challenge in the open setting is that it is difficult
to compute the evidence set required the answer
the question. Consider Figure 1’s question “Who
was a Western classical music pianist, not born in
Paris”. The obvious way a human would answer
this question is substracting the set of people born
in Paris from the set of Western classical music
pianists. However, both of these sets are very large.
Our results show that an end-to-end large language
model struggles in reasoning over such large sets.

4 Related Work

Question answering datasets Existing QA
datasets focus on answering from a single pas-
sage (Rajpurkar et al., 2016; Joshi et al., 2017;

Training Closed Open
questions F1 F1

R ∆F1 P10 P10
R ∆P10

Unrelated 56.2 28.2 -28.0 27.0 1.6 -25.4
Related 55.7 28.6 -27.1 26.3 11.7 -14.6

Table 6: Training supervised retrieval models on related
vs. unrelated questions. Unrelated questions training
involves selecting one question from each cluster, . In
contrast, related questions training includes entire clus-
ters of related questions. While training on a more
diverse set of unrelated questions yields slightly higher
overall performance, training on related questions pro-
duces more robust models.

Kwiatkowski et al., 2019; Sciavolino et al., 2021)
to answering over multiple passages (Yang et al.,
2018; Welbl et al., 2018; Thorne et al., 2018). Re-
cent work emphasize answering questions that have
multiple answers (Min et al., 2020; Amouyal et al.,
2022). RoMQA combines the latter two settings
in that it requires answering questions over multi-
ple pieces of evidence to provide multiple answers.
Compared to prior datasets, RoMQA questions re-
quire robust reasoning over more pieces of evi-
dence to provide more answers.

Robustness evaluation NLP systems have pre-
vious been show to lack robustness. They are sus-
ceptible to character based attacks that comprise of
both nonsensical inputs (Jia and Liang, 2017), ran-
dom sentence/word triggers (Jia and Liang, 2017;
Wallace et al., 2019), and semantically equiva-
lent inputs adversarially selected to disrupt sys-
tem behaviour (Ribeiro et al., 2018; Zhao et al.,
2018; Iyyer et al., 2018). In contrast, the questions
in RoMQA are not adversarial — they are written
with reasonable information-seeking intent.

Zero-shot/few-shot learning Recent work has
also shown that large pretrained LMs can perform
zero-shot and few-shot inference (Brown et al.,
2020; Wang et al., 2022; Zhang et al., 2022). For
the former, the LM performs inference given a
prompt or an instruction. For the latter, the LM
is also given training examples as demonstration.
We use both settings as baselines for RoMQA, and
find that there is significant room for improvement
in large-scale pretraining to capture compositional
reasoning over multiple pieces of evidence text.

5 Conclusion
We presented RoMQA, the first benchmark
for robust, multi-evidence, multi-answer QA.
RoMQA evaluates robustness of models to vary-
ing question constraints by testing for worst-case



performance among clusters of related questions.
RoMQA is a challenging dataset for state-of-the-
art large LMs and provides a quantifiable test for
developing more robust QA methods.

6 Limitations

Robustness definition A robust system needs
to be robust towards all forms of input variations.
The type of robustness to varying implicit con-
straints measured in RoMQA is but one form.
Other forms of robustness include adversarial
character attacks, sentence injections, and word
triggers. RoMQA is limited to English — future
work should investigate robustness in other and
multiple languages. The questions in RoMQA are
based on Wikidata triples and contains limi-
tations inherent to Wikidata and large-scale
knowledge-graphs in general (e.g. staleness of
facts, over-represented propositions/entities, in-
completeness). The models evaluated in this work
(e.g. opt-instruct-175B, text-davicinci-002)
are but a sample of state-of-the-art language mod-
els at the time of writing. As new models emerge,
it is possible that they exhibit robustness beyond
that of the evaluated models.

7 Ethics Statement

In order for AI systems to be used in critical appli-
cations, we need to establish trust in these systems.
One hallmark of trustworthiness is robust system
behaviour. RoMQA is a preliminary step in quanti-
fying the robustness of question answering systems
to natural variations in the question. It is our hope
that the release of RoMQA will facilitate the de-
velopment of more robust and more trustworthy
NLP systems, and that future work will provide
further quantifiable tests for the robustness of NLP
systems.
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A Subsampling propositions
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Figure 7: Number of constraints per cluster.

We want questions that cover diverse topics,
however Wikidata has a very skewed proposition
distribution, with a long tail of rare propositions.
Hence, we down-sample frequent propositions. Let
Pprop(x) denote the percentage of triples that con-
tain the proposition x. We define the average propo-
sition probability as Pprop

′ = 1
|X |

∑
x Pprop(x).

Given a constraint with proposition x, we remove

it with probability r = 1 − min
(
1,

Pprop
′

Pprop(x)

) 1
2 .

