
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

From Shapes to Shapes: Inferring SHACL Shapes
for Results of SPARQL CONSTRUCTQueries

Anonymous Author(s)

ABSTRACT

SPARQL CONSTRUCT queries allow for the specification of data pro-

cessing pipelines that transform given input graphs into new out-

put graphs. It is now common to constrain graphs through SHACL

shapes allowing users to understandwhich data they can expect and

which not. However, it becomes challenging to understand what

graph data can be expected at the end of a data processing pipeline

without knowing the particular input data: Shape constraints on the

input graph may affect the output graph, but may no longer apply

literally, and new shapes may be imposed by the query template. In

this paper, we study the derivation of shape constraints that hold

on all possible output graphs of a given SPARQL CONSTRUCT query.

We assume that the SPARQL CONSTRUCT query is fixed, e.g., being

part of a program, whereas the input graphs adhere to input shape

constraints but may otherwise vary over time and, thus, are mostly

unknown. We study a fragment of SPARQL CONSTRUCT queries

(SCCQ) and a fragment of SHACL (Simple SHACL). We formally

define the problem of deriving the most restrictive set of Simple

SHACL shapes that constrain the results from evaluating a SCCQ

over any input graph restricted by a given set of Simple SHACL

shapes. We propose and implement an algorithm that statically

analyses input SHACL shapes and CONSTRUCT queries and prove

its soundness and complexity.

CCS CONCEPTS

• Information systems → Graph-based database models; Re-

source Description Framework (RDF); Query languages; Ex-

traction, transformation and loading.

KEYWORDS

SHACL, semantic queries, SPARQL CONSTRUCT, data pipelines

ACM Reference Format:

Anonymous Author(s). 2018. From Shapes to Shapes: Inferring SHACL

Shapes for Results of SPARQL CONSTRUCT Queries. In Proceedings of Make

sure to enter the correct conference title from your rights confirmation emai

(Conference acronym ’XX). ACM, New York, NY, USA, 19 pages. https://doi.

org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Shape description languages like SHACL [15] can play two differ-

ent, but equally important roles. They can be used normatively

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

in order to impose schematic constraints on the evolution of a

graph, such that a triple store may automatically reject illegitimate

configurations. They can also be used informatively such that a

software developer knows how to display the graph, or to inform

downstream applications, e.g., [17].

Graph query languages like SPARQL CONSTRUCT or G-CORE [1]

allow for the fruitful composition of queries into data processing

pipelines. To query a given pipeline, the developer must understand

what it may output, regardless of its inputs. Even if the possible

inputs to a query or composition of queries are well-described

using a shape language like SHACL, it becomes very challenging

to understand which shape constraints apply after one or several

querying steps. SHACL constraints that apply on the input graph

may or may no longer apply, e. g., existential quantification may

become inapplicable because the corresponding relationship might

not be part of the WHERE clause, and new constraints may or may

not be imposed by the CONSTRUCT template. A developer may hold

misconceptions about such structural concerns of the result graph,

which might even seem to be endorsed by one particular graph

instance, but can lead to errors (e.g., when processing query results

within a program) for other valid instances of input graphs.

In this paper, we define the problem of computing a set of SHACL

shapes characterizing the possible output graphs of a SPARQL

CONSTRUCT query based on (1) the set of shapes applicable to input

graphs, and (2) the graph patterns and the template of the query. We

present an algorithm for constructing a sound upper approximation

by statically analyzing shapes and query, relying on an encoding in

description logics, and without referring to any specific input graph.

Thus, our approach allows for investigating SPARQL CONSTRUCT
queries and data processing pipelines regardless of what valid data

will be encountered in the future.

Outline. The remainder of this paper is structured as follows. In

Section 2 we introduce foundations, including a subset of SPARQL

queries, SHACL shapes and the fragment of description logics

we rely upon. In Section 3 we formalize our validation problem.

Throughout Section 4, Section 5 and Section 6 we break the valida-

tion problem down into subproblems, and present algorithms for

solving them. In Section 7 we introduce a preliminary implementa-

tion of our approach, present related work in Section 8, and finally

conclude in Section 9. The appendix contains full proofs (including

a proof for NP-hardness of our approach), extended examples, ex-

perimental results showing feasibility of the implementation, and

details on how the approach can be generalized to a larger fragment

of SHACL.

2 FOUNDATIONS

We use uppercase letters 𝐴, 𝐵, 𝐸 ∈ C for description logic concept

names, lowercase letters 𝑎, 𝑏, 𝑒 ∈ I for description logic individual

names, and lowercase letters 𝑝, 𝑟 ∈ R for description logic role names.

We interpret all RDF classes, RDF instances and RDF properties as

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

description logic concepts, individuals, and roles, respectively. We

use lower case letters𝑤, 𝑥,𝑦, 𝑧 ∈ V as SPARQL variables.We assume

that C, I, R, and V are four finite, pairwise disjoint sets. While we

use finite sets to simplify definitions, this is not a restriction since

for practical applications, these sets can be as large as needed.

For clarity, we always use description logic terminology rather

than mixing it with RDF and SPARQL terminology, e.g., we will

refer to “concept” rather than “RDF class”.

2.1 The Description Logic ALCHOI
We use the description logicALCHOI to define the semantics of

RDF graphs and SHACL shapes following the formalism by Bogaerts

et al. [6]. We next present the standard ALCHOI syntax and

assume standard semantics as defined in Baader et al. [4].

Definition 1 (ALCHOI concept descriptions). ALCHOI con-

cept descriptions are defined by the following grammar

𝐶 F ⊤ | ⊥ | 𝐴 | ¬𝐶 | {𝑎} | 𝐶 ⊓𝐶 | 𝐶 ⊔𝐶 | ∃𝜌.𝐶 | ∀𝜌.𝐶
𝜌 F 𝑝 | 𝑝−

where the symbols ⊤ and ⊥ are two special concept names, and 𝐴,

𝑎, and 𝑝 stand for concept names, individual names, and role names,

respectively. Given two concept descriptions 𝐶 and 𝐷 , two indi-

vidual names 𝑎, 𝑏 ∈ I, and two role descriptions 𝜌1, 𝜌2 (as defined

above), 𝐶 ⊑ 𝐷 and 𝜌1 ⊑ 𝜌2 are axioms, 𝑎:𝐶 is a concept assertion

and (𝑎, 𝑏):𝑝 is a role assertion. We write 𝐶 ≡ 𝐷 as an abbreviation

for two axioms 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝐶 , and likewise for 𝜌1 ≡ 𝜌2.

2.2 Simple RDF Graphs

According to the RDF specification [28], an RDF graph is a finite

set of triples whose elements belong to three pairwise disjoint

sets: IRIs, blank nodes, and literals. For convenience, we assume

the fragment of RDF graphs, called Simple RDF graphs, that only

considers triples whose elements are IRIs. Furthermore, we assume

that IRIs are partitioned in the four sets C, I, R, and {rdf:type}, and
that an RDF triple has either the form (𝑎, 𝑝, 𝑏) or (𝑎, rdf:type, 𝐴)
where 𝑎, 𝑏 ∈ I and 𝐴 ∈ C. We interpret each triple (𝑎, 𝑝, 𝑏) as an
assertion (𝑎, 𝑏):𝑝 , and each triple (𝑎, rdf:type, 𝐴) as an assertion

𝑎:𝐴. With these assumptions we define Simple RDF graphs, and

introduce running examples in Figure 1.

Definition 2 (Simple RDF Graph Syntax). A Simple RDF graph (or

just graph) is anALCHOI ABox𝐺 where the concept description

of each concept assertion in 𝐺 is a concept name 𝐴 ∈ C.

Bogaerts et al. [6] highlight that RDF graphs have two different

semantics, depending on the inference task we want to perform: If

the task is deduction, the semantics of a graph is given by an ABox,

and following the no-unique-name, no-domain-closure and open-

world assumptions. If the task is validation, the semantics is given

by a model. Instead of relying on a model-theoretic semantics for

validation, our approach benefits from a proof-theoretic semantics.

As Reiter [23] suggests, the model theoretic semantics of databases

can be defined in proof theoretic terms: A database can be seen as

a set of formulas instead of a model, where queries are formulae

to be proven, and satisfaction of constraints is defined in terms of

consistency. We can therefore extend the deduction semantics of

Simple RDF graphs with axioms that encode these assumptions,

𝑎𝐴 𝑏 𝐵, 𝐸

𝑝

𝑝, 𝑟

(a)𝐺1

𝑎
𝐴

𝑏

𝐵, 𝐸
𝑒
𝐸

𝑝𝑝

(b)𝐺2

Figure 1: Two example graphs, where we visualize rdf:type

edges as floating labels next to nodes (e.g., 𝐴 𝑎 for 𝑎:𝐴).

which are based on the proof-theoretic semantics for relational

databases by Reiter [23].

Proposition 1 below implies the equivalence of the Bogaerts et al.

[6] model theoretic SHACL semantics (Definition 3) and our proof

theoretic SHACL semantics (Definition 4).

Definition 3 (Graph Interpretation [6]). The canonical interpre-

tation of a Simple RDF graph 𝐺 is the interpretation I𝐺 such

that ΔI𝐺 = I; for each 𝑎 ∈ I, 𝑎I𝐺 = 𝑎; for every concept name

𝐴 ∈ C, 𝐴I𝐺 = {𝑎 | 𝑎:𝐴 ∈ 𝐺}; and for every role name 𝑟 ∈ R,
𝑟I𝐺 = {(𝑎, 𝑏) | (𝑎, 𝑏):𝑟 ∈ 𝐺}. A graph𝐺 is model-valid according to

a set Σ of ALCHOI axioms if and only if I𝐺 is a model of Σ.

Definition 4 (Simple RDF Graph Validation Semantics). The ax-

ioms of a Simple RDF graph𝐺 , denoted T𝐺 , are the TBox consisting
of the following ALCHOI axioms:

(1) Domain Closure Assumption (DCA): ⊤ ≡ ⊔
𝑎∈I{𝑎}.

(2) Unique Name Assumption (UNA): {𝑎} ⊓ {𝑏} ≡ ⊥, for each
pair of distinct individual names 𝑎, 𝑏 ∈ I.

(3) Closed-World Assumption (CWA):

• 𝐴 ≡ ⊔
𝑎:𝐴∈𝐺 {𝑎}, for each concept name 𝐴 ∈ C,

• ∃𝑝.{𝑎} ≡ ⊔
(𝑏,𝑎) :𝑝 {𝑏}, and

• ∃𝑝− .{𝑎} ≡ ⊔
(𝑎,𝑏) :𝑝 {𝑏}, for each role name 𝑝 ∈ R and

each individual name 𝑎 ∈ I.
(T𝐺 ,𝐺) is the validation knowledge base of 𝐺 . A graph 𝐺 is proof-

valid according to a set Σ of ALCHOI axioms if and only if

Σ is consistent with the validation knowledge base of 𝐺 (i.e., the

knowledge base (T𝐺 ∪ Σ,𝐺) admits a model).

Proposition 1. For a graph𝐺 and set ofALCHOI axioms Σ, the
following statements are equivalent: (i) 𝐺 is model-valid according

to Σ, (ii) 𝐺 is proof-valid according to Σ, and (iii) 𝐺 is proof-valid

according to {𝜑} for every 𝜑 ∈ Σ.

2.3 Simple SHACL Shapes

Following the idea that a SHACL schema is a description logic

TBox [6], a SHACL shape is an axiom of the form𝜓 ⊑ 𝜙 where𝜓

and 𝜙 are concept descriptions, called the target query and the shape

constraint, respectively. We next define the core fragment of SHACL

we consider here. (For an extension toALCHOI constraints, see

the appendix.)

Definition 5 (Simple SHACL Syntax). A Simple SHACL shape (or

just a shape) is an ALCHOI axiom𝜓 ⊑ 𝜙 such that the concept

expressions𝜓 and 𝜙 are defined by:

𝜓 F 𝐴 | ∃𝑝.⊤ | ∃𝑝− .⊤
𝜙 F 𝐴 | ∃𝑝.𝐴 | ∀𝑝.𝐴 | ∃𝑝− .𝐴 | ∀𝑝− .𝐴

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

A Simple SHACL schema S is an ALCHOI TBox that consists

of a finite set of Simple SHACL shapes.

Given that shapes are defined in terms of ALCHOI axioms,

their semantics is defined in terms of the semantics of ALCHOI
axioms over the validation knowledge base of a graph.

Definition 6 (Simple SHACL Semantics). A graph 𝐺 is valid for a

set 𝑆 of Simple SHACL shapes, denoted valid(𝐺, 𝑆), if and only if𝐺

is proof-valid according to 𝑆 .

Example 1. Consider the set of shapes 𝑆1 = {𝑠1, 𝑠2, 𝑠3} where
𝑠1 = 𝐴 ⊑ ∃𝑝.𝐵, 𝑠2 = ∃𝑟 .⊤ ⊑ 𝐵 and 𝑠3 = 𝐵 ⊑ 𝐸. Shape 𝐴 ⊑ ∃𝑝.𝐵
targets all individuals that are instances of 𝐴, and requires that

there exists at least one edge 𝑝 to a 𝐵. Both graphs in Figure 1 are

valid with respect to 𝑆1.

2.4 Simple Conjunctive CONSTRUCT Queries
This section defines the fragment of SPARQL CONSTRUCT queries
this paper considers, called Simple Conjunctive CONSTRUCT Queries

(SCCQ, or just queries). This fragment follows the semantics pro-

posed by Kostylev et al. [16] and is restricted to basic graph patterns

generated by adding variables for individual names on Simple RDF

graphs.

Definition 7 (SCCQ Syntax). An atomic pattern 𝑡 is defined by the

following grammar:

𝑡 F 𝑎:𝐴 | 𝑥 :𝐴 | (𝑎, 𝑏):𝑝 | (𝑥, 𝑎):𝑝 | (𝑎, 𝑥):𝑝 | (𝑥,𝑦):𝑝
where 𝐴 stands for concept names, 𝑎 and 𝑏 for individual names,

𝑝 for role names, and 𝑥 and 𝑦 for variables. A finite set of atomic

patterns is a basic graph pattern. Given a basic graph pattern 𝑃 , we

write var(𝑃) and ind(𝑃) to denote the respective sets of variables

and individual names occurring in pattern 𝑃 . Given two basic graph

patterns 𝑃 and 𝐻 , where var(𝐻) ⊆ var(𝑃), the expression 𝐻 ← 𝑃

is a SCCQ, where 𝐻 and 𝑃 are called the template and the pattern

of the query, respectively.

A valuation of a basic graph pattern 𝑃 is a function 𝜇 : V∪ I→ I
such that 𝜇 (𝑎) = 𝑎 for every 𝑎 ∈ I. In a slight abuse of notation,

given two elements𝑢, 𝑣 ∈ V∪I and a basic graph pattern 𝑃 , we write
𝜇 (𝑢:𝐴) = 𝜇 (𝑢):𝐴, 𝜇 ((𝑢, 𝑣):𝑝) = (𝜇 (𝑢), 𝜇 (𝑣)):𝑝 , and 𝜇 (𝑃) = {𝜇 (𝑡) |
𝑡 ∈ 𝑃}. Intuitively, a valuation substitutes variables in a pattern by

individual names. The semantics of SCCQ is defined below.

Definition 8 (SCCQ Semantics). The result of evaluating a SCCQ

𝐻 ← 𝑃 over a Simple RDF graph 𝐺 is the Simple RDF graph,

denoted J𝐻 ← 𝑃K𝐺 , defined as follows:

J𝐻 ← 𝑃K𝐺 =
⋃

𝜇 (𝑃) ⊆𝐺
𝜇 (𝐻).

Intuitively, the pattern 𝑃 retrieves valuations 𝜇 such that 𝜇 (𝑃) is
a subgraph of 𝐺 , which are used to generate the output graph by

replacing variables in the template.

Example 2. Let 𝑞1 = 𝐻 ← 𝑃 =

{y:𝐸, z:𝐵, (y, z):𝑝} ← {(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸}
. For evaluation over the first example graph, J𝑞1K𝐺1

, we need to find

valuations 𝜇 where 𝜇 (𝑃) ⊆ 𝐺1. This holds for 𝜇 where 𝜇 (w) = 𝑎,

𝜇 (x) = 𝑎, 𝜇 (y) = 𝑏, and 𝜇 (z) = 𝑏. Hence, the result is the graph

J𝐻 ← 𝑃K𝐺1
= 𝜇 (𝐻) = {𝑏:𝐸,𝑏:𝐵, (𝑏, 𝑏):𝑝}. Similarly, evaluation

J𝑞1K𝐺2
= {𝑏:𝐸,𝑏:𝐵, 𝑒:𝐵, (𝑏, 𝑏):𝑝, (𝑏, 𝑒):𝑝}.

3 FORMAL PROBLEM STATEMENT

We aim to construct a set of shapes characterizing the possible

result graphs of a query where the input is constrained by a set of

shapes as well.

Definition 9 (Input and Output Graph). A graph 𝐺in is an input

graph with respect to a finite set of shapes Sin if valid(𝐺in,Sin). A
graph𝐺out is an output graph for a query 𝑞 and a finite set of shapes

Sin if there exists an input graph 𝐺in such that 𝐺out = J𝑞K𝐺in
.

Definition 10 (Vocabulary). A vocabulary is the set of concept and

role names that occur in a concept description 𝐶 , shape 𝑠 , graph 𝐺 ,

or template of a query 𝑞, denoted voc(𝐶), voc(𝑠), voc(𝐺), or voc(𝑞),
respectively.

Definition 11 (Relevancy). Shape 𝑠 = 𝜓 ⊑ 𝜙 is relevant for

query 𝑞 if there exists a graph 𝐺+ with voc(𝐺+) ⊆ voc(𝑞) such
that valid(𝐺+, {𝑠}) and (T𝐺+ ,𝐺+) ̸|= 𝜓 ≡ ⊥, and a graph 𝐺− with

voc(𝐺−) ⊆ voc(𝑞) such that not valid(𝐺−, {𝑠}).

