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Abstract

We here present a stepping stone towards a deeper
understanding of convolutional neural networks
(CNNps) in the form of a theory of learning in
linear CNNs. Through analyzing the gradient de-
scent equations, we discover that the evolution
of the network during training is determined by
the interplay between the dataset structure and the
convolutional network structure. We show that lin-
ear CNNs discover the statistical structure of the
dataset with non-linear, ordered, stage-like tran-
sitions, and that the speed of discovery changes
depending on the relationship between the dataset
and the convolutional network structure. More-
over, we find that this interplay lies at the heart
of what we call the “dominant frequency bias”,
where linear CNNss arrive at these discoveries us-
ing only the dominant frequencies of the different
structural parts present in the dataset. We fur-
thermore provide experiments that show how our
theory relates to deep, non-linear CNNs used in
practice. Our findings shed new light on the in-
ner working of CNNs, and can help explain their
shortcut learning and their tendency to rely on
texture instead of shape.

In addition to a neural network’s pre-defined architecture,
the parameters of the network obtain an implicit structure
during training. For example, it has been shown that weight
matrices can exhibit structural patterns, such as clusters and
branches (Voss et al.| [2021}; (Casper et al., |2022). On the
other hand, the input dataset also has an implicit structure
arising from patterns and relationships between the samples.
E.g., in a classification task, dogs are more visually similar
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to cats than to cars. A general theory on how the implicit
structure in the network arises and how it depends on the
structure of the dataset has yet to be developed. Here we
derive such a theory for the specific case of two-layer, linear
CNNs, and we provide experiments that show how our in-
sights relate to the evolution of learning in deep, non-linear
CNNSs. Our approach is inspired by previous work on the
learning dynamics in linear fully connected neural networks
(FCNN) (Saxe et al.,[2014;[2019)), but we uncover the role
of convolutions and show how they fundamentally alter the
internal dynamics of learning. We start by discussing the
two involved structures in terms of singular value decompo-
sitions (SVD): on the one hand the SVD of the input-output
correlation matrix, representing the statistical dataset struc-
ture (Sec. ; and the SVD of the convolutional network
structure on the other hand (Sec. [2.2). We subsequently con-
sider the equations of gradient descent in the slow learning
regime, yielding a set of differential equations (Sec. [2.3).
These equations describe the evolution of the implicit net-
work structure, given the statistical dataset structure. Our
analysis reveals that the convolutional network structure
gives rise to additional factors in those gradient descent
equations: these factors represent the interplay between the
singular vectors associated to the dataset and those associ-
ated to the convolutional network (Sec. [2.4). This interplay
changes the speed of discovery of the different parts of
the dataset structure, i.e., the singular vectors representing
broader to finer distinctions between classes, with respect
to the speed of discovery in a FCNN (Sec. [3)). Internally,
this interplay also leads to a dominant frequency bias: only
the dominant frequency components of each singular vector
associated to the dataset are used by the CNN (Sec. [H).
Experiments with more general datasets confirm the over-
all dynamics of learning and the existence of the dominant
frequency bias (Sec. [5)). Finally, we show how our theory
relates to deep, non-linear CNNs used in practice (Sec. [6).

Our results can be put in the context of the implicit regular-
isation resulting from training with gradient descent (Du
et al.,[2019; |Arora et al., 2019; |Gidel et al., [2019; |Advam
et al., 2020; [Satpathi & Srikant, [2021)). In (Saxe et al.|
2014} [2019) the authors show that the structure of the fi-
nal weights of linear FCNNs reflect the dataset structure,
at least when starting from random initial conditions and
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when using gradient descent. They find analytical solu-
tions for the learning dynamics in a two-layer, linear FCNN.
These solutions indicate the stage-like discovery of different
structural parts of the dataset. In (Gidel et al., [2019), the
discrete dynamics are studied and in (Braun et al., [2022;
Atanasov et al.|[2022), the authors develop the theory for dif-
ferent initialisation regimes. The relationship with a.o. early
stopping and learning order constancy for both CNNs and
FCNNSs is further studied in (Hacohen & Weinshall, [2022)
as the principal component bias or PC-bias. Furthermore,
similar theories exist for linear and shallow non-linear auto-
encoders (Bourlard & Kamp), |1988}; [Pretorius et al., 2018}
Refinetti & Goldt, 2022)). Finally, it has been shown that
linear CNNs trained with gradient descent exhibit an im-
plicit bias in the form of sparsity in the frequency domain
(Gunasekar et al.l [2018). We here show which mechanism
gives rise to this sparsity in the frequency domain, and we
find which frequencies are developed over time.

1. Prerequisites

Notation The input consists of n x n images denoted X °
where s is the sample index. We will omit this index when
the context is clear. Often, we will need a vectorized (or
‘flattened’) representation of X and all other n X n matrices:
we turn those matrices in n? x 1 vectors through stacking
all rows one after the other, and transposing the result. The
resulting column vector is denoted with a lower case letter,
e.g., vec(X) = x. We reverse this operation to show the
vectors as 2D images in figures. An index j into the vec-
tor which results from vectorizing a 2D matrix, denoted a
‘vec-2D’ index, runs from 0 to n? — 1. The corresponding
indices in the 2D matrix are given by [ = div(j,n) and
m = mod(j,n), with div integer division and mod the
modulo operator. The row [ of a matrix B is denoted B .
; the column m is denoted B. ,,. * denotes the complex
conjugate.

Architecture and assumptions In our theory, we consider
a CNN with a single convolutional layer, a flatten layer,
and a single fully connected layer. There are only linear
activation functions. The convolutional layer consists of
a single kernel K with the same dimensions as the input
images (n x n). When the kernel reaches the boundaries of
the image, it ‘wraps’ around, such that the convolution is
circular. This simplifies the math while still being a good
approximation to the zero-padding often used in practice
(Gray, [2006). The task is image classification with one-hot
encoded labels, we assume a slow learning rate, an MSE
loss, and small, random initial conditions.

The singular value decomposition (SVD) The SVD of
an p x n? (p < n?) real-valued matrix B is given by:
B = USVT”, where U is an orthogonal p X p ma-
trix (U? = U™") containing the left singular vectors as

2 x n? matrix containing

2

columns, V is an orthogonal n
the right singular vectors as columns, and S'isap X n
rectangular diagonal matrix containing the p real and posi-
tive singular values, denoted s,,. The singular vectors and
values are by definition sorted from highest to lowest sin-
gular value. The modes M@ o e {0,...,p} form the
decomposition of the original matrix: B =Y M (@) with
M@ =5,U. V.

The vectorized 2D discrete Fourier transform The Fourier
transform is another type of decomposition, used to de-
compose a signal in its frequency components. The re-
sulting amplitudes in the frequency domain, the ‘Fourier
coefficients’, describe the relative importance of each fre-
quency in the original signal. For an n X n matrix B,
the conventional 2D discrete Fourier transform (denoted
SQD) is giVeIl by 3’2D(B)p,,u = Z?,t(wn)ﬂs(wn)ths,t
with w,, = exp(—2mi/n) and > = —1. The result is a
2D n x n complex-valued matrix, whose values tell us the
relative importance of the n? different spatial frequencies:
n frequencies in the vertical direction, combined with n fre-
quencies in the horizontal direction. We will make use of an
equivalent transform, but instead of applied to a 2D matrix,
applied to the 1D vector that results from vectorizing the
n X n matrix first. This transform is given by multiplication
with the n? x n? matrix Q, i.e., Qz = Lvec(Fop(X)).
Q is illustrated in Fig[T} for its exact definition, see[SI| Note
that this operation is different from the 1D discrete Fourier
transform of a vector: we will call it the vectorized 2D
discrete Fourier transform, or vec-2D DFT in short.
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e
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Figure 1. The symmetric matrix @ of wich each row/column is a
vectorized Fourier eigenmatrix (4 examples given).

If the original vector is real-valued, the Fourier spectrum of
this vector will exhibit symmetries. Let a vec-2D frequency
index j correspond to a pair of horizontal and vertical fre-
quency indices (i, V), then the symmetric vec-2D frequency
index jsymm corresponds to the pair (n — u,n — v), thus
j=m—-1p+vand jymm = (n—1)(n—p) + (n—v).
The symmetry in the spectrum is then given by the equation

(Qx)j,,,.. = (QT)].

2. Differential Equations of Gradient Descent

We want to study the relationship between the dataset struc-
ture and the network structure during training with gradient
descent. To this end, we first discuss the SVDs that cap-
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Figure 2. Illustration of the relationship between statistical structure and SVD. a) Example dataset consisting of geometric shapes: a
circle, an octagon, a square and a star. There is only one sample per class. b) Visualisation of V7 and its first p rows, the singular vectors
denoted ¢ (here p=4), as n x n matrices. The other rows carry no meaning. ¢) Visualisation of the summation of the modes M (@) of
Y% given by the SVD (see . Each mode is first reshaped to p n x n matrices. d) Interpretation of the implicit hierarchical
structure in 33¥%*, which can be derived from the visualisations in subfigures b) and c).

ture these structures. We will then show how the equations
of gradient descent can be reformulated in terms of those
SVDs.

2.1. Statistical Structure of the Dataset

The dataset has an implicit structure, e.g., some images con-
tain the same backgrounds, and images of cats are similar
to images of dogs. Given a general dataset, it is unclear a
priori which patterns might be relevant during the training
of a network. For linear CNNs, however, we find that the
relevant structure is given by the statistical structure: the
structure that can be derived from the correlations in the
dataset. In Fig[2] we illustrate the statistical structure of a
dataset consisting of geometric shapes. Given ground-truth
labels ¢y when there are p classes, we can define the p x n?
input-output correlation matrix 3Y% as:

>y — (yal), (D
where x is an n? x 1 vectorized sample, and () denotes the
average over all samples. Note that ya” is an outer product,
ie., Z?fn = (12, ). Given one-hot encoded labels, each
row of 3¥® contains the vectorized average image of each
class. The structure relevant when training a (linear) neural
network is captured through the singular value decomposi-
tions (SVD) of this matrix (see (Saxe et al.,[2019) and Fig.
2[b-d)). The SVD of 3¥* is given by:

vz —pUSsvT. )
In this particular case, the first p rows of VT, which we
denote ¢*, a € {0,...,p — 1}, are the principal compo-
nents of the averaged class images (Pearson, (1901} Jolliffe,
2002). The p x p matrix U then contains the coefficients
to reconstruct the p vectorized, averaged class images as
linear combinations of the p right singular vectors ¢“. By

visualizing the singular vectors ¢ and the corresponding
modes M <, we can see the SVD here embodies broader to
finer distinctions between the averaged class images (see
Fig[2[b-d)). As such, it captures our intuitive understanding
of an implicit hierarchical structure between the shapes in
the dataset.

