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Abstract—Graph Neural Networks (GNNs) have been widely
applied to different tasks such as bioinformatics, drug design,
and social networks. However, recent studies have shown that
GNNs are vulnerable to adversarial attacks which aim to mislead
the node (or subgraph) classification prediction by adding subtle
perturbations. In particular, several attacks against GNNs have
been proposed by adding/deleting a small amount of edges, which
have caused serious security concerns. Detecting these attacks is
challenging due to the small magnitude of perturbation and the
discrete nature of graph data. In this paper, we propose a general
adversarial edge detection pipeline EDoG without requiring
knowledge of the attack strategies based on graph generation.
Specifically, we propose a novel graph generation approach
combined with link prediction to detect suspicious adversarial
edges. To effectively train the graph generative model, we sample
several sub-graphs from the given graph data. We show that since
the number of adversarial edges is usually low in practice, with
low probability the sampled sub-graphs will contain adversarial
edges based on the union bound. In addition, considering the
strong attacks which perturb a large number of edges, we
propose a set of novel features to perform outlier detection as the
preprocessing for our detection. Extensive experimental results
on three real-world graph datasets including a private transaction
rule dataset from a major company and two types of synthetic
graphs with controlled properties (e.g., Erdos-Renyi and scale-
free graphs) show that EDoG can achieve above 0.8 AUC against
four state-of-the-art unseen attack strategies without requiring
any knowledge about the attack type (e.g., degree of the target
victim node); and around 0.85 with knowledge of the attack
type. EDoG significantly outperforms traditional malicious edge
detection baselines. We also show that an adaptive attack with
full knowledge of our detection pipeline is difficult to bypass
it. Our results shed light on several principles to improve the
robustness of GNNs.

I. INTRODUCTION

Graph neural networks (GNNs) have been widely applied
in many real-world tasks, such as drug screening [7], [11],
protein structure prediction [19], and social network analy-
sis [32]. However, recent studies show that GNNs are vul-
nerable to adversarial manipulation, where carefully crafted
instances are able to mislead machine learning models to
make an arbitrarily incorrect prediction. Such vulnerabilities
have raised great concerns when applying GNNs to security-
critical applications. In particular, different types of attacks
targeting on GNNs by adding/deleting a small amount of edges
within a target graph have been proposed to fool the node
classification or subgraph classification tasks [8], [53], [54].
These attacks are shown to be possible in real world scenarios.

Fig. 1: An example of adversarial attack on graph neural
networks (GNNs).

For example, as shown in Figure 1, a malicious user can bypass
the malicious access detection system by linking himself with
other legitimate users [25].

Detecting such adversarial attacks on GNNs involves several
challenges. First, such adversarial attacks focus on local graph
properties and aim to create “unnoticeable” perturbations.
Therefore, the manipulation of a small number of local edges
is not obvious enough to be detected by traditional Sybil detec-
tion methods [3]. Second, existing defense/detection methods
against adversarial behaviors on machine learning models are
not easy to be applied to detect malicious attacks on GNNs
for several reasons. For instance, Robust generative models
are proposed to mitigate adversarial perturbation via denoising
autoencoders and Generative Adversarial Networks (GAN)
respectively [17], [27], [34]; however, subtle adversarial per-
turbation in graph-structured data is hard to remove directly
through generative models due to the discrete nature of graph
data. Third, the perturbations on a graph will show diverse
behaviors due to different factors, which makes it impossible to
learn unified rules to identify them, and in-depth understanding
of such adversarial behaviors is required. For instance, adding
adversarial edges to a node of higher degree will induce
different adversarial patterns (adversarial edges in this case
are more likely to be outliers) compared with adding them to
a node of low degree.

Given these challenges, in this paper we propose a general
detection pipeline EDoG as shown in Figure 2 to detect
different unseen adversarial attacks in GNNs. In particular,
we propose several detection strategies as components of
EDoG, including Link Prediction based method (LP), Graph
Generation based method (GGD), and Outlier Detection based
method (OD). Here we mainly consider four types of attacks:
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(1) adding only one adversarial edge [8]; (2) the number of
added adversarial edges is allowed to be up to the degree of
a chosen target node, while these adversarial edges are all
directly connected to the target node [53]; (3) the number of
added adversarial edges is allowed to be up to the degree of
a chosen target node, while they are not directly connected to
the target node [53];(4) the number of added adversarial edges
is allowed to be up to a certain percentage (e.g., 5%) of the
number of the edges in the original graph [54].

We found that adversarial edges in the first type of attacks
can be characterized by graph generative models which are
trained with a large number of subsampled graphs. Therefore,
we propose a novel graph generative model based detection
method GGD to detect such adversarial edges. In particular,
we first sample a number of subgraphs for training the
generative model; and since the original graph contains a
small number of adversarial edges, based on the union bound
these sub-graphs will not contain malicious edges with high
probability. Such generative models can learn useful patterns
from subgraphs and detect malicious edges. In addition, we
propose to use link prediction models to filter out suspicious
edges coarsely to ensure that the generative models are trained
on “clean” edges.

However, when a larger number of adversarial edges are
allowed (i.e., the other three types of attacks), the sampled
sub-graphs may contain more adversarial edges and therefore
the trained graph generative model and link prediction model
are not accurate enough to distinguish the added adversarial
edges. In such scenarios, we found that the added adversarial
edges are more likely to appear as “outliers,” while the single
adversarial edge would not. As a result, we propose a list
of intrinsic features that can be leveraged to perform outlier
detection (OD), together with GGD and LP.

By leveraging the intrinsic tradeoff between the stealthiness
(hard to appear as “outliers”) and sparsity (hard to be sampled
in subgraphs) of attacks, the proposed EDoG is able to effec-
tively identify adversarial edges effectively based on at least
one of these properties. We conduct extensive experiments on
three real-world graph datasets including one private transac-
tion rule graph from a major company as well as two types
of synthetic graphs (e.g., Erdos-Renyi and scale-free graphs)
with controlled properties. We show that OD can achieve
detection AUC above 0.9 for the cases when the target nodes
have high degree (larger than 10), which means that if we
have knowledge about the attack type it is possible to achieve
nearly perfect detection rate. Even without the knowledge
of attack types, our results show that the proposed general
pipeline EDoG outperforms other state-of-the-art adversarial
edge detection methods [31], [33] significantly. In addition, we
also evaluate an adaptive attack in which the attacker has full
knowledge of our detection pipeline and intentionally aims to
bypass it during the attack. We show that the adaptive attack
success rate remains very low given our detection pipeline. In
summary, we make the following contributions:

• We propose a general light-weighted adversarial edge
detection pipeline EDoG on GNNs against the state-of-

the-art GNNs based attacks. In particular, we evaluate
EDoG to detect against four adversarial attacks on GNNs
without requiring knowledge of the attack strategies.

• We propose a novel graph generative model and a
filter-and-sample framework to train the graph generative
model for adversarial edge detection purpose.

• Based on several interesting observations, we provide a
set of effective features on graphs that can be leveraged
to perform outlier detection against unseen adversarial
attacks as preprocessing.

• We conduct extensive experiments on Cora, Citeseer,
transaction rule graph, and synthetic data with controlled
properties to detect the state-of-the-art attacks, demon-
strating the effectiveness of the proposed pipeline. The
detection AUC of EDoG can reach 0.8 without any
knowledge of attack types and over 0.85 when we know
the attack type. In both scenarios, the proposed EDoG
approach outperforms other baseline methods.

• We evaluate EDoG against a strong adaptive attack and
show that it is difficult to bypass our detection pipeline.

II. BACKGROUND

In this section, we will introduce background on neural
networks, GNNs and the adversarial attacks on GNNs.