Problem OutputShapes formalizes the set of shapes that best

characterize the possible output graphs of a SCCQ. The first re-

striction on the solution ensures only relevant shapes are in the

output, i.e., shapes that validate some graphs in the vocabulary

voc(𝑞), but not all of them (Definition 11). This excludes, for exam-

ple, shapes with targets outside the vocabulary (which are thereby

vacuously satisfied), or shapes with constraints requiring concept

or role names outside the vocabulary, which can never be satisfied.

The second restriction states that Sout-opt defines an upper bound

for the set of output graphs, while the third requires this upper

bound to be minimal.

Problem OutputShapes : (Sin, 𝑞) ↦→ Sout-opt
Input A finite set of shapes Sin and a SCCQ 𝑞.

Output A set of shapes Sout-opt such that:

1. every 𝑠 ∈ Sout-opt is relevant for 𝑞,
2. for every 𝐺 with valid(𝐺,Sin) and 𝐺out = J𝑞K𝐺 ,
valid(𝐺out,Sout-opt),
3. the set of graphs 𝐺 such that valid(𝐺,Sout-opt) is minimal.

Example 3. Consider 𝑞1 (Example 2) and 𝑆1 (Example 1). The

shapes 𝐸 ⊑ ∃𝑝.𝐵, 𝐸 ⊑ 𝐵 ∈ 𝑆1-out constrain the results of evaluating

𝑞1 on any graph that is valid with respect to 𝑆1, e.g., the example

graphs in Figure 1. Shape 𝐸 ⊑ ∃𝑝.𝐵 ∈ 𝑆1-out follows directly from

the query template, whereas shape 𝐸 ⊑ 𝐵 is only contained in 𝑆1-out
because 𝐵 ⊑ 𝐸 holds on all input graphs and we can thus infer that

all bindings for y are also bindings for z.

Simple SHACL shapes are not sufficiently expressive to rule out

all impossible output graphs of a query. For example, we know

for 𝑞1 and 𝑆1 that each instance of 𝐸 has a 𝑝 edge to itself. Simple

SHACL shapes cannot express reflexiveness, so graphs without

reflexive 𝑝 cannot be ruled out.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 COMPUTING CANDIDATE OUTPUTSHAPES

We break down ProblemOutputShapes into two subproblems: The

generation of a finite set of candidate shapesScan – a superset of the
solution – and the filtering of this set (Problem IsOutputShape).

Problem 2 IsOutputShape : (Sin, 𝑞, 𝑠) ↦→ {yes,na}
Input A finite set of shapes Sin, a SCCQ 𝑞 = 𝐻 ← 𝑃 , and a shape

𝑠 that is relevant for this query 𝑞.

Output Does valid(J𝑞K𝐺in
, {𝑠}) hold for every graph 𝐺in where

valid(𝐺in,Sin)?

Algorithm 1 outlines this approach, by referring to Problem

IsOutputShape. In Section 6, we will define a sound, but not com-

plete, algorithm solving this problem (Algorithm 2). Thus, Algo-

rithm 1 is a sound approximation of problem OutputShapes satis-

fying its first two, but not the third condition. In the following we

use Sout to refer to such an approximation of Sout-opt.

Algorithm 1 OutputShapes : (Sin, 𝑞) ↦→ Sout
Input A finite set of shapes Sin and a SCCQ 𝑞.

Output The set of output shapes Sout.
1: Sout ← ∅, Scan ← the finite set of shapes over voc(𝑞)
2: for all 𝑠 ∈ Scan do

3: if IsOutputShape(Sin, 𝑞, 𝑠) = YES then

4: Sout ← Sout ∪ {𝑠}
5: return Sout

In order to obtain a finite set of candidates Scan, Proposition 2

allows us to discard shapes that do not describe output graphs and

limit thus the search space of Algorithm 1 to the shapes that are

built from the vocabulary of the query.

Proposition 2. If a shape 𝑠 = 𝜓 ⊑ 𝜙 is relevant for a SCCQ 𝑞, then

𝑠 satisfies one of the following two conditions: (i) voc(𝑠) ⊆ voc(𝑞), or
(ii) voc(𝜓) ⊆ voc(𝑞) and𝜙 is either∀𝑝.𝐴 or∀𝑝− .𝐴 where 𝑝 ∈ voc(𝑞)
and 𝐴 ∉ voc(𝑞).

In order to cover all relevant shapes that satisfy condition (i), we

can include the finite combinations of elements in the vocabulary

of the query. Condition (ii) requires special care: Each role name

𝑝 ∈ voc(𝑞) defines a family of shapes of the form 𝜓 ⊑ ∀𝑝.𝐴 or

𝜓 ⊑ ∀𝑝− .𝐴, where 𝐴 ∉ voc(𝑞). To explore this family, it suffices

to consider a representative by including in the set of candidate

shape constraints for each role name 𝑝 ∈ voc(𝑞) the two concept
descriptions ∀𝑝.𝐴 and ∀𝑝− .𝐴, such that 𝐴 ∉ voc(𝑞).

The search space is therefore bounded by the vocabulary of the

query, which is relatively small. In the appendix we show that there

are (𝑛 + 2𝑚) (𝑛 + 4𝑛𝑚 + 2𝑚) −𝑛 candidate shapes if voc(𝑞) contains
𝑛 concept names and𝑚 role names.

5 AXIOMATIZATIONS OVER QUERY

EXECUTIONS

A query 𝑞 = 𝐻 ← 𝑃 works on any input graph 𝐺in defined by

Sin (Definition 9) and returns a result graph 𝐺out in two steps:

By matching 𝑃 with 𝐺in, determining valuations 𝜇 where 𝜇 (𝑃) ⊆
𝐺in, and then by replacing variables in 𝐻 with these valuations

producing 𝐺out. We now want to axiomatize how all possible 𝐺in

are connected with their corresponding 𝐺out.

Virtually putting these axiomatizations together creates an ex-

tended graph that holds axioms from these two steps allowing us

to prove statements about 𝐺out. Thereby, we distinguish inputs

and step outcomes by a syntactic trick that rewrites input symbols

𝐴, 𝑝 into fresh symbols ¤𝐴, ¤𝑝 after the first step, and into ¥𝐴, ¥𝑝 after

the second step. We also write, e.g., ¤𝐺 , meaning substitution of all

symbols 𝐴, 𝑝 in graph 𝐺 with ¤𝐴, ¤𝑝 , respectively.
Therefore, these rewritten symbols allow us to encode assertions

that are valid for only specific states of query execution. Variable

bindings, on the other hand, hold throughout: We codify a variable

binding 𝜇 (𝑥) = 𝑎 as a concept assertion 𝑎:𝑉𝑥 , where 𝑉𝑥 is a fresh

concept name. Note, that we assume that all concept names and role

names with dots, as well as concept names for variable concepts,

exist as fresh names in C and R.
Example 4 illustrates the construction of such an extended graph,

which is defined in Definition 12.

Definition 12 (Extended Graph). Given an input graph 𝐺in and

a query 𝐻 ← 𝑃 , the following graphs are defined with correspon-

dences to the query execution steps:

(1) The intermediate graph 𝐺
med
B

⋃
𝜇 (𝑃) ⊆𝐺in

𝜇 (𝑃).
(2) The variable concept graph𝐺V containing an assertion 𝑎:𝑉𝑥

if and only if there exists a valuation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in

and 𝜇 (𝑥) = 𝑎.

(3) The output graph 𝐺out B J𝑞K𝐺in
.

(4) The extended graph 𝐺ext B 𝐺in ∪ ¤𝐺med
∪𝐺V ∪ ¥𝐺out.

Example 4. Consider𝑞1 (Example 2), 𝑆1 (Example 1), and the graph

𝐺1 (Figure 1) as one possible input graph for 𝑞1. The respective

extended graph and its components are given in Figure 2. Note,

that these graphs satisfy different axioms (in different namespaces),

e.g., ∃ ¤𝑝− .⊤ ⊑ ¤𝐸 is valid in ¤𝐺
med

but ∃𝑝− .⊤ ⊑ 𝐸 is not valid in 𝐺in.

A range of axioms are valid for 𝐺ext, such as ¤𝐸 ⊑ 𝐸 or 𝑉𝑦 ⊑ 𝑉𝑧 .

Indeed, these axioms are valid on every extended graph of 𝑞1, as

long as valid(𝐺in, 𝑆1), e.g., 𝐺in = 𝐺1 or 𝐺in = 𝐺2 (Figure 1).

Assertions added per step are sound, but not sufficient to fully

characterize what happens at each query execution step. Therefore,

axioms we can find to characterize the relationships between 𝐺in

and 𝐺out will be sound but incomplete. In the following sections,

we will introduce additional axioms per step to extend possible in-

ferences and thus determine a tighter description by output shapes.

Proposition 3 shows that axioms valid on any of the graphs 𝐺in,

𝐺
med

,𝐺V and𝐺out are valid on the extended graph when applying

syntactic rewriting, and vice versa.

Proposition 3. Given a graph 𝐺in and a query 𝑞, let the graphs

𝐺
med

, 𝐺out, and 𝐺ext be defined according to Definition 12. For every

axiom 𝜑 that does not include names with dots (e.g., ¤𝐴, ¥𝐴, ¤𝑝 , ¥𝑝), the
following equivalences hold:

(1) valid(𝐺in, {𝜑}) if and only if valid(𝐺ext, {𝜑}).
(2) valid(𝐺

med
, {𝜑}) if and only if valid(𝐺ext, { ¤𝜑}).

(3) valid(𝐺out, {𝜑}) if and only if valid(𝐺ext, { ¥𝜑}).

6 CHECKINGWHETHER ISOUTPUTSHAPE

Algorithm 2 (IsOutputShape) checks for a given shape 𝑠 if the

rewritten shape ¥𝑠 is entailed by a set of axioms valid for every

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝑎𝐴,𝑉𝑤 ,𝑉𝑥 𝑏
𝐵, ¤𝐵, ¥𝐵,𝑉𝑦,
𝐸, ¤𝐸, ¥𝐸,𝑉𝑧

𝑝, ¤𝑝

𝑝, 𝑟

¥𝑝
𝑎𝐴 𝑏 𝐵, 𝐸

𝑝

𝑝, 𝑟

(a)𝐺in

𝑎 𝑏 ¤𝐵, ¤𝐸
¤𝑝

𝑝, 𝑟

(b) ¤𝐺
med

𝑎 𝑉𝑤 ,𝑉𝑥

𝑏 𝑉𝑦,𝑉𝑧

(c)𝐺V

𝑏 ¥𝐵, ¥𝐸¥𝑝

(d) ¥𝐺out

Figure 2: On the left the graph 𝐺ext as the union of 𝐺in (a), ¤𝐺
med

(b), 𝐺V (c), and ¥𝐺out (d).

extended graph𝐺ext derived from𝑞 andSin. Based on Proposition 3,
Corollary 1 establishes the formal foundation for IsOutputShape.

Corollary 1. Let 𝑞 be a SCCQ, Σ a set of ALCHOI axioms such

that valid(𝐺ext, Σ) for every extended graph 𝐺ext of 𝑞, and 𝑠 a shape

including no names with dots. If Σ |= ¥𝑠 , then valid(𝐺out, {𝑠}) for every
output graph 𝐺out of 𝑞 .

In the remainder of this section, we will construct such a set of

axioms Σ. We start by inferring the assumptions of the validation

knowledge base of𝐺ext based on the atoms of the input query. Next,

we identify subsumptions between query variables in different

components of the input query by establishing a mapping between

them. Finally, we include subsumptions between role names by

considering the query variables constraining them. In the appendix

we prove that Problem IsOutputShape is NP-hard.

Algorithm 2 IsOutputShape : (Sin, 𝑞, 𝑠) ↦→ {yes,na}
Input A finite set of shapes Sin, a SCCQ 𝑞 = 𝐻 ← 𝑃 , and a shape

𝑠 that is relevant for this query 𝑞.

Output Does valid(J𝑞K𝐺in
, {𝑠}) hold for every graph 𝐺in where

valid(𝐺in,Sin)?
1: Σin ← Sin
2: Σ

vkb
← UNA(𝑞) ∪ CWA(𝑞)

3: Σmap ← MASin (𝑃)
4: Σprop ← RS(𝑞)
5: Σ← Σin ∪ Σ

vkb
∪ Σmap ∪ Σprop

6: return if Σ |= ¥𝑠 then yes else na

6.1 Axiomatizations from Validation KB

Assumptions

We first utilize the assumptions of the validation knowledge base

(see Definition 4) to infer axioms from a query 𝑞 that are valid on

any extended graph of 𝑞. Since we do not know all individual names

in the extended graphs, we limit the UNA-encoding to individual

names that appear in the query (Definition 13), which are in any

non-empty extended graph per definition (see Definition 12).

Definition 13 (UNA-encoding). The UNA-encoding of a query 𝑞,

denoted UNA(𝑞), is the minimal set of ALCHOI axioms such

that for every pair of distinct individual names 𝑎, 𝑏 occurring in 𝑞,

the axiom {𝑎} ⊓ {𝑏} ≡ ⊥ is in UNA(𝑞).

Proposition 4. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext,UNA(𝑞)).

We do not infer any axioms based on the DCA because a SCCQ

does not determine the set of individual names I. Concerning the
CWA, a query imposes restrictions on concept names that appear

in the query pattern (e.g., ¤𝐴), the query template (e.g., ¥𝐴), variables
(e.g. 𝑉𝑥), and individual names (e.g., {𝑎}). All other concept names

are irrelevant (see Proposition 2).

We define the following utility functions C𝑢 (Definition 14) for

referring to the nominal concept or variable concept for an indi-

vidual name or variable 𝑢, and vcg(𝑞), referring to the variable

connectivity graph of a query 𝑞.

Definition 14. For each individual name or variable 𝑢, C𝑢 is {𝑎}
if 𝑢 is an individual name 𝑎, or C𝑢 is 𝑉𝑥 if 𝑢 is a variable 𝑥 .

Definition 15 (Variable Connectivity Graph). The variable con-

nectivity graph of query pattern 𝑃 , denoted vcg(𝑃), is the graph
whose nodes are the atoms in 𝑃 , and which has an undirected edge

{𝑡1, 𝑡2} if and only if atoms 𝑡1 and 𝑡2 share a variable.

A SCCQ imposes restrictions on concept names in extended

graphs, by definition of 𝐺
med

, 𝐺out, and 𝐺V. For example, each

atom 𝑥 :𝐴 ∈ 𝑃 implies 𝑉𝑥 ⊑ ¤𝐴, since concept 𝑉𝑥 is defined from all

individual names referred to by 𝑥 , which according to the evaluation

semantics of SCCQ result from filtering𝐴. More generally, all atoms

𝑥 :𝐴 and (𝑥,𝑦):𝑝 in 𝑃 (Example 4) restrict the instances of variable

concept 𝑉𝑥 . These observations can be combined over all atoms in

a query, leading to Definition 16.

Definition 16 (CWA-encoding). The CWA-encoding for a SCCQ

𝑞 = (𝐻 ← 𝑃), denoted CWA(𝑞), is the minimal set of ALCHOI
axioms including:

1. For each concept name 𝐴 in 𝑃 , ¤𝐴 ≡ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 .

2. For each concept name 𝐴 in 𝐻 , ¥𝐴 ≡ ⊔
𝑢:𝐴∈𝐻 C𝑢 .

3. For each variable 𝑥 in var(𝑞) the axiom

𝑉𝑥 ⊑
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 ,

and if vcg(𝑃) is acyclic w.r.t to 𝑥 , then also the axiom

𝑉𝑥 ⊒
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 .

4. For each role name 𝑝 in pattern 𝑃 the axioms

∃ ¤𝑝.C𝑣 ≡
⊔
(𝑢,𝑣) :𝑝∈𝑃 C𝑢 , ∃ ¤𝑝.⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑢 ⊓∃ ¤𝑝.C𝑣,

∃ ¤𝑝− .C𝑢 ≡
⊔
(𝑢,𝑣) :𝑝∈𝑃 C𝑣, ∃ ¤𝑝− .⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑣 ⊓∃ ¤𝑝− .C𝑢 .

5. For each role name 𝑝 in template 𝐻 the axioms

∃ ¥𝑝.C𝑣 ≡
⊔
(𝑢,𝑣) :𝑝∈𝐻 C𝑢 , ∃ ¥𝑝.⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝐻

C𝑢 ⊓∃ ¥𝑝.C𝑣,

∃ ¥𝑝− .C𝑢 ≡
⊔
(𝑢,𝑣) :𝑝∈𝐻 C𝑣, ∃ ¥𝑝− .⊤ ≡

⊔
(𝑢,𝑣) :𝑝∈𝑃

C𝑣 ⊓∃ ¥𝑝− .C𝑢 .

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

𝑎1 𝑎2 𝑎3 𝑎4

𝑟

𝑟

𝑟

𝑟

𝑝

𝑝

𝑟

𝑟

Figure 3: Input graph 𝐺 for Example 6.

Observe, that unlike in the definition for concepts ¤𝐴 (Defini-

tion 16, 1.), the definition for concepts ¥𝐴 (Definition 16, 2.) does

not include 𝐴, since elements of ¤𝐴 are the result of filtering 𝐴,

whereas ¥𝐴 is newly constructed for the query template 𝐻 . We first

demonstrate the general meaning of these axioms in Example 5.

Example 5. Consider again the query 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} (Example 2). Then, CWA(𝑞1) consists of
the following axioms:

(1) { ¤𝐵 ≡ 𝐵 ⊓ 𝑉𝑦, ¤𝐸 ≡ 𝐸 ⊓ 𝑉𝑧 } ⊂ CWA(𝑞1), because, e.g.,
concept ¤𝐵 in the extended graph is defined by filtering 𝐵

with variable 𝑉𝑦 (based on the query pattern y:𝐵 in 𝑞1).