In particular, those with below average frequency
are not removed, and those with above average
frequency are removed with increasing likelihood.
After removing constraints based on propositions,
we randomly sample up to 10 constraints using a
distribution over their inverse proposition proba-
bilities 1

Pprop
. Figure 7 shows the distribution over

cluster sizes after resampling. Figure 10 shows
that resampling results in a more diverse set of
questions by emphasizing rarer propositions in the
knowledge graph.

B Annotation

RoMQA questions are annotated by crowd-workers
on Amazon Mechanical Turk from the US, Canada,
UK, Australia, and New Zealand. We require that
annotators have ≥95% approval rating and have
done a minimum of 5000 HITs. Questions are sub-
mitted for annotation in batches of 500. For each
batch, a sample of 10 questions from each worker
is inspected by the authors. If ≥2 of annotations
in the sample are incorrect, then response from the
worker in that batch are marked for re-annotation.
The final set of annotations are additionally veri-
fied by 2 more crowd-workers to confirm that they
correspond to constraints. We keep only exam-
ples with 100% agreement, which corresponds to
89% of the annotated data. Workers were paid a
minimum of 15 USD per hour, estimated using
completion time per HIT.

C Dataset Statistics
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Figure 9: Positive vs negative constraint count.

Cluster sizes. Figure 7 shows the distribution of
cluster sizes in RoMQA. During the sampling pro-
cedure, we remove small clusters of ≤3 questions
and avoid large clusters of ≥7 questions.

Implicit constraint distribution. Figure 9 shows
the distribution of positive and negative implicit
constraints in RoMQA questions. Most questions
have 2 positive constraints, and 0-1 negative con-
straints. We limit questions to 7 constraints during
sampling. In practice, nonsensical questions with
too many constraints are filtered out during verifica-
tion. Figure 8 shows the distribution of implicit con-
straints vs. the size of the answer set. More precise
questions with more implicit constraints typically
have fewer answers. In general, RoMQA questions
may have more than 1000 answers, though the vast
majority contain less than 1000 answers. The out-
lier questions with more than 1000 answers are not
shown in the figure.

D Experiment setup

For zero-shot and few-shot models, we use API
services provided by the original authors. For su-
pervised models, we fine-tune BART-large models
with learning rate 1e− 6 on V100 GPUs. For clas-
sification in the closed setting, we train with batch
size 100 and evaluate with batch size 1000. For
generation in the open setting, we train and eval-
uate with batch size 2 and decode with beam size
3. Experiments are run on a Slurm cluster of V100
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Figure 10: Most common propositions, before and after subsampling. Subsampling downsamples overly represented
propositions in the knowledge graph and results in a more diverse set of propositions and question topics.

GPUs for 3-5 days each. We use default hyper-
parameters for supervised models, with maximum
batch size as allowed by our GPUs. We perform
early stopping on the validation set (for supervised
methods) and evaluate on the test set only once.

E License

The majority of RoMQA is licensed under CC-BY-
NC, however portions of the project are available
under separate license terms:

• qwickidata: Apache 2.0

• hydra-core: MIT

• torch: link

• tqdm: MIT

• rank_bm25: Apache 2.0

• spacy: MIT

• sentence_transformers: Apache 2.0

• ray: Apache 2.0

• wrangl: Apache 2.0

• ujson: link



Write a paragraph summarizing these statements:

Submit

Instructions
In this task, you will be shown a list of true and false statements that describe some thing (e.g. people born in New York

who went on to play Hockey in Canada).
Write a paragraph that summarizes these statements. Write it as if you were asking another person to find you answers

by searching and reading (e.g. Google and Wikipedia).
You must describe all the statements, including the negative statements.

If this is your first time, please read the examples.
Click links to see full information page.

Try to not repeat the input order or exact words.
Try to not use gendered pronouns unless it's obvious it is implied by the statements (e.g. she plays for the WNBA).

This is not a question-answering task, do not answer the statements - summarize them.

Here are some examples of things you would potentially write:

Which race outside of 1993 did Damon Hill start in the first row?
Video games made by Gearbox Software for PlayStation 2 and Wii.

I'm a big fan of Lesley Selander, what Western movies did he direct?
Give me some French speakers who are not born in France. Out of those, who work for Le Monde?

Show me examples

True Damon Hill: British racing driver pole position: person, who starts race at first row this
thing

False 1993 Formula One season: sports
season

part of: object of which the subject is a part. AKA: in, chain,
contained within

this
thing

Examples of things that should meet the criteria described by your paragraph (don't copy them in your answer):

1996 Argentine Grand Prix: Formula One motor race held in 1996

1995 Australian Grand Prix: 581st Formula 1 Championship Grand Prix
1994 French Grand Prix: Formula One motor race held in 1994

...

Back 1 / 9 Next (click or press ctrl+Enter)

Figure 11: Mechanical Turk annotation interface for question writing. The annotator is shown a collection of
positive and negative constraints in random order. Each constraints consists of an entity, a proposition, and a
direction. Entities and propositions are expanded with descriptions and aliases from Wikidata. A subset of answer
entities is listed to disambiguate answer types.