We can also consider the singular value decomposition of the
input-input correlation matrix £*® = (zx’). In general,
this matrix could have n? different singular values and cor-
responding singular vectors, and its exact shape influences
the dynamics of learning as well. However, to focus on the
effect of a convolutional architecture only, we consider the
case where X*% is diagonalizable in the basis given by V':

»** = vyeey T, (3)

where $# is a diagonal matrix with only the first p entries
on the diagonal non-zero. In our case of classification with
one-hot encoded labels, this is the case if all images in a
class are the same (see [SI). The less images deviate from
the average image for their class, the better this assumption
holds. Finally, given any set of predictions ¢ for a set of
input samples x, we can also compute the input-predicted
output correlation matrix 9% (cfr. Eq. :

29 = (gaT), 4)

where 9% has dimensions p x n?. To relate the evolution
of this matrix to the structure of the dataset, we study 3Y*
in the SVD basis associated to X¥* (see Eq. [2)):

sz —UAvVT. (5)

The p x n? matrix A is not necessarily rectangular diagonal;
if it would be, and if the diagonal elements would be positive
real numbers, Eq. [5| would be an SVD with singular values
given by the values on the diagonal of A. In that case, we
could say that 397 has the same structural elements as ZYZ,
only with different strengths.
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2.2. Structure of the Network

We also want to study the implicit structure of the convolu-
tional network through an SVD. To this end, we replace the
convolution operations with convolution-equivalent weight
matrices, such that we can study the SVD of these matrices
(Sedghi et al., 2019). A convolutional layer can be seen as a
constrained fully connected layer: the sliding of the kernel
over the image is actually a repeated application of the same
weights (Goodfellow et al.,[2016). A convolution-equivalent
weight matrix is then a matrix where elements are repeated
in a fixed, circulant pattern. Such a matrix is called a doubly
block circulant matrix (see|Jain/1989; Sedghi et al.|[2019),
denoted dbc (definition, see . We can also define such a
matrix through its eigendecomposition: the n? x n? doubly
block circulant matrix of the kernel K is given by

dbe(K) = n Q™ 'diag(Qk)Q (6)
and it thus acts as a convolution-equivalent weight matrix:

vee(X ® K) = dbe(K)x 7

where ® denotes circular convolution. Here k is the vec-
torized kernel, and @ is the matrix corresponding to the

vec-2D DFT (see[prerequisites|and Fig. [I). diag(Qk) is an

n? x n? diagonal matrix with the n? elements of the vec-2D

DFT of k, thus Qk, on the diagonal. Readers familiar with
the convolution theorem might recognize it in Eq. [} to
apply a convolution, transform the input to the Fourier do-
main, multiply with the transformed kernel, and transform
the result back to the original domain.

In short, for our theoretical derivations, we consider the
network with predictions ¢ given by:

§ = Wdbe(K)z, (8)

with W the p x n? weight matrix of the fully connected
layer. We can again formalize the notion of implicit struc-
ture through considering the singular value decomposi-
tions/eigenvalue decompositions of the network’s weight
matrices W and dbc(K'). While a general weight ma-
trix W could in principle have any singular-/eigenvalue
decomposition, reflecting its unconstrained structure, the
eigendecomposition of dbc(K) is fixed and always given
by Eq. [6} the eigenvectors stay the same. Only the eigenval-
ues, given by nQk, can change. This reflects the fact that
of the n? x n? matrix dbc(K), only n? values can change
independently. These values are given by the n x n kernel.
The different singular values of dbe(K) are actually given
by n|(Qk);|. For a discussion on the role of the phases, see

2.3. Differential Equations of Gradient Descent

We can now focus on what happens during training with
gradient descent. We start from a MSE loss function L =

15 o(yr — %)?, and its gradient is used to update the
network parameters at every discrete timestep:

oL oL
-, AW = “\——,
ok” ow’T

with A the learning rate. For the convolutional layer, the
gradient of the loss with respect to the kernel is in itself
given by a convolution, but with a flipped image (see, e.g.,
Goodfellow et al.[2016| Ch. 9). The gradients are then given
by:

Ak = —\ 9)

oL P
—— =dbe(X puip) Y (=) (WT).  (10)
=0
oL .
<6WT)1,; = (yr — )" dbe(k)". (11)

In the slow learning regime, the weights and kernel change
minimally with each update. The updates can then be ap-
proximated through an averaged update over samples (Saxe
et al.[2019, SI pl.). This allows us to introduce the matrices
»Y% (cfr. Eq. 1) and 9% (cfr. Eq. |5) in the equations.
Given the slow learning rate, the discrete equations can also
be reformulated as differential equations. We can subse-
quently transform the different variables using the SVD
basis of X¥*:

W =UTWR (12)
dbc(K) = R 'dbc(K)V (13)
=nR 'Q Ydiag(Qk)QV (14)

here R is an arbitrary n? x n? invertible matrix. This matrix
reflects the freedom in the actual shape of the weights,
as long as their product remains the same. Now we have
39 — Wdbe(K)E** = UAVT = UW dbe(K) =22 V'
(see also Eq. [3)), and we arrive at the differential equations
in the following, somewhat complicated shape (for full
derivation, seeSI) :

L (e @7h)y I RTTW T (S~ A)QV)T, (15)
1 (D7) — (5§ — A)(QV) diag(QK)Q 'R,  (16)

where diag(Q'k);; = (Q7'k); = (Q*Tk);, and all
derivatives of off-diagonal elements of diag(Q k) are
zero. There are a couple of key observation to make about
this set of differential equations (Egs. [I5]and[16]): firstly,
they are coupled and non-linear, making them difficult or im-
possible to solve analytically but for very specific cases. We
can also see that at every step A is brought closer to S’ (cfr.
Eq.[2), that A thus becomes diagonal, and that the updates
become zero if these matrices are equal: i.e., the predictions
perfectly match the labels. Furthermore, the dynamics of
learning are influenced by the vectors QV'. , = Q¢<, the
vec-2D Fourier transforms of the right singular vectors ¢.
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This turns out to be a crucial point: this embodies the inter-
play between the dataset structure (characterised by V') and
the convolutional network structure (characterised by Q);
in the equivalent equations for fully connected networks, no
such extra factors are present (see Egs. |[19)and |20 below).

2.4. Comparison with Fully Connected networks

The dynamics of learning during gradient descent in linear
FCNNs are discussed in (Saxe et al.l [2014;2019). In the
case of a two-layer linear FCNN, we have

BT oo =< GpoxT >= W2EWIS*® = UArcV?, (17)

where W2 and W are the weight matrices for the second
and first layer of the FCNN network, respectively. The
matrices U and V are the same as before (Eq. [2). However,
the evolution of the matrices 39% p and Apc will be
different from the evolution of their equivalents in the CNN
case. Using transformed weight matrices:

Wl=R-W'v, W2=UTW?2R', (8)
with R’ an arbitrary invertible matrix, the authors in (Saxe
et al., 2014} [2019) then arrive at the system of differential
equations:

1
N W2 (S — Arc) (19)

1— __ 4T
W= (S — Apc)W

X (20)

which can be compared to the equations we derived for the
CNNs (Egs. [T5]and [16]and [ST). The authors subsequently
show that, starting from small, random initial conditions,
W and W' each quickly become diagonal. Comparing
this to the case of the CNN, we see that dbc(K') cannot
be diagonal (Eq. [I3)). This indicates that the constrained
structure of the convolutional layer in itself cannot fully
reflect the dataset structure, while a fully connected layer in
an FCNN can.

3. Non-linear Learning Dynamics

We now explore how the interplay between V' and Q influ-
ences the dynamics of learning. In particular, we study the
evolution of the predictions: we can study this evolution
through analysing the evolution of the matrix A (see Eq. ),
with A = W dbc(K) X, We will first derive analyti-
cal solutions for this evolution for a particular, illuminating
dataset. Later we will show that the characteristics of the
found trajectories roughly hold for more general datasets as
well. Consider the dataset where the image for each class is
given by:

wl

X =y cos(2r + QW%). Q1)

Here c is the class index, and for each class we pick a
different pair of p and v € {0,--- ,n — 1}, indexing the
n possible horizontal and vertical frequencies. [ and m
index the pixels. b(°) is the amplitude of the frequency
(one value per class). Examples of this type of input are
shown in Fig. since the vectorized input images each
correspond to the real part of a column of @ (apart from the
amplitude). Since the class vectors are already orthogonal,
normalisation yields the p singular vectors V., = ¢“.
This type of input decouples the differential equations (Eqs.
and[16): the intuition behind this is that the structural
‘mismatch’ between dataset and network partly vanishes,
because we pick the vectors ¢* to be orthogonal to the real
part of the columns of Q. However, @ is complex-valued
and the singular vectors are real-valued; therefore an artefact
of the mismatch will remain in the form of a factor % In
the [SI, we first define a set of specific initial conditions
such that A starts out rectangular diagonal. Subsequently
we show that given the Eqs. [I5]and [16] each a, = Aq o
exactly follows a sigmoidal trajectory:

SaeQn/\da Sat

a (t) = )
«a eQAndasat -1 + Sa/agﬁ

(22)

with d, = % (unless 1t = 0 and v = 0, then d, = 1),

(0)

and ay’ = an(t = 0). The time, in number of samples,

to grow from an initial value a&o) =ewithe < 1,toa
value a, = s, — €, is approximately given by ‘jaﬁ (see
Saxe et al.|2019). Under analogous initial conditions and
assumptions, the values a,, () in a linear FCNN follow a
similar sigmoidal trajectory (see|Saxe et al.[2019). However,
there are no factors d,, and n: the number of samples needed
to reach convergence for each value a,, is approximately
given by s(%k for FCNN.