(2) { ¥𝐵 ≡ 𝑉𝑧 , ¥𝐸 ≡ 𝑉𝑦} ⊂ CWA(𝑞1), because, e.g., concept ¥𝐵 in

the extended graph is defined by 𝑉𝑧 , since it only occurs

in the single construct pattern z:𝐵. If there were multiple

occurences, it would be defined by the union of all variables,

instead.

(3) {𝑉𝑤 ⊑ ∃𝑝.𝑉𝑦, 𝑉𝑥 ⊑ ∃𝑝.𝑉𝑧 , 𝑉𝑦 ⊑ ∃𝑝.𝑉𝑤 ⊓ 𝐵, 𝑉𝑧 ⊑ ∃𝑝.𝑉𝑥 ⊓
𝐸} ⊂ CWA(𝑞1), because variable concepts are defined by

the constraints to the respective variable in the query pat-

tern. For example, variable concept 𝑉𝑦 is constrained by

patterns (w, y):𝑝 and y:𝐵 in𝑞1, and thus bound by∃𝑝.𝑉𝑤⊓𝐵.
This is a crucial step of the algorithm, since concept and

role names in the extended graph are defined in terms of

these variable concepts. The inverse cases are included,

because vcg(𝑃) is acyclic: {𝑉𝑤 ⊒ ∃𝑝.𝑉𝑦, 𝑉𝑥 ⊒ ∃𝑝.𝑉𝑧 ,
𝑉𝑦 ⊒ ∃𝑝.𝑉𝑤 ⊓ 𝐵, 𝑉𝑧 ⊒ ∃𝑝.𝑉𝑥 ⊓ 𝐸} ⊂ CWA(𝑞1). See also
Example 6 for why this condition is required.

(4) {∃ ¤𝑝.𝑉𝑦 ≡ 𝑉𝑤 , ∃ ¤𝑝.𝑉𝑧 ≡ 𝑉𝑥 , ∃ ¤𝑝.⊤ ≡ (𝑉𝑤 ⊓ ∃ ¤𝑝.𝑉𝑦) ⊔ (𝑉𝑥 ⊓
∃ ¤𝑝.𝑉𝑧)} ⊂ CWA(𝑞1), because, e.g., role name ¤𝑝 in the ex-

tended graph is defined by the variables concepts that it

occurs with. Similarly, the following axioms for inverse

role names are included: {∃ ¤𝑝− .𝑉𝑤 ≡ 𝑉𝑦, ∃ ¤𝑝− .𝑉𝑥 ≡ 𝑉𝑧 ,

∃ ¤𝑝− .⊤ ≡ (𝑉𝑦 ⊓ ∃ ¤𝑝− .𝑉𝑤) ⊔ (𝑉𝑧 ⊓ ∃ ¤𝑝− .𝑉𝑥)} ⊂ CWA(𝑞1).
(5) {∃ ¥𝑝.𝑉𝑧 ≡ 𝑉𝑦, ∃ ¥𝑝.⊤ ≡ 𝑉𝑦 ⊓ ∃ ¥𝑝.𝑉𝑧 } ⊂ CWA(𝑞1), because

similarly to the previous case, e.g., role name ¥𝑝 in the ex-

tended graph is defined by the variables concepts that it

occurs with. And again, similarly for inverse role names:

{∃ ¥𝑝− .𝑉𝑦 ≡ 𝑉𝑧 , ∃ ¥𝑝− .⊤ ≡ 𝑉𝑧 ⊓ ∃ ¥𝑝− .𝑉𝑦} ⊂ CWA(𝑞1).

Note the additional condition in the second part of (Definition 16,

3.), where we require vcg(𝑞) to be acyclic. In the following example

(Example 6), we will motivate why this condition is required and

then define Lemma 1 with respect to this case.

Example 6. Consider the pattern 𝑃 = {(𝑥,𝑦):𝑟, (𝑦, 𝑧):𝑟, (𝑥, 𝑧):𝑝}
of a query 𝑞 = 𝐻 ← 𝑃 , and the graph 𝐺 in Figure 3. Note, that

vcg(𝑃) is cyclic, since ((𝑥,𝑦):𝑟, (𝑦, 𝑧):𝑟), ((𝑦, 𝑧):𝑟, (𝑥, 𝑧):𝑝) as well
as ((𝑥, 𝑧):𝑝, (𝑥,𝑦):𝑟) each share variables.

Evaluating 𝑞 on 𝐺 results in mappings 𝜇1 = {𝑥 ↦→ 𝑎1, 𝑦 ↦→
𝑎2, 𝑧 ↦→ 𝑎3} and 𝜇2 = {𝑥 ↦→ 𝑎3, 𝑦 ↦→ 𝑎2, 𝑧 ↦→ 𝑎1}. Thus, the variable
concepts are defined as 𝑉𝑥 = {𝑎1, 𝑎3}, 𝑉𝑦 = {𝑎2} and 𝑉𝑧 = {𝑎3, 𝑎1}.
Note, that 𝑦 ↦→ 𝑎4 is not in any result mapping for query 𝑞 on

graph𝐺 (and 𝑎4 ∉ 𝑉𝑦). However, {𝑎4} ⊑ ∃𝑟− .𝑉𝑥 ⊓∃𝑟 .𝑉𝑧 . Therefore,
𝑉𝑦 A ∃𝑟− .𝑉𝑥 ⊓ ∃𝑟 .𝑉𝑧 , so we can not include this axiom.

Intuitively, an acyclic graph vcg(𝑃) allows for separating the

pattern 𝑃 (given, as an example, variable 𝑥 and concept name𝐴) into

patterns 𝑃𝑙 , {𝑥 : 𝐴}, and 𝑃𝑟 , where 𝑃𝑙 shares at most variable 𝑥 with

𝑃𝑟 . In these cases, the implicit dependencies between bindings for

variables that cause issues as demonstrated for 𝑥 and 𝑧 in Example 6

do not occur.

Lemma 1. Let 𝑞 = 𝐻 ← 𝑃 be a query such that vcg(𝑃) is acyclic.
Let 𝐺 be a graph, and let 𝑥 be a variable corring in 𝑃 . Then

𝑉𝑥 ⊒
d

𝑥 :𝐴∈𝑃𝐴 ⊓
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 ⊓

d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 .

Given Lemma 1, the following proposition holds.

Proposition 5. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext,CWA(𝑞)), if either 𝑞 does not include any individual

names, or the output graph is guaranteed to be non-empty.

Note the additional condition in Proposition 5: If the output graph

is empty and the query includes individual names, then 𝐺ext may

not be valid with respect to CWA(𝑞), since the constructed axioms

may include individual names that are not guaranteed to exist. This

could be remedied by not allowing individual names in queries;

however, since Simple SHACL shapes do not allow individual names,

these axioms do not impact soundness of the method.

6.2 Axiomatizations for Query Subpatterns

We refer to a pattern 𝑃 ′ ⊆ 𝑃 as a component of the pattern 𝑃 , if

vcg(𝑃 ′) (see also Definition 15) is a connected subgraph of vcg(𝑃)
and there exists no 𝑃 ′′ such that 𝑃 ′ ⊂ 𝑃 ′′ and vcg(𝑃 ′′) is a con-
nected subgraph of vcg(𝑃).

Example 7. Query 𝑞1 (Example 2) has components {(w, y):𝑝, y:𝐵}
and {(x, z):𝑝, z:𝐸}. The CWA encoding (Example 5) does not entail

𝑉𝑦 ⊑ 𝑉𝑧 , even though this axiom is both valid in all extended graphs,

and required for inferring, e.g., the result shape 𝐸 ⊑ 𝐵.

Example 7 shows that the CWA encoding alone is not sufficient

for inferring all subsumptions between variable concepts. If we

could find a homomorphism between two components of the query

pattern, we would know that the valuations of one component are

a subset of the valuations of the other component (modulo variable

names), and thus infer subsumptions between variable concepts.

Definition 17 (Component Map). For components 𝑃1 and 𝑃2 of 𝑃 ,

every function ℎ : var(𝑃1) → I ∪ V such that 𝑃ℎ
1
⊆ 𝑃2 is called a

component map on 𝑃 , where we write 𝑃ℎ
1
to mean substitution of

each variable 𝑥 in 𝑃1 by ℎ(𝑥).

Definition 18 (Component Map Axioms). The set of axioms in-

ferred from a component map ℎ on 𝑃 , denoted MAℎ (𝑃), is the
minimal set containing axiom Cℎ (𝑥) ⊑ 𝑉𝑥 for every variable 𝑥 in

the domain of ℎ. The union of all sets MAℎ (𝑃) of a graph pattern 𝑃

is called MA(𝑃).
6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Example 8. Consider two components 𝑃1 = {(𝑥,𝑦):𝑝} and 𝑃2 =

{(𝑧, 𝑧):𝑝, 𝑧:𝐴}. Thenwe can define themappingℎ(𝑥) = 𝑧 andℎ(𝑦) =
𝑧, such that 𝑃ℎ

1
⊆ 𝑃2. Therefore, we can construct the axioms

𝑉𝑧 ⊑ 𝑉𝑥 and 𝑉𝑧 ⊑ 𝑉𝑦 valid on 𝐺ext.

Proposition 6. For every extended graph 𝐺ext of a SCCQ 𝑞 = 𝐻 ←
𝑃 , it holds that valid(𝐺ext,MA(𝑃)).

6.3 Extending Query Patterns by Shape

Constraints

The basic mapping MA(𝑃) is not sufficient for inferring certain

crucial variable concept subsumptions, as Example 9 shows.

Example 9. Consider components 𝑃1 = {(x, z):𝑝, z:𝐸} and 𝑃2 =

{(w, y):𝑝, y:𝐵} of query 𝑞1 (Example 2). Here, we can not find a

mapping ℎ satisfying Definition 17. However, we know based on

𝑆1 that 𝐵 ⊑ 𝐸 (Example 1). We can utilize this knowledge to extend

component 𝑃2, adding the pattern y:𝐸 which does not alter the

queries results. Now, we can find the mapping ℎ(x) = w, ℎ(z) = y

such that 𝑃ℎ
1
⊆ 𝑃2.

Intuitively, by extending a component as illustrated in Example 9,

we reveal a subsumption relationship that was implicit in the input

shapes. For the same reason, the extended component is not more

restrictive than the original one. We now show how this approach

can be generalized.

Definition 19 (Target Variables). A variable 𝑥 is target variable

for a shape𝜓 ⊑ 𝜙 in an atomic pattern 𝑡 if and only if either

(1) 𝑡 = 𝑥 :𝐴 and𝜓 = 𝐴,

(2) 𝑡 = (𝑥,𝑦):𝑝 and𝜓 = ∃𝑝.⊤, or
(3) 𝑡 = (𝑦, 𝑥):𝑝 and𝜓 = ∃𝑝− .⊤.

Definition 20 (Extension). The extension Ext(𝑥, 𝜙) of a variable 𝑥
with respect to a shape constraint 𝜙 and component 𝑃𝑖 is the set of

atoms defined below, where 𝑥0 is a fresh variable.

Ext(𝑥,𝐴) = {𝑥 :𝐴},
Ext(𝑥, ∃𝑝− .𝐴) = {(𝑥0, 𝑥):𝑝, 𝑥0:𝐴},
Ext(𝑥,∀𝑝.𝐴) = {𝑦:𝐴 | (𝑥,𝑦):𝑝 ∈ 𝑃𝑖 },
Ext(𝑥, ∃𝑝.𝐴) = {(𝑥, 𝑥0):𝑝, 𝑥0:𝐴}, and

Ext(𝑥,∀𝑝− .𝐴) = {𝑦:𝐴 | (𝑦, 𝑥):𝑝 ∈ 𝑃𝑖 }.

Since new atoms are added to the pattern, they can be targets of

input shapes, too. The recursive extension is bound by themaximum

degree and diameter of the connectivity graph vcg(𝑃) of the query
pattern 𝑃 (Definition 15).

Definition 21 (Bound extension). Let 𝑃𝑖 be a component of a query

pattern 𝑃 , 𝑥 be a variable in var(𝑃𝑖),Sin be a finite set of shapes, and
𝑃𝑥
𝑖
be a pattern that results from adding iteratively atoms Ext(𝑢, 𝑠)

to 𝑃𝑖 , where 𝑠 ∈ Sin, 𝑢 is a target variable for 𝑠 , and either 𝑢 = 𝑥 or

𝑢 ∉ var(𝑃𝑖). Then, 𝑃𝑥𝑖 is a bound 𝑥-extension of 𝑃𝑖 using Sin if and

only if the followings conditions are satisfied:

(1) the maximum degree of vcg(𝑃𝑥
𝑖
) is not bigger than the

maximum degree of vcg(𝑃),
(2) the diameter of graph vcg(𝑃𝑥

𝑖
\ 𝑃𝑖) is not longer than the

maximum diameter of the components of vcg(𝑃).

Definition 22 (Maximum Extension). Given a component 𝑃𝑖 of

pattern 𝑃 , a variable 𝑥 ∈ var(𝑃𝑖), and a finite set of Simple SHACL

shapes Sin, MaxExt𝑥 (𝑃𝑖 ,Sin) is the maximum bound 𝑥-extension

for 𝑃𝑖 using Sin. The maximum extension for 𝑃𝑖 using Sin, denoted
MaxExt(𝑃𝑖 ,Sin), is the pattern

⋃
𝑥 ∈var(𝑃𝑖) MaxExt𝑥 (𝑃𝑖 ,Sin).

Intuitively, Definition 21 and Definition 22 ensure that an ex-

tended component is finite, but still allows for all possible mappings

with another component: Since we are only interested in finding

axioms involving names in 𝐺ext, we must use at least one such

name in the mapping. Since the other mapping component is a

subset of 𝑃 , the mapping can then, in the worst case, only extend

with respect to the maximum degree and diameter of 𝑃 .

The maximum extension thus allows for finding all axioms of

interest via component maps ℎ from 𝑃1 to MaxExt(𝑃2,Sin), where
𝑃1 and 𝑃2 are components of 𝑃 .

Definition 23 (Extended Component Map Axioms). The set of

extended component map axioms of a pattern 𝑃 , and a set of shapes

Sin, denoted MASin (𝑃) is the set that includes an axiom C𝑢 ⊑ 𝑉𝑥
if and only if there is a pair of components 𝑃1 and 𝑃2 of 𝑃 , and a

component map ℎ from 𝑃1 to MaxExt(𝑃2,Sin) such that ℎ(𝑥) = 𝑢

and 𝑢 is a variable or an individual name occurring in 𝑃2.

Proposition 7. For every extended graph𝐺ext of a SCCQ𝑞 = 𝐻 ← 𝑃

and set of input shapes Sin, it holds that valid(𝐺ext,MASin (𝑃)).

6.4 Axiomatizations for Role Hierachies

Not only variable concepts form hierarchies that are not entailed by

the axioms included this far. We finally infer axioms representing

additional role hierarchies, that are determined from the query

(Definition 24).

Definition 24 (Role Hierarchy Axioms). The role hierarchy axioms

of a query 𝑞 = (𝐻 ← 𝑃) are the set of axioms, denoted RS(𝑞), that
include:

(1) for each role name 𝑝 ∈ 𝑃 , the axiom ¤𝑝 ⊑ 𝑝 ,

(2) for each role name 𝑝 ∈ 𝑃 , the axiom 𝑝 ⊑ ¤𝑝 , if all atoms with

role name 𝑝 occurring in 𝑃 have the form (𝑥,𝑦):𝑝 where

variables 𝑥 and 𝑦 occur in no other atom in 𝑃 and 𝑥 ≠ 𝑦,

(3) for each pair of role names 𝑝, 𝑟 with (𝑥,𝑦):𝑝 ∈ 𝑃 and either

(𝑥,𝑦):𝑟 ∈ 𝐻 or (𝑦, 𝑥):𝑟 ∈ 𝐻
(a) the axiom ¤𝑝 ⊑ ¥𝑟 (if (𝑥,𝑦):𝑟 ∈ 𝐻) or the axiom ¤𝑝 ⊑ ¥𝑟−

(if (𝑦, 𝑥):𝑟 ∈ 𝐻), if 𝑃 does not contain any other atoms

with role name 𝑝 , and

(b) the axiom ¥𝑟 ⊑ ¤𝑝 (if (𝑥,𝑦):𝑟 ∈ 𝐻) or the axiom ¥𝑟− ⊑ ¤𝑝
(if (𝑦, 𝑥):𝑟 ∈ 𝐻), if 𝐻 does not contain any other atoms

with role name 𝑟 .

Trivially, for any role name 𝑝 ∈ 𝑃 , the axiom ¤𝑝 ⊑ 𝑝 holds, since,

by definition, 𝐺
med
⊆ 𝐺in. The inverse axiom 𝑝 ⊑ ¤𝑝 holds, if the

role name is unconstrained in pattern 𝑃 . Role hierarchy axioms

between 𝑝 ∈ 𝑃 and 𝑟 ∈ 𝐻 , that is axioms ¥𝑟 ⊑ ¤𝑝 and ¤𝑝 ⊑ ¥𝑟 , hold, if
there are no further restrictions on 𝑟 and 𝑝 , respectively.

Example 10. Consider the input shape 𝐴 ⊑ ∃𝑝.𝐴 and the query

𝑞2 = {(x, y):𝑝, z:𝐴} ← {(x, y):𝑝, z:𝐴}. The axioms presented prior

to Definition 24 do not entail the shape ¥𝐴 ⊑ ∃ ¥𝑝. ¥𝐴, even though

𝐴 ⊑ ∃𝑝.𝐴 should apply to the output graph: After all, we simply

copy all instances of𝐴 and the entirety of 𝑝 . If we include, however,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

axioms 𝑝 ⊑ ¤𝑝 and ¤𝑝 ⊑ 𝑝 , the new set of axioms does indeed entail

¥𝐴 ⊑ ∃ ¥𝑝. ¥𝐴, as expected. We can include these axioms – in this case –

since we simply copy 𝑝 in its entirety, or, formally, the variables in

the only atomic pattern including the role name 𝑝 are not further

constrained.

