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Abstract

Evaluating interpretability approaches for graph neural networks (GNN) specifically is known
to be challenging due to the lack of a commonly accepted benchmark. Given a GNN model,
several interpretability approaches exist to explain GNN models with diverse (sometimes
conflicting) evaluation methodologies. In this paper, we propose a benchmark for evaluating
the explainability approaches for GNNs called Bagel. In Bagel, we firstly propose four
diverse GNN explanation evaluation regimes – 1) faithfulness, 2) sparsity, 3) correctness, and
4) plausibility. We reconcile multiple evaluation metrics in the existing literature and cover
diverse notions for a holistic evaluation. Our graph datasets range from citation networks,
document graphs, to graphs from molecules and proteins. We conduct an extensive empirical
study on four GNN models and nine post-hoc explanation approaches for node and graph
classification tasks. We release both the benchmarks and reference implementations and
make them available at https://anonymous.4open.science/r/Bagel-benchmark-F451/.

1 Introduction

Graph neural networks (GNNs) (Veli�koviÊ et al., 2018; Kipf & Welling, 2017; Klicpera et al., 2019; Xu et al.,
2019; Hamilton et al., 2017) are representation learning techniques that encode structured information into
low dimensional space using a feature aggregation mechanism over the node neighborhoods. GNNs have
shown state-of-the-art performance across many scientific fields in various important downstream applications,
such as molecular data analysis, drug discovery, toxic molecule detection, and community clustering (Dong
et al., 2022; Gaudelet et al., 2021; Ying et al., 2018).

There have been benchmarks and datasets for interpretability of machine learning models (Wiegre�e &
MarasoviÊ, 2021; Liu et al., 2021). The rising number of applications of GNNs in several sensitive domains
like medicine and healthcare (Dong et al., 2022; Lu & Uddin, 2021) necessitates the need to explain their
decision-making process. GNNs are inherently black-box and non-interpretable. Moreover, due to the complex
interplay of node features and neighborhood structure in the decision-making process, general explanation
approaches (Lundberg & Lee, 2017; Ribeiro et al., 2016; Singh & Anand, 2020) cannot be trivially applied
for graph models. Consequently, several explanation technique (Ying et al., 2019; Funke et al., 2022; Vu &
Thai, 2020; Yuan et al., 2020; Schnake et al., 2021; Huang et al., 2020; Schlichtkrull et al., 2020; Yuan et al.,
2021) have been proposed for GNNs in the last few years. A known challenge in developing explanation
techniques is that of evaluation of the quality of explanations. This challenge also extends to the evaluation
of explainability approaches for GNNs and is the focus of this work.

Existing approaches usually focus on a certain aspect of evaluation, sometimes even performed on synthetic
datasets. For example, some works employ synthetic datasets with an already-known subgraph (sometimes
referred to as the ground truth reason or simply the ground truth). Explanations are then evaluated based
on their agreement with the ground truth. Such an evaluation is sometimes flawed as one cannot always
guarantee that the GNN has used in the first place the seeded subgraph for its decision-making process Faber
et al. (2021). Besides, there is no standardized procedure for comparing di�erent GNN explanations. For
example, feature attribution methods can generate soft masks (feature importance as a distribution) or hard
masks (boolean selections) over features. Comparing hard and soft mask explanations needs a common and
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2 Background and Preliminaries74

Graph Neural Networks. Let G(V, E) be a graph with V is set of nodes and E is set of edges.75

Let A � {0, 1}(n,n) be the adjacency matrix of the graph where n is the number of nodes in the76

graph with Aij = 1 if there is an edge between node i and j and 0 otherwise. Let X � R(n,d)77

be the features matrix where d is the number of features. For a given node v � V , xv denotes its78

features vector and Nv is a set of its neighbors. We denote the trained GNN model as f on the given79

graph. For each layer �, the representation of node v is obtained by aggregating and transforming the80

representations of its neighboring nodes at layer � � 1.81
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where W (�) represents the weight matrix at layer �. The aggregation function, AGG function is82

dependent on the GNN model, for example graph convolution network (GCN) [13] uses a degree83

weighted aggregation of neighborhood features, whereas graph attention network (GAT) [33] learns84

neighborhood weights via attention mechanism. At the final layer, the prediction can be obtained85

using a softmax function. An additional pooling layer is applied for graph classification tasks before86

applying softmax function.87

2.1 Post-hoc explanations and evaluation for GNNs88

Post-hoc explainers for GNNs produce feature and local structure attributions where a combination of89

masked set of nodes, edges and features is retrieved as an explanation. To compute the explanation for90

a k-layer GNN, the k-hop neighborhood (also referred to as node’s computational graph) of the node91

is utilized. BAGEL currently consists of 3 classes of post-explanation techniques: gradient based,92

perturbation based and surrogate model approaches. The gradient based methods [28, 32, 30, 21]93

are the simplest approaches for generating the explanation for any differentiable trained model. In94

these approaches the importance scores for the explanation are usually computed using gradients95

of the input. The perturbation based approaches [6, 36, 19, 39, 26] learns the important features96

and structural information by observing the predictive power of model when noise is added to the97

input. The surrogate based approaches [34, 10, 41] learns a simple interpretable model for the local98

neighborhood of a query nodes and it’s prediction. The explanations generated by this simple model99

are treated as the explanations of the original model. We comment that BAGEL is in general applicable100

for any kind of explainer which returns binary (hard) of continuous (soft) importance scores for the101

input features/nodes/edges as an explanation.102

2.2 Related work on evaluation for post-hoc explanations103

Evaluation of explanation methods for any predictive model is inherently tricky. Specifically, when104

evaluating already trained models we are faced with the ground-truth dilemma. The ground-truth105
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Figure 1: An overview of the Bagel benchmark.

standardized protocol. Finally, the check for human plausibility and correctness have been ignored in the
evaluation of GNN explainers. Human plausibility checks if a model predicts right for the right reason. On the
other hand, the correctness of an explanation checks if the explainers is able to isolate spurious correlations
and biases that are intentionally added to the training data as a proxy for biases present in real-world data.

To address the issues of a holistic evaluation and contribute a resource to the growing community on GNN
explainability, we developed Bagel, a benchmark platform for evaluating explanation approaches for graph
neural networks or GNNs. Bagel as depicted in Figure 1 covers diverse datasets (Sen et al., 2008; Debnath
et al., 1991; Borgwardt et al., 2005; Zaidan & Eisner, 2008) from the literature, a range of standardized metrics,
and a modular, extendable framework for execution and evaluation of GNN explanation approaches, along
with initial implementations of recent popular explanation methods. In Table 1, we show the combination of
metrics and datasets that we use in our benchmark. Bagel includes:

¶ Four diverse evaluation notions that evaluate the faithfulness, sparsity, correctness, and plausibility of
GNN explanations on real-world datasets. While the first three metrics focus on evaluating the explainers,
plausibility checks for explanations to be human congruent.

¶ Besides the widely used datasets for measuring faithfulness of explanations, Bagel consists of new datasets
for the plausibility of explanation approaches in our benchmark datasets.