Given these analytical results, we can draw the following
conclusions: first, given the sigmoidal trajectories, the pre-
dictions of the network change in such a way that the dif-
ferent structural modes of X¥* are discovered with rapid,
stage-like transitions by both types of networks. This discov-
ery is ordered in time (through the factor i) from highest
singular value to lowest singular value, corresponding to
the discovery from broader to finer distinctions between
the classes. However, the CNN exhibits a different effec-
tive learning rate \.sr = ndy A for each mode o w.r.t. the
FCNN. The factor n is a speed-up resulting from the con-
volution with a kernel of dimension n; the factor d, <=1
reflects a delay stemming from the mismatch between the
dataset structure and the constrained network structure. In
Fig. |3] we show the results of experiments with a dataset
of ‘pure cosines’ as described by Eq. (for details, see
. The first class/singular vector ¢° is a constant image,
i.e., u = v = 0; the subsequent classes have different ran-
domly selected frequencies with decreasing amplitudes. The
FCNN is trained with a higher learning rate A\p¢c = nAon N,
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such that the graphs of both networks can be compared on
the same plot. dy = 1, such that the trajectories of ag for the
CNN and FCNN overlap. d, = 1/ /2 ~ 0.71 for the other
modes, resulting in a shift between the trajectories. The
theoretical predictions, made using the same set of initial
conditions, exactly match the experimental trajectories.
We derived the analytical solutions using aligned, balanced
initial conditions (see[SI). These conditions render A rectan-
gular diagonal from the beginning. Several previous studies
show that when starting from fully random, small initial
conditions, A very quickly becomes diagonal as well (Saxe
et al.,[2014;2019; |Atanasov et al., [2022; |Braun et al.| 2022).
We discuss this further in the [SI} Apart from a small addi-
tional delay related to this alignment phase, the trajectories
of A when starting from small, random initial conditions
are thus described by similar sigmoidal curves.
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Figure 3. Experimental evolution and theoretical predictions (left)
of a«, and experimental evolution of the MSE loss (right), for
linear FCNN (round markers) and linear CNN (square markers),
trained on the same dataset. The black, dashed lines indicate the
predictions. All plotted lines are averaged over trials, shadowed
regions indicate the standard deviations. Dashed horizontal lines
left indicate the values sq.

4. Dominant Frequency Bias

So far, we have studied the evolution of the predictions for
two-layer linear CNNs and FCNNSs. It turns out that the
way these networks arrive at those predictions internally
is very different. We will show that during training the
kernel of the linear CNN becomes an implicit regularizer:
it filters out a small fraction of the frequency components
present in the dataset. The whole network arrives at its pre-
dictions using only those frequencies. Driving this implicit
regularisation is a soft winner-takes-all dynamics (sWTA)
(Lazzaro et al., |1988}; [Fang et al., 1996} |[Fukai & Tanaka),
1997), where during training different vec-2D Fourier co-
efficients of the kernel |Qk|; ‘compete’ with each other
to be part of the final kernel. Whether they ‘win’ depends
on their initial values and the corresponding coefficients of
the singular vectors of the dataset |Q¢“|;. The word ‘soft’
denotes that there is not a single winning frequency. This
SWTA dynamics—and thus the implicit regularisation—can
be derived from the given differential equations.

To see this, we first consider a slightly more general type
of dataset: a dataset for which the modes now consist of
sums of cosines, where each cosine possibly has a different
amplitude (see . However, we still assume frequencies
are not shared between modes, such that modes remain de-
coupled. Formally, given an index j, |Q¢®|; is non-zero for
only one mode . o(®) then denotes the set of all vec-2D
indices j of the frequencies associated to a mode a. If j
is the vec-2D index corresponding to the pair of indices
(p,v), then with jeymm we denote the vec-2D index that
corresponds to (n — p, n — ). Since the singular vectors are
real-valued, their Fourier spectra exhibit symmetries, and
Qo |; = QP ;.- o9 m includes all the symmetric
indices jsymm as well. In the we show that when start-
ing from small, random initial conditions, the development
of the vec-2D Fourier coefficients of the kernel |Qk|; is
approximately given by:

1 d|(QK);?
2nA dt

when j € agggnm, with

=(Qk);1*(Qd™);|(sa — aa), (23)

G0 =13 0 0 (21(@R);121(Qe%);|
Y @R PIQe) ). e

j,eggzgwn\ {]7]%’11"””}

While s, can be considered as the input that drives
the system, —|(Qk);|> is a self-inhibition term, and

F€ol N\ Gidoymm} |(QkK);/|? is a term that captures
the lateral inhibition coming from the other 2D-vec ker-
nel Fourier coefficients associated to the same mode. A
formulation and analysis of sSWTA dynamics close to the
equations we consider is given in (Fukai & Tanaka, |1997)).
Note that unlike the common description of WTA dynamics
as a system of competing neurons, we here have a system
of ‘competing’ kernel Fourier coefficients. The overall dy-
namics are as follows: if we initialize the kernel with small
initial values, its vec-2D Fourier coefficients |(Qk);| will
also be small. For each input mode o, we have a number of
associated frequency indices j, and the corresponding terms
|(QFK) ;| each contribute to the respective effective singular
value a,, (Eq. @) Initially, a,, is much smaller than s,.
Therefore, the values |(Qk);|? initially grow exponentially
(Eq. 23] when a, = 0). However, they do so with different
exponents; within the set of frequencies associated to the
mode «, the difference lies in the factors |(Q¢“);|. As soon
as the values |(Qk);|? start growing, the self-inhibition as
well as the mutual inhibition between the coefficients as-
sociated to the same mode starts to take off. In practice,
the coefficients |(Qk),| with the largest factors |(Q@™);|
very strongly inhibit the growth of the other coefficients,
such that only the former coefficients grow and significantly
contribute to the effective singular value a,,. Eventually, a,
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Figure 4. Tllustration of the dominant frequency bias. a) Illustration of the class images as sums of pure cosines. Since the class vectors
x° are orthogonal, the singular vectors ¢ are normalised versions of the vectors °. b) Evolution of the effective singular values. ¢)
Evolution of the squared Fourier coefficients of the kernel (middle), evolution of the kernel K at selected timepoints (below), frequencies
corresponding to highest Fourier coefficients of final kernel (right). Compare the development of the kernel over time with the discovery

of the modes, shown in b), and the values of |Q¢*

- shown in a). b), ¢): solid lines: averages over experimental runs. Shaded regions:

standard deviations. Vertical dashed lines: selected timepoints. Horizontal dashed lines: singular values sq .

saturates to its final value s, and all derivatives become
zero. Depending on the factors [(Q¢®),|, we thus end up
with one or more coefficients |(Qk) ;| that have ‘won’ the
competition; this means the final kernel consists of a sum of
those frequencies only.

While in a linear, fully connected network, the weight ma-
trices take on the inherent structure of the dataset (see
Sec. [2.4); the kernel in our linear CNN only picks up the
most dominant frequencies associated to each mode, i.e.,
singular vector associated to the dataset. It thus acts as a
filter; not necessarily a low-pass filter, but a filter of the
most dominant frequencies. The results of an experiment
with two classes, each a sum of pure cosines with different
amplitudes, is illustrated in Fig. E[

For more general datasets, the singular vectors can in gen-
eral share the same frequency. Formally, |Q¢“|; can be
significant for different modes cv. In this case, Eq. 23] does
not hold and we have to revert back to the more general
equation Eq. [I5] The experiments discussed in the next
section show that in those more general cases a form of the
dominant frequency filtering is still present. However, the
dominancy of a frequency is now determined through an-
other factor as well: assume two values |Q¢”|; and |Q¢”|;,
with 8 < =, are significant. During the discovery of mode (8
the kernel Fourier coefficient | (Qk) ;| develops. Later, at the
start of the discovery of the mode +, the coefficient |(Qk);|
starts from a higher value than coefficients |(Qk);/| that
were not developed before, and that still have their small,
random initial value. Loosely speaking, this gives the coef-
ficient | (Qk);| a ‘competitive advantage’. This also means
that frequencies that are dominant in the first few modes
(thus high |Q¢“|; for the first modes «) are the frequencies
that are more likely to be important for the final kernel.

5. Experiments with More General Datasets

We now report the results of training a linear CNN from
small, random initial conditions on two more general
datasets: the dataset of geometric shapes (see Fig. 2) and
on the dataset consisting of the first 4 classes of CIFAR-10
(‘airplane’, ‘automobile’, ‘bird’ & ‘cat’), which we will call
CIFAR-4. We subtract the first mode, i.e. the average over
images, from the CIFAR-4 dataset. Therefore only the 3
modes needed to distinguish between 4 classes remain (SI
Fig. [S-4). CIFAR-4 has multiple samples per class: X*® is
no longer diagonal in the basis given by V' ( Eq. [3]does not
hold), which influences the dynamics through a coupling
of the modes. Moreover, we can hold out a separate test
set to track the test loss for CIFAR-4. We train the CNN
with learning rate A, and the FCNN with a learning rate
Arc = nA. The results are shown in Fig. [5} experimental
details see STl

We can conclude that the general insights we derived before
are still valid. First of all, in both linear CNNs and linear
FCNNSs the modes of 3¥® are discovered with rapid, suc-
cessive transitions (Fig. |§] (a) and (b)). However, the CNN
exhibits a different effective learning rate for each mode (see
Sec. [3). Since the first mode of the geometric shape dataset
is essentially the average over the shapes (see Fig. [2), and an
average corresponds to the zero-frequency, the CNN does
not show an additional delay for this mode (dy ~ 1). All
other mode discoveries have an additional delay with respect
to the trajectories for the FCNN. Fig. [5|(c) and (d) show the
evolution of the loss. The loss for CIFAR-4 does not go to
zero, meaning there are samples that cannot be classified by
a linear CNN or FCNN. The FCNN has discovered all the
modes after around 18000 samples, and at that point reaches
a train and test loss of around 0.21. After that, it starts to
overfit. The CNN needs a lot more samples to discover
all the modes, but doesn’t start to overfit. The latter might
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Figure 5. Top row: geometric shapes. Bottom row: CIFAR-4. a, b) Evolution of the effective singular values for the CNN (square
markers) and the FCNN (round markers). ¢, d): MSE loss for the CNN (square markers) and the FCNN (round markers). For CIFAR-4,
the test loss is plotted in blue. The inset in d) shows the loss up to 10° timesteps. e, g) Evolution of the weights connected to 3 randomly
selected nodes in the hidden layer of the FCNN, reshaped as n X n matrices. Shown timepoints (in number of samples) roughly correspond
to the moments each mode is fully discovered (compare to subfigures a) and b) ). f, h) Evolution of the kernel at analogous timepoints
for the CNN. 4, 5) Evolution of the coefficients |(Qk);|* (middle), frequencies corresponding to highest |(Qk);|* of final kernel (right).
Only the kernel of the blue channel is shown for CIFAR-4. a — f) Solid lines: averages over experimental runs. Shaded regions:
standard deviations. Vertical dashed lines: selected timepoints. Horizontal dashed lines: singular values s,. The kernels and partial
weight matrices shown, are randomly selected across experiment runs.