Proposition 8. For every extended graph𝐺ext of a SCCQ 𝑞, it holds

that valid(𝐺ext, RS(𝑞)).

7 IMPLEMENTATION

We implemented Algorithm 1, relying on a straightforward transla-

tion of Algorithm 2 to Scala for validation with respect to a single

candidate shape, and a generator for candidates based on the syntax

of Simple SHACL. For reasoning tasks, our implementation sup-

ports any OWL API reasoner. In particular, we rely on HermiT [3].

The implementation also features tools for generative exploration

regarding query and vocabulary size, a test suite, and the examples

from this paper in mechanized form.

We showed feasibility in experiments. To this end, we defined

three sample configurations SMALL (1-2 atomic patterns in template

and pattern, and 1-2 shapes), MEDIUM (5-7 each) and LARGE (11-13
each) for generating random queries based on real-world query

dimensions. Shapes are generated from the vocabulary of the query.

Thus, the number of input shapes given here is not comparable to

the size of usual sets of SHACL shapes in real-world datasets, but

rather constrain the query very tightly. We obtained the following

results, running 5.000 samples (after warmup):

• SMALL: Average 3ms, median 0ms

• MEDIUM: Average 40ms, median 20ms

• LARGE: Average 693ms, median 243ms

We refer to the appendix for details on our methodology, repro-

ducibility, and full results.

The implementation will be published under a free software

license upon publication of this paper. An anonymized version is

made available to reviewers for download here
1
.

8 RELATEDWORK

The problem of automatically inferring SHACL (or ShEx [21])

shapes from various inputs has been studied before. Most com-

monly it has been considered in the context of constructing shapes

from concrete instance data, based on summaries of statistical in-

formation over graphs [12, 22, 25], or more involved machine learn-

ing techniques [13, 18, 19]. Some approaches combine such meth-

ods with tools for manual exploration and adaptation of inferred

schemata [7]. Our approach, on the other hand, allows the con-

struction of valid shapes from only input shapes and a given query,

without the need to consider (or indeed provide) any concrete in-

stance data.

Our work is based in the correspondence of SHACL and descrip-

tion logics, inspired by Bogaerts et al. [6]. This correspondence has

been investigated before. Astrea [10] produces SHACL shapes from

OWL ontologies by providing a mapping relating patterns of ontol-

ogy constructs (i.e., language constructs including a specific usage

context) with equivalent patterns of SHACL constructs validating

1
https://e.pcloud.link/publink/show?code=XZj6rWZAxwMxsCg2jfQO2ptF96HUb72o5bk

them. Similarly, Pandit et al. [20] explore the usage of ontology

design patterns for the generation of SHACL shapes.

Inference of constraints, as well as SHACL shapes, from other

data formalisms has been studied before. Calvanese et al. [9] and Se-

queda et al. [24] consider inference of RDFS and OWL, respectively,

from direct mappings [2] between relational data and RDF. Simi-

larly, Thapa and Giese [26] consider inferences of SHACL shapes

from direct mappings, while RML2SHACL [11] allows the transla-

tion of RML rules to SHACL shapes. These approaches differ from

our approach, in that the input is restricted to a direct mapping

or RML mapping from relational data, whereas in our case, the

input is defined by an arbitrary query pattern imposing additional

constraints, as well as constraints explicitly given as input shapes.

Finally, Thapa and Giese [27] also consider mappings of rela-

tional data to RDF. In particular, the work focuses on including SQL

integrity constraints (keys, uniqueness and not-null constraints) in

the translation to SHACL constraints, allowing for a limited number

of property constraints mapped from integrity constraints.

9 CONCLUDING REMARKS

We have presented an algorithm for constructing a set of shapes

characterizing the possible output graphs of CONSTRUCT queries,

where the input graphs of these queries can be constrained by

a set of shapes as well. The shapes are expressed in a subset of

SHACL, whereas the queries are expressed in a subset of SPARQL.

This enables the inference of shapes over result graphs of data

processing pipelines (i.e., compositions of CONSTRUCT queries),

which can be used both for validation purposes when working with

these result graphs, and informatively, aiding developers directly.

The algorithm decides for the finite set of candidate shapes,

whether they are entailed by a set of description-logic axioms valid

on the union of graphs involved in the query operation. We proof

soundness of this algorithm, and provide an implementation.

Limitations. (1) The set of output shapes computed by our ap-

proach is sound, but incomplete. Consider as an example the prob-

lem 𝑞3 = {(𝑥,𝑦):𝑝, 𝑧:𝐴} ← {(𝑥,𝑦):𝑝, 𝑧:𝐴, (𝑧,𝑤):𝑝} and Sin = {𝐴 ⊑
∃𝑝.𝐴}. Here, the input shape would apply to the output, but we can
not infer it. This and similar problems could perhaps be remedied

by extending the inference of role hierachy axioms to also consider

input shapes.

(2) Our approach is limited to a subset of SHACL and SPARQL.

In the appendix, we show how to extend the approach to arbitrary

ALCHOI constraints. Intuitively, this extension is possible be-

cause the propositions presented in this paper are not restricted to

Simple SHACL (consider, in particular, Proposition 3).

FutureWork. In order to extend the approach to queries involving

generic patterns (e.g., (𝑥,𝑦):𝑧 or 𝑥 :𝑧), an expansion to non-generic

queries may be possible, since all relevant role and concept names

are known from template and input shapes.

While the application of our approach to entire data processing

pipelines is straightforward, there are interesting empirical ques-

tions regarding the properties of results shapes, e.g., depending on

the nature of input shapes or number of processing steps left as

future work.

8

https://e.pcloud.link/publink/show?code=XZj6rWZAxwMxsCg2jfQO2ptF96HUb72o5bk

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.

Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,

Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for

Future Graph Query Languages. In Proc. of SIGMOD. ACM, 1421–1432. https:

//doi.org/10.1145/3183713.3190654

[2] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, Juan Sequeda, et al.

2012. A direct mapping of relational data to RDF. W3C recommendation 27 (2012),

1–11.

[3] KRR Group at University of Oxford. 2008. HermiT OWL Reasoner. Retrieved

12.10.2023 from http://www.hermit-reasoner.com/

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory,

Implementation, and Applications. Cambridge University Press.

[5] Adrian Bielefeldt, Julius Gonsior, and Markus Krötzsch. 2018. Practical Linked

Data Access via SPARQL: The Case of Wikidata. In Proceedings of the WWW2018

Workshop on Linked Data on the Web (LDOW-18) (CEUR Workshop Proceed-

ings, Vol. 2073), Tim Berners-Lee, Sarven Capadisli, Stefan Dietze, Aidan Hogan,

Krzysztof Janowicz, and Jens Lehmann (Eds.). CEUR-WS.org.

[6] Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. 2022. SHACL: A

Description Logic in Disguise. In Proc. of Logic Programming and Nonmonotonic

Reasoning (LNCS, Vol. 13416). Springer, 75–88. https://doi.org/10.1007/978-3-

031-15707-3_7

[7] Iovka Boneva, Jérémie Dusart, Daniel Fernández-Álvarez, and José Emilio Labra

Gayo. 2019. Shape Designer for ShEx and SHACL constraints. In ISWC (Satellites)

(CEUR Workshop Proceedings, Vol. 2456). CEUR-WS.org, 269–272.

[8] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of

large SPARQL query logs. VLDB J. 29, 2-3 (2020), 655–679. https://doi.org/10.

1007/s00778-019-00558-9

[9] Diego Calvanese, Wolfgang Fischl, Reinhard Pichler, Emanuel Sallinger, and Man-

tas Simkus. 2014. Capturing Relational Schemas and Functional Dependencies

in RDFS. In AAAI. AAAI Press, 1003–1011.

[10] Andrea Cimmino, Alba Fernández-Izquierdo, and Raúl García-Castro. 2020. As-

trea: Automatic Generation of SHACL Shapes from Ontologies. In Proc. of ESWC

(LNCS, Vol. 12123). Springer, 497–513. https://doi.org/10.1007/978-3-030-49461-

2_29

[11] Thomas Delva, Birte De Smedt, Sitt Min Oo, Dylan Van Assche, Sven Lieber, and

Anastasia Dimou. 2021. RML2SHACL: RDF Generation Taking Shape. In Proc. of

Knowledge Capture Conference. ACM, 153–160. https://doi.org/10.1145/3460210.

3493562

[12] Daniel Fernández-Álvarez, José Emilio Labra Gayo, and Daniel Gayo-Avello.

2022. Automatic extraction of shapes using sheXer. Knowl. Based Syst. 238 (2022),

107975.

[13] Benoît Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. 2022.

Inference of Shape Graphs for Graph Databases. In ICDT (LIPIcs, Vol. 220). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:20.

[14] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge Pérez.

2011. Foundations of Semantic Web databases. J. Comput. Syst. Sci. 77, 3 (2011),

520–541.

[15] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language

(SHACL). Technical Report. W3C. https://www.w3.org/TR/shacl/

[16] Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. 2015. CONSTRUCT Queries

in SPARQL. In Proc. of International Conference on Database Theory, ICDT (LIPIcs,

Vol. 31). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 212–229. https:

//doi.org/10.4230/LIPIcs.ICDT.2015.212

[17] Martin Leinberger, Philipp Seifer, Claudia Schon, Ralf Lämmel, and Steffen Staab.

2019. Type Checking Program Code Using SHACL. In Proc. of ISWC (LNCS,

Vol. 11778). Springer, 399–417. https://doi.org/10.1007/978-3-030-30793-6_23

[18] Nandana Mihindukulasooriya, Mohammad Rifat Ahmmad Rashid, Giuseppe

Rizzo, Raúl García-Castro, Óscar Corcho, and Marco Torchiano. 2018. RDF Shape

Induction Using Knowledge Base Profiling. In Prov. of the Symposium on Applied

Computing. ACM, 1952–1959. https://doi.org/10.1145/3167132.3167341

[19] Pouya Ghiasnezhad Omran, Kerry Taylor, Sergio José Rodríguez Méndez, and

Armin Haller. 2023. Learning SHACL shapes from knowledge graphs. Semantic

Web 14, 1 (2023), 101–121.

[20] Harshvardhan J. Pandit, Declan O’Sullivan, and Dave Lewis. 2018. Using Ontol-

ogy Design Patterns To Define SHACL Shapes. In WOP@ISWC (CEUR Workshop

Proceedings, Vol. 2195). CEUR-WS.org, 67–71.

[21] Eric Prud’hommeaux, José Emilio Labra Gayo, and Harold R. Solbrig. 2014. Shape

expressions: an RDF validation and transformation language. In SEMANTiCS.

ACM, 32–40.

[22] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. 2023. Extraction of Validating

Shapes from very large Knowledge Graphs. Proc. VLDB Endow. 16, 5 (2023), 1023–

1032.

[23] Raymond Reiter. 1982. Towards a Logical Reconstruction of Relational Database

Theory. In On Conceptual Modelling (Intervale) (Topics in Information Systems).

Springer, 191–233.

[24] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. 2012. On directly

mapping relational databases to RDF and OWL. In WWW. ACM, 649–658.

[25] Blerina Spahiu, Andrea Maurino, and Matteo Palmonari. 2018. Towards Improv-

ing the Quality of Knowledge Graphs with Data-driven Ontology Patterns and

SHACL. In WOP@ISWC (CEUR Workshop Proceedings, Vol. 2195). CEUR-WS.org,

52–66.

[26] Ratan Bahadur Thapa and Martin Giese. 2021. A Source-to-Target Constraint

Rewriting for Direct Mapping. In ISWC (Lecture Notes in Computer Science,

Vol. 12922). Springer, 21–38.

[27] Ratan Bahadur Thapa and Martin Giese. 2022. Mapping Relational Database

Constraints to SHACL. In Proc. of ISWC (LNCS, Vol. 13489). Springer, 214–230.

https://doi.org/10.1007/978-3-031-19433-7_13

[28] W3C. 2014. RDF Concepts and Abstract Syntax. Retrieved 12.10.2023 from

https://www.w3.org/TR/rdf11-concepts/

A STRUCTURE OF THE APPENDIX

The appendix is structured as follows. In Appendix B we give an

extended version of the running examples used throughout the

paper. Appendix C contains the full proofs for all propositions from

the main paper. Appendix D details how the method from the main

paper can be extended for more general types of SHACL shapes,

and Appendix E gives proofs related to these extensions. Finally,

Appendix F contains some details about the implementation.

B EXTENDED EXAMPLES

In this section, we extend upon the examples from the main paper.

We first provide additional details on the running example incorpo-

rated in the body of the paper, including the example using concrete

SHACL and SPARQL syntax. Next, we extend upon the running

example by giving additional example queries, and more examples

beyond that.

B.1 Implementation

All examples from the main paper and from this section are also

provided in mechanized form with the implementation. To this

end, the implementation contains .shacl and .sparql files, where
example shapes are included in formal description logics syntax,

and SPARQL queries in concrete SPARQL syntax. We refer to the

documentation (Readme.md) for more details on running example

instances, and obtaining different kinds of outputs.

B.2 Running Example: Full Set of Shapes Sout
The full set of output shapes from Example 3 is given below. Note,

that some shapes (such as tautologies and shapes trivially entailed

by other shapes) are omitted.

Example 11. Full output shapes for 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} (Example 2) and the set of input shapes

𝑆1 = {𝐴 ⊑ ∃𝑝.𝐵, ∃𝑟 .⊤ ⊑ 𝐵, 𝐵 ⊑ 𝐸} (Example 1), as first introduced

9

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1145/3183713.3190654
http://www.hermit-reasoner.com/
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1007/978-3-030-49461-2_29
https://doi.org/10.1145/3460210.3493562
https://doi.org/10.1145/3460210.3493562
https://www.w3.org/TR/shacl/
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.4230/LIPIcs.ICDT.2015.212
https://doi.org/10.1007/978-3-030-30793-6_23
https://doi.org/10.1145/3167132.3167341
https://doi.org/10.1007/978-3-031-19433-7_13
https://www.w3.org/TR/rdf11-concepts/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

: s1 a sh :NodeShape ;

sh : targe tClass :A ;

sh : property [

sh : path : p ;

sh : c l a s s : B ;

sh :minCount 1 ;

] .

: s2 a sh :NodeShape ;

sh : targetSubjec tsOf : r ;

sh : c l a s s : B .

: s3 a sh :NodeShape ;

sh : targe tClass : B ;

sh : c l a s s : E .

Figure 4: Shapes 𝑠1 (𝐴 ⊑ ∃𝑝.𝐵), 𝑠2 (∃𝑟 .⊤ ⊑ 𝐵), and 𝑠3 (𝐵 ⊑ 𝐸)

using a concrete SHACL syntax (Turtle).

in Example 3.

𝑆1-out = {
𝐵 ⊑ ∀𝑝− .𝐵, 𝐵 ⊑ ∀𝑝− .𝐸, 𝐵 ⊑ ∀𝑝.𝐵,
𝐵 ⊑ ∃𝑝− .𝐵, 𝐵 ⊑ ∃𝑝− .𝐸, 𝐸 ⊑ 𝐵,

𝐸 ⊑ ∀𝑝− .𝐵, 𝐸 ⊑ ∀𝑝− .𝐸, 𝐸 ⊑ ∀𝑝.𝐵,
𝐸 ⊑ ∃𝑝− .𝐵, 𝐸 ⊑ ∃𝑝− .𝐸, 𝐸 ⊑ ∃𝑝.𝐵,
∃𝑝− .⊤ ⊑ 𝐵, ∃𝑝− .⊤ ⊑ ∀𝑝− .𝐵, ∃𝑝− .⊤ ⊑ ∀𝑝− .𝐸,
∃𝑝− .⊤ ⊑ ∀𝑝.𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐸,
∃𝑝.⊤ ⊑ 𝐵, ∃𝑝.⊤ ⊑ 𝐸, ∃𝑝.⊤ ⊑ ∀𝑝− .𝐵,
∃𝑝.⊤ ⊑ ∀𝑝− .𝐸, ∃𝑝.⊤ ⊑ ∀𝑝.𝐵, ∃𝑝.⊤ ⊑ ∃𝑝− .𝐵,
∃𝑝.⊤ ⊑ ∃𝑝− .𝐸, ∃𝑝.⊤ ⊑ ∃𝑝.𝐵 }

B.3 Running Example: Concrete Syntax

We next give the running example (e.g., Example 11) in concrete

SPARQL and SHACL (Turtle) syntax. We assume the default prefix

: for the example domain (unspecified), and prefix sh: for SHACL

(i.e., bound to http://www.w3.org/ns/shacl#).

B.4 Additional Examples

We now give additional examples problem instances, that is, queries

and sets of input shapes, and (a subset of) the corresponding output

shapes. For the full output, as well as all intermediate components,

i.e., the inferred axioms, we refer to the implementation, which

renders full internal details via the –debug flag. All examples are

included with the implementation.

Example 12. With input 𝑞4 = {x:𝐵, y:𝐴, } ← {x:𝐴, y:𝐵, } and
𝑆4 = {𝐴 ⊑ 𝐵}, we obtain the set {𝐵 ⊑ 𝐴} as output.

Query 𝑞4 is a simple example, demonstrating how our method

maintains subsumption relationships through renaming of concepts,

in this simple case swapping of𝐴 and 𝐵. A core component of this is

the subsumption between the variable concept for query variables

CONSTRUCT {

?y a : E .

? z a : B .