¶ We unify multiple evaluations, metrics, domains, and datasets into an easy-to-use format that reduces the
entry barrier for evaluating new approaches to explain GNNs. Additionally, we provide an extendable
library to implement and evaluate GNN explainers.

¶ We conduct an extensive evaluation of GNNExplainer(GNNExp) (Ying et al., 2019), PGM-
Explainer(PGM) (Vu & Thai, 2020), Zorro (Funke et al., 2022), Grad (Simonyan et al., 2013), GradIn-
put(Simonyan et al., 2013), Integrated Gradient(IG) (Sundararajan et al., 2017), SmoothGrad (Smilkov
et al., 2017), CAM (Pope et al., 2019) and GradCAM (Pope et al., 2019) in Bagel.

We show that there is no clear winner in GNN explanation methods showing nuanced interpretations
of the GNN explanation methods using the multiple metrics considered. We finally note that evalu-
ating the e�ectiveness of explanations is an intrinsically human-centric task that ideally requires hu-
man studies. However, the goal of Bagel is to provide a fast and accurate evaluation strategy
that is often desirable to develop new explainability techniques using empirical evaluation metrics be-
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Table 1: Datasets and metrics.

Task Dataset Metric
Faithfulness Sparsity Correctness Plausibility

RDT-Fidelity Su�. & Comp.

Node

Cora 3 7 3 3 7
CiteSeer 3 7 3 3 7
PubMed 3 7 3 7 7
ogbn-arxiv 3 7 3 7 7
Synthetic 3 7 3 3 3

Graph

Movie Reviews 7 3 7 7 3
MUTAG 3 3 3 7 7
PROTEINS 3 3 3 7 7
ENZYMES 3 3 3 7 7

fore the human trial stage. The code and the datasets used in our benchmark are available at
https://anonymous.4open.science/r/Bagel-benchmark-F451/.

2 Background and Preliminaries

Graph Neural Networks. Let G(V, E) be a graph with V is a set of nodes and E is a set of edges. Let
A œ {0, 1}(n,n) be the adjacency matrix of the graph where n is the number of nodes in the graph with
Aij = 1 if there is an edge between node i and j and 0 otherwise. Let X œ R(n,d) be the features matrix
where d is the number of features. For a given node v œ V, xv denotes its features vector and Nv is a set of its
neighbors. We denote the trained GNN model as f on the given graph. For each layer ¸, the representation of
node v is obtained by aggregating and transforming the representations of its neighboring nodes at layer ¸ ≠ 1

h(¸)
v = AGG

1Ó
x(¸≠1)

v ,

Ó
x(¸≠1)

u | u œ Nv

ÔÔ2
, x(¸)

v = TRANSFORM
1

h(¸)
v , W

(¸)
2

, (1)

where W
(¸) represents the weight matrix at layer ¸. The aggregation function AGG function is dependent

on the GNN model. For example, graph convolution network (GCN) (Kipf & Welling, 2017) uses a degree
weighted aggregation of neighborhood features, whereas graph attention network (GAT) (Veli�koviÊ et al.,
2018) learns neighborhood weights via an attention mechanism. The prediction can be obtained at the final
layer using a softmax function. An additional pooling layer is applied for graph classification tasks before
applying softmax function.

Computational Graph. We note that for the task of node classification, for any node v the subgraph taking
part in the computation of neighborhood aggregation operation, see (1), fully determines the information
used by GNN during inference time to predict its class. In particular, , for a k-layer GNN, we refer to the
subgraph induced on nodes in the k-hop neighborhood of v, as its computational graph. Note the for the task
of graph classification the computational graph would be the entire graph.

2.1 Post-hoc explanations and evaluation for GNNs

GNN Explanation. Post-hoc explainers for GNNs produce feature and local structure attributions where
a combination of a masked set of nodes, edges, and features is retrieved as an explanation. To compute
the explanation for a k-layer GNN, the k-hop neighborhood (i.e.its computational graph) of the node is
utilized. For an explanation S, the explanation mask M(S) is computed over the input nodes/edges and the
features in the computational graph. Note that M(S) could be binary or a continuous mask and contains the
importance scores for the corresponding nodes/features. We note that as di�erent explainers either return
node or edge importance scores, for consistent comparison we convert edge masks to node masks.

Bagel currently consists of 3 classes of post-explanation techniques: gradient based, perturbation based
and surrogate model approaches. The gradient-based methods (Simonyan et al., 2013; Sundararajan et al.,
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2017; Smilkov et al., 2017; Pope et al., 2019) are the simplest approaches for generating the explanation
for any di�erentiable trained model. In these approaches, the importance scores for the explanation are
usually computed using gradients of the input. The perturbation-based approaches (Funke et al., 2022; Ying
et al., 2019; Luo et al., 2020; Yuan et al., 2021; Schlichtkrull et al., 2020) learns the important features and
structural information by observing the predictive power of the model when noise is added to the input.
The surrogate-based approaches (Vu & Thai, 2020; Huang et al., 2020; Zhang et al., 2021) learns a simple
interpretable model for the local neighborhood of a query node and its prediction. The explanations generated
by this simple model are treated as the explanations of the original model. We note that Bagel is, in general,
applicable for any explainer which returns binary (hard) or continuous (soft) importance scores (as depicted
in Figure 1) for the input features/nodes/edges as an explanation.

2.2 Related work on evaluation for post-hoc explanations

Evaluation of explanation methods for any predictive model is inherently tricky. Specifically, when evaluating
already trained models, we are faced with the lack of true explanations. Collecting true explanations
(sometimes referred to as ground truth) for GNNs is even more challenging due to the abstract nature of the
input graphs. Moreover, depending on the explanation collection method, it is not always clear if the model
used the ground truth in its decision-making process.

Nevertheless, some current works employ small synthetic datasets seeded with a ground truth subgraph.
Consequently, metrics such as explanation accuracy (Sanchez-Lengeling et al., 2020; Ying et al., 2019) were
proposed, which measure the agreement of found explanation with that of ground truth. Observing the
false optimism of accuracy metric for small explanation subgraphs, Funke et al. (2022) proposed the use of
Precision instead of accuracy. We need models that are not only accurate, but right for the right reasons.
Towards this, we exploit the text datasets consisting of right reasons or human rationales (DeYoung et al.,
2019) to construct GNN models. Note that, while being recently popular in the NLP community, comparison
with human rationales is missing in the current GNN explanation approaches. To address this gap, we
introduce a metric called plausibility which measures agreement of explanations with the human rationales.
Plausibility can be used in conjunction with the faithfulness metric which actually evaluates the explainer.