be due to the implicit regularisation given by the dominant
frequency bias: Fig. El (e) and (g) show that the rows of the
first weight matrix in FCNN are mixtures of the discovered
singular vectors, as given by Eq. [I8] Fig. 5] (f) and (h), on
the other hand, show that, at any point during training, the
kernel is a sparse mixture of the dominant frequencies of
the singular vectors discovered so far. Fig. [5|(i) and (j) show
the evolution of the kernel Fourier coefficients |(Qk),| in
detail. In the plot for the geometric shapes dataset, we have
highlighted a trajectory in blue. This cascaded trajectory
is an example of how a frequency initially becomes domi-
nant through a high value |Q¢®|; during the discovery of
mode «, and subsequently can remain dominant due to its
higher value at the start of the discovery of a subsequent
mode. That the kernel frequencies are really the dominant
frequencies is further illustrated in the [SI]

6. Experiments with Deep, Non-Linear CNNs

We now consider deep linear and non-linear CNNs trained
on CIFAR-10; both have the same overall architecture, but
the non-linear network has RelLU activation functions and
additional max-pooling layers. The overall network archi-
tecture consists of four convolutional layers, each with 16

channels; a flatten layer, and two fully-connected layers.
The kernel size is 8 x 8, while the image size is 32 x 32:
this means these models not only exhibit weight sharing but
they also exhibit locality. The additional max-pooling lay-
ers will make the non-linear network (partially) translation
invariant. The updates now take place in batches, we use
multiple channels per layer, and we use zero-padding for the
convolutions (details see[SI). In fig. [6] we show the results
of the experiments. Fig. [6](a) shows the evolution of the
loss for the linear and non-linear model, averaged over trials.
Fig. [6](b) and (c) show the corresponding evolutions of the
effective singular values for the linear and non-linear CNN,
respectively. Firstly, from fig. |6 (b) and (c) we can see that
both networks discover the statistical dataset structure with
ordered, stage-like transitions. However, the evolution of
the effective singular values for the non-linear network are
delayed with respect to the linear network. Secondly, the
non-linear CNN exhibits a lower loss, and given that both
types of networks eventually exhibit the same, saturated ef-
fective singular values, this lower loss cannot be explained
from the discovery of the statistical structure of the dataset
alone. We hypothesize that while the non-linear model dis-
covers the statistical structure, it at the same time discovers
different aspects of the dataset structure as well. These as-



Linear CNNs Discover the Statistical Structure of the Dataset Using Only the Most Dominant Frequencies

a) N b) 10
0.10 linear, train e non-linear, train
. === _linear, test = non-linear, test 0.8 -
0.08
[}
n 0.6 -
2 s
Ww 0.06 “ 0.4
2
0.2
0.04
0.0

T T T T T T T
0 25000 50000 75000 100000 125000 150000
batches

c) 10

0.8

0.6

T T T T T
150000 0 50000 100000 150000

batches

T T
50000 100000
batches
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pects are likely not captured by an average over samples
(Eq. @), which could explain why they are not captured by
the effective singular values aq (Eq.[3) alone.

7. Discussion

The above results shed new light on the use of convolutions
in neural networks. Our theoretical analysis uses a linear
CNN and a number of assumptions (listed in Sec. [T). We
first discussed how the relevant structure of the dataset is
captured by the singular vectors of the input-output corre-
lation matrix, which generally represent broader to finer
distinctions between classes. We then showed how the dy-
namics of learning are influenced by the interplay between
the singular vectors associated to the dataset structure and
the singular vectors associated to the convolutional network
structure. We subsequently showed that linear CNNs dis-
cover the statistical dataset structure with rapid, stage-like
transitions, and they do so at an effective learning rate that
depends on this interplay. Moreover, this interplay yields
a dominant frequency bias: internally, only the most domi-
nant frequencies of each singular vector of the dataset are
used by the CNN to discern between classes. It is thus
both the statistical structure of the dataset, embodied by
the corresponding singular vectors, as the convolutional
structure of the network—for which the singular vectors
are frequencies—that influence the learning. Our experi-
ments show that these conclusions broadly hold when using
more general datasets. We moreover show that deep, non-
linear CNNs also discover the statistical structure of the
dataset in an ordered, stage-like fashion (see alsoHacohen
& Weinshall|2022). However, they at the same time seem to
discover aspects of the dataset structure that are not captured
by the statistical structure.

In our results, the statistical structure of the dataset is dis-
covered through time. Deeper, non-linear CNNs are known

to process higher-order visual relationships in later layers as
well: i.e., there is an additional notion of hierarchy through
depth (Krizhevsky et al 2012; Simonyan et al., 2014; Olah
et al.l 2017). An extension of our theory could clarify how
this hierarchy over depth develops over time, and how this
relates to the dominant frequency bias and results on the
relationship between learning in linear and non-linear CNNs
(Kalimeris et al.,[2019; Refinetti et al.,|2022). The dominant
frequency bias we find is a form of implicit regularization
that could help explain why large CNNs sometimes gen-
eralize well, even without additional regularization. It is
seemingly at odds with the ‘spectral bias’, which states that
lower frequencies are learned first (Xu, 2018} Rahaman
et al.L[2019; [Xu et al., [2019; Basri et al.| |2019; 2020; |Cao
et al.| [2021)). We claim on the other hand that the bias is to-
wards frequencies that are dominant in the Fourier spectrum
of the singular vectors, irrespective of whether these are
actually high or low frequencies. One thing to note is that
broader distinctions in shape correspond to lower frequen-
cies. We find that broader distinctions are uncovered first,
and that therefore lower frequencies are learned first. How
the two concepts exactly relate is the topic of future work.
Finally, our results could also help explain why CNNs are
sensitive to frequency domain perturbations (Jo & Bengio,
2017;Tsuzuku & Sato}, |2019)), and why they often rely on
textures (images with a sparse frequency spectrum) instead
of shapes (Baker et al., [2018} |Geirhos et al., [ 2019; |Brendel
& Bethge, [2019)).
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A. Diagonality of 3”7 in the Basis Given by V' and Relationship to Class Coherence

We here discuss the diagonality of 3%% in the basis given by V/, and its relationship to class coherence. We start from the
assumption that the label vectors are orthonormal, yCTp Y, = 6Cpcq, where ¢, and ¢, are class indices. This is the case when
the classes are one-hot encoded. Then, a property of the singular value decomposition of a general, real matrix B is that the
right singular vectors of this matrix are the eigenvectors of the matrix B B. We can make use of the orthonormality of the
label vectors and general properties of the kronecker product (denoted ®) to derive:

xveisr = (yo') (yo ) (S.1)
—(wey ) (yez") (S.2)
02 m—1m—1
=N > er ®Ye,) (e, © ()c,) (S.3)
cr=0 cq:0
02 m—1m—1
=Nz Yo Yo, (®)e, @ (2T)c,) (S4)
cr=0cq=0
02 m—1
=3z 2 (@ @ (@), (S.5)
c,-=0

where ()., denotes the average over all samples belonging to the same class ¢, p is the number of classes, N is the
total number of samples, and C is the number of samples per class (we assume a balanced dataset). If we define
P = % Zi;é(@cr ® (x).,, we thus have that V&V is diagonal: the right singular vectors of ¥ are the
eigenvectors of 7% = svel'sve The corresponding eigenvalues are equal to the square of the singular values, thus the
diagonal values of S”'S.

2% — (z ® =T) and ®** (eq.|S.5) are different in general, but they are close to equal if samples within a class are very
similar (at least in pixel-space):

e = (@), +€¥, |le?] << |l (@)e,| (S.6)

where (%) is the sample with index i belonging to a class with index ¢,. We have:

2 — (z@x’) (8.7)
= (((x)e, + €M) @ ((@)c, +€)T) (S.8)
= (((x)e, @ ()] ) + ((T)e, @ €D) + ...} (S.9)
Thus, if ) ~ ()., (eq.[S.6). then:

2%~ (((m)e, ® (@)1)) (S.10)

C m—
=¥ Z (S.11)
_ %qw (S.12)
= p®**. (S.13)

In other words, if samples within a class are very similar (=high class coherence), we can use the same eigen-/right singular
vectors to decompose 3% and 3:¥® into a sum of their respective modes. Thus the higher the class coherence, the more the
two matrices represent the same inherent structure. If 3% is exactly equal to p®“*, the p eigenvalues of 3% are given by
the p non-zero diagonal elements of pST S.
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B. Definition of Q

We first recall the definition of the one-dimensional discrete Fourier transform (DFT) matrix, denoted by the n x n matrix
FM.

(F("))pyq = (wn)P?, w, = exp(—27i/n), (S.14)
where the superscript pq denotes the product of indices p and ¢ applied as an exponent, and 7> = 1. Then the n? x n?
complex-valued matrix @ is given by:
1
Q= ity ACONY 20 (S.15)
n
with ® the kronecker product. @ is unitary (Q*T = Q1) and symmetric.
C. Doubly Block Circulant Matrices
C.1. Doubly Block Circulant Matrix Definition
cire(b): circulant matrix of the vector b with length ¢:
bo  bg—1 - by by
b1 bo  bg—1 - b
circ([bo, b1, -+ bg_2,bg1]T)=| b2 b1 bo bg—1 - (S.16)
bg—1 e bo
then dbe(B), the doubly block circulant matrix of the matrix B, is given by (Sedghi et al., 2019):
circ(Bp.) cire(By—1.) ... circ(Bi,)
circ(By,) cire(Bo,:) ... circ(Ba,)
dbe(B) = . . (S.17)
circ(By-1,:) ... circe(By,)

where v is the number of rows of B, and B, . is the it" row. Note that this is the definition for an actual convolution, see
below.