A “c-way classification task” in machine learning is a
problem that given an input x and c classes, the model is
required to predict which class the input belongs to. In order
to deal with a c-way classification task, the output of a neural
network is p ∈ Rc where the i-th value in p corresponds to
the probability that the input belongs to class i. If we know
the ground truth class y, we can evaluate the prediction by
calculating the cross entropy loss between them:

L(p, y) = − log(py)

In order to generate a predicted class for the input, the model
will take the class with the largest probability:

ŷ = argmax
y0

py0

A. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of nerual
networks which processes graph data G. In general, G =
(V,E,X), where V = {v1, v2, . . .} denotes the set of nodes,
E = {e1, e2, . . .}, ei ∈ V × V denotes the set of edges
and X = (x1,x2, . . . ,x|V |) represents the feature vector of
each node. Graph data is different from traditional machine
learning data in that in addition to the node features, each
node has relationship with its neighborhood indicated by the
edges. Therefore, a GNN model is usually designed such that
each layer will consider the information in the neighbourhood
of each node. In particular, a GNN based model calculates
an embedding vector θu of each node u ∈ V via iteratively
aggregating information of itself and its neighbours:

θ(k)
u = fk

(
xu,θ

(k−1)
u , {xv,θ

(k−1)
v }v∈N (u)

)
,
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Fig. 2: Illustration of the proposed general detection pipeline EDoG.

where N (u) denotes the neighbours of u in the graph. The
node features xu serves as the initial embedding θ

(0)
u . After

we calculated the node embedding, we can use it in different
tasks such as node classification and abnormal edge detection.

Many GNN models have been proposed such as Graph Con-
volutional Networks (GCN) [23] and Structure2Vec [7] with
impressive performance on various tasks. In this paper, we will
focus on the GCN model. Let Θ(k) = (θ

(k)
1 ,θ

(k)
2 , . . . ,θ

(k)
|V |)

be the matrix of all node embedding vectors at step k. For
GCN, the aggregation function is calculated as:

Θ(k) = σ
(
ÂΘ(k−1)W (k)

)
Â = D̃− 1

2 ÃD̃− 1
2

where Ã = A+ IN , such that A is the adjacency matrix and
IN the identity matrix. D̃ is a diagonal matrix such that D̃ii =∑

j Ãij . The function σ is a non-linear activation function, and
W (k) is the trainable parameters at the k-th layer.

Node classification In a node classification task over
graph data, each node vi has a label yi ∈ Y , but we
only have access to a small subset of the true labels, i.e.,
Ltrain : Vtrain → Y where Vtrain = {vi0 , vi1 , . . .} ⊂ V is the
set of nodes for which we know the true labels. We also have
a set of nodes Vinfer with Vtrain ∩ Vinfer = ∅. Given Ltrain, we
would like to infer the labels of Vinfer. That is to say, we seek
for a model to give a prediction ŷi ∈ Y to each of the node
vi, and we would like to maximize the classification accuracy,
i.e., 1

|Vinfer|
∑

vi∈Vinfer
1{ŷi = yi}.

When performing the node classification task, a GNN model
f first calculates the embedding θu for each node in graph G,
which will then be used to calculate the probability vector

pu = f(G, u) = softmax(W outθu)

indicating the probability of each class that node u belongs
to. During the training process, the goal is to minimize the
cross-entropy loss for the prediction of nodes in Vtrain. During
the evaluation process, the predicted class of each node u is
given by ŷu = argmaxy(pu)y .

B. Adversarial Attacks on Graph-structured Data

Recently, several studies [8], [53], [54] have shown that
graph neural networks for node classification are vulnerable
under adversarial attack. This means that a malicious attacker
can modify the graph G subtly into G′ before it is fed into the
graph neural network such that the graph neural network will
generate wrong classification results as desired by the attacker.
[8], [53] transform this setting into an optimization problem:

max
G′

L(f(G′, vt), yt)

s.t. I(G,G′, vt) = 1

where L(·, ·) is the cross-entropy loss function between pre-
diction vector of a node vt and its ground truth class yt.
I(G,G′, vt) is an equivalency indicator which judges whether
the small modification between G′ and G is reasonable. This
indicator function may vary under different attack setting.

Note that this optimization goal cannot be solved by
gradient-based approach because the constraint space is dis-
crete - the value in the adjacency matrix of a graph can only
be 0 or 1. In order to solve this problem, [8] defines the
equivalency indicator such that the attacker is only allowed
to add/delete one edge. The authors propose to parametrize
the perturbation generator G′ = h(G, vt) as a neural network
and trains it with reinforcement learning [42]. In [53] the
equivalency indicator is defined such that the total amount of
changed edges and node features is bounded. They propose
a simple approximate model of GNNs on which they can
analytically solve the optimization problem.

In [54], the optimization problem is defined differently so
that it is not restricted to a single node, but over a set of nodes
(usually the entire graph):

max
G′

∑
(v,y)∈Vatk

L(f(G′, v), y)

s.t. I(G,G′, Vatk) = 1
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They solve the optimization problem by approximating the
gradient of the adjacency matrix of G′ so that traditional
gradient-based approach is employed.

III. THREAT MODEL AND DETECTION GOAL

In this section, we will first introduce the threat model
on graph neural networks. Then we will discuss our goal as
detecting adversarial attacks against GNNs.

A. Attack Model

Here we mainly focus on the node classification task, where
GNNs are used to perform node classification on graph G =
(V,E,X). Based on the Kerckhoffs’s theory [37], we consider
the strongest attacker who has whitebox access to the trained
GNNs including the model architecture and parameters. The
attacker aims to perform evasion attacks given a trained GNNs,
and the strong attack assumption allows us to best evaluate the
detection ability of EDoG. The attacker’s goal is to change
the predicted label of a target node vt from the ground truth
yt to the adversarial target ŷ′t (ŷ′t ̸= yt) by manipulating the
input test graph data in a subtle.

There are mainly two categories of attacks on GNNs:
• Feature attack: The attacker makes small modification

to the feature vectors of nodes on the graph. In this
attack the graph structure remains unchanged, i.e. G′ =
(V,E,X ′).

• Structure attack: The attacker adds or delete a small
number of edges in the graph. In this attack the node
feature remains unchanged, i.e. G′ = (V,E′, X).

An attacker may use either or both of the above approaches
to attack GNNs. The feature attack is similar to the attack
over other continuous data such as computer vision [18] where
gradient-based optimization techniques can be used. Many
works have been conducted against such kind of attacks. The
structure attack, on the other hand, is a newly-proposed attack
over discrete data structure. Hence, we mainly focus on the
structure attack in this paper and assume that the node features
are not changed.

Without loss of generality, here we mainly focus on at-
tackers that add different numbers of malicious edges to the
graph, which means E ⊂ E′. There are two reasons for such
setting. First, adding edges is usually a cheaper and more
practical attack approach than deleting edges. For instance, in
an undirected citation network an author can easily add edge
by citing others in their own paper but cannot delete edges if
their paper has been cited by others. Second, we empirically
find that adding edges will yield higher attack success rate
than deleting for attackers. As a result, adding edge attack is
a more severe threat for learning tasks on graph structured
data which we will mainly focus on. On the other hand, we
can also leverage the inverse graph to analyze the attacks for
deleting edges.

As for the structure attack, we consider the state-of-the-
art attack strategies targeting on GNNs [8], [53]. Based on
the number of allowed malicious edges and whether these
malicious edges are directly connected to the target node of

Fig. 3: Examples of four state-of-the-art of attacks we consid-
ered in this paper. The red node refers to the target node in
the attack and the red dashed lines are the maliciously added
edges which we aim to detect.

an attacker so as to make direct impact, we can categorize the
attacks into three types as below.

1) Single-edge attack. This attack is proposed by [8] where
an attacker is allowed to add only one malicious edge
to the graph to perform stealthy attack, i.e. |E′\E| = 1.

2) Multi-edge direct attack. This attack is proposed by
[53] where an attacker is allowed to add several edges
to the graph. The maliciously added edges would be
connected to the target node and the number of mali-
cious edges should not exceed the degree of the target
node. That is, |E′\E| ≤ deg(vt) and for any edge
∀e(i, j) ∈ E′\E, vt ∈ e(i, j).

3) Multi-edge indirect attack. This attack is similar to the
Multi-edge direct attack except that the added malicious
edges are not directly connected to the target node. That
is, |E′\E| ≤ deg(vt) and for edge ∀e(i, j) ∈ E′\E,
vt /∈ e(i, j).