?y : p ? z

} WHERE {

?w : p ?y .

?y a : B .

? x : p ? z .

? z a : E

}

Figure 5: Example query 𝑞1 = {y:𝐸, z:𝐵, (y, z):𝑝} ←
{(w, y):𝑝, y:𝐵, (x, z):𝑝, z:𝐸} in concrete SPARQL syntax.

?x and ?y in the query, which holds on all extended graphs for 𝑞4
and 𝑆4.

Example 13. With input 𝑞5 = {x:𝐵, y:𝐴, } ← {x:𝐴, (x, y):𝑝, y:𝐵, }
and 𝑆5 = {𝐵 ⊑ 𝐴, 𝐵 ⊑ ∃𝑝.𝐵}, we obtain the set {𝐴 ⊑ 𝐵} as output.

Here, we continue with another example with the same, simple

template as in the previous example. This simple template serves

to demonstrate the consequences of variable concept subsumption

between the variables ?y and ?x directly, as the output shape 𝐴 ⊑
𝐵. This subsumption relationship results from the mapping step

discussed in Section 6: Since we know for all bindings of y in the

query, that both the pattern y:𝐴 is always satisfied (since 𝐵 ⊑ 𝐴) and

the same for (y, 𝑧):𝑝, 𝑧:𝐵 (for some fresh variable 𝑧, since 𝐵 ⊑ ∃𝑝.𝐵),
we can obtain a mapping resulting in subsumption 𝑉y ⊑ 𝑉x.

Example 14. With input 𝑞6 = {x:𝐴, y:𝐵, (x, y):𝑝} ← {x:𝐴, y:𝐵, }
and 𝑆6 = {}, we obtain the set {𝐴 ⊑ ∀𝑝− .𝐴,𝐴 ⊑ ∀𝑝.𝐵,𝐴 ⊑
∃𝑝.𝐵, 𝐵 ⊑ ∀𝑝− .𝐴, 𝐵 ⊑ ∀𝑝.𝐵, 𝐵 ⊑ ∃𝑝− .𝐴, ∃𝑝− .⊤ ⊑ 𝐵, ∃𝑝− .⊤ ⊑
∀𝑝− .𝐴, ∃𝑝− .⊤ ⊑ ∀𝑝.𝐵, ∃𝑝− .⊤ ⊑ ∃𝑝− .𝐴, ∃𝑝.⊤ ⊑ 𝐴, ∃𝑝.⊤ ⊑ ∀𝑝− .𝐴,
∃𝑝.⊤ ⊑ ∀𝑝.𝐵, ∃𝑝.⊤ ⊑ ∃𝑝.𝐵, } as output.

With this example, we demonstrate inference of shapes from the

query (template) itself, without any given input shapes, resulting

only from the closure assumptions used in the method. The query

pattern simply introduces the variables ?x and ?y without any

further context (arbitrary names 𝐴 and 𝐵). In the template, we

introduce the additional role name 𝑝 between these two variables.

C PROOFS

In this section, we present the full proofs for Proposition 1 through

Proposition 8, and introduce Theorem 1 (and its proof) as well as

Proposition 9 (and its proof).

C.1 Proof for Proposition 1

In order to prove Proposition 1 we need to show that every model

of the validation knowledge base of a graph is isomorphic to the

canonical model of the graph. To this end, we introduce the follow-

ing lemma.

Lemma 2. Let 𝐺 be a graph, I𝐺 the canonical interpretation of 𝐺 ,

and (T𝐺 ,𝐺) the validation knowledge base of 𝐺 . Then, all models I
of (T𝐺 ,𝐺) are isomorphic to I𝐺 .

10

http://www.w3.org/ns/shacl#

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Proof. The fact that I and I𝐺 are isomorphic follows from the

existence of a function 𝑓 : ΔI𝐺 → ΔI satisfying the following

properties:

P.1 Function 𝑓 is bijective.

P.2 𝑓 (𝑎I𝐺) = 𝑎I for every 𝑎 ∈ I.
P.3 {𝑓 (𝑥) | 𝑥 ∈ 𝐴I𝐺 } = 𝐴I for every 𝐴 ∈ C.
P.4 {(𝑓 (𝑥), 𝑓 (𝑦)) | (𝑥,𝑦) ∈ 𝑟I𝐺 } = 𝑟I for every 𝑟 ∈ R.

We next prove properties P.1 to P.4 for function 𝑓 .

Proof for P.1: Let 𝑓 : ΔI𝐺 → ΔI be the function defined as

𝑓 (𝑎) = 𝑎I , for every individual name 𝑎 ∈ I. Function 𝑓

is well-defined because, by definition of I𝐺 , ΔI𝐺 = I. To
show that function 𝑓 is bijective, it suffices to prove that 𝑓

is injective and surjective:

Surjective: The domain closure assumption axioms in the

knowledge base (T𝐺 ,𝐺) imply that ΔI =
⋃

𝑎∈I{𝑎I }.
Then, for every element 𝑒 ∈ ΔI , there exists an indi-

vidual name {𝑎} such that 𝑒 ∈ {𝑎}I . That is, 𝑓 (𝑎) = 𝑒 .

Hence, 𝑓 is surjective.

Injective: The unique-name assumption axioms in the

knowledge base (T𝐺 ,𝐺) imply that I |= {𝑏}⊓{𝑎} ≡ ⊥
for every pair of distinct individual names𝑎 and𝑏. That

is, 𝑓 (𝑎) ≠ 𝑓 (𝑏). Hence, 𝑓 is injective.

Proof for P.2: Let 𝑎 ∈ I be an arbitrary individual name. By def-

inition of I𝐺 , 𝑎I𝐺 = 𝑎. By definition of 𝑓 , 𝑓 (𝑎) = 𝑎I .
Hence, combining both identities, we obtain the identity

𝑓 (𝑎I𝐺) = 𝑎I .
Proof for P.3: Let 𝐴 ∈ C be an arbitrary concept name. By def-

inition of I𝐺 , 𝐴I𝐺 = {𝑎 | 𝑎:𝐴 ∈ 𝐺}. The closed-world

assumption axioms in the knowledge base (T𝐺 ,𝐺) imply

that 𝐴I =
⋃

𝑎:𝐴∈𝐺 {𝑎I }. That is, 𝐴I = {𝑎I | 𝑎:𝐴 ∈ 𝐺}.
Since 𝑓 (𝑎) = 𝑎I , we conclude that {𝑓 (𝑎) | 𝑎 ∈ 𝐴I𝐺 } = 𝐴I .

Proof for P.4: Let 𝑟 ∈ R be an arbitrary role name. By definition

of I𝐺 , 𝑟I𝐺 = {(𝑎, 𝑏) | (𝑎, 𝑏):𝑟 ∈ 𝐺}. The closed-world as-

sumption axioms in the knowledge base (T𝐺 ,𝐺) imply that

(∃𝑟 .{𝑏})I =
⋃
(𝑎,𝑏) :𝑟 ∈𝐺 {𝑎I }. That is, 𝑟I = {(𝑎I , 𝑏I) |

(𝑎, 𝑏):𝑟 ∈ 𝐺}}. Since 𝑓 (𝑎) = 𝑎I and 𝑓 (𝑏) = 𝑏I , we con-
clude that {(𝑓 (𝑎), 𝑓 (𝑏)) | (𝑎, 𝑏) ∈ 𝑟 I𝐺 } = 𝑟 I .

Hence, we have proved the lemma. □

Proof of Proposition 1. This proof follows from Lemma 2,

which states that (T𝐺 ,𝐺) has a unique model up to isomorphism,

namely I𝐺 ; thus for every set Σ of ALCHOI axioms, I𝐺 |= Σ
if and only if I𝐺 |= (T𝐺 ∪ Σ,𝐺). That is, I𝐺 |= 𝑆 if and only if

(T𝐺 ∪ 𝑆,𝐺) is consistent. Hence, statements (i) and (ii) are equiva-

lent. Similarly, statements (ii) are (iii) are equivalent because (T𝐺 ,𝐺)
has a unique model up to isomorphism. In general, given two sets

of axioms Σ1 and Σ2, the consistence of (Σ1,𝐺) and (Σ2,𝐺) does
not imply the consistency of (Σ1 ∪ Σ2,𝐺) because the sets models

of (Σ1,𝐺) and (Σ2,𝐺) can be non-empty and disjoint. However, in

this case the implication is true because (T𝐺 ,𝐺) admits a single

model up to isomorphism. □

C.2 Proof for Proposition 2

In order to prove Proposition 2, we show by contraposition that if

a given shape 𝑠 does not satisfy the conditions of the proposition,

then it is irrelevant.

To this end, we introduce two lemmas, relating the structure of a

concept expression𝐶 with the vocabulary of𝐶 and of a given graph

𝐺 . First, we consider concept names and existential quantification.

Lemma 3. Let 𝐶 be a concept description defined as follows:

𝐶 ::= 𝐴 | ∃𝑝.⊤ | ∃𝑝− .⊤ | ∃𝑝.𝐴 | ∃𝑝− .𝐴 ,

where 𝐴 is a concept name, and 𝑝 is a role name. Let 𝐺 be a Simple

RDF graph, and (T𝐺 ,𝐺) be the validation knowledge base of𝐺 . Then,

voc(𝐶) ⊈ voc(𝐺) implies (T𝐺 ,𝐺) |= 𝐶 ≡ ⊥.

Proof. LetI be amodel of (T𝐺 ,𝐺). Wewill prove this lemma by

proving the contraposition: the existence of an individual 𝑎I ∈ 𝐶I
implies that voc(𝐶) ⊆ voc(𝐺). By Lemma 2, every model I of

(T𝐺 ,𝐺) is isomorphic to the canonical model of𝐺 . The proof follows

case by case:

(1) If 𝐶 is 𝐴 then, 𝑎:𝐴 ∈ 𝐺 . Hence, voc(𝐶) ⊆ voc(𝐺).
(2) If 𝐶 is ∃𝑝.⊤ or ∃𝑝− .⊤, then there is an individual name 𝑏

such that (𝑎, 𝑏):𝑝 ∈ 𝐺 or (𝑏, 𝑎):𝑝 ∈ 𝐺 . Hence, voc(𝐶) ⊆
voc(𝐺).

(3) If 𝐶 is ∃𝑝.𝐴 or ∃𝑝− .𝐴, then there is an individual name 𝑏

such that 𝑏:𝐴 ∈ 𝐺 , and (𝑎, 𝑏):𝑝 ∈ 𝐺 or (𝑏, 𝑎):𝑝 ∈ 𝐺 . Hence,
voc(𝐶) ⊆ voc(𝐺).

Hence, we prove the lemma by contraposition. □

Next, we consider universal quantification.

Lemma 4. Let 𝐶 be a concept description defined as follows:

𝐶 ::= ∀𝑝.𝐴 | ∀𝑝− .𝐴 ,

where 𝐴 is a concept name, and 𝑝 is a role name. Let 𝐺 be a Simple

RDF graph, and (T𝐺 ,𝐺) be the validation knowledge base of 𝐺 . Then

the following holds.

(1) If 𝑝 ∉ voc(𝐺) then (T𝐺 ,𝐺) |= 𝐶 ≡ ⊤.
(2) If 𝐴 ∉ voc(𝐺) and 𝐶 is ∀𝑝.𝐴 then

(T𝐺 ,𝐺) |= 𝐶 ≡ ¬(∃𝑝.⊤).
(3) If 𝐴 ∉ voc(𝐺) and 𝐶 is ∀𝑝− .𝐴 then

(T𝐺 ,𝐺) |= 𝐶 ≡ ¬(∃𝑝− .⊤).

Proof. Let I be a model of the validation knowledge base of

graph 𝐺 . We prove this lemma using the equivalencies ∀𝑝.𝐴 ≡
¬∃𝑝.¬𝐴 and ∀𝑝− .𝐴 ≡ ¬∃𝑝− .¬𝐴.

(1) If 𝑝 ∉ voc(𝐺) then 𝑝I is empty, since I is isomorphic to

the canonical interpretation of 𝐺 (Lemma 2). Thus, every

element in the domain ΔI belongs to concepts ¬∃𝑝.¬𝐴 and

¬∃𝑝− .¬𝐴. Hence, I |= 𝐶 ≡ ⊤.
(2) If 𝐴 ∉ voc(𝐺) then 𝐴I is empty, since I is isomorphic to

the canonical interpretation of 𝐺 (Lemma 2). Then, I |=
¬𝐴 ≡ ⊤. Hence,
(a) If 𝐶 is ∀𝑝.𝐴, then I |= 𝐶 ≡ ¬(∃𝑝.⊤).
(b) If 𝐶 is ∀𝑝− .𝐴, then I |= 𝐶 ≡ ¬(∃𝑝− .⊤).

SinceI is an arbitrary model of (T𝐺 ,𝐺), we conclude this proof. □
11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Proof of Proposition 2. Let𝜓 ⊑ 𝜙 be a Simple SHACL shape,

𝑞 be a SCCQ, and 𝐺 be a Simple RDF graph with voc(𝐺) ⊆ voc(𝑞),
and (T𝐺 ,𝐺) be the validation knowledge base of graph𝐺 . We have

the following disjoint cases:

(1) Case voc(𝜓) ⊈ voc(𝑞). Then, by Lemma 3, (T𝐺 ,𝐺) |= 𝜓 ≡
⊥ (since𝜓 is, per definition, restricted to one of the cases

covered in the lemma). Hence, shape𝜓 ⊑ 𝜙 is not relevant

(Definition 11).

(2) Case voc(𝜓) ⊆ voc(𝑞) and 𝜙 has the form ∀𝑝.𝐴 or ∀𝑝− .𝐴.
We have the following subcases:

(a) Case 𝑝 ∉ voc(𝑞). Then, by Lemma 4, (T𝐺 ,𝐺) |= 𝜙 ≡ ⊤.
Hence, shape𝜓 ⊑ 𝜙 is not relevant.

(b) Case 𝑝 ∈ voc(𝑞) and 𝐴 ∉ voc(𝐺). Then, by Lemma 3,

(T𝐺 ,𝐺) |= ¬𝐴 ≡ ⊤. We have the following subcases:

(i) Case 𝜙 is ∀𝑝.𝐴, then (T𝐺 ,𝐺) |= 𝜙 ≡ ¬(∃𝑝.⊤).
(ii) Case 𝜙 is ∀𝑝− .𝐴, then (T𝐺 ,𝐺) |= 𝜙 ≡ ¬(∃𝑝− .⊤).

(3) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊈ voc(𝑞) and 𝜙 has

not the form ∀𝑝.𝐴 or ∀𝑝− .𝐴. Then, 𝜙 has one of the forms

covered in Lemma 3, and by this lemma, (T𝐺 ,𝐺) |= 𝜙 ≡ ⊥.
Therefore, the shape is not relevant.

(4) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊆ voc(𝑞). We have the

following subcases:

(a) Shape 𝜓 ⊑ 𝜙 has the form 𝐴 ⊑ 𝐴. Then, the shape is

not relevant because it is a tautology.

(b) Shape𝜓 ⊑ 𝜙 has not the form 𝐴 ⊑ 𝐴.

Hence, we have shown that in all cases, except for those mentioned

in Proposition 2 (2.b.i, 2.b.ii, and 4.b), the shapes are not relevant.

Hence, for all relevant shapes, the properties in Proposition 2 hold.

□

C.3 Proof for Proposition 3

Proof. We prove first the second case of Proposition 3, namely

valid(𝐺
med

, {𝜑}) if and only if valid(𝐺ext, { ¤𝜑}). The proofs for the
other two cases work exactly analogously, since all three subgraphs

𝐺in, 𝐺med
and 𝐺out form distinct namespaces.

Let Iext and Imed
be the canonical models of 𝐺

med
and 𝐺ext,

respectively. To prove this case, it suffices to show that for every

axiom 𝜑 not including any names with dots (e.g., ¤𝐴, ¥𝐴, ¤𝑝 , or ¥𝑝), and
every concept expression𝐶 occurring in 𝜑 ,𝐶Iext = 𝐶Imed . Indeed, if

this is true for every arbitrary concept expression 𝐶 in 𝜑 , then for

every such axiom 𝜑 , valid(𝐺
med

, {𝜑}) if and only valid(𝐺ext, { ¤𝜑}).
By construction of 𝐺ext, for every concept assertion 𝑎:𝐴 ∈ 𝐺

med
,

𝑎: ¤𝐴 ∈ 𝐺ext if and only if 𝑎: ¤𝐴 ∈ ¤𝐺
med

, and for every role assertion

(𝑎, 𝑏):𝑝 ∈ 𝐺
med

, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext if and only if (𝑎, 𝑏): ¤𝑝 ∈ ¤𝐺
med

. That

is, for every concept name 𝐴 ∈ C and role name 𝑝 ∈ R, it holds
that 𝐴Imed = ¤𝐴Iext and 𝑝Imed = ¤𝑝Iext . Hence, for every concept

description 𝐶 , 𝐶Imed = ¤𝐶Iext .
We give below, for the sake of completeness, the remaining two

cases, case 1. and case 3.

• Case 1. By construction of𝐺ext, for every concept assertion

𝑎:𝐴 ∈ 𝐺in, 𝑎:𝐴 ∈ 𝐺ext if and only if 𝑎:𝐴 ∈ 𝐺in, and for every

role assertion (𝑎, 𝑏):𝑝 ∈ 𝐺in, (𝑎, 𝑏):𝑝 ∈ 𝐺ext if and only if

(𝑎, 𝑏):𝑝 ∈ 𝐺in. That is, for every concept name 𝐴 ∈ C and

role name 𝑝 ∈ R, it holds that 𝐴Iin = 𝐴Iext and 𝑝Iin = 𝑝Iext .
Hence, for every concept description 𝐶 , 𝐶Iin = 𝐶Iext .