C.2. Convolution and correlation: notes on flipping the kernel or the image

Given a kernel K and an image X, the convolution operation is defined as:

(X * K); ZZXMKz 1 (S.18)

or, equivalently (since convolution is commutative):

(K * X); ZZXl g1 Ko 1 (S.19)

This implies the kernel (or the image) is applied in a ‘flipped” manner, i.e., when we increase m and [, we decrease the
corresponding indices. This amounts to flipping the kernel (or image) over the x- and y-axis, or equivalently, rotating it 180
degrees, before applying the convolution.

In practice, however, convolutional layers are usually implemented as correlations (here denoted x):

(X » K); Z Z X i Kivm jii (S.20)

thus without flipping the kernel beforehand. This makes the operation more intuitive (but it’s not commutative). Whether the
kernel is flipped beforehand or not, the learning algorithm will learn the appropriate values of the kernel in the appropriate
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place: the result of learning with correlations instead of convolutions is just a flipped kernel (Goodfellow et al.,[2016). Most
literature therefore uses the term “convolution” in lieu of “correlation”. The actual operation used influences the definition
of the doubly block circulant matrices and the gradient descent equations, however, and so it’s important to keep track of the
details when comparing different sources.

As it turns out, we can define a very similar circulant and doubly block circulant matrix to replace a (circular) correlation
(see the definitions used in (Sedghi et al., 2019)):

bg by - bg—2 by—1
bg—1  bo b1 -+ by
Circcorr([bm by,--- abq—27 bq—l]T) = bq_Q bq_l bo by T (S.21)
by . b
and
cire(By:) cire(By.) ... cire(By-1,)
circ(By—1,.) cire(Bo:) ... cire(By—a,)
dbccm'r (B) = e (5.22)

cire(Ba,:) ... carce(By,)

When we compare those definitions to the earlier defined matrices for circular convolutions, we see that the difference lies in
a permutation of the indices equal to a reversion and a shift, e.g., for a (column) vector b:

rev(b’) = [by_1,bg—2,-- ,bo) (S.23)
and
shift_(rev(b")) = [bo,bg_1, - ,b1], (S.24)
yielding
Circeorr(b) = cire(shift_q(rev(b))), (S.25)

and a similar permutation of the rows for the doubly block circulant matrices. Due to the properties of Fourier transforms,
we can also flip the kernel through applying the Fourier transform twice:

QQk = shift_, (rev(k™)) (S.26)

This allows us to translate all the derivations from implementations with convolutions to implementations with correlations:
where

dbe(K) = nQ 'diag(Qk)Q = n Qdiag(Q 1k)Q " (S.27)
(since the dbc matrix is real valued, thus dbc(K) = dbc(K)* and Q! = Q*), we can use eq. to write:
dbccor,(K) = dbe(K fiip) = n Qdiag(Q™*(QQK))Q ™ (8.28)
thus

dbceorr(K) = dbe(K f1;,) = n Qdiag(Qk)Q ™. (S.29)

D. Derivation of the Differential Equations of Gradient Descent
D.1. Definition of the network and learning algorithm

As described in the main paper, we consider a convolutional network where the predictions ¢ are given by:

§ = Wdbc(k)x (S.30)
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here & = vec(X) is the vectorized input image, k = vec(K) is the vectorized kernel, and W is the weight matrix of the
fully connected layer.
The loss is given by the MSE loss, i.e.,

p
L= (y—) (S:31)
=0

N =

The kernel and the weights are updated according to the gradients of this loss:

Ak = —A;TLT (S.32)
AW = —)\% (S.33)

where ) is the learning rate.

D.2. Gradient descent for the convolutional layer

For the convolutional layer, the gradient of the loss with respect to the kernel is in itself given by a convolution, but with a
flipped image (or, equivalently, an image rotated 180 degrees). We can write this equation using doubly block circulant
matrices:

oL oL

T vee(X fiip ® aITT) (S.34)
= dbc(th-p)aaTLT, (S5.35)
with
oL u R -
o = = 2= (W) (S.36)

=0

Here H denotes the activity of the hidden layer, and h = vec(H). (W), denotes column [ of W7 .

We will now rewrite this equation in a form that will turn out to be useful in the next steps:

p
;TLT =n Y _ Qdiag(Qz)Q " (y — in)(W")., (S.37)
=0
OL L
= (%Qflakﬁ)j = ; diag(Qw);-(y — 1) Q W' )., (.38)
0L P
= (%Q_lakﬁ)j = ;(Qw)j(yz — QW) (5.39)
1 ., 0L _ P R T —1vx,T
= (;Q 57 = ; (y-9) @ @Q=)7), Q"W ), (S.40)
oL
= %(Qflakﬁ)j =@ 'W),.((y - 9) @ 2")QT, (S.41)

D.3. Gradient descent for the fully connected layer

For the fully connected layer with weights W, we can write down the gradient in the conventional form:

(

OL

Sy = = g’ dbe(k)t (S.42)
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and, for future use, rewrite this as:

oL

(G = (0 = i)z Q" diag(Qk)" Q™ (S.43)
p)
%(aul//T)l,: = (<y - g) ® JiT)l,:Qdiag(Qk)Q_l (S44)

where we used the fact Q' = Q'" and Q = Q"

D.4. From discrete gradient descent to differential equations

The equations[S.41]and [S.44] together with the update rules given by eq. [S.32and [S.33], tell us how to update the kernel and
the weight matrix at each discrete time step At. We will proceed to make a continuous approximation of these discrete
updates. This is a valid approximation as long as the learning rate is small enough. In this slow learning regime, we can
assume the weights only change minimally over a number of updates with different samples. The factors ((y -9 ® a:T)
can then be replaced by their average over those samples (see (Saxe et al.,|2019)). In the main body, we defined the matrices
%% = (x@ax’) and ZY® = (y @ xT), which can be computed from the dataset alone. We also defined 9% = (§ @ xT).
These definition allow us to rewrite the difference eqgs. [S.41} [S.44] [S.32]and [S.33] as:

1 ,ddi —1k _

ﬁ(%)m — Q;:le (Eya: _ Eym)Q;,j (S.45)
1 ,dWw _

— () = (37 = 297)Qdiag(Qk)Q™ (S.46)

where diag(Q~'k) is the n? x n? diagonal matrix with the elements of Q 'k placed on the diagonal. The derivatives of

the off-diagonal elements are zero ( (%ﬁ?‘lk))ilj =0ifi # j).

D.S. Interpreting the gradient descent equations in terms of the dataset structure

We can now finally link the process of gradient descent with the structure present in the dataset. We can describe both the
input-input as the input-output structure of the dataset with singular value decompositions. We can use these singular value
decompositions to perform a change of variables. Starting from:

vz —pysvT (S.47)
iz —paAavT (S.48)
yee — yyzzy T (S.49)

we transform W to W and dbc(K) to dbe(K):
W=UWR™! (S.50)
— W=UTWR (S.51)

where R is an arbitrary invertible matrix, and

dbe(K) = nQ 'diag(Qk)Q = Rdbc(K)V™ (S.52)
= dbc(K) = R 'dbe(K)V = nR™'Q 'diag(Qk)QV (S.53)
= dbc(K) = nR™'Qdiag(Q~k)Q™'V (S.54)

where in the last step we used that dbc(K) is a real valued matrix, thus dbc(K) = dbc(K)", and that Q and
Q (= Q") are unitary and symmetric.

We perform this change of variables such that we can describe the network, given by the product Wdbe(K), in terms of
the singular vectors of the dataset given by U and V. With this change of variables, we indeed have (compare to eq/S.47) :

Wdbc(K) = UWR *Rdbec(K)VT = UW dbe(K)V™. (8.55)
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The matrices W and dbc(K) are thus defined up to an invertible matrix; but their product remains the same. If the
p x n? product Wdbc(K) would be rectangular diagonal with p real, positive entries, we would have a singular value
decomposition. Moreover, this singular value decomposition would be the same as that of the input-output relationship in
the dataset (eq/S.47), only with different singular values.

We can also use this change of variables to describe the complete input-predicted output relation £9% (eq. E]):

= Wdbc(K)X*® (S.56)
— UWdbe(K)S==V (S.57)
—yuAvT (S.58)
with A:
A = Wdbc(K)X?® = nW R ' Qdiag(Q™1k)Q 'VZe= (S.59)

where again, if A would be rectangular diagonal with p real, positive entries, this would be an SVD with the same singular
vectors as the input-(ground truth) output relationship of the dataset 3¥*. In that case, we will call the matrix A the matrix
of effective singular values. Note that in practice, we can compute A irrespective of the internal details of the network: we
only need predictions 4 for samples « to compute A = UT 292V . The evolution of A during training thus essentially
coincides with the evolution of the predictions of the network.

We are now ready to rewrite our system of differential equations of gradient descent using the new variables:

1 ddiag(Q™"k)

g =W -2, (5.60)
1 ddiag(Q k), 1 st T T T AT
S (), = QI RTTWIUTU(S - AVTQ (S.61)
T dw T yx gz T 3. -1
aU (< ) R=U" (2" - 29%)Q" diag(Qk)Q 'R (S.62)
= aUT(d:;/)R:UTU(S—A)VTQsz'ag(Qk)Q—lR (S.63)

We thus arrive at the coupled system of equations:

; -1

= (W)m = Q;'RTW (5 - A)(QV)T, (S.64)
AW

—(557) = (8- A)(QV)"diag(Qk)Q'R (S.65)

Which are the equations mentioned in the main paper, Egs. [T3]and

E. Sums of Cosines Datasets

In the theoretical derivations, we will often use a *sums of cosines dataset’. This dataset consists of a sum of pure 2D cosines,
where the frequencies of those cosines are not shared between classes:

X9 = 3" b, cos( 27% +27r— +6,), (S.66)

j€ale)

where o(©) is a set, belonging to class ¢, of vec-2D indices j that map to pairs of horizontal (1) and vertical () frequency
indices. b; is the corresponding amplitude, and J; is the corresponding phase. We here thus consider the case where the sets
o(©) are disjoint. In the special case where frequencies are not shared (between modes, see next) we can derive analytical
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results.