In addition, [54] proposes another structure attack which
is known as meta attack. In meta attack, the attacker does
not have a target node but focuses on the entire graph. The
attacker’s goal is to make the GNN model to give wrong
classification result on as much nodes as possible. They allow
the number of added edges to be up to 5% of the total number
of existing edges in the graph. Hence, we have the fourth type
of attack considered in the paper:

4) Meta attack. Here the attacker can add at most 5% of
malicious edges, i.e. |E′\E| ≤ 5%× |E|.

Examples of the four types of attacks are shown in Figure 3.

B. Goals of Adversarial Edge Detection

In order to deal with the aforementioned threat, we aim to
propose a general pipeline to detect the maliciously added
edges |E′\E|. Our detection goal is as follows. Suppose
the defender is provided with a graph G′ = (V,E′, X).
The defender knows that some of the edges may be added
maliciously by the attacker as above, and he/she does not
have any other information about the attack (e.g. the degree of
target nodes or the attack strategies). The goal is to determine
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which edges in E′ are likely to be malicious. On the high
level, the defender will calculate a score sj for each edge
ej ∈ E′ indicating how likely the edge may be a malicious
one. After calculating this score for chosen edges, he/she
can either identify adversarial edges directly (by setting a
proper threshold) or set priorities for further inspection of
“suspicious” edges.

In particular, we would like the detection pipeline to satisfy
the following properties:

• The defender only sees the modified graph G′ and
does not have information about the original graph G.
Otherwise the task would become trivial.

• The pipeline should work without any information about
the attack, such as the attack strategies or the target node.
We will also show later that with such auxiliary informa-
tion the pipeline may achieve a better performance as
ablation studies for understanding purpose.

• The detection pipeline should be general against different
attacks. EDoG should be able to generalize and detect
malicious edges for 1) different types of graphs, 2)
various of attack algorithms and 3) different target nodes
with different degrees.

IV. ANALYSIS OF ADVERSARIAL ATTACKS ON GRAPHS

In this section, we will first summarize the findings and
insights about adversarial edge properties of different types of
attacks. We then provide the high level overview and intuitions
of our proposed detection approaches, as well as the final
detection pipeline EDoG.

A. Malicious Links between Low-degree Nodes: Link Predic-
tion and Generative Model

Here we consider the attack model where the attacker only
adds a small number of adversarial edges, which is a sufficient
condition for target nodes with low degree. This is because
for all the attacks we considered, the maximum number of
allowed adversarial edges is up to the degree of target node.
When an attacker only adds a very small number of edges to
ensure the perturbation is “unnoticeable”, we will first assume
that the perturbation of malicious edges is small enough
to be neglected—any algorithm, except for the target GNN
based models, applied over the malicious graph G′ will return
approximately the same result as if it is applied over G. Thus,
an intuitive approach is that we can train a link prediction
model using G′. Ideally, the link prediction model would
behave as if it were trained using G, so it will predict the node
pairs with edges as high scores and the pairs without edges
as low scores. The malicious edges, however, do not exist in
the benign graph. So the scores of them will be low. Thus,
after applying the link prediction algorithm we can check the
scores for the edges in G′. Those with low scores should
be considered likely to be malicious. In this link prediction
based approach, selecting features that would focus more on
global structures are more helpful, and therefore we propose
to use the GCN based structural features for prediction. We
will discuss the used features in detail in the next section.

In addition, in order to better capture the global structure
information of the original graph data, we also propose genera-
tive models to better approximate the original link distribution.
A key step for training generative models is to ensure that
the data are strictly clean (not malicious) to avoid being
“poisoned”. One approach for reducing the effect of malicious
edges would be to sample subgraphs from the large graph, as
illustrated in Figure 4. The intuition is that if we randomly
sample many small sub-graphs from a large graph, each edge
will only appear in a small proportion of the subgraphs with
high probability by union bound. Thus, most subgraphs will
contain no malicious edges while preserving the information
of the original graph. For example, in our experiment we
find that if we sample the graphs by extracting the two-hop
neighbour for each node, it turns out that the more than 99%
of subgraphs do not contain malicious edges in single-edge
attack on average on the dataset we use, and more than 90%
for multi-edge attack and meta-attack. Therefore, we can train
generative models over the subgraphs to learn a good distribu-
tion approximation of the original graph, and then leverage this
to detect abnormal edges. Note that the naive link prediction
algorithm is not suitable for training over subgraphs in two
aspects: first, many link prediction algorithms are based on
feature extraction over the entire graph; second, link prediction
algorithms tend to have relatively small model capacity to
capture the pattern of entire sub-graphs. Therefore, we can
only train the proposed graph generative models based on
deep neural networks on subgraphs. Based on the generative
models, we will be able to identify which edges are the least
likely to be generated and these edges are highly likely to
be malicious. We find that such generative models are good at
discovering patterns from subgraphs and thus detect malicious
edges.

B. Malicious Links between High-degree Nodes: Outliers

It turns out that both link prediction and graph generation
approach may sometimes fail when applied to multi-edge
direct attack, especially when the node degree is large. We
attribute this to a principle of the collective power of malicious
edges which can be understood as: when there are many
malicious edges connecting to one node, they confirm the
legitimacy of each other mutually. We show an example as
in Figure 5. Suppose one node is originally connected to
three nodes in class 1. If an attacker adds just one malicious
edge that connects it to a node in class 2, this edge will
seem abnormal and is easily detected. However, if the attacker
instead adds three malicious edges in class 2, the legitimacy
of each malicious edge will be supported by the rest, and they
will all be judged to be benign.

Under this circumstance, the neighbours of the target node
in G′ should contain a number of different classes (e.g. 50%
in class 1 and 50% in class 2), while the classes of other
nodes’ neighbors are usually quite uniform. As a result, we
may calculate several edge features indicating the information
of the neighbourhood of edges, e.g. number of different classes
appearing in the neighbourhood of the edge. We could expect
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Fig. 4: An illustration of sampling subgraphs to train the graph generative model to capture benign graph structure properties.
It is shown that most sampled graphs will not contain malicious edges when only one adversarial edge is added.

(a) Add one edge. (b) Add three edges.

Fig. 5: An example of of “collective power of malicious
edges”. When only one malicious edge is added (left), it should
be easily detected be the graph generative model; but when
more malicious edges are added (right), all the malicious edges
will appear to be benign.

that the feature vector of a malicious edge would be different
from those of benign edges. Therefore, we could build an
outlier detection model over all the edges and consider the
outliers as malicious.

V. EDoG: ADVERSARIAL EDGE DETECTION

In this section, we will introduce the proposed primitives for
adversarial detection considering different scenarios, followed
by the proposed general detection pipeline EDoG.

A. LinkPred (LP)

A direct link prediction algorithm is first considered to
integrate given its simplicity and effectiveness. For example,
in [31] the authors calculate five features (as we will discuss
in Section VI-A) for each node pair (u, v) and use the feature
vector to judge whether the node pair should be connected.
However, we can do more than that—using GNN, we may
discover some latent feature space in addition to the features
used in link prediction. In practice, we first adopt a two-layer
graph convolutional network to calculate the node embedding
vector θu for each node. Then for each pair node (u, v) we
use a bilinear hidden layer to calculate a hidden feature

fGNN
u,v = σ(θ⊺

uWedgeθv)

Algorithm 1 Algorithm for predicting how likely each node
pair in Etarget should be linked in the graph G = (V,E,X).
fgen in the algorithm refers to the Graph Generation Model
which takes a graph as input and output the the score indicating
the probability of link for each unlinked node pair in the graph.

1: procedure EDGELINKPROBS(fgen, G, Etarget)
2: LinkProbs← [ ]
3: for e in Etarget do
4: LinkProbs[e]← [ ]

5: π = permutation(|E|)
6: E0 = ∅
7: for t in 0, 1, . . . , |E| − 1 do
8: for e in Etarget\Et do
9: LinkProb = fgen(V,Et, X)[e]

10: LinkProbs[e]← LinkProbs[e] + [LinkProb]
11: /* Add one edge in each iteration. */
12: Et+1 ← Et ∪ E[πt]

13: for e in Etarget do
14: LinkProbs[e]← average(LinkProbs[e])
15: return LinkProbs

where σ(·) is the sigmoid function. This feature is appended
to the feature vector of each node pair to form a 6-dimensional
vector and then passed through a logistic regression layer. The
entire model is trained end-to-end. The inference process is
similar to [31]—we calculate the score for all existing edges,
and the edges with low scores are likely to be malicious.