An important notion for evaluating explanations is faithfulness where the key idea is to measure how much
the explanation characterizes the model’s working. To measure faithfulness Sanchez-Lengeling et al. (2020)
degrade model performance by damaging the training dataset and measuring how each explanation method
responds. The lack of ground truth again limits such a measure. Pope et al. (2019) proposed to compute
faithfulness as the di�erence of accuracy (or predicted probability) between the original predictions and the
new predictions after masking out the input features found by the explanation. This was called Fidelity
in their work. As the features cannot be removed in entirety to measure their impact Funke et al. (2022)
proposed RDT-Fidelity based on rate distortion theory defined as the expected predictive score of an
explanation over all possible configurations of the non-explanation features.

To measure faithfulness for di�erent explanation types Bagel uses RDT-Fidelity in addition to two comple-
mentary fidelity metrics similar to the one in Pope et al. (2019) and inspired from DeYoung et al. (2019)
when only node/edge level explanations are provided.

An important criterion to measure the goodness of an explanation is its size. For example, the full input is
also a faithful explanation. However, humans find shorter explanations easier to analyze and reason. Works
such as Pope et al. (2019) measure the sparsity of an explanation as the fraction of features selected by the
explainer. Noting that this definition is not directly applicable for softmask approaches, Funke et al. (2022)
proposes to quantify sparsity as entropy over the normalized distribution of explanation masks. We use the
entropy-based sparsity metric as it can be applied both for hard and soft masking approaches.

The authors in Sanchez-Lengeling et al. (2020) argued that the explanation should be stable under input
perturbations. In particular, for graph classification, they perturbed test graphs by adding a few nodes/edges
such that the final prediction remains the same as that for an unperturbed graph. Lower the change in
explanation under perturbations better the stability. A challenge here is that there is no principled way to
find the perturbations. For example, a part of the explanation might be altered under random perturbations
even if the prediction is unchanged. In the following, we will see that the faithfulness metric of RDT-Fidelity
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already accounts for explanation stability without altering the explanation. We also note that there have
been other benchmarks to study robustness of GNN models (Fan et al., 2021; Zheng et al., 2021). However,
we focus on explaining GNN models predictions and not robustness. Having said this, we a�rm that Bagel
could be used in a complementary manner to these existing benchmarks to test trustworthy GNN models.

3 Bagel: A Unified Framework for Evaluating Explanations

We now present our framework Bagel for evaluating GNN explanations. Specifically, Bagel unifies existing
and our proposed notions into 2 main classes. In the first class of measures we aim at evaluating the explanation
methods in the sense that whether they are truly describing the model’s workings. The first category includes
three metrics: faithfulness, sparsity and correctness. Faithfulness determines if an explanation alone can
replicate the model’s behavior. Sparsity focuses on rewarding shorter explanations. Correctness determines if
the explanation model is able to detect any injected correlations responsible for altering model’s behavior.
The metrics in the second class are aimed at evaluating the GNN model itself. Here we propose plausibility
which measures how close is the decision making process of the trained model (as revealed by explanations)
to human rationales.

3.1 Faithfulness: Can explanations approximate model’s behavior?

The key idea here to evaluate the ability of the explanation to characterize model’s working. Unlike previous
works we argue that there is not a single measure for faithfulness which can be e�ectively used for all kinds of
datasets and explanations. Consequently we propose a set of two measures to quantify faithfulness depending
on the dataset/explanation type.

• Rate distortion based fidelity. The fidelity of an explanation is usually measured by the ability of
an explanation to approximate the model behavior (Ribeiro et al., 2016). For explanations which contain
the feature attributions with or without structure attributions, we use the rate distortion theory based
metric proposed in Funke et al. (2022) to measure the fidelity of an explanation. In short, a subgraph
of the node’s computational graph and its set of features are relevant for a classification decision if the
expected classifier score remains nearly the same when randomizing the remaining features.
Let X denotes the input node and features of the computational graph. In particular X corresponds
to matrix of nodes in the computational graph and their corresponding feature values. As we use node
and feature explanation masks, we compute the final M(S) corresponding to some explanation S by an
elementwise product of node and feature masks. The RDT-Fidelity of explanation S respect to the GNN
f , input X and the noise distribution N is then given by

F(S) = EYS |Z≥N
#

f(X)=f(YS )
$

. (2)

where the perturbed input is given by

YS = X § M(S) + Z § ( ≠ M(S)), Z ≥ N , (3)

where § denotes an element-wise multiplication, and a matrix of ones with the corresponding size and
N is a noise distribution. We choose the noise distribution as the global empirical distribution of the
features. We sample the values from the underline training data distribution. The purpose of adding
noise is not to replace the unimportant features of input with 0, rather its value should not matter. The
replacement of unimportant features with 0 may cause side e�ects like in some datasets, the value 0 may
represent some semantic meaning or biasness towards some pooling strategy, for example, minpool. Also,
the noise from global features distribution makes sure that the perturbed data points are still in the same
distribution as the original data (Hooker et al., 2019).

Connection to explanation stability. As shown in Funke et al. (2022), explanations with high
RDT-fidelity are highly stable. High fidelity score implies that the explanation has high predictive power
under perturbations of the rest of the input. Unlike the strategy of Sanchez-Lengeling et al. (2020) to
evaluate explanation stability, it is here ensured that the explanation itself is never altered.
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The special case of dense feature representations. For some datasets it is more appropriate to
consider only structure based explanations. For example, when features themselves are dense representations
extracted using some black-box embedding method, feature explanations as well as feature perturbations
might not make much sense. It is then more appropriate to check the abilities of the explanation with
the rest of nodes/edges removed and keeping the features intact. Towards that we employ the following
measures of comprehensiveness and su�ciency also used in (DeYoung et al., 2019).

• Comprehensiveness and Sufficiency. For explanations which contain only nodes or/and edges we
adapt the comprehensiveness and su�ciency measures of DeYoung et al. (2019) for GNNs. Let G be the
graph and GÕ ™ G be the explanation graph with important (attribution) nodes/edges. In particular, GÕ is
generated by removing all nodes/edges from G which are not part of the explanation.
Let f be the trained GNN model and f(G)j be the prediction made by GNN for j

th class, where j is the
predicted class. We measure fidelity by comprehensiveness (which answers the question if all nodes/edges
in the graph needed to make a prediction were selected?) and su�ciency (if the extracted nodes/edges are
su�cient to come up the original prediction?)

su�ciency = f (G)j ≠ f (GÕ)j , comprehensiveness = f (G)j ≠ f (G\GÕ)j (4)

A positive value of su�ciency implies that the probability prediction of f on G is higher than that of GÕ,
which tells us that nodes/edges in the GÕ are not su�cient to reach to the same or better prediction. A
negative su�ciency score points out that the model f has better prediction on GÕ than G which signifies
that explainer was successful in eliminating certain noisy nodes which led to better performance. Similar
arguments hold for comprehensiveness. In short these measures should not be symmetric.
The high comprehensiveness value shows that the prediction is most likely because of the explanation GÕ

and low comprehensiveness value shows that GÕ is mostly not responsible for the prediction. Since most of
the explainers retrieve soft masks we employ aggregated comprehensiveness and su�ciency measures. In
particular, we divide the soft masks into |B| = 5 bins by using top k œ B = {1%, 5%, 10%, 20%, 50%} of
the explanation with respect to the soft masks values (Samek et al., 2016). The aggregated su�ciency is
defined as: 1

|B|

1q|B|
k=1 f (G)j ≠ f (GÕ

k)j

2
. The aggregated comprehensiveness is defined in similar fashion.