In this case the right singular vectors ¢(°‘) are given by:

(@) 1 n ‘ ul vm ‘
o = VoY Z b; COS(QTF; + 2777 +(04)5), (5.67)

/ 2
ZjEU(“> bj jeal®

i.e., again the class vectors normalised and sorted according to singular value: the mode indices o form a permutation
of the class indices ¢ based on the singular values. Here u = div(j,n), v = mod(j,n) are the frequency indices and
I = div(i,n), m = mod(i,n) are the pixel indices. There is a subtlety regarding the phase (d4),: the SVD is defined up to
a minus sign, i.e., if both the left and right singular vector obtain a minus sign, the total mode remains unaltered. Therefore
the phase (d4); could be the same as the original phase (d4); = d;, or a possible minus sign could be absorbed in the phase
as (5(;5) j = 0; + 7. We can furthermore note that the sets 0, where each set corresponds to a set (), are also disjoint.
Formally, this means that given an index j, |(Q¢®);| is non-zero for only one mode c. The latter property will be crucial in
the derivations below. We will also still assume that £** = V322V T with 322 diagonal.

F. Minimal Norm Weights

It is well-known that, when gradient descent is used to train a linear neural network from near-zero initial conditions in
the over-parametrized regime, the final network parameters will have minimal norm (for a derivation with MSE loss, see
e.g., (Bach, [2023)), chapter 11). I.e., among all the possible combinations of network weights that implement the desired
input-output map, gradient descent leads to the network weights that have the smallest norm. This is called the implicit
regularization of gradient descent. The minimal norm solution for the two-layer linear CNN with a single kernel is given by
the following constrained minimization problem:

minw aeqic) (W% + lldbe(K)| ) (3.68)

subject to:
Wdbc(K)X*® =USVT (S.69)

where || B||r denotes the Frobenius norm of the [ x m matrix B, in essence ||B||r = W/Zé Z;n | Bij.

F.1. Exact Solutions for Sum of Cosines Datasets

We here derive what those final solutions look for a sums of cosines dataset. We first define three new n? x 1 vectors, 84,
and &y, and d,,. These vectors contain the phases (or angles) associated to the complex-valued vec-2D DFT of the singular
values, of the kernel and of the weights, respectively. The definition of dy, is straightforward:

dr = angle(Qk). (S.70)

The definition of 4 and d,, is more subtle. The p x n? matrix W has p rows, and there are also p singular vectors ¢*
(a € {0,--- ,p — 1}) of dimension n? x 1. For every index 7, there are thus p complex numbers, e.g., (Q¢°);, (Qd");,
etc. However, when we use a dataset with disjoint sets of frequencies, we have by design a non-zero value (Q¢®); for only
one single mode index « per frequency index j. We select the phase of this value to be the j'" element of the vector &,. We
thus have:

{(6¢)j = angle(Q¢®);, Jj— «a, (S.71)

(6g); =0, freq. 7 not present in singular vectors.

where again j — « denotes that the frequency j is used in the sum of cosines making up the singular vector ¢®. We define
4., in a similar way:

(

(

w) = angle((QWT)j,oc)) .]_> a,

J ) o (8.72)
w)j =0, freq. j not present in singular vectors.

]
]

18



Linear CNNs Discover the Statistical Structure of the Dataset Using Only the Most Dominant Frequencies

Note that because the kernel, the weights and the singular vectors are all real-valued, we have (64);,,,... = —(94);>
(08)jaymm = =(0)j> a0d (8w )j e = = (0w);-

We are now ready to state what the final, minimal norm solutions look like. A kernel K and the weight matrix W correspond
to a minimal norm solution, if and only if:

Sa,a =1 Z (Qe”);| I(Qk)3|2 Taas (8.73)
JEOSymm
with 0§, is the original set of indices j in o together with all their corresponding symmetric indices jsymm, and

symm

W =UQ0,Q, (S.74)

where © is a p x n? matrix defined by:

Qaj = [(QF);l, Qasjoyn = [(QK);] T — v, $75)
Q,;=0 else,
and
0, = diag(e’®v). (S.76)
With, for all j € o, ,,,,,,:
(0k); + (8w)j = —(84);- (S.77)
From these minimal norm solutions, we can then also conclude (cfr. Eq. [T2):
R=Q", (S.78)
W =Q0,. (S.79)

Note that the only constraint on the Fourier spectrum of the kernel is given by Eq. the kernel is not uniquely defined.
We show in the main paper that the final coefficients |(QFk) ;| are influenced or determined through a winner-takes-all process
that takes place during training with gradient descent. This effect can only be derived from the gradient equations themselves,
however.

Proof overview:

We start from dbc(K) = nQ diag(Qk)Q, with k = vec(K) an arbitrary, real-valued kernel, and from W = U P
where P is an arbitrary n X n real-valued matrix, such that W is an arbitrary real-valued weight matrix. We then use the
method of Lagrange multipliers on the constrained optimization problem given by Eq. [S.68|and Eq. [S.69]to find a system of
equations involving k, P, and the given matrices U, V', S, @ and 3. This system of equations captures the relationships
between these matrices when dbe(K) and W form a minimal norm solution. When frequencies are not shared between
modes, i.e., when for every frequency index j only one value Q; . V., is significant, the solutions to these equations are as
described above.

F.2. Detailed Proof

Let dbc(K) = nQ 'diag(Qk)Q, with k = vec(K) an arbitrary, real-valued kernel, and let W = U P where P
is an arbitrary n x n real-valued matrix, such that W is an arbitrary real-valued weight matrix. We first reformulate
the constrained minimization problem Eq. [S.68| using properties of the Frobenius norm. The Frobenius norm can be

expressed in function of singular values: ||B||r = \/ somintm) 5. (B)? where o;(B) are the singular values of B. We can
make use of the latter property of the Frobenius norm to explicitly include the constraint on the network structure, given
by the eigendecomposition dbc(K) = nQ ™ 'diag(Qk)Q. The singular values of dbe(K) are the square roots of the

eigenvalues of dbc(K)" dbe(K) = n2Q 'diag(Q*k)diag(Qk)Q. The singular values of dbc(K) are thus given by
n|(Qk),|. The Frobenius norm can also be expressed as a trace, || B||» = \/tr(B*T B). Therefore ||W||% can be expressed as
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tr (PTUTUP) =tr (PTP), given that P is real and U is real and orthogonal.
We thus reformulate the constrained minimization problem (Eq. [S.68] and [S.69) as:

nz

minp. ok (tr(P*TP) +3 |(Qk)i\2>, (S.80)

?

subject to

nPQ 'diag(Qk)QVEe® = S. (S.81)

We can make use of Lagrange multipliers to solve the constrained optimization problem given by Egs. and We
denote the multipliers by the p x n? matrix A, and the Lagrangian L is then given by:

n2

L=tr (PTP) + Q)2 + tr(AT (nPQ " diag(Qk)QV S — s)) (S.82)

J

To find the minimal norm solution, we compute the derivatives with respect to the matrix P, the values (Qk) ; and the
matrix A. These derivatives are zero at the minimum.

ac.
dP-

To compute the derivative with respect to the matrix P, we make use of the cyclic property of the trace function, and the
fact that % = C"'. We obtain:

c  d e —
7= = = (tr(PPT) + tr(PQ ' diag(Qk)QVETAT) ) (S.83)
= P+ AS® VTQ T diag(Qk)Q~T (5.84)

ac .
a(QkK),

To calculate this derivative, we will make use of the following properties:

(diag(QK)Q),,,, = > diag(Qk)1:Q; ,, = diag(QK)11Qy,, (S.85)

yielding

(Q ' diag(QK)Q)im = Y (@i} (diag(QK)Q),,, = > Qi diag(Qk).Q,,, (S:86)
l

l

and, for any matrix B and C,

tr(BC) =>» B;.C.; (S.87)

i
since the trace operation is the sum of diagonal elements. Moreover, we can compute the derivative of a function f with
respect to a complex number z = 2z + 421 as Z—J; = %(% — i;—;) (see, e.g., (Gunning & Rossi, [1965)). The derivative of
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the third term is then given by:

d 14 SEEpT
rT (tr(PQ diag(Qk)QVE== A )) (S.88)
_ d -1 Szz AL
= IO (tr(le:Q:J diag(QK)Q, VE=AT)) (S.89)
_ d —1 3. Sz AL
- ddlag(Qk:)J’] (;Pm,i ;Q:,l dlag(Qk:)lJQl,:VE A:,m) (890)
1 -1 T .2 —1 T
— E(Z P,..Q}Q; VAL, —i*> P,.Q'Q; VAT, (S.91)
=Y P,.Q/Q; VZ®=AT, (5.92)
=tr(PQ}Q; . VZ*A”) (5.93)
This yields, for the total derivative ﬁ:
e 1(2(Qk)Rj - 2i(Qk)y;) +tr(PQ_}Q; VE=®AT) (S.94)
d(Qk); 2 wd %,
= (Qk); +1r(PQ_Q; . VE#=AT) (S.95)
dac.
dA -’
Finally, we compute %:
dc 1,dc  dC
A i(rA]R - zd—AH) (5.96)
= 1((nPQ*1dz‘ag(ka)QV§]mw _ S) _ 42 (nPQfldiag(Qk)QVE“m _ S)) (5.97)
2
=nPQ 'diag(Qk)QVEr® — § (S.98)

The complete system of equations is then given by:

95 =0 P+ AS® VT QT diag(Qk)Q~T = 0
701(32%),- =0 < ((Qk); +tr(PQ.}Q; VE==AT) =0 (S.99)
9L _ nPQ 'diag(Qk)QVET® — S =0

From the first equation of eqs. [S.99| we obtain:

P =A% VIQ diag(Qk)Q~T (S.100)
e P =A% VT'Q Tdiag(Qk)* Q" (S.101)

where we used that dbe(K) is real-valued. We can plug this in the second equation of the system of egs. m

(Qk); +tr(PQ}Q,; . VE=*A") =0 (S.102)
= (Qk); + tr(—AWTVTQ*Tdmg(Qk)*QTQ;;Q].#VWAT) =0 (S.103)
= (QK); + tr(-AT® VTQ Tdiag(Qk):,Q, . VE=AT) = 0 (S.104)
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If the frequency indexed by j is not present in any mode, i.e., (QV'); o = 0 for all mode indices «, then we obtain:

(Qk); = (Qk); =0 (S.105)

If the frequency indexed by j is present in mode «, then (QV'); o, # 0 for a single mode « (by assumption). We then obtain:
(Qk)s + tr(— Azm c(VTQ ™o diag(Qk);;(QV); o S%®, AT) =0 (S.106)

and because X% is diagonal (by assumption):

(QK); +tr(—A. 3%, (VIQT), diag(@Qk);;(QV); oS0 o AL ) = 0 (S.107)
= (Qk); + tr(—A. o =72, (QV):T diag(Qk)!;(QV);.aT%% 4 o AL ) =0 (S.108)
— (Qk); +tr(—A., S o diag(Qk); |(QV);.al’S7, o AL ) =0 (S.109)
= (QK); — (Qk);T™=, [(QV);al*tr(A.aAL) =0 (S.110)
= AT A =570 (QV) a2 (S.111)
This yields:
Ao = RuT7 L (QV)j0l™ (S.112)

with R a p X p orthogonal matrix.