B. GraphGenDetect (GGD)

Following the intuition in IV-A, we propose to train a
generative models to capture the complex structure of different
subgraphs. There have been several works on graph generative
models [5], [10], [38], [50], [51]. However, most of the
existing generative models aim to generate as diverse as
possible graphs from the training set. On the other hand,
our goal is to leverage the generative model to predict which
edges are more likely to be generated, which means we hope
to preserve the properties of original graph. Hence, we aim
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Algorithm 2 Algorithm for using Graph Generation model
fgen to detect malicious edges on graph G′ = (V,E′, X).

1: procedure MALICIOUSEDGEDETECT(fgen, G′)
2: /* Sample sub-graphs. */
3: G′

0, G
′
1, . . . , G

′
n = Sample(G′)

4: LinkProbs← []
5: for e in E do
6: LinkProbs[e]← []

7: /* Enumerate through sub-graphs. */
8: for G′

i in G′
0, G

′
1, . . . , G

′
n−1 do

9: SubLinkP ← EdgeLinkProbs(fgen, G′
i, E)

10: for e in E′
i do

11: LinkProbs← LinkProbs+ SubLinkP [e]

12: /* Probability of being malicious. */
13: MalProbs← []
14: for e in E′ do
15: MalProbs[e]← 1− Average(LinkProbs[e])

16: return MalProbs

to design a generative model that could discover the graph
structural pattern and does not need to include much diversity
in the output. As a result, we propose a deep graph generation
model inspired by sequence generation approaches [41] –
the model will generate the edges one-by-one to construct the
entire graph. We train the generative model based on randomly
sampled subgraphs, and apply the trained model to predict
which edges in E′ are the least likely to be generated. These
edges with low generative likelihood would be considered to
be malicious.

Our model, denoted as fgen, will take as input a graph
G = (V,E,X) and output a probability distribution indicating
that if we are going to add one edge into the graph, which node
pair is likely to be added. That is to say, the output of fgen is
a probability distribution over all the node pairs that have not
been connected yet:

e(t) ∼ P
[
(u, v)

∣∣(u, v) /∈ E
]

Based on this model, we can generate a graph given only node
information (V,X) in a step-by-step procedure. In particular,
we start from an empty edge set E(0) and gradually add edges
to the set. At each time step t, we input (V,E(t−1), X) into
the fgen, sample a new edge using the output probability
distribution and add the new edge into the edge set to get
E(t).

In practice, we use a GCN with bilinear output layer to
calculate the probability. We first apply a two-layer GCN to
calculate the embedding vector θ(t−1)

u for each node u at time
t − 1. Then, for each node pair (u, v), we apply a bilinear
function s

(t−1)
uv = (θ

(t−1)
u )⊺Wθ

(t−1)
v to calculate the score. In

order to determine which edge will be generated at the next
time step, we take softmax of the scores of all the node pairs
which have not been connected to calculate the probability as:

P
[
(u, v)

]
= softmax

({
suv

∣∣(u, v) /∈ E(t−1)
})

Algorithm 3 Algorithm for training the Graph Generation
model fgen given a graph G′ = (V,E′, X). Enonexist is a
randomly sampled set of node pairs such that no edge exists
among each node pair.

1: procedure MODELTRAININGLOSS(fgen, G′, Enonexist)
2: /* Sample sub-graphs. */
3: G′

0, G
′
1, . . . , G

′
n = Sample(G′)

4: loss← 0
5: Eall = E′ ∪ Enonexist

6: for G′
i in G′

0, G
′
1, . . . , G

′
n−1 do

7: SubLinkP ← EdgeLinkProbs(fgen, G′
i, Eall)

8: for e in Eall do
9: label = e is an existing edge ? 1 : 0

10: loss← loss+ cross ent(label,SubLinkP[e])
11: return loss

After training the generative model fgen, we aim to calcu-
late: given a graph G and a set of node pairs Etarget, what
is the likelihood ratio that there exists an edge between each
node pair in Etarget?

The detailed algorithm is shown in Algorithm 1. In par-
ticular, given a subgraph Gi we will 1) randomly generate a
permutation to get an order for edges. Following this order, we
are going to start with an empty edge set and add one edge to
the graph at each time step; 2) at each time step t, feed in the
current adjacency matrix A(t) and node feature X to model
fgen and calculate the scores suv for the desired node pairs in
Etarget; 3) calculate the final score of an edge as the average
of the scores which we calculate in all the time steps.

Using Alg. 1, we can infer which edges are likely to be
malicious in graph G′ as in Alg. 2. During this inference stage,
we will first sample sub-graphs from G′ and calculate the
probability of links for edges in each sub-graph. Then the score
of edges in the original graph can be calculated by taking the
average accordingly. A small score means the edge is unlikely
to be generated, and therefore it is likely to be malicious.

We will use gradient-based method to minimize a training
loss iteratively in order to train the model fgen. At each
training step, the process for calculating the training loss is
shown in Alg 3. Similar to the inference stage, we first sample
sub-graphs from G′ = (V,E′, X). However, in order to train
the model, we not only calculate the probability of the linked
node pairs (i.e. edges in sub-graphs) but also calculate the
probability for a set of unlinked node pairs Enonexist. This
set is uniformly sampled from the unlinked node pairs in the
graph and we sample a different set in different training step.
We let the set size be |Enonexist| = |E′|. Hence, the training
loss at each time step is a binary cross entropy loss over all
the node pairs. The ground truth label is 1 if the node pairs is
linked in the original graph and 0 otherwise. After calculating
the loss, we can apply the gradient-based optimizer to update
the model parameters in fgen.
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C. Filtering for GraphGenDetect
The graph generation model indeed has a strong capacity in

learning patterns from sub-graphs. However, the existence of
malicious graphs may still harm the performance of Graph-
GenDetect because our graph generation model would treat
the pattern of malicious edges as benign and learn it well,
leading the algorithm to be unstable. Therefore, we propose
an effective filtering process, i.e. we can first filter away a
proportion of edges in the original graph which seems to
be suspicious and train our generation model on the filtered
graph. If the malicious edges are indeed filtered away, most
of the sampled graphs should be benign during the training
process and we can expect that our trained generative model
will capture the structure properties of benign subgraphs.

In order to decide which edges are likely to be malicious and
should be filtered, we can use algorithms introduced before to
evaluate the maliciousness score for each edge. In practice,
we find our LinkPred approach a good way to filter away
edges, as it is a stable algorithm and could reach acceptable
performance to filter away malicious edges in most cases.
We denote this approach as LinkPred +GraphGenDetect.
That is to say, we first apply LinkPred over G′ and to get
a score for each edge indicating how likely it is malicious.
Then we will remove the top k edges with highest malicious
scores, getting G′

filter = (V,E′
filter, X). Thus, we can train our

GraphGenDetect model on G′
filter and finally use the trained

model to detect the malicious edges over G′.

D. OutlierDetect (OD)
Based on the intuition in Section IV-B, we propose the

OutlierDetect to further identify adversarial edges mainly
for high-degree victim nodes. The intuition of this approach
comes from an observation on the attacker behaviour during
direct structure attack: in order to make the target victim
node be misclassified into another class (say class 1), the
attacker tends to add many edges between the target nodes with
nodes that belong to class 1. Hence, the class distribution of
the target node’s neighbours can be quite diverse considering
its previous connections. In contrast, the classes in a benign
node’s neighbourhood should be quite uniform. Inspired by
this phenomenon, we propose a novel outlier detection model
for the edges based on the class distribution of the neigh-
bourhood nodes of an edge. In particular, we calculate the
following features for each node:

• The number of different classes of the neighbourhood
nodes.

• Average appearance time of each class in the neighbour-
hood nodes.