• Case 3. By construction of𝐺ext, for every concept assertion

𝑎:𝐴 ∈ 𝐺out, 𝑎: ¥𝐴 ∈ 𝐺ext if and only if 𝑎: ¥𝐴 ∈ ¥𝐺out, and for

every role assertion (𝑎, 𝑏):𝑝 ∈ 𝐺out, (𝑎, 𝑏): ¥𝑝 ∈ 𝐺ext if and

only if (𝑎, 𝑏): ¥𝑝 ∈ ¥𝐺out. That is, for every concept name

𝐴 ∈ C and role name 𝑝 ∈ R, it holds that 𝐴Iout = ¥𝐴Iext
and 𝑝Iout = ¥𝑝Iext . Hence, for every concept description 𝐶 ,

𝐶Iout = ¥𝐶Iext .
□

C.4 Proof for Corollary 1

Proof. The proof for Corollary 1 follows immediately from case

3 of Proposition 3. Let 𝑞 be a SCCQ, Σ a set of ALCHOI axioms

such that valid(𝐺ext, Σ) for every extended graph𝐺ext of 𝑞, and 𝑠 a

Simple SHACL shape such that Σ |= ¥𝑠 . Then also valid(𝐺ext, {¥𝑠}),
from which by case 3 of Proposition 3 follows immediately that

valid(𝐺out, 𝑠). □

C.5 Proof for Proposition 4

Proof. By construction, each axiom in UNA(𝑞) is also an axiom
in the validation knowledge base of the graph𝐺ext (see Definition 4).

□

C.6 Proof for Proposition 5

We first prove Lemma 1.

Proof. We prove Lemma 1 by contradiction. Let 𝑞 = 𝐻 ← 𝑃 be

a query such that vcg(𝑃) is acyclic. Let𝐺 be a graph, and let 𝑥 be a

variable corring in 𝑃 . Let 𝐶 be a concept defined as

𝐶 ≡
d

𝑥 :𝐴∈𝑃𝐴 ⊓
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 ⊓

d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 .

and assume that there is an individual name 𝑐 in 𝐺 such that 𝑐:𝐶 is

valid in 𝐺ext, but 𝑐:𝑉𝑥 is not valid in 𝐺ext.

Without loss of generality, assume that 𝑃 includes a single con-

cept assertion including the variable 𝑥 , namely 𝑥 :𝐴, and no role

assertions (𝑥, 𝑑):𝑟 where 𝑑 is an individual name. Indeed, if there

are serveral atoms 𝑥 :𝐴1, . . . , 𝑥 :𝐴𝑛 and (𝑥, 𝑑1):𝑟1, . . . , (𝑥, 𝑑𝑚):𝑟𝑚 we

can define𝐴 ≡ 𝐴1⊓ . . .⊓𝐴𝑚 ⊓∃𝑟1 .{𝑑1} ⊓ . . .⊓∃𝑟𝑚 .{𝑑𝑚}. Without

loss of generality, assume that 𝐺ext includes the graph

{𝑎:𝑉𝑦, (𝑎, 𝑐):𝑟, 𝑐:𝐴, (𝑐, 𝑏):𝑠, 𝑏:𝑉𝑧 }
Let Ω be the set of all mappings 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺 .

Then, by definition there exist the mappings 𝜇1, 𝜇2 ∈ Ω such that

𝜇1 (𝑦) = 𝑎 and 𝜇2 (𝑧) = 𝑏, but there not exists the mapping 𝜇 ∈ Ω
such that 𝜇 (𝑥) = 𝑐 . Then, 𝜇1 (𝑥) ≠ 𝑐 and 𝜇2 (𝑥) ≠ 𝑐 .

Let 𝑃𝑦 be the part of pattern 𝑃 which connects with variables 𝑦

and 𝑥 , but not 𝑧. Let 𝑃𝑧 be the part of pattern 𝑃 which connects with

variables 𝑧 and 𝑥 , but not 𝑦. Let

𝜇
𝑦

1
= 𝜇1

��
var(𝑃𝑦)\{𝑥 }, 𝜇𝑧

1
= 𝜇1

��
var(𝑃𝑧)\{𝑥 },

𝜇
𝑦

2
= 𝜇2

��
var(𝑃𝑦)\{𝑥 }, 𝜇

𝑦

2
= 𝜇2

��
var(𝑃𝑧)\{𝑥 } .

Then, 𝜇1 = 𝜇
𝑦

1
∪{𝑥 ↦→ 𝜇1 (𝑥)}∪𝜇𝑧

1
and 𝜇2 = 𝜇

𝑦

2
∪{𝑥 ↦→ 𝜇2 (𝑥)}∪𝜇𝑧

2
.

Since 𝜇
𝑦

1
and 𝜇𝑧

2
share no variables, 𝜇3 = 𝜇

𝑦

1
∪ {𝑥 ↦→ 𝑐} ∪ 𝜇𝑧

2
is a

mapping.

By the definition of the semantics of SCCQ, 𝜇3 ∈ Ω. Then 𝑐:𝑉𝑥 is

valid in 𝐺ext. This contradicts the initial assumptions, from which

we conclude 𝑉𝑥 ⊒ 𝐶 . □

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

We now continue with the proof for Proposition 5.

Proof. We prove Proposition 5 by showing the validity of this

proposition for the cases 1 through 5 in Definition 16. We divide

the proof in two groups: First, for cases 1, 2, and 3, and then for

cases 4 and 5.

Cases 1, 2, and 3. For cases 1 through 3, we divide the proof in

two parts each, one for either inclusion (i.e., ⊑ and ⊒). To show

an inclusion 𝐴 ⊑ 𝐵 in 𝐺ext, we will assume that there exists at

least one valuation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in, and then prove that

inclusion {𝑎} ⊑ 𝐴 implies inclusion {𝑎} ⊑ 𝐵 for every individual

name occurring in 𝐺ext.

1⊑ ¤𝐴 ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 . Let 𝑎 be an arbitrary individual name

such that {𝑎} ⊑ ¤𝐴 is valid in 𝐺ext. Then 𝑎: ¤𝐴 ∈ 𝐺ext, so

𝑎:𝐴 ∈ 𝐺
med

. Then 𝑎:𝐴 ∈ 𝐺in and there is an atom 𝑣 :𝐴 ∈ 𝑃
where 𝑣 is either individual name 𝑎 or a variable 𝑥 . If 𝑣 is

𝑎, then {𝑎} ⊑ C𝑣 is trivially valid in 𝐺ext. Otherwise 𝑣 is 𝑥

and by construction, 𝑎:𝑉𝑥 ∈ 𝐺ext. Then, {𝑎} ⊑ C𝑣 is valid

in 𝐺ext, so {𝑎} ⊑
⊔
𝑢:𝐴∈𝑃 C𝑢 is also valid in 𝐺ext. Similarly,

since 𝐺in ⊆ 𝐺ext, 𝑎:𝐴 ∈ 𝐺ext, so {𝑎} ⊑ 𝐴 is valid in 𝐺ext.

Therefore, {𝑎} ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 is valid in 𝐺ext.

1⊒ ¤𝐴 ⊒ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 . Let 𝑎 be an arbitrary individual name

such that {𝑎} ⊑ 𝐴 ⊓ ⊔
𝑢:𝐴∈𝑃 C𝑢 is valid in 𝐺ext. By con-

struction, for every individual name 𝑏, if 𝑏:𝐴 ∈ 𝐺ext then

𝑏:𝐴 ∈ 𝐺in. Since 𝑎:𝐴 ∈ 𝐺ext, 𝑎:𝐴 ∈ 𝐺in holds. By definition,

{𝑎} ⊑ C𝑢 is valid in𝐺ext for at least one atom 𝑢:𝐴 ∈ 𝑃 . If 𝑢
is an individual name, then 𝑢 is 𝑎, and 𝑎:𝐴 ∈ 𝑃 . If 𝐺

med
is

not empty, then 𝑎:𝐴 ∈ 𝐺
med

. Otherwise, if 𝑢 is a variable 𝑥

then C𝑢 is the variable concept𝑉𝑥 , and 𝑎:𝑉𝑥 ∈ 𝐺ext. By def-

inition, 𝑎 is an instance of variable 𝑥 , and thus 𝑎:𝐴 ∈ 𝐺
med

.

Hence, 𝑎:𝐴 ∈ 𝐺
med

in all possible cases (when 𝑢 is an in-

dividual name or when 𝑢 is a variable). By construction,

𝑎: ¤𝐴 ∈ 𝐺ext and therefore {𝑎} ⊑ ¤𝐴.
2⊑ ¥𝐴 ⊑

⊔
𝑢:𝐴∈𝐻 C𝑢 . Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ ¥𝐴 is valid in 𝐺ext. By construction, 𝑎:𝐴 ∈ 𝐺out

so there is an atom 𝑣 :𝐴 ∈ 𝐻 such that 𝑎:𝐴 is an instance of

pattern 𝑣 :𝐴, and 𝑣 is either concept name 𝑎 or a variable 𝑥 .

If 𝑣 is 𝑎 then {𝑎} ⊑ C𝑣 is trivially valid in𝐺ext. Otherwise 𝑣

is 𝑥 and since 𝑎 is an instance of 𝑥 , it holds that 𝑎:𝑉𝑥 ∈ 𝐺ext,

so {𝑎} ∈ C𝑣 is valid in 𝐺ext. Therefore, {𝑎} ⊑
⊔
𝑢:𝐴∈𝐻 C𝑢

is valid in 𝐺ext.

2⊒ ¥𝐴 ⊒
⊔
𝑢:𝐴∈𝐻 C𝑢 . Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ ⊔
𝑢:𝐴∈𝐻 C𝑢 is valid in𝐺ext. Then there is at least

one atom 𝑣 :𝐴 ∈ 𝐻 such that {𝑎} ⊑ C𝑣 is valid in 𝐺ext. If 𝑣

is 𝑎, then 𝑎:𝐴 ∈ 𝐺out, and thus 𝑎: ¥𝐴 ∈ 𝐺ext. Otherwise 𝑣 is

a variable 𝑥 , and 𝑎:𝑉𝑥 ∈ 𝐺ext. By the definition of variable

concepts, 𝑎:𝐴 ∈ 𝐺out, so 𝑎: ¥𝐴 ∈ 𝐺ext. Therefore, {𝑎} ⊑ ¥𝐴 is

valid in 𝐺out.

3⊑ Variable (⊑). Let 𝑎 be an arbitrary individual name such

that {𝑎} ⊑ 𝑉𝑥 is valid in 𝐺ext. We show separately for each

operand 𝑘 in the intersection, that {𝑎} ⊑ 𝑘 , assuming that

the respective component is defined, below.

(a) For 𝑘 =
d

𝑥 :𝐴∈𝑃𝐴: If {𝑎} ⊑ 𝑉𝑥 , then by definition 𝑎 is

an instance of variable 𝑥 in 𝑃 , i.e., 𝑎 ∈ 𝜇 (𝑥). Then for

each concept name 𝐴 occurring in an atomic pattern

of the form 𝑥 :𝐴 ∈ 𝑃 there must be 𝑎:𝐴 ∈ 𝐺in (since

otherwise 𝑎 ∉ 𝜇 (𝑥)), so also 𝑎:𝐴 ∈ 𝐺ext for each such

𝐴. Therefore, {𝑎} ⊑ 𝑘 .

(b) For 𝑘 =
d
(𝑥,𝑢) :𝑝∈𝑃∃𝑝.C𝑢 : If {𝑎} ⊑ 𝑉𝑥 , then by defini-

tion 𝑎 is an instance of variable 𝑥 in 𝑃 , i.e., 𝑎 ∈ 𝜇 (𝑥).
Then for each property name 𝑝 occurring in an atomic

pattern of the form (𝑥,𝑢):𝑝 ∈ 𝑃 , one of two cases ap-
plies: If 𝑢 is an individual name, then there must be

(𝑎,𝑢):𝑝 ∈ 𝐺in, so also (𝑎,𝑢):𝑝 ∈ 𝐺ext for such 𝑝 . If 𝑢 is

a variable name, then there must be (𝑎, 𝑏):𝑝 ∈ 𝐺in, so

also (𝑎, 𝑏):𝑝 ∈ 𝐺ext, and also 𝑏 ∈ 𝜇 (𝑢) (since otherwise
𝑎 ∉ 𝜇 (𝑥)). Therefore, {𝑎} ⊑ 𝑘 .

(c) For𝑘 =
d
(𝑢,𝑥) :𝑝∈𝑃∃𝑝− .C𝑢 : Analogous to the previous

case.

If at least one component 𝑘 is defined, then it follows that

{𝑎} ⊑
l

𝑥 :𝐴∈𝑃
𝐴 ⊓

l

(𝑥,𝑢) :𝑝∈𝑃
∃𝑝.C𝑢 ⊓

l

(𝑢,𝑥) :𝑝∈𝑃
∃𝑝− .C𝑢 .

We know, that at least one component 𝑘 must be defined,

since otherwise concept 𝑉𝑥 would not be defined, as there

must exists either 𝑥 :𝐴 ∈ 𝑃 for some concept name 𝐴, or

(𝑥,𝑢):𝑝 ∈ 𝑃 (or (𝑥,𝑢):𝑝 ∈ 𝑃 respectively) for some property

𝑝 , if 𝑥 ∈ var(𝑃). Then, at least one of the components 𝑘

must be defined as well, and we prove this case.

3⊒ Variable (⊒).The inverse case follows directly fromLemma 1.

This concludes the proof of cases 1., 2., and 3. We next consider

cases 4. and 5.

Cases 4 and 5. Since the proofs of these two cases are similar, we

exemplify them proving the equivalency:

∃ ¤𝑝.C𝑢 ≡
⊔
(𝑣,𝑢) :𝑝∈𝑃 C𝑣

Let I be the canonical model of𝐺ext. By definition of the validation

knowledge base of a graph, 𝑎I ∈ (∃ ¤𝑝.C𝑢)I if and only if there

exists an individual name 𝑏 such that (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext and (𝑎I , 𝑏I) ∈
𝑝𝐼 . By construction, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext if and only if there exists an

atom (𝑣,𝑢):𝑝 ∈ 𝑃 where 𝑣 is the individual name 𝑎 or a variable 𝑥 ,

and 𝑢 is the individual name 𝑏 or a variable 𝑦 (and thus 𝑎𝐼 ∈ CI𝑣).
Thus, 𝑎I ∈ (∃ ¤𝑝.C𝑢)I if and only if 𝑎I ∈ ⋃

(𝑣,𝑢) :𝑝∈𝑃 C
I
𝑣 . Hence,

∃ ¤𝑝.C𝑢 ≡
⊔
(𝑣,𝑢) :𝑝∈𝑃 C𝑣 .

Similarly, we exemplify the proof of the remaining axioms of the

following form, using one of these axioms:

∃ ¤𝑝.⊤ ≡
⊔

(𝑢,𝑣) :𝑝∈𝑃
C𝑢 ⊓∃ ¤𝑝.C𝑣

By definition of the validation knowledge base of a graph, 𝑎I ∈
(∃ ¤𝑝.⊤)I if and only if there exists an individual name 𝑏 such that

(𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext and (𝑎I , 𝑏I) ∈ 𝑝I . By construction, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺ext

if and only if there exists an atom (𝑢, 𝑣):𝑝 ∈ 𝑃 where 𝑢 is the

individual name 𝑎 or a variable 𝑥 and 𝑣 is the individual name 𝑏 or a

variable 𝑦. Then, 𝑎I ∈ CI𝑢 and 𝑎I ∈ (∃ ¤𝑝.C𝑣)I , so 𝑎I ∈ (∃ ¤𝑝.⊤)I
if and only if 𝑎I ∈ ⋃(𝑢,𝑣) :𝑝∈𝑃 C

I
𝑢 ∩(∃ ¤𝑝.C𝑣)I .

Conclusion. Finally, given the proofs for the individual cases

listed above, we prove this proposition. □

C.7 Proof for Proposition 6

We begin with the following utility definition.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Definition 25. For every individual name or variable 𝑢 we define

the set of individual names ins(𝑢) as follows:

ins(𝑢) =
{
{𝑎} if 𝑢 is ind. name 𝑎,

{𝑎 | 𝑎 instance of 𝑥} if 𝑢 is a variable 𝑥 .

In order to prove Proposition 6, we now define the following

lemma, stating a relation between ins(𝑢) (Definition 25) and C𝑢

(Definition 14).

Lemma 5. Let 𝐻 ← 𝑃 be a SCCQ, 𝐺ext an extended graph for the

query, and 𝑢 and 𝑣 two individual names or variables occurring in

the query. Then, ins(𝑣) ⊆ ins(𝑢) if and only if the inclusion C𝑣 ⊑ C𝑢

is valid for graph 𝐺ext.

Proof. Let 𝐼 be an interpretation of the validation knowledge

base of graph 𝐺ext. By definition, for every individual 𝑏 ∈ ⊤𝐼 there
exists a unique individual name 𝑎 in the graph such that 𝑎𝐼 = 𝑏. Let

𝑢 and 𝑣 be two individual or variable names occurring in pattern

𝑃 . Then, ·𝐼 defines a bijection between sets ins(𝑢) and C
𝐼
𝑢 , and a

bijection between sets ins(𝑣) and C
𝐼
𝑣 . Thus, ins(𝑣) ⊆ ins(𝑢) if and

only if C
𝐼
𝑣 ⊆ C

𝐼
𝑢 . Hence, ins(𝑣) ⊆ ins(𝑢) if and only if C𝑣 ⊑ C𝑢 . □

Proof for Proposition 6. Let 𝑃1 and 𝑃2 be components of graph

pattern 𝑃 , the function ℎ : var(𝑃1) → var(𝑃2) be a component map,

and 𝑥 and 𝑦 be two variables in 𝑃1 and 𝑃2, respectively, such that

ℎ(𝑥) = 𝑦. According to Lemma 5, to prove that 𝑉𝑦 ⊑ 𝑉𝑥 is valid

in graph𝐺ext it suffices to prove 𝑎 ∈ ins(𝑦) implies 𝑎 ∈ ins(𝑥) for
every individual name 𝑎.