We now propose to decompose P as P = 20,,Q. We can use the obtained equations to determine the shape of €2 and ©,,
corresponding to a minimal norm solution. From the first equation:

= —AT"= VTQ Tdiag(Qk)* Q" (S.113)

= 00, = -AZ== VI'Q T diag(Qk)* (S.114)
(Q0.).; = —A. T, (QV):Ldiag(Qk); (S.115)

= (00,).; = ~R..5%, |[(QV);. 5%, (QV):Ldiag(Qk)} (S.116)
(20,).; = —R.o|(QV)al™ ‘“‘”’)JI(QV)a,jle‘“"k”I(Qk)jl (S.117)
= Q.j(0,);; = —R.ac )i O0i|(Qk),| (S.118)

Thus we obtain, for the real-valued matrix :
Q.; = —R..|(Qk);| (S.119)

and for the diagonal matrix with associated phases:

(©u)j; = tOw)j — ¢l ( (8e)5— (&eb) (S.120)

or also

(0w)j = —(0¢); — (8k);- (S.121)
Finally, we can use the third equation of the system of egs. [S.99] involving the p x n? rectangular diagonal matrix S with
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real, positive values on the diagonal of Sy., 0., and zero elsewhere. Starting with the elements of Sy., o.p:

Sp,0 =n82p,0,diag(Qk)QV E*®, (S.122)
= 10,0, ;diag(Qk); ;(QV);aZ*q o (S.123)
J
= nQ5,04;,;04;,;04;,|diag(Qk); ;|I(QV);.a|Z*% 4.0 (S.124)
J
= nQp ;|diag(Qk); ;1(QV);.a[ %0 q (S.125)

J

— Z —nR o |(QK);P(QV);.0|Z%% 0.0 (S.126)
J

If 8 # «, then Sg o = 0. Therefore Iigya = 0if 3 # o Given that R is orthogonal, and S «,a 18 positive and real, we have
R, . = —1. The other elements of S, S, ; withi = p, are indeed zero, since %%, ; = 0. This completes the proof.

For completeness, we also show that P is a real-valued matrix:

P, =(00,Q)m (S.127)
=" diag(e”®*);,;Q; (S.128)
J
= (Qla‘dmg(ew”)j,ij}m + Q. diag(€®e) ijm) (S.129)
JET™

Given the vec-2D indices and their corresponding pair of horizontal and vertical indices, j — (i, v), m — (a,b), we find:

an,m = (F X F)(ﬂfl)n+u,(a71)n+b (8130)
=FuaFop (S.131)
= ¢~ % (natvh) (S.132)
and for jeymm — (n — p,n —v):
ansymmym = Fn—/L,aFn—u,b (8133)
— o~ & ((n—p)a+(n—v)b) (S.134)
_ e—27ri%n,e—27ri%be+i/"’" (pa+vb) (S.135)
— ot &t (patvb) (S.136)
_ ”Q;km (S.137)

The vector &, has the property that (8.,); = —(8.)j,,..,.- This yields diag(e’*);

Jsymm Jsymm

= diag(e™*)} ;. Since Q2
is real-valued, each term in the summation in EqJS.129|is real, and therefore P is real.

G. Silent Alignment, Balanced Weights and WTA Dynamics

In the previous section, we derived the shape of the final weights and kernel for datasets consisting of sums of cosines. These
were the minimal norm solutions—the kind of network parameters the linear CNN converges to when starting from small,
random initial conditions. In the next section, we derive analytic solutions to the evolution of the predictions of the network,
for specific datasets and assuming aligned and balanced initial conditions. With aligned initial conditions, we mean initial
conditions that render the matrix A rectangular diagonal, with positive real, entries from the start. The alignment can be
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interpreted as follows: if A is such a rectangular diagonal matrix, the network parameters are aligned with the statistical
dataset structure, in the sense that 9% and ¥® have the same singular vectors. With balanced we mean that the (Fourier
transformed) weight matrix consists of (Fourier transformed) elements of the kernel; implying some balancedness between
the two types of layers. We borrowed this term from the theory of fully connected networks (Saxe et al., 2019)), but the
shapes of the matrix involved for CNN are more complicated, which makes the concept more subtle.

The assumption of aligned and balanced initial conditions turns out to be a good approximation to small, random initial
conditions and a sums of cosines dataset: when starting from small, random initial conditions, we see that the network
parameters quickly become aligned and balanced. This also happens in a stage-like fashion, and the alignment associated to
a mode occurs before that mode is learned and the loss appreciably decreases. Therefore the dynamics of learning can be
approximately described by assuming aligned and balanced conditions from the start. This phenomenon has been rigorously
analysed for the case of fully connected networks (Atanasov et al.| 20225 Braun et al., 2022). It has also been shown that
the error of this approximation decreases with initialization scale, e.g., it decreases as the standard deviation ¢ used in a
gaussian initializer decreases.

Diagonal elements of A Off-diagonal elements of A
30 0.005
0.000 -
Y Au
— Ap
—0.005
—0.010
T T T T T T T T
0 200 400 600 0 200 400 600
Samples Samples

Figure S.1. Evolution of the matrix Ag.2,0.2 during training: diagonal elements (left) and off-diagonal elements (right). Solid lines:
average over trials. Shaded regions: standard deviation over trials. Horizontal, dashed lines: singular values s.
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Figure S.2. Plot of the evolution of the different fractions %, a measure of how quickly the network parameters become

W ol

balanced.

In Fig. [S.I] we have plotted, for the sums of cosines dataset, both the evolution of the two diagonal and the two off-diagonal
elements of Ag.2 0.2, averaged over 10 trials using small, random, initial conditions (¢ = 0.00001). As discussed in the
main paper, the diagonal values of A follow sigmoidal, stage-like trajectories: after some time, they suddenly appear to
grow very fast, eventually saturating on their corresponding singular value. L.e., A saturates at the value sg and A; ;
saturates at the value s;. The off-diagonal elements, on the other hand, remain relatively small (compare the y-axis between
the left and right plot) and exhibit transient peaks, before becoming =~ 0.

Fig shows how quickly the magnitudes of the elements W, ; become equal to 2, ; = |(Qk);|, i.e., how quickly the
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[[Wa,l-Q

solution becomes balanced. We plotted the evolution of the fraction i ] during training, for all the different

W,
frequencies (indexed by j) involved in the two modes o = 0 and & = 1 of the sums of cosines dataset. W is computed
from W using R = Q~'. We see that the balancedness also happens in a stage-like or cascaded fashion: very quickly, the
elements corresponding to the first mode become balanced; in a next phase and after the first mode has been learned, the
elements corresponding to the second mode also become balanced.

For the sums of cosines dataset, we thus quickly arrive at the following shape for the fully connected weight matrix W:

Wi(t) =UQ(t)0,(t)Q (5.138)
where (t) is a p x n? matrix defined by:
Qs = QKM ], Qasiy = (@K, T =0 5159)
Q,,;=0 else
and
0, (t) = diag(e"®+®) (S.140)
With, for all j € o,
(01);(t) + (8w),(t) = —(84);(1) (S.141)

Naturally, the product Wdbc(K)X** = A then becomes:

Aaat)=n 3 [(Qe%);| [(QK(t));* Yaa a€{0,--,p—1}

I€TGymm (S.142)
A, p(t)=0 else
And we also have (cfr. Eq. [I2):
R=Q! (S.143)
W(t) = Q(t)Ou(t) (S.144)
W =UW(t)Q (S.145)

as soon as the parameters become aligned and balanced. Given that this happens fast, the dynamics can be approximated by
assuming this shape for W from the start.
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We can plug this in the differential equation given by Eq. [I5]to obtain:
ddiag(Q~'k)

_p-1p—Tw*T(aq _ T

ﬁ( ), =@ RTTW (S - A)QV) (S.146)
1 ddzag Qk) x _

= (), = QRTTW (S - A) @V (S.147)
1 ddwg (Qk) . _

= (g )“ H(Q0,,)" (S - A) Q)] (S.148)
1 ,ddi k)

= (g mg Q );; = Q;.Q71(20,)" (S - A)Q'V); (S.149)
1 ddzag Qk) _

= (), = 10w (@) (S - A)QTV) (S.150)
1 ,dd k B _

A a(%)]j = QWJJ(Q)ZQ(S - A)a,a(Q 1V>g,j (8.151)
1 d(|(Qk);|e®x) . _

— a (‘(Q iljt|€ ) _ 671(6w)j|(Qk)j‘(S _ A)a,(y€71(5¢)'7|(Q¢a)j| (S.152)

ik

— %d( ‘(kaljzje ) |(Qk)j‘6*i(5k)j _ e*i((aw)j‘i’(ék)j‘l’(étp)j)|(Qk)j|2(s - A)a,a'(Q¢a)j| (S.153)
1 d|(Qk)J‘2 _ 12 _ ay

— m( dt ) i [(QK);|°(S — A)a,al(Q0Y);. (S.154)

This is Eq. 23] of the main paper, describing the winner-takes-all dynamics.

H. Analytical Solutions to the Dynamics of Learning for Pure Cosines Datasets

We derive exact, analytical solutions to the evolution of the effective singular values given the following input:

ul
X9 = p cos(27r— +or 2 (S.155)
’ n

as discussed in the main paper. We thus use a single cosine per class image, and we set phase J; = 0 (cfr. Eq. . The
choice of the phase does not influence the conclusions, but makes the discussion in the main paper less complicated.