• Appearance time of the most frequently appeared class
in the neighbourhood nodes.

• Appearance time of the second most frequent class in the
neighbour (0 if only one class is in the neighbourhood).

• Standard deviation of the appearance time of each class
in the neighbourhood.

• Logarithm of the betweenness centrality [14] of each
node in the graph.

Note that we do not have ground truth classes information for
most nodes, so we would first fit a GNN over the graph G′ and
use the prediction as the label. For each edge, we calculate the
above features for both nodes and concatenate them together,
constructing a 10-dimensional feature vector. We then train a
one-class SVM with the RBF kernel over these edge feature
vectors to detect the outliers. The trained model will calculate
a score for each edge indicating its abnormality. The larger
the value is, the more likely that the edge is a malicious one.

E. General Pipeline for Detection - EDoG

The primitive approaches we propose above focus on differ-
ent attacking scenarios. In particular, LinkPred + GraphGen-
Detect and GraphGenDetect approach work well in most
cases, except for the case when many malicious edges are
connected to a single node (target node with high degree). On
the other hand, OutlierDetect is very good at detecting such
kinds of attacks with target nodes of high degree. Therefore,
similar to [6], in which a strong model is fit over graph data,
we need to design a unified framework for the overall detection
on adversarial edges.

Based on the node degree information, our final pipeline,
namely Edge Detection of Graph (EDoG), is shown in Fig-
ure 2. It is an aggregated model which averages the output
of LinkPred + GraphGenDetect, OutlierDetect and Graph-
GenDetect. In particular, we apply the three approaches over
the graph and get their prediction score for each edge. Then for
edges between high-degree nodes (in practice we choose the
criteria that the sum of degree of the two nodes is larger than
6), we use the average of scores from the three approaches;
otherwise, for low degree nodes we only use the average
score of LinkPred + GraphGenDetect and GraphGenDe-
tect. The advantage in doing this is: first, GraphGenDetect
and LinkPred + GraphGenDetect perform not very well at
attacks with high node degree by Multi-edge direct attack,
and incorporating it with OutlierDetect significantly improve
the detection performance; second, the GraphGenDetect-
based approach performs well but sometimes not very stable,
so an aggregated model could help improve its robustness
significantly.

VI. EXPERIMENTAL RESULTS

In this section, we will first introduce the dataset and
evaluation metrics we use, followed by the attack models, and
performance analysis of the proposed detection methods.

A. Experimental Setup

Datasets and evaluation metrics. We evaluate our de-
tection model on two public citation networks, one private
transaction rule graph from a major company, and two types of
synthetic dataset with controlled properties. The benign accu-
racy of our model on the datasets are shown in Appendix A.
We hope that such variety of datasets can demonstrate the
flexibility of our approach.

The real-world network datasets we use are Cora [26] and
Citeseer [15]. These two datasets are citation networks where
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a node represents a research paper and an edge represents
a citation between two papers. Cora has 2,708 nodes and
5,429 edges; Citeseer has 3,327 nodes and 4,732 edges. Each
node contains a bag-of-word feature vector and has a ground
truth label indicating which type of paper it is. During the
training process, only a small part of node labels are available
(140 for Cora and 120 for Citeseer). The model is trained to
determine what are the labels for the other nodes. Cora is a
7-way classification task and Citeseer is 6-way. This setting
is commonly used in the task of node classification on graph
data [8], [23], [53].

We also evaluate EDoG on a private transaction rule graph
from a major company. In this rule graph (denoted as Rule),
each node represents a rule in the system and each edge
represents a relationship that two rules are frequently co-
triggered. We extract a subgraph with 719 nodes and 3,375
edges. Each node has a related feature vector, including
information such as author ID and its application in the system.
The node classification task is to determine whether a rule is
a temporary test rule or not.

For experiments on synthetic graphs with controlled proper-
ties, we generate two Erdos-Renyi graphs [12] and one scale-
free graph [2]. The two Erdos-Renyi graphs are Gn,p1

and
Gn,p2 with n = 1000 and p1 = lnn

n , p2 = 2 lnn
n . The scale-

free graph is generated using Barabasi-Albert algorithms, with
1,000 nodes and parameter m = 1. We would like to assign
node features and node labels that are related with the graph
structures. Therefore, given a synthetic graph we first assign
a 20-dimensional random feature eu to each node u. Then we
let the node features to correlate with its neighbours by repeat:

eu =
∑

v∈N (u)

ev, eu = eu/||eu||2

where N (u) is the neighboring nodes of u. After repeat the
process several times (in practice we repeat 3 times), we can
get a hidden feature vector eu which is related with graph
structures. The final node feature vector xu is a discrete
random binary vector, the probability that the i-th bit of xu

equals 1 is:

Pr[x(i)
u = 1] = sigmoid(e(i)u )

And the label of u is yu = 1 if
∑

i x
(i)
u > 0 and otherwise

yu = 0. The node classification accuracy can reach around
80% for ER graphs and around 75% for scale-free graphs.

For each dataset and attack approach, we randomly pick
several target victim nodes and perform the state-of-the-art
attacks to generate malicious edges. Then we perform the
detection method on the new graphs and check whether the
malicious edges can be detected without attack information.
The evaluation metric is the Area Under ROC Curve (AUC),
which is a commonly used metric to verify the performance
of a detection method.

Attack strategies. We evaluate the attack strategies as
introduced in Section III-A. We only choose the target nodes
that are successfully attacked and randomly sample the target
nodes with different degrees. We observe in practice that

TABLE I: Degree of the selected target victim nodes. We aim
to cover diverse target nodes with a large range of degrees.

Cora Citeseer Rule

Single-edge 1,2,3,4,5,
6,6,7,8,10

1,2,3,3,4,
4,5,6,7,9

1,2,3,4,4,
5,5,6,7,10

Multi-edges
direct

1,2,3,4,4,6,
7,8,8,10,12,

14,12,13,15,31,
19,32,16,17

1,2,2,3,4,5,
6,6,7,8,9,10,
11,12,13,15,
16,17,18,20

1,2,3,4,5,6,7,
8,9,10,11,12,
14,14,15,16,
17,18,19,20

Multi-edges
indirect 3,4,14,12,13,17 1,4,6,8,13,17 3,6,8,11,11,15

Multi-edges direct attack is the most successful attacking
model, followed by Single-edge attack and finally Multi-edges
indirect attack. Therefore, we selected 20, 10 and 6 target
nodes respectively for these three attack methods on real-world
data. For synthetic data, we simply pick two target nodes, one
with the smallest degree and the other with the largest degree.
The selected target node degrees are shown in the Table I. For
the meta-attack, we follow the same setting as in the paper1

and add 5% malicious edges to the graph. We use a standard
2-layer GCN for the classification tasks and the training setting
is the same as in [8], [53], [54].

Baseline Detection Approaches. We compare the proposed
EDoG with two state-of-the-art detection approaches as below.
We will show the performance of other traditional metrics in
Appendix B.

1) Anomaly Link Discovery Approach (ALD): Our first
baseline is the anomaly link detection approach as proposed in
[31]. This approach trains a link prediction-based algorithm for
detection. For each node pair (u, v) it calculates five features,
including the similarity of neighbours, the number of common
neighbours, the distance between two nodes, the preferential
attachment of two nodes and the similarity of the node features
of u and v. Then it trains a logistic regression classifier over
the feature vectors of the node pairs, where the ground truth
label of node pairs with edge is 1, otherwise 0. After the model
is trained, we calculate the probability of link for each existing
edge. The smaller the probability is, the more likely that edge
is a malicious one.

2) Katz Index Approach (Katz): Another baseline is an
anomaly link discovery method described in [33], in which
they used a high-order heuristic named Katz index [24] to
measure the connectivity of each node pair (u, v) as

Katz(u, v) =

∞∑
l=1

βl|walksl(u, v)|

where β is damping factor to assign more weight to shorter
walks and walksl(u, v) is the set of random walks with the
length of l between u and v. The intuition behind this measure
is that compared with the normal links, malicious links often
have small Katz index values. Then we can calculate the Katz
index for each node pair and used the softmax function for
normalization. After that, the value assigned for each node
pair is bounded between 0 and 1, and we use this value as the

1https://github.com/danielzuegner/gnn-meta-attack
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TABLE II: The average AUC of EDoG and baselines against different attacks without knowledge of the attack type.