Let 𝑎 be an individual name in ins(𝑦). Then, there exists a val-
uation 𝜇 such that 𝜇 (𝑃) ⊆ 𝐺in. Let ℎ

′
: var(𝑃) → var(𝑃) be the

function that extends ℎ for the variables in 𝑃 that are not in the

domain of ℎ as follows:

ℎ′(𝑧) =
{
𝑧 if 𝑧 ∉ dom(ℎ),
ℎ(𝑧) if 𝑧 ∈ dom(ℎ).

By construction, ℎ′(𝑃) ⊆ 𝑃 . Applying 𝜇 to both sides of the in-

clusion we get 𝜇 (ℎ′(𝑃)) ⊆ 𝜇 (𝑃). By transitivity, 𝜇 (ℎ′(𝑃)) ⊆ 𝐺in.

That is, 𝜇 ′(𝑃) ⊆ 𝐺in where 𝜇 ′ is the composite valuation ℎ′𝜇. Since
𝜇 ′(𝑥) = 𝑎, we conclude that 𝑎 ∈ ins(𝑥). □

C.8 Proof for Proposition 7

Proof. To prove Proposition 7, it suffices to show that the ex-

tension approach is sound, i.e., that both the extended and non-

extended components are equivalent with respect to the bindings

for all actual query variables, since then the proof for Proposition 6

applies.

Consider the variable 𝑥 as a target of shape 𝑠 = 𝜓 ⊑ 𝜙 . Then, the

following extensions extp(𝑥, 𝜙) are permitted, depending on 𝜙 :

(1) 𝜙 = 𝐴 and {𝑥 :𝐴}. For any input graph 𝐺in it holds that

valid(𝐺in, {𝜓 ⊑ 𝐴}). Then ∀𝑎 ∈ 𝜇 (𝑥) : 𝑎:𝐴 ∈ 𝐺in, since 𝑥

is a target of 𝑠 . Therefore, pattern 𝑥 :𝐴 is satisfied for all𝐺in.

(2) 𝜙 = ∃𝑝.𝐴 and {(𝑥, 𝑥0):𝑝, 𝑥0:𝐴}. For every input graph 𝐺in,

valid(𝐺in, {𝜓 ⊑ ∃𝑝.𝐴}). Then for all𝑎 ∈ 𝜇 (𝑥), (𝑎, 𝑏):𝑝,𝑏:𝐴 ∈
𝐺in, since 𝑥 is a target of 𝑠 . Therefore, patterns (𝑥, 𝑥0):𝑝 and

𝑥0:𝐴 are satisfied for all 𝐺in.

(3) 𝜙 = ∃𝑝− .𝐴 and {(𝑥0, 𝑥):𝑝, 𝑥0:𝐴}. This case is similar to the

previous case.

(4) 𝜙 = ∀𝑝.𝐴 and {𝑦:𝐴 | (𝑥,𝑦):𝑝 ∈ 𝑃ext}. For every input

graph 𝐺in, valid(𝐺in, {𝜓 ⊑ ∀𝑝.𝐴}). Then, for all 𝑎 ∈ 𝜇 (𝑥),
(𝑎, 𝑏):𝑝 ∈ 𝐺in implies 𝑏:𝐴 ∈ 𝐺in, since 𝑥 is a target of 𝑠 .

Therefore, for any pattern (𝑥,𝑦):𝑝 ∈ 𝑃ext, 𝑦:𝐴 is satisfied

for all 𝐺in.

(5) 𝜙 = ∀𝑝− .𝐴 and {𝑦:𝐴 | (𝑦, 𝑥):𝑝 ∈ 𝑃ext}. This case is similar

to the previous case.

□

C.9 Proof for Proposition 8

We separately prove the two components (1) and (2) of Definition 24

involved in Proposition 8. To this end, we write valid(𝐺ext, RS1 (𝑞))
and valid(𝐺ext, RS2 (𝑞)), where 𝑞 = 𝐻 ← 𝑃 is a SCCQ.

Proof for valid(𝐺ext, RS1 (𝑞)). For an arbitrary property name

𝑝 ∈ voc(𝑃), the axiom ¤𝑝 ⊑ 𝑝 is always true since 𝐺
med
⊆ 𝐺in, by

definition. When the pattern only contains (𝑥,𝑦):𝑝 such that 𝑥 and

𝑦 do not occur in any other atomic patterns in 𝑃 (i.e., 𝑥 and 𝑦 are

otherwise unrestricted), then for any (𝑎, 𝑏):𝑝 ∈ 𝐺in, (𝑎, 𝑏): ¤𝑝 ∈ 𝐺med
.

Therefore 𝑝 ⊑ ¤𝑝 . □

Proof for valid(𝐺ext, RS2 (𝑞)). Let 𝑝 ∈ voc(𝑃) and 𝑟 ∈ voc(𝐻),
such that 𝑃 contains the atomic pattern (𝑥,𝑦):𝑝 and 𝐻 contains

(𝑥,𝑦):𝑟 , and neither 𝐻 nor 𝑃 contains any other atomic patterns

involving 𝑥 or 𝑦, and 𝑝 or 𝑟 , respectively. Then, for any (𝑎, 𝑏): ¤𝑝 ∈
𝐺
med

we construct (𝑎, 𝑏):¥𝑟 ∈ 𝐺out, therefore, ¤𝑝 ⊑ ¥𝑟 . In addition,

since 𝑟 does not occur again in 𝐻 , ¤𝑝 ≡ ¥𝑟 , i.e. also ¥𝑟 ⊑ ¤𝑝 . □

C.10 Theorem 1 and Proof

Theorem 1. Problem IsOutputShape is NP-hard.

Proof. We next show that the simple graph entailment problem

described by Gutierrez et al. [14] (called SGE in what follows) can be

reduced to problem IsOutputShape. Problem SGE is equivalent to

deciding if for a pattern 𝑃 consisting of two components 𝑃1 and 𝑃2
there is a component map ℎ from 𝑃1 to 𝑃2. Let Sin be an empty set,

and 𝑞 be the SCCQ𝐻 ← 𝑃 where𝐻 contains an atom𝑢:𝐴𝑢 for each

variable or individual name in 𝑃 . By Proposition 6, there exists such

a mapping ℎ if and only if IsOutputShape(Sin, 𝑞, 𝐴𝑢 ⊑ 𝐴𝑥) = yes,

for each pair (𝑥,𝑢) where ℎ(𝑥) = 𝑢 and 𝑥 is a variable in 𝑃1 and 𝑢 is

a variable in 𝑃2. Since the number of pairs (𝑥,𝑢) is quadratic on the

size of 𝑃 , we have shown a reduction from problem SGE to problem

IsOutputShape. Since SGE is NP-hard, problem IsOutputShape

is also NP-hard. □

C.11 Proposition 9 and Proof

Proposition 9. If voc(𝑞) contains 𝑛 concept names, and 𝑚 role

names, then we need to iterate over 𝑛 + 2𝑚 target queries, and 𝑛 +
4𝑛𝑚 + 2𝑚 shape constraints, and return (𝑛 + 2𝑚) (𝑛 + 4𝑛𝑚 + 2𝑚) − 𝑛
many relevant shapes.

Proof. We have 𝑛 possible target queries with a concept name

(𝐴 for each𝐴 ∈ voc(𝑞)), and 2𝑚 with a role name (∃𝑝.⊤ and ∃𝑝− .⊤
for each 𝑝 ∈ voc(𝑞)). Similarly, we have𝑛 possible shape constraints

including only a concept name, and 4𝑛𝑚 possible shape constraints

including a concept name and a role name (∃𝑝.𝐴, ∃𝑝− .𝐴, ∀𝑝.𝐴,
and ∀𝑝− .𝐴 for each 𝐴 ∈ voc(𝑞) and 𝑝 ∈ voc(𝑞)). We also have 2𝑚

representatives for families of the form ∀𝑝.𝐵 and ∀𝑝− .𝐵 for each

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

𝑝 ∈ voc(𝑞) and for some proxy concept name 𝐵 ∉ voc(𝑞). The
subtrahend in the number of relevant shapes indicates the number

of tautologies of the form 𝐴 ⊑ 𝐴 for all 𝐴 ∈ voc(𝑞). □

D EXTENDING THE METHOD

We next show, how our approach can be extended to arbitrary

ALCHOI axioms as shape constraints, and thus a much more

extensive subset of SHACL. To this end, we define ALCHOI
SHACL shapes as follows.

Definition 26 (ALCHOI SHACL Syntax). AALCHOI SHACL

shape is an ALCHOI axiom𝜓 ⊑ 𝜙 such that the concept expres-

sions 𝜙 is an arbitrary ALCHOI axiom, and𝜓 is defined by:

𝜓 F 𝐴 | ∃𝑝.⊤ | ∃𝑝− .⊤
A ALCHOI SHACL schema S is an ALCHOI TBox that

consists of a finite set of ALCHOI SHACL shapes.

Definition 27 (ALCHOI SHACL Semantics). A graph𝐺 is valid

for a set 𝑆 of ALCHOI SHACL shapes, denoted valid(𝐺, 𝑆), if
and only if 𝐺 is proof-valid according to 𝑆 .

We omit explicitly redefining the remainder of the main paper

in terms of ALCHOI SHACL shapes, for the sake of simplicity,

since definitions do not substantially change. Instead, we instruct

the reader to consider Sin, Scan and Sout (and other sets of shapes)

as a set of ALCHOI SHACL shapes for the remainder of this

section, and with respect to prior definitions.

We first consider soundness. In the remainder of this section, we

present further notes on extending the method, first considering

and extended axiom inferences then additional features beyond

ALCHOI axioms. Finally, we remark how to extend the imple-

mentation.

D.1 Soundness

In this subsection, we argue for the soundness of our presented

approach for more generalALCHOI SHACL shapes. Indeed, we

show that soundness of the method introduced in the main body of

the paper is not affected by more generalALCHOI input shapes

or shape candidates. Here, we revisit each proposition from the

main body of the paper and consider, whether the proposition or

its proof need to be adapted. The following section, Appendix E,

gives the respective extended proofs where required.

(1) Proposition 1 is independent of the subset of SHACL, so

the same proof applies.

(2) Proposition 2 must be extended for the extended set of

SHACL shapes to demonstrate that the method is useful for

ALCHOI SHACL shapes (i.e., there is a meaningful finite

set of candidates), though this does not effect soundness.

(See Appendix E for the extended proof.)

(3) Proposition 3 (and Corollary 1) were already proven for

arbitraryALCHOI axioms, and thus apply in the context

of ALCHOI SHACL shapes as well.

(4) For Proposition 4, neither its definition, nor the definition

of the UNA for a simple RDF graph, depend on the subset

of SHACL.

(5) Similarly, for Proposition 5 the proof is independent of the

subset of SHACL and still applies as well.

(6) The proof for Proposition 6 does not depend on the subset

of SHACL shapes as well, and thus the proposition holds.

(7) Proposition 7 does involve the set of input shapes. Here, we

need to decide whether we extend the approach. As per the

argument in the following subsection, we consider this ex-

tension to be future work, and limit expansion to the subset

of Simple SHACL shapes. Then, the proof applies and the

proposition holds. Note, that this is only a minor restric-

tion, since extending the query with respect toALCHOI
SHACL shapes would be limited to shapes expressible as

SCCQ anyways, which essentially means that we would

need to include intersection of constraints in shapes as two

sets of extension patterns, which is a trivial extension to

the method we present.

(8) Finally, for Proposition 8, while this step of the approach

does depend on the input shapes, it only considers the role

names in the vocabulary of the input shapes. Neither the

method itself, nor the proof of this proposition, depend

on the types of constraints expressed as input shapes, but

rather are about the query patterns used to restrict these

specific role names. Thus, the proposition (and its proof)

still apply without modification.

Thus, the method remains sound forALCHOI SHACL shapes.

We only need to show that there is a sensible finite set of candidates

for ALCHOI SHACL as well (see Appendix E for the proof). If

so, then the algorithm can obtain a finite set of result shapes.

For the sake of completeness, we mention that Proposition 9

(count of candidate shapes) does no longer apply for the extended

method. However, Proposition 9 is not required for soundness;

indeed, a similar proposition could be formulated for the count of

candidates for the extended method.

Finally, Theorem 1 (NP-hardness) clearly holds for the extended

method, since the original problem can be trivially reduced to the

extended problem by restricting the set of shapes to Simple SHACL.

D.2 Extended Axiom Inference

In the previous section (and together with Appendix E), we show

that our approach is sound forALCHOI SHACL. This extension

also makes the approach more powerful in multiple ways. The

set of input shapes can be extended to ALCHOI SHACL, thus,

more expressive constraints are considered to hold on the input

graph. Similarly, the set of candidates (and thus output shapes) also

includes more general shapes.

The remaining question to consider, is whether or not more

axioms can now be inferred in order to improve the method: The

axioms inferred for the UNA-encoding and CWA-encoding are in-

dependent of the subset of SHACL, but rather depend on the query

language (and indeed graph model) used. Similarly, the axioms in-

ferred as subsumptions between query variables (mappings) again

depend on the query language, not on the subset of SHACL; how-

ever, the extension approach utilizing input shapes does depend on

the set of input shapes. Here, a few additional rules could be added

for extending the approach - we leave this as future work, since

this is not a substantial addition to the method, since, again, the

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

actual extensions depend on shape constraints that can be trans-

lated to conjunctive CONSTRUCT queries, which is, essentially,

intersection.

D.3 SHACL Features Beyond ALCHOI
We consider now in passing our intuition, on whether our approach

can be extended for additional SHACL features.

• Node target queries. Node target queries where omitted for

the sake of simplicity, since inferring such shapes based

on the query template would not be very productive. We

believe this is a trivial extension to our method, if a use

case were to require such shapes.

• Qualified number restrictions. Using an underlying DLwith

support for qualified number restrictions, we believe that

there would not be an issue with supporting them. How-

ever, we omit them, since we think that there are only

exceedingly rare circumstances, where meaningful quali-

fied number restriction (other than existential and universal

quantification) could indeed be inferred for SPARQL CON-

STRUCT queries. The particular restrictions to consider

likely form a finite set informed by the query template.

• Non-cyclic shape references. Non-cyclic shape references

are syntactic sugar and can be resolved by substitution.

Thus, our method essentially supports non-cyclic shape

references already.

• Cyclic (i.e., recursive) shape references are not supported.

For recursive SHACL shapes, sets of results shapes would

no longer be independent, and thus, our filtering method

not applicable. However, we think that only validating a

set of given shapes that include recursive shape references

over the axioms inferred by our method should be possible.

• SHACL features validating literal values. We omit literals

for the sake of simplicity; from SCCQ queries, no interesting

constraints on literal values could be inferred. Literal value

constraints that occur in the input shapes could perhaps be

maintained through an encoding via some utility concept

definition.

D.4 Implementation Remarks

In order to efficiently explore the finite, but larger, search space of

candidate ALCHOI SHACL shapes, we suggest the following

approaches. Importantly, one can notice that full exploration of the

candidate space is rarely required. Indeed, a subset of result shapes

entailing all other shapes is most sensible for the majority of use

cases, no matter whether the use case is informing users (including

redundant shapes would not be necessary, but rather confusing),

suggesting shapes for some data set (e.g., data integration use case),

or for validation in a programming language context, or any other

automatic processing of result shapes, where a minimal set entailing

a larger set would generally suffice. Indeed, in such automatic cases

one may not need to instantiate any shapes, but instead rely only on

the set of axioms, which already can be used to check for entailment

of individual shapes to the extend required by such a use case.

In order to reduce the set of candidates, one can reduce the

syntax by relying on the set semantics of the set of result shapes.

For example, union and intersection of constraints is not required

on the top-level of a constraint, since both can be reconstructed

from entailment in the result set (e.g., if both𝜓1 ⊑ 𝜙1 and𝜓1 ⊑ 𝜙2
are result shapes, trivially, 𝜓1 ⊑ 𝜙1 ⊓ 𝜙2 is as well. This holds

similarly for union and some types of quantification.

Secondly, one can systematically cover the search space with a

breath-first search strategy, where immediate candidates are vali-

dated, before constructing more complex shapes. For example, if

𝜓1 ⊑ 𝜙1 is not a result shape, then for target𝜓1 we do not need to

validate any intersection involving 𝜙1.

E PROOFS (EXTENSION)

We show here, that a finite set of candidate shapes can be con-

structed for the extended method. To this end, we revise Proposi-

tion 2 in Proposition 10 for ALCHOI shapes.

Proposition 10. If a ALCHOI SHACL shape 𝑠 = 𝜓 ⊑ 𝜙 is

relevant for a SCCQ 𝑞, then voc(𝑠) ⊆ voc(𝑞).
We only consider constraints, i.e., the right hand side 𝜙 of a

ALCHOI SHACL shape 𝜓 ⊑ 𝜙 , since for 𝜓 , we already show

that the set of target queries is finite, given a finite vocabulary of a

query 𝑞 (Proof of Proposition 2, Appendix C.2).

Without loss of generality, we assume that all constraints are

in disjunctive normal form, without (syntactical) duplications and

with components sorted according to some total order (e.g., by

syntactic construct and then alphanumerically by role, concept or

individual names). Thus, patterns such as 𝐴 ⊓𝐴 do not occur, and

𝐵 ⊓ 𝐴 is considered equal to 𝐴 ⊓ 𝐵. Furthermore, we omit ∀𝑝.𝐶 ,
since it is equivalent ¬∃𝑝.¬𝐶 .