In this case the right singular vectors ¢* = ¢(*)* are given by:

1 wul
o5 = an cos(27r— + 27r7 +(0¢);)s (5.156)
with (64); = 0 or (d4); = m, introducing a possible minus sign (see Eq. and discussion following the equation). Here
u = div(j,n), v = mod(j,n) are the frequency indices and [ = div(i,n), m = mod(i, n) are the pixel indices. For ease
of notation, we have introduced d.,:

dy=1 =07
{ J=R) e (S.157)

da:% j#O,j—)O&

where with j — «a we indicate that j is the vec-2D index that indexes the horizontal (index p) and vertical (index v)
frequencies that are used to construct the singular vector indexed by . We then find:

R daei(‘s(b)j ; —
(Q¢ )] J

Y = o i b)isymm — o —1 J .
QD) = da’O)is dae™00)i j = a (S.158)
(QQ”Q)j =0 else

where we denote with jgsy ., the frequency index that corresponds to the pair of frequency indices (n — v, n — ).

We initialize the kernel with small, random weights, and set the initial weights of the fully connected layer according to Eq.
[S.138] This makes the network balanced and aligned. We get (see Eq. [S.142):
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Aa,a(t) = 2nd<X|(Qk(t))j|2 ia,a J—a,g 7é 0,a € {07 o ,D— 1}
Ano(t) =nda|(QKk(2));|* Saa  j—a,j=0,a€{0,---,p—1} (S.159)
Aqp(t) =0 else
Which can be succinctly written as:
n STT
Aca = 7-l(@QK);PZ 00 (S.160)

and A, g = 0if o # 5.

These initial conditions decouple the general system of equations (eqs. [I5]and [I6)); we can use Eq. [S.154]for the specific
pairs of modes and frequencies («, j) used in the single cosines dataset; all other derivatives are zero. From this equation
and the fact that we only have one frequency j per mode «, we can derive the full evolution of the effective singular values
Ay o

dAoqa £d|(Qk)J|27

dt = o at X (S.161)
- 2nAdEWQ,Q|(Qk)jF(s — A)aoda (S.162)
= 2ndoAAn.o(Sa.n — Aaa) (S.163)

This is a non-linear, separable differential equation that we can solve for time ¢ (see also (Saxe et al.,2019)). To simplify
notation, we will use aq, = Ay, and so = Sq,o. Using

P /agp daa 1 zn(a&f)(sa - ag)))) (S.164)
©2ndo Jo©  aa(Sa —aa)  2ndaAse a&o)(sa _ a&f)) ’

where ¢ is the training time (in number of samples) required to arrive at value a&f ) at time t from initial value a&o). The

evolution during training of the effective singular value, a,,(t), is then given by:

(t) B Saez)‘ndO‘SQt (S 165)
Qo - e2Adansat _ 1 4 sa/a&O) . .

I. Details of experiments

All experiments are implemented with tensorflow/keras. A factor 1/p is used in the implementation of the MSE loss, with p
the number of classes. All experiments can be completed in a couple of hours on a basic CPU.

When only one image per class is used, this means in practice that for each update, a sample/class is randomly selected. For
the CIFAR-4 dataset, we used the more conventional setup with a number of epochs, wherein the samples of the train set are
given as input in a random order.

We use CNNs with a single convolutional layer, a flatten layer, and a single fully connected layer. There are only linear
activation functions. The convolutional layer consists of a single kernel K with the same dimensions as the input images
(n x n) for grayscale images, and 3 such kernels for colour images. Images are circularly padded beforehand: we extend the
images with n-1 rows/columns of the pixel values of the opposite side. When the kernel of nx is applied, the padding is
then in practice equivalent to wrapping the kernel around the image when it slides over the original image boundary. The
result of this convolution is again an n X n matrix.

FCNNss consist of two fully connected layers; the hidden one with n? nodes, the output one with p nodes. The first weight
matrix therefore has dimensions n? x n, the second p x n?. The choice of nodes in the hidden layer corresponds to the
architecture of the CNN, which performs a convolution from an n X n to an n X n image, and therefore has an associated
doubly block circulant matrix of size n? x n?. For the CIFAR-4 dataset, we use 3n2 nodes in the hidden layer. Images are
flattened to n2 x 1 or 3n? x 1 vectors beforehand.
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Z il 1L

Figure S.3. Cosines used in the ‘pure cosines’ experiment.

\

I.1. Pure cosines experiment
Image dimension: 16 x 16; horizontal and vertical freq. pairs for each class: (0,0), (5,2), (1,7), (0,4); amplitudes for each
class: 1.5, 1, 0.5, 0.2.

A )\CNN = 1/2000, >\FCNN = 16/2000

¢ init CNN: random normal with ¢ = 0 and o = 0.00001 for the kernel K, weights W balanced to K using R = Q
(eq.[S-157). This makes A;,;; rectangular diagonal.

¢ init FCNN: using A;,;; from CNN, setting the first p diagonal elements of Wl and Wz to the value %,

other elements to zero.
* number of updates: 8000

* number of repeated experiments: 10

L.2. Dominant frequency bias experiment (sums of cosines)

Sums of cosines dataset as shown in fig. ] image dimensions 64 x 64.

* Aonn = 1/10000,Apcn N = 64/10000

¢ init CNN: random normal with ¢# = 0 and o = 0.00001 for the kernel and weights.
* init FCNN: random normal with ;z = 0 and ¢ = 0.00001 for all weights.

* number of updates: 600

* number of repeated experiments: 10

L.3. Geometric shapes experiment

Dataset as shown in fig. 2] Image dimensions 64 x 64.

* Aonn = 1/20000, Apenny = 64/20000

¢ init CNN: random normal with ;# = 0 and o = 0.00001 for the kernel and weights.
* init FCNN: random normal with ;z = 0 and ¢ = 0.00001 for all weights.

* number of updates: 60000

* number of repeated experiments: 10

L.4. CIFAR-4 experiment

First four classes of the CIFAR-10 dataset. Train set consists of the 5000 samples for each class in the CIFAR-10 train set
(thus 20000 samples in total) with mean subtracted, test set consist of the 1000 samples for each class in the CIFAR-10 test
set (4000 samples in total) with mean subtracted. Image dimension 32 x 32.

* Aonn = 1/10000, Apeny = 32/10000
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Figure S.4. Modes of the CIFAR-4 dataset with removed first mode (i.e., subtracted mean over samples). Three modes remain to
distinguish between the four classes. The top row is a visualisation of the first mode, the second row of the second mode, etc. 1 X 3n?
vectors are visualised as n X n color images. Each image is normalised to values between 0 and 1. In this way, we can see that the
first mode distinguishes central objects in a blue background, which is especially relevant for the first class ‘airplane’; the second mode
discovers the class ‘automobile’ based on a reddish color and a vague frontal view of a car, and the third mode distinguishes ‘bird” based
in a central object in a predominantly green background.

* init CNN: random normal with x = 0 and o = 0.0001 for the kernel and weights.
¢ init FCNN: random normal with z = 0 and ¢ = 0.0001 for all weights.
* number of updates: 100000

* number of repeated experiments: 10

J. Comparison of the 2D-vec Fourier Spectra of the Kernel and the Singular Vectors

In Fig. [S.3] (next page), we visualize that the frequencies that make up the kernel are the dominant frequencies of the singular
vectors. The data shown are from the experiment with the geometric shapes dataset (cfr. Fig. [5).

Each row of the figure corresonds to a timepoint during training with the CNN:

* row 0, timepoint = 2000 samples, mode O discovered;
e row 1, timepoint = 9000 samples, mode 1 discovered;
* row 2, timepoint = 16000 samples, mode 2 discovered;

* row 3, timepoint = 55000 samples, mode 3 discovered

(cfr. Fig. [5|(a)). At each row we plot the 2D-vec Fourier spectra of the singular vectors, i.e., the values |(Q¢®),|, that
correspond to the modes discovered at that point. These spectra are unaltered during training, and are thus repeated across
rows. The kernel, and therefore the values |(Qk);|, do change during training. We consider the average of the values
|(Qk);| over the number of experiment runs. We overlay these averaged values |(QFk);| for the given timepoints at the
corresponding values |(Q¢”);|. This overlay is indicated with black crosses. The size of these crosses codes for the
magnitude of the values |(Qk);|. In this way, we can first note that the Fourier spectrum of k is much sparser than the
different Fourier spectra of the singular vectors (in the spectrum of each singular vectors, the number of crosses is much
smaller than the total number of other markers). Moreover, large values |(Qk);| (large crosses) mainly correspond to large
values of [(Q¢);|. Thus the kernel is, at any point during training, a sparse mixture of the dominant frequencies of the
singular vectors discovered so far.
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K. Details of Experiments with Deep Networks

The deep networks have the following architecture:

* aconvolutional layer, 16 channels, zero padding

* aconvolutional layer, 16 channels, zero padding

* (non-linear network) a max-pooling layer with size 2 x 2
* aconvolutional layer, 16 channels, zero padding

* aconvolutional layer, 16 channels, zero padding

* (non-linear network) a max-pooling layer with size 2 x 2
* flatten layer

* fully connected layer with 16 nodes

* fully connected layer to 10 output nodes

For the non-linear network, we apply the non-linear ReLLU activation functions on all convolutional layers and the first fully
connected layer. The last layer has no activation function (=linear activation).

We use the MSE loss and the full dataset, i.e., all 50000 samples in the training set. The batch size is set to 8 and there are
thus 6240 batches per epoch. We train the networks for 25 epochs, yielding a total of 156000 batches. Every 500 batches we
compute the test and train loss on a subset of 5000 train and test samples, respectively. At these points, we also compute
392 (eq. 4) and, from this result, we compute the matrix A (eq. .

The network is initialized with the Glorot normal initializer. This is a truncated normal distribution with mean 0 and
standard deviation \/ 2/(fan in + fan out). Here fan in is the number of input units in the weight matrix and fan out is the
number of output units in the weight matrix. We scaled the values drawn from this initializer with a factor 0.1 to ensure that
the weights would be small enough to yield a rich training regime.
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Figure S.5. Comparison of the 2D-vec Fourier Spectra of the Kernel and the Singular Vectors at Selected Timepoints.
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