Remark: We would like to point out that the subgraph GÕ can have disconnected components or even
sometimes isolated nodes. The main issue here is that when we convert soft masks to hard masks we might
lose the connectivity among the important nodes. It depends on the explainer if it imposed a restriction on
returning a connected component. As we are only evaluating the explainer we do not add any additional
constraint. Also, since this is a graph classification task, all nodes (from any component) are used towards
prediction in the global pooling. For a more holistic evaluation we return the aggregated faithfulness
across a set of important explanation subgraphs selected across a range of hard thresholds.

3.2 Sparsity: Are the explanations non trivial?

High faithfulness ensures that the explanation approximates the model behavior well. However, the complete
input completely determines the model behavior. Thus explanation sparsity is an important criteria for
evaluation. Let p be the normalized distribution of explanation (feature) masks. Then sparsity of an
explanation is given by the entropy H(p) and is bounded from above by log(|M |) where M corresponds
to a complete set of features or nodes. While an entire input can be a faithful explanation it is important
to evaluate an explanation with respect to its size. A shorter explanation is easier to analyse and is more
human understandable. We adopt the entropy based definition of sparsity as in Funke et al. (2022) because
of its applicability to both soft and hard explanation masks. In particular, let p denote the normalized
distribution of node/edge/feature masks. We compute sparsity of an explanation as the entropy over the
mask distribution: H(p) = ≠

q
„œM p(„) log p(„).

3.3 Correctness: Can the explanations detect externally injected correlations?

While the above measures are essential that the given explanation is predictive certain applications might
need explanations for model debugging, for example to detect any spurious correlations picked up by model
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thereby increasing model bias. Towards that we measure correctness of an explanation in terms of its ability
to recognize the externally injected correlations which alters the model decision. A switch in model decision
is an evidence of the use of these injected correlations in the actual decision making process.

In particular, we first choose a set of incorrectly labelled nodes, V . To each such node v, we add edges
to the nodes in the training data which have the same label as v. We call such edges decoys. We retrain
the GNN model with the perturbed data. We measure the correctness of explanation S for nodes in V

which are now correctly predicted in terms of precision and recall of the decoys in the returned explanation:
PrecisionC = Nde

Ne
, RecallC = Nde

Nd
, where Nde is the number of decoys in the obtained explanation, Nd

total number of decoys injected and Ne is the size of the retrieved explanation. Note that our proposed
approach of using injected correlations is di�erent from using a synthetic graph with seeded ground truth. In
particular, for seeded graph approach it is not always clear if the ground truth is actually picked up by the
model to make its decision.

3.4 Plausibility: How close is the model’s decision process to humans rationals?

Human congruence or plausibility (Lei et al., 2016; Lage et al., 2019; Strout et al., 2019) tries to establish
how close or congruent is the trained model to human rationales for solving a predictive task. Trained models
often exhibit the clever-hans e�ect, that is predictive models can adopt spurious correlations in the training
data or due to misplaced inductive biases that have right results for the wrong reasons. Towards this, data is
collected from humans for perceptive tasks where humans explicitly provide their rationales. These human
rationales are in used as ground truth for evaluating if trained models are right for the right reasons. In
Figure 2,we showcase a movie review and the explanations generated (in red) by di�erent explainers. The
true label for this review is negative and the GCN makes correct prediction for the review.

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie... 

Human  
Rationales

GNNExp

Grad

CAM

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie...

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie... 

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie... 

Figure 2: An anecdotal example of explanations generated by di�erent explainers. The respective plausibility
scores for the current example for GNNExp, Grad and CAM are 0.50,0.54 and 0.61 respectively. We observe
that the explanation of CAM agrees best with the human rationales.

For applications where obtaining human rationales is indeed possible we propose the use of token-level F1 for
binary explanation masks and area under precision recall curve (AUPRC) for soft masks. The tokens are
words in the input text and are modelled as nodes in the graph. The human rationals are binary masks over
the nodes. The token level-F1 score is computed as macro-F1 for predicted binary explanation masks where
human rationals serve the true labels. For predicted soft explanation masks we measure additionally the
area under precision recall curve. Rather than fixing a threshold, AUPRC provides us a measure of precision
-recall tradeo� across di�erent decision thresholds.

The reader might have noticed that this metric is similar to the explanation accuracy in earlier works. We
argue against the use of term accurate to measure plausibility as similarity to human rationale does not
always guarantee that the model has learnt an explanation which contains the reasoning of the model itself
and not only of the humans.
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4 Experimental Setup

Models and Explainers. We demonstrate the use and advantage of the proposed framework by evaluating 9
explanation methods over 8 datasets and 4 GNN models. Currently our benchmark consists of these GNN mod-
els: graph convolutional networks (GCN) (Kipf & Welling, 2017), graph attention network (GAT) (Veli�koviÊ
et al., 2018), the approximation of personalized propagation of neural predictions (APPNP) (Klicpera et al.,
2019), and graph isomorphism network (GIN) (Xu et al., 2019). The models were chosen based on their
di�erences in (i) exploiting inductive biases (based on di�erent feature aggregation strategies), (ii) test
performance (see tables 9 and 10 in the Appendix) and (iii) response to injected correlations (see Table 5 and
the corresponding discussion). The further details on training of GNNs are available in Appendix M.

We perform experiments with perturbation based approaches like GNNExplainer (GNNExp) (Ying et al.,
2019) and Zorro (Funke et al., 2022), surrogate methods like PGM-Explainer (PGM) (Vu & Thai, 2020), and
gradient-based approaches like Grad (Simonyan et al., 2013), GradInput(Simonyan et al., 2013), Integrated
Gradient (IG) (Sundararajan et al., 2017), SmoothGrad (Smilkov et al., 2017), CAM (Pope et al., 2019) and
GradCAM (Pope et al., 2019). GNNExp returns soft feature masks and edge masks. We transform the edge
masks into node masks, in which we equally distribute the edge importance score to both nodes sharing the
edge. The further details of these explainers are available in Appendix B. As already mentioned Bagel is
extendable, and more approaches and explainers can be easily added.

4.1 Datasets

We now describe new and existing datasets used in our evaluation framework and the corresponding rationale.

New Dataset for Plausibility. To measure the plausibility of an explanation, we first require the
corresponding human rationales. Since the existing graph datasets do not have such annotated information,
we transform a text sentiment prediction task into a graph classification task. Specifically, we adopt the
Movie Reviews dataset (Zaidan & Eisner, 2008) from the ERASER benchmark (DeYoung et al., 2019). The
task is the binary classification, which is the di�erentiation between positive and negative movie reviews.