Single-edge attack Multi-edges direct attack Multi-edges indirect attack Meta attack
ALD 0.5989 0.4293 0.3499 0.4759
Katz 0.8502 0.6214 0.7985 0.6964

EDoG 0.8610 0.7551 0.8288 0.7277

probability for the existence of the link between the nodes.
The smaller the probability is, the more likely that edge is a
malicious one.

Implementation Details. We implement all the detection
models in Pytorch [29] except for the ALD and Katz and
OutlierDetect where we use the scikit-learn toolkit [30] for
logistic regression and one-class SVM. In order to sample
subgraphs from the original graph, we iterate through each
node and extract its two-hop neighbourhood as a subgraph.
Thus, we can get a set of subgraphs whose cardinality equals
the number of nodes in the original graph. For LinkPred, we
train it for 500 epochs using SGD optimizer with learning
rate of 0.01 and we sample among node pairs which are not
connected so that the number of positive and negative labels is
the same. For OutlierDetect we fit a one-class svm with radial
basis function kernel. For GraphGenDetect we train it using
Adam optimizer [22] for 15 epochs with learning rate 0.001.
We observe that the detection result of the GraphGenDetect
model is reasonable fast (e.g. 5 epochs can be enough) while
the result can be non-stable. Therefore, during test time we
evaluate the trained model from the 6th to 15th epoch and
take the average scores as the final prediction. For filtering
model LinkPred + GraphGenDetect, we filter away 50% of
the edges using the result of LinkPred.

B. Detection Performance on Real-world Datasets

We will first provide the overall performance comparison
between our proposed pipeline EDoG and the state-of-the-art
baselines [31], [33] with and without knowledge of the at-
tacker’s approach to demonstrate its efficacy, and then present
how each of our proposed detection approaches perform on
different real-world datasets and attacks strategies.

Overall Performance without knowledge of attack type.
Despite the efficacy of our approach compared with base-
lines, in many cases we do not know the attack approach.
Therefore, we need a uniform pipeline, EDoG, to defend
against the various types of attacks. The performance of
EDoG compared with the baselines is shown in Table II. To
avoid data dependency and make the comparison more clear,
we average the results over datasets to evaluate the overall
performance. As we can see, our approach EDoG outperforms
the baselines on all the tasks. Also, we observe that defending
against Single-edge attack and Multi-edges indirect attack are
relatively easy tasks. Our pipeline can achieve over 0.8 AUC
on these tasks. The other two attacks are relatively hard to
defend. Some results of baseline approaches are even worse
than random guess. As we discussed before, this may be due
to the principle of the collective power of malicious edges.
Nevertheless, our approach can still get an over 0.7 detection
AUC against such kind of attack since we use the scores of

OutlierDetect to detect edges between high degree nodes.
This again demonstrates the robustness of our general pipeline.

Overall Performance with knowledge of attack type.
As shown in Table III, our approach EDoG outperforms
the state-of-the-art baselines in most cases significantly when
there is knowledge about the attack type. The performance
of different detection approaches matches with our intuition
discussed above, and different models do well against different
types of attacks. Hence, when we have knowledge of the
attack approach, we can use the detection method that is
good at dealing with it. This is also useful when we want to
defend against specific type of attacks. In particular, LinkPred
+ GraphGenDetect works well for Single-edge attack and
Multi-edges direct attack on small-degree target nodes (degree
≤ 5). For Multi-edges direct attack on large-degree target
nodes, OutlierDetect is the appropriate choice. On Multi-
edges indirect attack, it turns out that both GraphGenDetect
and LinkPred + GraphGenDetect would work well and we
choose LinkPred + GraphGenDetect to be coherent with that
in Single-edge attack. For Meta attack, EDoG is used since
Meta-attack may contain various types of malicious edges. The
average AUC of the proposed approaches is close to 0.85,
demonstrating the efficacy of our detection pipeline EDoG
against different attacks.

In order to explore the detection performance of different
detection primitives, we show the results of each detection
method that we proposed in Appendix C. We will observe that
graph generation-based method has superior performance for
low-degree attacks while outlier detection method performs
better on high-degree attacks. With our ensemble method
EDoG, the performance will be good for all tasks.

C. Analysis on Synthetic Dataset

Besides the real-world graph dataset, we also evaluate
the attack approaches and our detection framework on the
synthetic ER graphs and scale-free BA graph, aiming to obtain
in-depth analysis of our detection approaches in the controlled
environments. In this set of experiments, we perform in-depth
analysis for how well the EDoG perform in terms of detecting
adversarial edges, if the graph has certain properties to make
the detection harder. The result is shown in Table IV. As
we can see, the performance of our detection approach over
synthetic graphs is even better than that over real-world data.
The performance on the scale-free graph, which is similar to
real world citation network structure, reaches an average of
above 92% AUC on all tasks. The performance on Erdos-
Renyi graphs are comparatively low, yet still achieve an
average AUC of around 80%. This shows that our approach
does exploit the structure of scale-free graph to improve
the performance. Also, we observe that our approach beats

10



TABLE III: AUC of the our detection approaches compared with baselines when we have knowledge of the attack type.
Single-edge attack Multi-edges direct attack Multi-edges indirect attack Meta attack

Node degree [1, 5] (5,+ inf) [1, 5] (5, 10] (10, 15] (15,+∞) [1, 10] (10,+ inf) -

Cora
ALD 0.6745 0.4331 0.5363 0.4312 0.4372 0.4302 0.5384 0.4350 0.4820
Katz 0.9213 0.8282 0.7965 0.5727 0.3984 0.3946 0.8262 0.7562 0.6189

(LP + GGD) ⊗ OD ⊗ EDoG 0.9088 0.9110 0.8319 0.7378 0.9144 0.9123 0.8368 0.8414 0.6884

Citeseer
ALD 0.7942 0.5806 0.4853 0.2696 0.2726 0.2744 0.4229 0.3715 0.3956
Katz 0.7677 0.6482 0.6049 0.4004 0.2851 0.2490 0.6401 0.6124 0.5042

(LP + GGD) ⊗ OD ⊗ EDoG 0.8350 0.8750 0.6047 0.8024 0.9176 0.9220 0.7827 0.6712 0.5223

Rule
ALD 0.5609 0.5499 0.4449 0.4752 0.5357 0.5585 0.2577 0.0741 0.5502
Katz 0.9689 0.9666 0.9696 0.9389 0.9392 0.9071 0.9796 0.9766 0.9660

(LP + GGD) ⊗ OD ⊗ EDoG 0.9845 0.9885 0.9946 0.9865 0.9841 0.9832 0.9934 0.9796 0.9724

TABLE IV: The average AUC on synthetic dataset. BA stands for the scale-free graph generated by Barabasi-Albert algorithm.
ER is the average result of the Erdos-Renyi graphs generated with p1 = lnn

n and p2 = 2 lnn
n respectively.

Single-edge attack Multi-edges direct attack Multi-edges indirect attack Meta attack
Dataset BA ER BA ER BA ER BA ER
ALD 0.5000 0.8465 0.5000 0.6146 0.7495 0.6535 0.5194 0.4550
Katz 0.6265 0.4298 0.2633 0.3077 0.1667 0.6100 0.6123 0.4322

EDoG 0.9975 0.8289 0.7896 0.7397 0.9437 0.8247 0.9626 0.7985

baselines on all Multi-edges direct attack and Meta attack,
which we consider as hard tasks. For the other two tasks, the
baseline can sometime outperform our approach.

Hence, we conclude that EDoG can generalize to different
graph structures. In addition, the baseline approaches can
sometimes work well in clean synthetic dataset, but in com-
plicated and noisy real-world graph structure, the robustness
of our approach is superior.