We define the following lemmas. The first one (Lemma 6) intu-

itively means, that for each concept description defined according

to the grammar presented in the lemma, if the vocabulary of this

description is not a subset of the vocabulary of some graph𝐺 , then

the result is either equivalent to ⊤ or ⊥, or the concept description
can be simplified, such that the resulting concept description is in

the vocabulary of 𝐺 , or equivalent to ⊤ or ⊥.
Lemma 6. Let 𝐺 be a Simple RDF graph, (T𝐺 ,𝐺) the validation
knowledge base of 𝐺 , and 𝐶1 a concept description defined by the

following grammar

𝐶1 ::= 𝐶2 ⊔𝐶1 | 𝐶2 (1)

𝐶2 ::= 𝐶3 ⊓𝐶2 | 𝐶3 (2)

𝐶3 ::= ¬𝐶4 | 𝐶4 (3)

𝐶4 ::= ⊤ | ⊥ | 𝐴 | {𝑎} (4)

where𝐴 is a concept name and𝑎 an individual name. Then, voc(𝐶1) ⊈
voc(𝐺) implies one of the following cases:

(1) (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥
(2) There exists a concept description (T𝐺 ,𝐺) |= 𝐶 ′

1
≡ 𝐶1, such

that either voc(𝐶 ′
1
) ⊆ voc(𝐺), or voc(𝐶 ′

1
) ⊈ voc(𝐺) and

(T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥.

Proof. Let I be a model of (T𝐺 ,𝐺). Note, that according to

Lemma 2, every model I of (T𝐺 ,𝐺) is isomorphic to the canonical

model of 𝐺 .

We first consider the two trivial cases for 𝐶4.

(1) If 𝐶4 is ⊤, then trivially (T𝐺 ,𝐺) |= ⊤ ≡ ⊤.
(2) If 𝐶4 is ⊥, then trivially (T𝐺 ,𝐺) |= ⊥ ≡ ⊥.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

We next consider the two remaining cases for 𝐶4.

(1) If𝐶4 is𝐴 and𝐴 ∉ voc(𝐺), then𝐴I is empty. Thus, (T𝐺 ,𝐺) |=
𝐴 ≡ ⊥.

(2) If 𝐶4 is 𝑎 ∉ voc(𝐺), then {𝑎}I is empty. Thus, (T𝐺 ,𝐺) |=
{𝑎} ≡ ⊥.

(3) If 𝐶4 is ∃𝑝.𝐶1, we have the following cases:

We next consider the cases for 𝐶3.

(1) If 𝐶3 is ¬𝐶4 and voc(𝐶4) ⊈ voc(𝐺), then either (T𝐺 ,𝐺) |=
𝐶4 ≡ ⊥ (and thus (T𝐺 ,𝐺) |= ¬𝐶4 ≡ ⊤), or (T𝐺 ,𝐺) |= 𝐶4 ≡
⊤ (and thus (T𝐺 ,𝐺) |= ¬𝐶4 ≡ ⊥). Thus, (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤
or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥, if voc(𝐶3) ⊈ voc(𝐺).

(2) If 𝐶3 is 𝐶4 and voc(𝐶4) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶4 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶4 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥, if
voc(𝐶3) ⊈ voc(𝐺).

(3) If𝐶3 is ¬𝐵 and voc(𝐶3) ⊈ voc(𝐺), then (T𝐺 ,𝐺) |= ¬𝐵 ≡ ⊤,
since, by definition, there exists no 𝑏:𝐵 ∈ 𝐺 .

We next consider the cases for 𝐶2 by induction.

(1) If 𝐶2 is 𝐶3 and voc(𝐶3) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥, if
voc(𝐶2) ⊈ voc(𝐺).

(2) If 𝐶2 is 𝐶3 ⊓𝐶 ′
2
and voc(𝐶3) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶3 ≡ ⊥.
In the first case, we can reduce the term to𝐶 ′

2
(since⊤⊓𝐶 ≡

𝐶), and by induction, either voc(𝐶 ′
2
) ⊈ voc(𝐺) and then

(T𝐺 ,𝐺) |= 𝐶 ′
2
≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶 ′

2
≡ ⊥, or voc(𝐶 ′

2
) ⊆

voc(𝐺).
In the second case, then also (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥, since
(⊥ ⊓𝐶 ≡ ⊥).

(3) If 𝐶2 is 𝐶3 ⊓ 𝐶 ′
2
and voc(𝐶3) ⊆ voc(𝐺), then, for 𝐶 ′

2
if

voc(𝐶 ′
2
) ⊈ voc(𝐺) one of the other cases applies recur-

sively.

We finally consider the cases for 𝐶1 by induction.

(1) If 𝐶1 is 𝐶2 and voc(𝐶2) ⊈ voc(𝐺), then, as previously

shown, either (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥
and thus (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, if
voc(𝐶1) ⊈ voc(𝐺).

(2) If 𝐶1 is 𝐶2 ⊓ 𝐶 ′
1
and voc(𝐶2) ⊈ voc(𝐺), then either, as

previously shown, (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶2 ≡ ⊥.
In the first case, then also (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤, since ⊤⊔𝐶 ≡
⊤.
In the second case, we can reduce the term to 𝐶 ′

1
(since

⊥ ⊔ 𝐶 ≡ 𝐶), and by induction, either voc(𝐶 ′
1
) ⊈ voc(𝐺)

and then (T𝐺 ,𝐺) |= 𝐶 ′
1
≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶 ′

1
≡ ⊥, or

voc(𝐶 ′
1
) ⊆ voc(𝐺).

(3) If 𝐶1 is 𝐶2 ⊔ 𝐶 ′
1
and voc(𝐶2) ⊆ voc(𝐺), then for 𝐶 ′

1
if

voc(𝐶 ′
1
) ⊈ voc(𝐺) one of the other cases applies recur-

sively.

Hence, we prove the lemma. □

For Lemma 7, we slightly adapt the allowed concept descriptions

by allowing existential quantification for 𝐶4, thus, the concept

descriptions now cover arbitrary ALCHOI concept descriptions

in disjunctive normal form.

Lemma 7. Let 𝐺 be a Simple RDF graph, (T𝐺 ,𝐺) the validation
knowledge base of 𝐺 , and 𝐶5 a concept description defined by the

following grammar

𝐶5 ::= 𝐶6 ⊔𝐶5 | 𝐶6 (5)

𝐶6 ::= 𝐶7 ⊓𝐶6 | 𝐶7 (6)

𝐶7 ::= ¬𝐶8 | 𝐶8 (7)

𝐶8 ::= ⊤ | ⊥ | 𝐴 | {𝑎} | ∃𝑝.𝐶5 | ∃𝑝− .𝐶5 (8)

where𝐴 is a concept name and𝑎 an individual name. Then, voc(𝐶5) ⊈
voc(𝐺) implies one of the following cases:

(1) (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊥
(2) There exists a concept description (T𝐺 ,𝐺) |= 𝐶 ′

5
≡ 𝐶5, such

that either voc(𝐶 ′
5
) ⊆ voc(𝐺), or voc(𝐶 ′

5
) ⊈ voc(𝐺) and

(T𝐺 ,𝐺) |= 𝐶5 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶5 ≡ ⊥.

Proof. We prove this property by induction on the structure

of 𝐶5 (Lemma 7). To this end, we consider first as a base cases the

case where in 𝐶8 existential quantification is restricted to ∃𝑝.𝐶1

(or ∃𝑝− .𝐶1, respectively). According to Lemma 6, then the prop-

erty under investigation holds for 𝐶1. Furthermore, we assume

without loss of generality, that 𝐶1 is fully reduced according to

Lemma 6. Thus, if voc(𝐶1) ⊈ voc(𝐺) then either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤
or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, since otherwise𝐶1 would not be fully reduced

according to Lemma 6.

We have the following cases if 𝐶8 is ∃𝑝.𝐶1 (cases for ∃𝑝− .𝐶1

work exactly equivalently):

(1) If 𝑝 ∉ voc(𝐺), then 𝑝I is empty, from which we can follow

that (T𝐺 ,𝐺) |= ∃𝑝.𝐶1 ≡ ⊥. Note, that this holds indepen-
dently from 𝐶1.

(2) If 𝑝 ∈ voc(𝐺) and voc(𝐶1) ⊈ voc(𝐺), then, by definition,

either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥. Thus, we
can reduce the expression to ∃𝑝.⊤ or ∃𝑝.⊥, respectively.

Since the cases for 𝐶7, 𝐶6 and 𝐶5 depend only on the common

property between Lemma 7 and Lemma 6, the proofs work exactly

analogously to the proofs of 𝐶3, 𝐶2 and 𝐶1 (Lemma 6), and are

omitted for brevity here.

Then, by induction, starting form the restricted 𝐶8 as the base

case, the property follows for arbitrary concept descriptions 𝐶5.

Thus, we prove the lemma. □

Finally, we prove Proposition 10.

Proof of Proposition 10. Let 𝑠 = 𝜓 ⊑ 𝜙 be a ALCHOI
SHACL shape, 𝑞 be a SCCQ, and 𝐺 be a Simple RDF graph with

voc(𝐺) ⊆ voc(𝑞), and (T𝐺 ,𝐺) be the validation knowledge base of

graph 𝐺 . We prove first property (i) of Proposition 10. We have the

following disjoint cases:

(1) Case voc(𝜓) ⊈ voc(𝑞). Then, by Lemma 3, (T𝐺 ,𝐺) |= 𝜓 ≡
⊥ (since𝜓 is, per definition, restricted to one of the cases

covered in the lemma). Hence, shape𝜓 ⊑ 𝜙 is not relevant

(Definition 11).

(2) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊈ voc(𝑞). Let us assume,

without loss of generality, that the concept description 𝜙 is

fully reduced according to Lemma 7. (Note, that if due to

reduction voc(𝑝ℎ𝑖) ⊈ voc(𝐺) no longer applies, the next

case below would be applicable.)

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Then, according to Lemma 7, either (T𝐺 ,𝐺) |= 𝐶1 ≡ ⊤ or

(T𝐺 ,𝐺) |= 𝐶1 ≡ ⊥, in which case the shape is not relevant

(Definition 11).

(3) Case voc(𝜓) ⊆ voc(𝑞) and voc(𝜙) ⊆ voc(𝑞). In this case,

property (i) is trivially satisfied.

Thus we prove Proposition 10. □

Corollary 2. As corollary of Proposition 10, the set of ALCHOI
shapes over voc(𝑞) of a query 𝑞 is not finite.

Proof. Follows immediately by inspection of the syntax of a

ALCHOI concept description over a finite vocabulary. □

However, we can further restrict the set of candidates to obtain

a meaningful, finite set of shapes. To this end, we first define the

quantification nesting depth as a property of anALCHOI concept

description.

Definition 28. The nesting depth ndep(𝐶) is defined as:

ndep(∃𝑝.𝐶) := 1 + ndep(𝐶) (9)

ndep(∀𝑝.𝐶) := 1 + ndep(𝐶) (10)

ndep(𝐶1 ⊓𝐶2) := max(ndep(𝐶1), ndep(𝐶2)) (11)

ndep(𝐶1 ⊔𝐶2) := max(ndep(𝐶1), ndep(𝐶2)) (12)

ndep(𝐶) := 0 for all other cases (13)

Example 15. The nesting depth ndep(∃𝑝.𝐴) is 1+ 0 = 1. The nest-

ing depth ndep(∀𝑝.𝐴⊓∃𝑝.(𝐵⊔∃𝑝.𝐶)) is max(1+ 0, 1+ (max(0, 1+
0))) = 2.

Then, we restrict the nesting depth of candidate ALCHOI
SHACL shapes over the vocabulary voc(𝑞) of a given query 𝑞 to

the diameter of the variable connectivity graph vcg(𝑞).

Proposition 11. Given a query 𝑞, the set of relevant ALCHOI
SHACL shapes over voc(𝑞) and with finite nesting depth is finite.

Proof. Follows immediately by inspection of the syntax of a

ALCHOI concept description over a finite vocabulary and Propo-

sition 10. □

F RUNTIME EVALUATION

The runtime evaluation is based on randomly generated problems

(i.e., sets of input shapes as well as queries). In this section, we give

an overview of the included profiling tools of our implementation,

and one example instance of such a evaluation run. Thus, the ex-

periment discussed here shows basic feasibility of our method with

synthetic data, though results on real-world data may differ.

F.1 Overview

Our implementation includes tools for evaluating the runtime of

the algorithm with randomly generated sample problems. The gen-

eration can be adapted for various parameters. Full results for the

experiments described here are included with the implementation

project source code. More results can be generated by executing

the profiling application. To this end, see the included README.md
file for the full documentation on how to execute and customize

profiling.

Results can differ based on the reasoner implementation (mul-

tiple reasoners are available with our implementation) as well as

the optimization strategies. Some reasoner implementations or op-

timization strategies are not deterministic. (Note, that as a simple

optimization strategy, our implementation can abort runs with a

set timeout and retry computing results, in order to avoid unlucky

models for non-deterministic reasoner optimization strategies.)

F.2 Experimental Setup

We include full source code of our implementation, as well as the

setup for this experiment, with this contribution. Thus, we refer to

the project setup (in particular, build.sbt) with respect to version

of the respective software, et. al.

Beyond that, we run experiments with Microsoft JDK build

openjdk 17.0.7 2023-04-18 LTS on Windows 10 Pro (Version

10.0.19045), on commodity hardware (Intel i5-6600K @ 3.5GHz,

16GB RAM).

F.3 Results of the Experiment

We define the following three sample configurations and give the

number of atomic patterns per query (for template and pattern

each) as well as the number of input shapes.

• SMALL 1-2 templates and patterns, 1-2 shapes.

• MEDIUM 5-7 templates and patterns, 5-7 shapes.

• LARGE 11-13 templates and patterns, 11-13 shapes

As a basis for these scenarios, we refer to the following real-

world query datasets (logs), where most queries (more than 90%)

have fewer than 6 or 7 patterns [5, 8], relating to our MEDIUM con-
figuration. More than half include only on pattern, relating to our

SMALL configuration. Our LARGE configuration covers outliers of

very large queries (less than 1% of real-world queries).

For all samples, we draw fresh variables (per basic pattern) with a

probability of 0.5 and fresh concepts or role nameswith a probability

of 0.8, and sample property versus concept atomic patterns with a

ratio of 0.3. We provide the full details on all parameters used for

sampling with the implementation source code.

Note, that we generate shapes from the vocabulary of the query.

Thus, the number of input shapes given here is not comparable

to the size of usual sets of SHACL shapes in real-world datasets.

That is, the sets of 1.5/6/12 shapes constrain the relatively small

vocabulary of an input query rather tightly. We do not know of

any empirical data on the average number of shapes in the query

(pattern) vocabulary, i.e., that apply to a particular query, thus we

estimate the numbers as given above.

We run and measure 5.000 samples each for the three given

configurations, using a fixed seed for the random generator, and

measure execution time for a single run of the algorithm per sam-

ple (after first running 100 additional samples as warmup). This

experiment uses the HermiT
2
reasoner. A summary of results is

given in Table 1.

Full output with input shapes, input queries, fine-grained execu-

tion metrics, as well as output shapes is included with the project

source code as a CSV file and a summary report. Both the full out-

put as well as the summary can be generated by executing the

profile main method (see project documentation), that is, the full

experiment can be executed with a single command.

2
http://www.hermit-reasoner.com/

18

http://www.hermit-reasoner.com/

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

From Shapes to Shapes Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table 1: Results (average and median execution time in mil-

liseconds without timeouts, the number of timeouts (limit:

10 minutes), as well as percentage of processing time spent

on reasoning) for SMALL, MEDIUM and LARGE configurations.

Configuration Average Median T/O Reasoning

SMALL 3 0 0 38,42%

MEDIUM 40 20 0 87,11%

LARGE 693 243 20 97,66%

F.4 Interpretation

We show in this experiment the basic feasibility of our method, with

average and median execution times for even very large samples of

less than one second. For the largest samples, few (0.4%) samples

time out, with a set timeout of 10 minutes. We hypothesize that

this is due to the reasoner sometimes choosing an unlucky model,

where reasoning takes a very long time. Indeed, the majority of

time is spent on reasoning for larger configuration (see Table 1) and

by detailed inspection of the full log, this holds true for timeouts as

well.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

19

	Abstract
	1 Introduction
	2 Foundations
	2.1 The Description Logic ALCHOI
	2.2 Simple RDF Graphs
	2.3 Simple SHACL Shapes
	2.4 Simple Conjunctive CONSTRUCT Queries

	3 Formal Problem Statement
	4 Computing Candidate OutputShapes
	5 Axiomatizations Over Query Executions
	6 Checking Whether IsOutputShape
	6.1 Axiomatizations from Validation KB Assumptions
	6.2 Axiomatizations for Query Subpatterns
	6.3 Extending Query Patterns by Shape Constraints
	6.4 Axiomatizations for Role Hierachies

	7 Implementation
	8 Related Work
	9 Concluding Remarks
	References
	A Structure of the Appendix
	B Extended Examples
	B.1 Implementation
	B.2 Running Example: Full Set of Output Shapes
	B.3 Running Example: Concrete Syntax
	B.4 Additional Examples

	C Proofs
	C.1 Proof for Proposition 1
	C.2 Proof for Proposition 2
	C.3 Proof for Proposition 3
	C.4 Proof for cor:reduction-algo1
	C.5 Proof for Proposition 4
	C.6 Proof for Proposition 5
	C.7 Proof for Proposition 6
	C.8 Proof for Proposition 7
	C.9 Proof for Proposition 8
	C.10 Theorem 1 and Proof
	C.11 Proposition 9 and Proof

	D Extending the Method
	D.1 Soundness
	D.2 Extended Axiom Inference
	D.3 SHACL Features Beyond ALCHOI
	D.4 Implementation Remarks

	E Proofs (Extension)
	F Runtime Evaluation
	F.1 Overview
	F.2 Experimental Setup
	F.3 Results of the Experiment
	F.4 Interpretation