Construction of Movie Reviews Dataset. Each input instance or review is a passage of text, typically
with multiple sentences. Each input review is annotated by humans that reflects the actual "human" reasons
for predicting the sentiment of the review. These annotations are are extractive pieces of text and we call
them human rationales. We transform sentences into graphs using the graph-of-words approach (Rousseau &
Vazirgiannis, 2013). As a pre-processing step, we remove stopwords, such as "the" or "a". The complete list
of used stopwords is included in our repository. Each word is represented as a node and all words within
a sliding window of three are connected via edges. As features, we use the output of a pre-trained Glove
model (Pennington et al., 2014). Figure 3 provides an example of a graph from Movie Reviews dataset.

romeo juliet twelfth night easier believe he had

but develop plays his all how dream wet

please spare twelfth me all his unncessary melodrama

Figure 3: An example for text to graph generation. The graph is corresponding to input sentences "? romeo
and juliet ’ , and ? the twelfth night ’ . it is easier for me to believe that he had a wet dream and that ’s how
all his plays develop , but please spare me all of this unnecessary melodrama."
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Dataset to measure Comprehensiveness and Su�ciency. Note that the measures comprehensiveness
and su�ciency are only applicable for node/edge explanations. We use the above-described Movie Review
dataset for these two measures too. The rationale is that the node features are generated using Glove and
are not human-understandable. In this case, a structure-based explanation would be more meaningful than a
feature-based one. Further, we evaluate comprehensiveness and su�ciency on MUTAG, PROTEINS and
ENZYMES datasets.

Datasets for Correctness. We employ two citation datasets Cora (Sen et al., 2008) and CiteSeer (Sen
et al., 2008). After injecting correlations/decoys corresponding to incorrectly labeled nodes as described in
Section 3.3, we re-train the GNN model. The rationale behind adding homophily increasing correlations is
the observation from previous works (Khosla et al., 2019; Zhu et al., 2020) that GNN’s performance increases
with higher homophily. A model will have picked up these correlations if the previous incorrect nodes are now
correctly predicted. We further evaluate the correctness of the explanation only for newly correctly predicted
nodes.

Datasets for RDT-Fidelity. We perform the RTD-Fidelity evaluation on both node classification and
graph classification tasks. At node level, we use Citation datasets namely Cora, CiteSeer, PubMed,
ogbn-arxiv (Hu et al., 2020a) and synthetic datasets Ying et al. (2019). Table 9 shows the dataset statistics
and GNNs performances. For node classification task, we select 300 nodes for Cora and CiteSeer, and
PubMed and 1000 nodes for ogbn-arxiv randomly. We choose a smaller sample of nodes to get explanations
due to longer run times of certain explainers. The sample is chosen randomly to avoid any biases. Moreover,
in Figure 11, we provide additionally the standard deviation for explainer performance corresponding to node
samples. For graph classification task, we use MUTAG (Debnath et al., 1991), PROTEINS (Borgwardt et al.,
2005) and ENZYMES Morris et al. (2020) datasets. We select 50 graphs for both MUTAG and PROTEINS
datasets and 200 graphs for ENZYMES dataset.

5 Result Analysis

5.1 Faithfulness

Table 2: Results for RDT-Fidelity for node classification.

Mask Methods Cora CiteSeer PubMed
GCN GAT GIN APPNP GCN GAT GIN APPNP GCN GAT GIN APPNP

Hard Zorro 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.96
PGM 0.84 0.77 0.60 0.89 0.92 0.93 0.73 0.95 0.78 0.69 0.74 0.96

Soft

GNNExp 0.71 0.66 0.52 0.65 0.68 0.69 0.51 0.62 0.67 0.73 0.67 0.72
Grad 0.15 0.18 0.19 0.17 0.17 0.19 0.28 0.18 0.37 0.43 0.42 0.37
GradInput 0.15 0.18 0.18 0.16 0.16 0.18 0.26 0.17 0.36 0.42 0.42 0.36
SmoothGrad 0.44 0.42 0.38 0.50 0.54 0.57 0.45 0.62 0.52 0.53 0.67 0.59
IG 0.45 0.47 0.26 0.51 0.53 0.70 0.45 0.62 0.52 0.56 0.68 0.59
Empty Expl. 0.15 0.18 0.18 0.16 0.16 0.18 0.26 0.17 0.36 0.42 0.42 0.36
Random Expl. 0.63 0.60 0.42 0.55 0.59 0.57 0.52 0.52 0.75 0.67 0.67 0.70

RDT-Fidelity. In Table 2 we compare the RDT-Fidelity scores of various explanation methods. A common
feature of Zorro and PGM is that they both learn the explanations from a sampled local dataset. The
local dataset is created by perturbing the features of nodes from the computational graph (neighborhood of
query nodes). While they employ di�erent optimization strategies to find explanations, the result is a stable
explanation that also reflects our results. The gradient-based explanations achieve the lowest fidelity. We
also choose empty and random explanations as baselines. In an empty explanation, the importance scores
for all nodes and features are set to be 0. In case of a random explanation, we select nodes/features masks
randomly from a uniform distribution. We observe that empty explanation performs similar to GradInput.
The reason for this is that the explanation mask output by GradInput is close to a zero vector.
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Table 3: Faithfulness as comprehensiveness and su�ciency measured for Movie Reviews dataset. Low
su�ciency and high comprehensiveness indicates high faithfulness.

Methods GCN GAT GIN APPNP
Su�. Comp. Su�. Comp. Su�. Comp. Su�. Comp.

GNNExp 0.56 -0.01 0.47 0.03 0.24 0.32 0.48 0.07
Grad 0.02 0.39 0.15 0.16 0.25 0.31 0.11 0.20
GradInput 0.07 0.36 0.14 0.16 0.22 0.33 0.12 0.24
SmoothGrad 0.08 0.34 0.15 0.23 0.25 0.27 0.14 0.23
IG 0.11 0.38 0.16 0.21 0.23 0.27 0.16 0.24
CAM 0.41 0.01 0.11 0.14 0.26 0.26 0.39 0.05
GradCAM 0.02 0.29 0.06 0.27 0.21 0.27 0.07 0.28

For the graph classification task (see Table 11 in Appendix), all methods, including the gradient-based
approaches, perform relatively well except for the GCN model. PGM shows more consistent performance
across all models and datasets. We leave out Zorro as it is not applicable for the graph classification task.