D. Visualization of Attack and Detection
To intuitively understand the adversarial attack and corre-

sponding detection performance, we include a visualization
of an attack and our detection on the Rule dataset as shown
in Fig. 6. The node in the middle is the target node and the
attacker performed multi-edges direct attack to inject several
malicious edges connected to it. We can observe that the
target node is a test rule and the attacker’s goal is to fool
the model to predict it as non-test rule, so the malicious edges
are all connected to the non-test rules. During detection, our
EDoG pipeline detects such adversarial edges easily. All the
malicious edges are detected with a high EDoG score.

Risk Management:
AccountTakeover Test

Risk Management:
Reset

Trust Rule:
Counterfeit Test

Risk Management:
Fraud Test

Risk Management:
Fraud Test

Compliance Rule: 
Blocking of xxx

Compliance Rule: 
Blocking of xxx

Compliance Rule: 
Blocking of yyy

Compliance Rule: 
Blocking of xxx

Malicious EdgesBenign EdgesTest Rules Non-Test Rules

Fig. 6: Visualization of one multi-edges direct attack on Rule
dataset. The node in the middle is the target node. Our EDoG
pipeline successfully detects all the injected malicious edges.

E. Adaptive Attacks

In this subsection, we consider the adaptive attack where the
attacker has full knowledge of our detection pipeline and will
intentionally try to bypass our detection during their attack. We
design the adaptive attack as follows: given the clean graph
G, the attacker will first run the EDoG pipeline and get the
prediction scores for all the node pairs. Then, during the attack
process, the attacker will only inject the malicious edges with
a lower EDoG prediction score (in practice we use only the
lower 25% edges). With such process, the attacker tries to only
inject the edges that seem benign to the EDoG system. Note
that the edges are not guaranteed to evade the detection, since
the EDoG score will change after the injection of malicious
edges.

We show the results of adaptive attacks as in Table V
and compare with the standard attack which is allowed to
inject arbitrary edges. In order to perform adaptive attack, the
attacker’s choice of malicious edges are restricted. Therefore,
we can observe that the attack success rate is greatly reduced.
In most cases the success rate is reduced by over 50%. This
shows that our detection pipeline is difficult to bypass even if
the attacker has full knowledge of it.

TABLE V: Comparison of the attack success rate between
standard attack and adaptive attack against EDoG.

Attack Cora Citeseer Rule
Single-edge 0.475 0.463 0.246

Standard Multi-edges direct 0.729 0.842 0.556
Attack Multi-edges indirect 0.149 0.211 0.052

Meta 0.376 0.333 0.240
Attack Cora Citeseer Rule

Single-edge 0.070 0.217 0.146
Adaptive Multi-edges direct 0.486 0.397 0.483
Attack Multi-edges indirect 0.087 0.066 0.033

Meta 0.026 0.022 0.000

F. Detecting Random Edges on Graphs

In order to evaluate whether our pipeline is able to capture
the behaviours of pure malicious attackers, we conduct another
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experiment where we add random edges into the graph. The
detailed results and analysis are shown in Appendix D. We
can observe that baseline approaches will consider random
edges as some malicious behaviour, while ours will ignore
those randomness and focus only on those malicious edges.

VII. RELATED WORK

Adversarial attacks on graphs. Recently the robustness
of machine learning models has been studied in numerous
settings such as adversarial examples [18], [44], [46], [47].
Most of the researches on on a continuous input space (e.g.
images and audios). As for text domain, some of attacks are
based on manually constructed perturbations ( [20], [35]) and
[16] adopted the gradient attacking method to the embedding
space of texts. As for graphs, performing attacks can be more
difficult especially when we want to make perturbations on
edges, since the gradient attacking method is not easy to
be used here. So far there are several attacks proposed on
graphs: some of the works attempted to attack the graph neural
networks [8], [53], [54], as [8] proposed three attack methods
on both node classification and graph classification problems
and [53] developed an attack method targeting on a particular
node based on greedy approximation scheme. Rather than
reducing the classification result of a particular node, [54]
attacked the overall performance of node classification tasks
through meta learning method. Moreover, [4], [40] studied the
vulnerability of unsupervised node embedding models.

Defense methods against adversarial attacks. Defense
on neural networks is much harder compared with attacks
( [27]). Currently, most of the defense methods are based
on (1) changing the architecture of deep learning models:
[28] leveraged distillation training techniques and reduce the
magnitude of gradients between the pre-softmax layer (logits)
and softmax outputs. [43] used the graph attention network
( [45]) to harness information from a graph of peer samples
to improve the robustness of network. (2) adversary training
methods: [18] managed to augment the training dataset with
adversarial examples. (3) data preprocessing: [49] hardened
the deep learning models against adversarial perturbations on
images through reducing the color depth and smoothing on
spatial domain. [27], [34] attempted to filter the adversarial
noise of the input samples with autoencoders and Generative
Adversarial Networks (GAN) ( [17]) respectively. Although
those approaches are somehow effective, they still have some
limitations and the task of defending against adversarial at-
tacks is still challenging.

In this paper we focus on detecting malicious edges in a
graph under attack. There are also works aiming to directly
defend the attacks and mitigate the effect of malicious edges
[52]. Comparisong with defense approaches, our detection
approach is superior in two properties: first, detecting the
malicious edge can help identify the attacker. For example,
in the case of social network we can find out which user is
adding the malicious link. Second, the defense approaches are
usually more prone to adversarial attack, since they incorporate
the defense mechanism in the model and are therefore easier

to be attacked as a whole when the attacker has knowledge of
such mechanism.

Robust Graph Neural Networks. Considering that the
threat of adversarial attacks on GNNs is newly emereged,
the research with regard to defense methods on graph neural
networks is limited. [55] proposes a certificate for GNN
robustness under adversarial attack by changing node features.
[13] proposes adversarial retraining pipeline to improve GNN
model robustness and it also deals with node feature attack.
The goal of these two works is different from ours since
we are defending against graph structure attack. [48] also
proposes an adversarial retraining pipeline to defend against
graph structure attack. They evaluate over the meta attack and
the retrained model still suffers from performance decrease.
[52] proposes a GNN structure where each layer is no longer
deterministic but a stochastic transformation layer. They show
that using this structure the model performance will increase
under adversarial structure attack. However, when the number
of added edges increases the model will still fail.

Anomaly detection on graphs. There have been various
researches on the topic of ‘Anomaly Detection’ or ‘Fraud
Detection’ on graphs [1], [21], [36]. Note that the detection
purpose is different from ours: anomaly detection on graphs
aims to find nodes/edges that differ a lot from others. While
the two proposed subtle adversarial attack on graphs appear
to contain too small magnitude of perturbation to be detected,
and here we focus on graph neural networks instead of general
graph analysis. In addition, [6] studied on how to fit a good
model over graph data when only one graph is available. They
focus on the classification performance while our work focuses
on the detection of malicious edges, and we have completely
no supervision. Our work is going to defend against graphical
network models by detecting malicious edges with original
approaches. [9], [39] propose virtual adversarial training on
GNNs as a way to improve model performance but they do
not evaluate their model against adversarial attack.

VIII. CONCLUSIONS

Overall, we propose the first general detection pipeline
EDoG against the state-of-the-art attack on GNNs. We in-
vestigate into the attack and defense properties and find that
different attack strategies led to different behaviors: malicious
edges connecting low degree nodes will not likely to appear
as outliers while the ones connecting high degree nodes will.
Thorough experiments show that the average detection AUC
of EDoG can reach above 80% and adaptive attacks are hard
to be performed given the complexity of the detection pipeline.
These results shed light on the design of robust GNNs against
attacks on graph-structured data.
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TABLE VI: The benign accuracy of the model on different
datasets.

Task Cora Citeseer Rule

Benign Accuracy 0.819 0.697 0.859

APPENDIX A
BENIGN ACCURACY

In Table VI, we show the benign accuracy of our GNN
models on the different datasets.

APPENDIX B
TRADITIONAL METRICS

In addition to the baselines mentioned in the paper, we also
evaluate two heuristic metrics which are commonly used in
link prediction tasks - the common neighborhood (CN) score
and the Adamic-Adar (AA) score. The CN score will calculate
the common neighbors between two nodes, while the AA score
will calculate the inverse logarithmic degree centrality of the
common neighbors. We show the detection performance of the
metrics on Cora and Citeseer in Table VII. We can observe
from the tables that our approach can still outperform these
baselines in detecting malicious edges.

APPENDIX C
PERFORMANCE OF DIFFERENT DETECTION PRIMITIVES ON

REAL-WORLD DATASETS

In this section we will explore in-depth on the detection
performance against different types of attacks based on our
proposed detection primitives.

Single-edge attack. The result for Single-edge attack is
shown in Table VIII. As we can see, the link prediction-
based approaches perform quite well. The best approach is
LinkPred + GraphGenDetect, achieving an average of over
0.9 AUC over the tasks. When comparing the performance
of the combination model LinkPred + GraphGenDetect
with GGD, we see that the combination model significantly
improves the detection performance as the LinkPred filters
out the malicious edges (i.e., AUC > 0.5). This shows that
our GraphGenDetect detection model can learn “benign
properties” from normal graphs and improve detection per-
formance. On the other hand, a direct GraphGenDetect can
achieve good performance in some cases. This shows that
GraphGenDetect is a good yet unstable model, so a filtering
algorithm can be combined to reduce the variation and improve
its robustness.

In addition, We observe that the performance of LP + GGD
in Cora is slightly better than in Citeseer while Rule has the
best performance. This is because that the graph of Citeseer is
more sparse than Cora (with more nodes and fewer edges), and
Rule is the most densne graph. After filtering, the information
contained in Citeseer dataset is reduced and therefore it is
harder for the model to learn useful patterns.

Multi-edge direct attack. The result for Multi-edge direct
attack is shown in Table VIII. We see that as the node degree

increases, approaches related to link prediction algorithms per-
form no better than random guessing. As we have discussed in
Section IV-B, we attribute this to a principle of the ‘collective
power of malicious edges’. By contrast, this collective power
does not fool the OutlierDetect approach; its average AUC is
over 0.85 when target node degree is larger than five, and 0.9
when it is larger than ten.

Multi-edge indirect attack. The result for Multi-edge
indirect attack is shown in Table VIII. We see that the detection
AUC decreases compared with Single-edge attack. This is
reasonable: since more malicious edges are added, the defense
would be more challenging. We observe that the LinkPred
approach is affected the most. Therefore, the filtering algo-
rithm does not help to improve the performance of Graph-
GenDetect. The best approach here is GraphGenDetect.
One surprising observation is that the performance in Citeseer
is better than Cora. We think that this phenomenon is also
because of the sparsity: malicious edges tend to accumulate
in a small neighbourhood of the target node, and the sparsity
induces that subgraphs of nodes far away from the target node
will not contain malicious edges. Therefore, the proportion
of benign subgraphs will increase and therefore the trained
generative detection model can learn a better pattern of benign
properties.

Meta attack. The result for Meta attack is shown in Table
VIII. We see that none of the approaches shows a very good
performance against such kind of attack, especially over the
Citeseer dataset. This is because this meta attack may be a
combination of different type of attacks, and a large number
of malicious edges are added (5%). Nevertheless, we can still
see that our EDoG pipeline reaches acceptable performance on
over the tasks. The detection performance on the Rule dataset
is still very good, since it is a dense graph and contains more
information for detection.

APPENDIX D
RESULTS ON DETECTING RANDOM EDGES ON GRAPHS

In this experiment, we randomly choose 1, 2, 4, 8, and 16
unconnected node pairs in Cora and Citeseer datasets to add
random edges. We then run our detection pipeline as well as
the baseline approaches on the graph to see whether these
random edges will be identified as the malicious edges. In
Table IX, we show the ratio of detecting non-random edges.
Hence, larger value means that the detection model will not
be distracted by the added random edges. In particular, 50%
means that the detection method will not distinguish random
and benign edges which is a desired property.

We can observe that baseline approaches tend to detect
random edges as malicious edges while EDoG will ignore
most random added edges. This is because these baseline
approaches are essentially designed to detect abnormality in
the graphs and therefore they will recognize the abnormal
behaviour of the randomly added edges. On the other hand,
our detection pipeline EDoG will not identify the random
edges as malicious ones. In some cases the value is near
50% which means that the model views random edge to be
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TABLE VII: Detection performance comparison between EDoG and traditional heuristic metrics against the malicious edges.

Task Method Single-edge attack Multi-edge direct attack Multi-edge indirect attack Meta attack

Cora
CN 76.94 51.99 74.89 64.69
AA 76.94 48.55 74.61 64.59

EDoG 90.99 84.91 83.91 68.84

Citeseer
CN 31.29 46.05 65.40 51.43
AA 27.71 40.78 64.07 49.47

EDoG 85.50 81.17 72.69 52.23

TABLE VIII: The AUC of the detection components we proposed against different types of attacks. Here we explicitly consider
target node with various degrees to demonstrate the generalization of our detection methods. Different components have their
own advantages under certain setting.

Single-edge attack Multi-edges direct attack Multi-edges indirect attack Meta attack
Node degree [1, 5] (5,+ inf) [1, 5] (5, 10] (10, 15] (15,+∞) [1, 10] (10,+ inf) -

Cora

LP 0.8960 0.8944 0.8319 0.6564 0.3787 0.3224 0.8506 0.8136 0.7935
OD 0.2946 0.5233 0.4326 0.7378 0.9144 0.9123 0.2122 0.3588 0.4379

GGD 0.6876 0.8535 0.6156 0.6864 0.4712 0.4643 0.6907 0.8156 0.5749
LP + GGD 0.9088 0.9110 0.8319 0.6564 0.3787 0.3224 0.8368 0.8414 0.7568

EDoG 0.9478 0.8794 0.7618 0.6910 0.6368 0.6202 0.6985 0.8080 0.6884

Citeseer

LP 0.8612 0.7612 0.5954 0.1633 0.2155 0.3181 0.6582 0.5924 0.3221
OD 0.0858 0.5211 0.3457 0.8024 0.9176 0.9220 0.4498 0.3874 0.5939

GGD 0.5547 0.5972 0.8137 0.6945 0.6834 0.5868 0.9068 0.7530 0.5232
LP + GGD 0.8350 0.8750 0.6047 0.2505 0.4027 0.3910 0.7827 0.6712 0.3681

EDoG 0.7051 0.6894 0.7219 0.5524 0.7217 0.6248 0.9018 0.6574 0.5223

Rule

LP 0.9845 0.9885 0.9370 0.9787 0.9631 0.9675 0.9932 0.9021 0.8658
OD 0.9672 0.9836 0.9946 0.9865 0.9841 0.9832 0.9934 0.9503 0.9579

GGD 0.7869 0.8833 0.7979 0.7025 0.8175 0.7355 0.9032 0.8207 0.7880
LP + GGD 0.9481 0.9382 0.9331 0.8713 0.9015 0.8320 0.9119 0.9297 0.9315

EDoG 0.9679 0.9767 0.9633 0.9297 0.9410 0.8971 0.9658 0.9413 0.9724

TABLE IX: The ratio of detecting non-random edges on Cora and Citeseer dataset. Larger value indicates that the model does
not detect the added random edges, and 50% means the detection method will not distinguish random and benign edges, which
is desired (Results that outperform the baselines by more than 3% are highlighted).

Cora Citeseer
#Random edge 1 2 4 8 16 1 2 4 8 16

ALD 10.98% 17.54% 26.15% 11.88% 15.00% 4.35% 27.42% 11.37% 30.51% 29.11%
Katz 2.16% 7.74% 19.83% 7.18% 5.47% 7.07% 4.16% 7.11% 13.61% 8.56%

EDoG 9.64% 52.35% 34.52% 30.74% 17.43% 36.32% 42.21% 23.32% 22.21% 45.19%

similar as normal ones. This is ideal for our goal since our
model will not be distracted by the random edges in the task
of malicious edge detection. Comparing the result with the
baseline approaches, we claim that our EDoG pipeline can
not only detect malicious behaviors of the attacker, but also
resilient against random added edges, which has great potential
to improve the robustness of GNNs.
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