Comprehensiveness and Su�ciency. We evaluate faithfulness for explanations for the Movie Reviews
dataset using aggregated comprehensiveness and su�ciency measures. The results for soft-mask explanations
are shown in Table 3. GradCAM has the lowest su�ciency which suggests that the explanations are su�cient
to mimic the prediction of GNN models. On the other hand, the explanations generated by GradCAM with
GCN and GIN suggest that there still exists important part of the input outside of the explanations which
are required to approximate the GNN’s prediction. On the other hand, GNNExp, which so far outperformed
gradient-based explanations for the node classification task, shows the worst su�ciency and comprehensiveness.
Even if we use the complete feature set and only the node masks to evaluate explanations, the node masks
for GNNExp are learned together with the feature explanations. This di�ers from gradient-based approaches,
which ignore feature and structure explanation trade-o�s. The current performance of GNNExp indicates that
it might not be appropriate to use entangled features and structure explanations independently. We report
the comprehensiveness and su�ciency on the MUTAG, PROTEINS and ENZYMES dataset in Appendix D
(See Tables 13 to 16). We observe that there is no single explainer which outperforms consistently with all
GNNs on these 3 molecule datasets. In Table 16, we report su�ciency and comprehensiveness of molecules
datasets trained with GCN model. We calculate the su�ciency and comprehensiveness when the edge masks
are used to generate induced subgraphs with di�erent thresholds. GNNExp-Edge represents GNNExp when
edge masks are directly used as the explanations. GradEdge represents gradients over edges. We also use
random edge masks as a baseline. GNNExp-Edge outperforms on MUTAG and ENZYMES datasets and
GradEdge outperforms on PROTEINS dataset.

5.2 Sparsity

As already mentioned, a complete input could already do well on all faithfulness measures. Therefore, we
further look for sparser explanations. The results for node sparsity for explanations in node classification
task are provided in Table 4. For the hard masking approaches (Zorro and PGM), Zorro outperforms PGM
with all GNN models except for GIN. Conversely, there is no clear winner for the soft mask approach. The
high sparsity for soft-masking approaches implies a near-uniform node attribution and consequently lower
interpretability. In general, faithfulness and sparsity of an explanation should be analyzed together. A
uniformly distributed explanation mask could already provide an explanation with high faithfulness as it
leads to using the complete input as an explanation. We also report feature sparsity for node classification in
Appendix E (in Table 17). We observe similar trends on features level sparsity where Zorro outperforms over
almost all datasets except SmothGrad when GIN is trained on CiteSeer. We further report node sparsity
on MUTAG, PROTEINS and ENZYMES in Appendix C(in table 12), where PGM outperforms over all three
datasets.

5.3 Correctness
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Table 4: Results for sparsity (computed as entropy over mask distribution) for node classification. The lower
the score sparser is the explanation.

Mask Methods Cora CiteSeer PubMed
GCN GAT GIN APPNP GCN GAT GIN APPNP GCN GAT GIN APPNP

Hard Zorro 1.58 1.59 2.17 1.48 1.26 1.09 1.58 1.07 1.51 1.31 2.18 1.25
PGM 2.06 1.82 1.66 1.99 1.47 1.59 1.10 1.54 1.64 1.16 1.62 2.93

Soft

GNNExp 2.48 2.49 2.56 2.51 1.67 1.67 1.70 1.68 2.70 2.71 2.71 2.71
Grad 2.48 2.34 2.25 2.35 1.70 1.61 1.55 1.60 2.91 2.76 3.11 2.73
GradInput 2.53 2.43 2.23 2.41 1.61 1.58 1.54 1.52 3.02 2.94 3.41 2.81
SmoothGrad 2.48 2.52 2.91 2.31 1.77 1.77 1.93 1.66 2.89 3.02 3.23 2.54
IG 2.49 2.50 2.84 2.31 1.76 1.77 1.91 1.66 2.84 2.89 3.06 2.58
Random Expl. 7.71 7.71 7.71 7.71 7.92 7.92 7.92 7.92 9.69 9.69 9.69 9.69

Table 5: The number of incorrectly la-
belled nodes (7) decreases after addition
of decoys. The number of new correctly
labelled nodes after injecting decoys is
listed under 3.

Model Cora CiteSeer
7 3 ø(%) 7 3 ø(%)

GCN 88 79 89.7 329 229 69.6
GAT 86 85 98.8 311 301 96.7
GIN 6 6 100 56 56 100
APPNP 73 70 95.8 280 252 90.0

The correctness results corresponding to di�erent models and ex-
plainers are reported for Cora (in Table 6) and CiteSeer (in
Table 18). We report precision, recall and F1 score by choosing top
k nodes for the soft explanations. For hard masked approaches the
number of returned nodes is listed under |S|. Note that the number
of decoys added per node is 10. For Table 6 and Table 18 we use
k = 20.

In Table 5, the e�ect of decoys can be seen where most of the earlier
incorrectly classified nodes are now correctly classified except for
GCN on CiteSeer. We also observe that number of selected nodes
for GIN is very low for Cora dataset (i.e., only a few nodes were
initially incorrectly labeled). GNNExp outperforms all other based
explainers in detecting the injected correlations for both Cora and
CiteSeer (detailed results moved to Table 18 in the Appendix due
to space constraints).

Comparing soft mask and hard mask approaches in this setting is tricky as for some approaches like Zorro,
we cannot control the explanation size. For example, for GAT Zorro retrieved an explanation of size 40. A
precision of 0.25 shows that it found all 10 injected correlations. Lack of feature ranking, as in soft mask
approaches, makes it di�cult to evaluate hard mask approaches for Correctness. For fairer evaluation, we
further plot the performance of soft mask approaches with di�erent k in Appendix H. For example, the
GNNExp shows high improvement when we increase the size of the explanation to 15. It is not surprising
to see the performance degrades when we increase the size of the explanation further since it already had
captured all injected decoys. Now it returns some irrelevant nodes in the explanation. Furthermore, in
Table 20 and 21, we use mean as a threshold to generate hard masks. As the mean threshold turns out to
be very low for all approaches, almost all nodes of the computational graph are selected as the explanation.
Consequently, we observe a very low correctness score (when measured in terms of precision).

5.4 Plausibility

Table 7 shows the Plausibility scores computed for explanations of di�erent GNN models. Recall that we
compare explanations with human rationales to compute plausibility. The average size of human rationales
over the test dataset is 165. To compute token level F1 score, we use mean as a threshold to generate hard
masks from soft masks.

We observe that all explainers assign the best plausibility scores to GCN. GIN obtains the second-best
plausibility scores. We also observe that the overall di�erence in the plausibility scores over models is relatively
small, with some exceptions like the combination of GIN and GNNExp. The corresponding explanation
also has the largest size. This further highlights the issues of soft-hard mask conversion. AUPRC scores
which directly use the soft masks are more stable. One surprising fact in these results is that even though
other GNN models achieve higher test accuracy than GIN (see Table 10 in the Appendix). Overall, their
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Table 6: Correctness of the explanation for node classification on Cora dataset. We use k = 20.

Mask Methods
Cora

GCN GAT GIN APPNP
P@k R@k F1 |S| P@k R@k F1 |S| P@k R@k F1 |S| P@k R@k F1 |S|

Hard Zorro 0.19 0.80 0.30 45 0.25 0.83 0.37 40 0.26 0.45 0.27 33 0.22 0.79 0.33 38
PGM 0.11 0.22 0.15 20 0.18 0.36 0.24 20 0.18 0.36 0.25 20 0.19 0.38 0.25 20

Soft

GNNExp 0.42 0.84 0.56 20 0.44 0.88 0.59 20 0.50 1.00 0.67 20 0.34 0.67 0.58 20
Grad 0.23 0.46 0.31 20 0.29 0.58 0.39 20 0.30 0.60 0.40 20 0.33 0.67 0.45 20
GradInput 0.16 0.32 0.21 20 0.28 0.56 0.34 20 0.30 0.60 0.40 20 0.28 0.56 0.38 20
SmoothGrad 0.12 0.25 0.16 20 0.24 0.48 0.32 20 0.50 1.00 0.67 20 0.22 0.43 0.29 20
IG 0.16 0.32 0.22 20 0.24 0.49 0.33 20 0.50 1.00 0.67 20 0.28 0.55 0.37 20

explanations have similar plausibility as for GIN except for GNNExp. In such cases, an application user
might want to look in more detail at specific correctly labeled instances to check if the model imitates human
reasoning.

We now provide a concrete example of how plausibility metric can be used in conjunction with faithfulness
to metric to evaluate model’s decision making process. From our previous example in Figure 2 we choose
Grad which achieves the best faithfulness score on this example. In Figure 4 we compare the explanations
of di�erent models as provided by Grad explainer and compare the explanations based on plausibility. We
observe the for GCN it achieves the highest faithfulness and plausibility scores.

Table 7: Plausibility for movie review dataset measured by auprc and F1 score (macro). |S| represents the
average size of the explanations generated by the explainers.

Mask Methods GCN GAT GIN APPNP
auprc F1 |S| auprc F1 |S| auprc F1 |S| auprc F1 |S|

Hard PGM — 0.42 25 — 0.43 25 — 0.43 25 — 0.43 25

Soft

GNNExp 0.46 0.54 168 0.43 0.54 149 0.45 0.35 410 0.45 0.53 158
Grad 0.44 0.52 265 0.38 0.51 158 0.40 0.52 156 0.38 0.50 255
GradInput 0.39 0.51 221 0.37 0.50 154 0.39 0.51 154 0.37 0.50 227
SmoothGrad 0.40 0.52 219 0.37 0.50 154 0.40 0.52 172 0.38 0.50 221
IG 0.37 0.49 225 0.37 0.50 188 0.39 0.51 186 0.38 0.50 219
CAM 0.54 0.61 224 0.40 0.51 177 0.44 0.55 156 0.44 0.53 195
GradCAM 0.67 0.34 175 0.67 0.35 191 0.67 0.34 166 0.67 0.34 188

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie... GCN

APPNP
The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie... 

GAT

The first problem that fair game has is the casting of supermodel cindy crawford in the lead role. not
that cindy does that bad... sure william is n't a bad actor. unfortunately he just does n't demonstrate it
all in this movie...

Figure 4: An example to illustrate the use of plausibility in conjunction with faithfulness to select the model
that best agrees with human rationales. We compare di�erent models for Grad explanations because Grad
explanations are highly faithful. Grad explanations over GCN agree best with human rationales.
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Figure 5: An overview of performances on Synthetic dataset. For each metric, the higher the better.

5.5 All Metrics on Synthetic dataset

In Table 8, we report performances over all metrics on synthetic dataset using GCN. We use synthetic dataset
proposed by Ying et al. (2019), where five-node house graph is attached to randomly selected nodes, which
works as the ground truth. Since the ground truths are the reasons for the prediction by the design of dataset
construction, we treat the ground truth nodes as decoys to compute correctness. The further details on
dataset are available in Appendix A. We train a 3-layers GCN model on synthetic dataset. We evaluate
all metrics on 700 randomly selected nodes. We added SubgraphX Yuan et al. (2021) for this experiment.
For hard masks approaches Zorro and SubgraphX, we can not retrieve the explanations of pre-defined size.
For PGM and all soft mask approaches, we choose top k nodes as the explanation. We use k = 10. Similar
to real-world datasets, Zorro generates the most faithful explanations for synthetic dataset. For gradient
based approaches, SmoothGrad generates most faithful explanations. The low sparsity and high precision of
explanations show that the explanations generated by SubgraphX are small and correct as well. Further we
observe that the gradient based approaches like GradInput, SmoothGrad and IG assign the high plausible
score to GCN. In Figure 5, we plot the all four metrics on Synthetic dataset. Since for the used sparsity
metric, lower is better, we use reciprocal of original sparsity in the plot.

6 Conclusion

We develop a unified, modular, extendable benchmark called Bagel to evaluate GNN explanations on
four diverse axes: 1) faithfulness, 2) sparsity, 3) correctness, and 4) plausibility. Faithfulness measured
via RDT-Fidelity can be employed for a wide set of tasks and datasets. We note that high RDT-Fidelity
also implies high explanation stability. The comprehensiveness and su�ciency measures should be used to
evaluate the faithfulness of structure-based explanations where perturbing features might not be feasible. It
is important to measure the sparsity of the explanation to avoid the extreme case of using the whole input
as an explanation. Correctness should be used with care, as injecting appropriate correlations to change a
model’s decision is not always straightforward.
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Table 8: All metrics on synthetic dataset. We use k = 10.

Mask Methods Faithfulness Sparsity Correctness Plausibility
RDT-Fidelity P@k R@k auprc F1

Hard
Zorro 0.98 1.68 0.40 0.69 na 0.55
PGM 0.67 2.28 0.38 0.73 na 0.50
SubgraphX 0.82 1.25 0.72 0.53 na 0.57

Soft

GNNExp 0.74 3.65 0.37 0.75 0.56 0.50
Grad 0.84 2.60 0.46 0.92 0.69 0.61
GradInput 0.72 2.13 0.49 0.99 0.74 0.66
SmoothGrad 0.92 2.17 0.49 0.99 0.74 0.66
IG 0.81 2.06 0.49 0.99 0.74 0.66
Zero Exp. 0.50 0.00 0.00 0.00 0.00 0.00
Random Exp. 0.83 7.05 0.01 0.01 0.01 0.01

Plausibility measures the joint utility of the explanation method and the trained GNN model with respect
to human rationales. Assuming that the generated explanations are faithful to the model, one can use
plausibility to check the model’s congruence to human rationales. This means that the loss of plausibility
can be either due to human-incongruent correlations or due to non-faithfulness of the explainer. To fully
interpret the results of plausibility one should first check explanation faithfulness.

Broader Impact Statement

By providing a unified evaluation framework we hope to have a positive impact on the further development and
holistic evaluation of explainability techniques for graph neural networks. Given the growing applications of
GNNs in various sensitive domains, such assessment benchmarks are essential to provide di�erent perspectives
on the provided explanation. On the other hand, automatic deployment of GNN explanations have been shown
to lead to leakage of data privacy (Olatunji et al., 2022). A more general perspective on privacy-transparency
tradeo�s in graph machine learning is provided in Khosla (2022).

References

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and Hans-Peter
Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher, and By-
ron C Wallace. Eraser: A benchmark to evaluate rationalized nlp models. arXiv preprint arXiv:1911.03429,
2019.

Thi Ngan Dong, Stefanie Mucke, and Megha Khosla. Mucomid: A multitask graph convolutional learning
framework for mirna-disease association prediction. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2022.

Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. When comparing to ground truth is wrong: On
evaluating gnn explanation methods. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 332–341, 2021.

Wenqi Fan, Wei Jin, Xiaorui Liu, Han Xu, Xianfeng Tang, Suhang Wang, Qing Li, Jiliang Tang, Jianping
Wang, and Charu Aggarwal. Jointly attacking graph neural network and its explanations. arXiv preprint
arXiv:2108.03388, 2021.

14



Under review as submission to TMLR

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Thorben Funke, Megha Khosla, Mandeep Rathee, and Avishek Anand. Z orro: Valid, sparse, and stable
explanations in graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 2022.

Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy
B R Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L Blundell, Michael M
Bronstein, and Jake P Taylor-King. Utilizing graph machine learning within drug discovery and development.
Briefings in Bioinformatics, 22(6), 05 2021. ISSN 1477-4054. doi: 10.1093/bib/bbab159. URL https:
//doi.org/10.1093/bib/bbab159. bbab159.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
methods in deep neural networks. In Advances in Neural Information Processing Systems, pp. 9737–9748,
2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020a.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020b.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang. Graphlime: Local
interpretable model explanations for graph neural networks. arXiv:2001.06216, 2020.

M. Khosla, V. Setty, and A. Anand. A comparative study for unsupervised network representation learning.
TKDE, 2019.

Megha Khosla. Privacy and transparency in graph machine learning: A unified perspective. In Advances
in Interpretable Machine Learning and Artificial Intelligence (AIMLAI) at International Conference on
Information and Knowledge Management (CIKM’22), 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural
networks meet personalized pagerank. International Conference on Learning Representations (ICLR), 2019.

Isaac Lage, Emily Chen, Je�rey He, Menaka Narayanan, Been Kim, Sam Gershman, and Finale Doshi-Velez.
An evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1902.00006, 2019.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155, 2016.

Yang Liu, Sujay Khandagale, Colin White, and Willie Neiswanger. Synthetic benchmarks for scientific
research in explainable machine learning. arXiv preprint arXiv:2106.12543, 2021.

Haohui Lu and Shahadat Uddin. A weighted patient network-based framework for predicting chronic diseases
using graph neural networks. Scientific reports, 11(1):1–12, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in
neural information processing systems, pp. 4765–4774, 2017.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. arXiv preprint arXiv:2011.04573, 2020.

15

https://doi.org/10.1093/bib/bbab159
https://doi.org/10.1093/bib/bbab159


Under review as submission to TMLR

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.io.

Iyiola E Olatunji, Mandeep Rathee, Thorben Funke, and Megha Khosla. Private graph extraction via feature
explanations. arXiv preprint arXiv:2206.14724, 2022.

Je�rey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 1532–1543, 2014.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Ho�mann. Explainability
methods for graph convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10772–10781, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1135–1144, 2016.

François Rousseau and Michalis Vazirgiannis. Graph-of-word and tw-idf: new approach to ad hoc ir. In
Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp.
59–68, 2013.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert Müller.
Evaluating the visualization of what a deep neural network has learned. IEEE transactions on neural
networks and learning systems, 28(11):2660–2673, 2016.

Benjamin Sanchez-Lengeling, Jennifer Wei, Brian Lee, Emily Reif, Peter Wang, Wesley Wei Qian, Kevin
McCloskey, Lucy Colwell, and Alexander Wiltschko. Evaluating attribution for graph neural networks.
Advances in neural information processing systems, 33, 2020.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for nlp with
di�erentiable edge masking. arXiv preprint arXiv:2010.00577, 2020.

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schütt, Klaus-Robert Müller,
and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant walks. IEEE
transactions on pattern analysis and machine intelligence, 44(11):7581–7596, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective
classification in network data. AI magazine, 29(3):93–93, 2008.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Jaspreet Singh and Avishek Anand. Model agnostic interpretability of rankers via intent modelling. In
Conference on Fairness, Accountability, and Transparency, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: removing
noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Julia Strout, Ye Zhang, and Raymond J Mooney. Do human rationales improve machine explanations? arXiv
preprint arXiv:1905.13714, 2019.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 3319–3328. JMLR. org, 2017.

Petar Veli�koviÊ, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. ICLR, 2018.

16

www.graphlearning.io


Under review as submission to TMLR

Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural
networks. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, 2020.

Sarah Wiegre�e and Ana MarasoviÊ. Teach me to explain: A review of datasets for explainable nlp. arXiv
preprint arXiv:2102.12060, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 974–983, 2018.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnn explainer: A tool for
post-hoc explanation of graph neural networks. arXiv preprint arXiv:1903.03894, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of graph neural
networks. In KDD ’20, pp. 430–438. Association for Computing Machinery, 2020.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural networks via
subgraph explorations. arXiv preprint arXiv:2102.05152, 2021.

Omar Zaidan and Jason Eisner. Modeling annotators: A generative approach to learning from annotator
rationales. In Proceedings of the 2008 conference on Empirical methods in natural language processing, pp.
31–40, 2008.

Yue Zhang, David Defazio, and Arti Ramesh. Relex: A model-agnostic relational model explainer. In
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 1042–1049, 2021.

Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Jiarong Xu, Yang Yang, and Jie Tang.
Graph robustness benchmark: Benchmarking the adversarial robustness of graph machine learning. In
J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, volume 1, 2021. URL https://datasets-benchmarks-proceedings.neurips.
cc/paper/2021/file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper-round2.pdf.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and e�ective designs. Advances in Neural Information
Processing Systems, 33:7793–7804, 2020.

17

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6cdd60ea0045eb7a6ec44c54d29ed402-Paper-round2.pdf

	Introduction
	Background and Preliminaries
	Post-hoc explanations and evaluation for GNNs
	Related work on evaluation for post-hoc explanations

	Bagel: A Unified Framework for Evaluating Explanations
	Faithfulness: Can explanations approximate model's behavior?
	Sparsity: Are the explanations non trivial?
	Correctness: Can the explanations detect externally injected correlations?
	Plausibility: How close is the model's decision process to humans rationals?

	Experimental Setup
	Datasets

	Result Analysis
	Faithfulness
	Sparsity
	Correctness
	Plausibility
	All Metrics on Synthetic dataset

	Conclusion
	More details on datasets
	Datasets
	Dataset statistics and Model Performance

	Details of explainers
	Grad
	GradInput
	Integrated Gradient (IG)
	SmoothGrad
	CAM
	GradCAM
	Zorro
	PGM
	GNNExp

	Results of RDT-Fidelity and Sparsity on Graph classification
	Results on Sufficiency and Comprehensiveness
	Results on Feature Sparsity
	Results of Correctness on CiteSeer
	Experiments on ogbn-arxiv Dataset
	Different strategies to compute hard mask from soft mask to measure Correctness
	Limitations
	Results showing standard deviation of fidelity and sparsity scores
	Run time for training and re-training of GNN models
	Details on design of decoys
	Details for training GNNs

