
Under review as a conference paper at ICLR 2022

LEARNING TO ADAPT TO SEMANTIC SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning systems are typically trained and tested on the same distribution
of data. However, in the real world, models and agents must adapt to data distribu-
tions that change over time. Previous work in computer vision has proposed using
image corruptions to model this change. In contrast, we propose studying models
under a setting more similar to what an agent might encounter in the real world.
In this setting, models must adapt online without labels to a test distribution that
changes in semantics. We define two types of semantic distribution shift, one or
both of which can occur: static shift, where the test set contains labels unseen at
train time, and continual shift, where the distribution of labels changes throughout
the test phase. Using a dataset that contains both class and attribute labels for
image instances, we generate shifts by changing the joint distribution of class
and attribute labels. We compare to previously proposed methods for distribution
adaptation that optimize a fixed self-supervised criterion at test time or a meta-
learning criterion at train time. Surprisingly, these provide little improvement in
this more difficult setting, with some even underperforming a static model that
does not change parameters at test time. In this setting, we introduce two models
that “learn to adapt”—via recurrence and learned Hebbian update rules. These
models outperform both previous work and static models under both static and
continual semantic shifts, suggesting that “learning to adapt” is a useful capability
for models and agents in a changing world.

1 INTRODUCTION

A traditional assumption in machine learning is that models are trained and tested on the same
distribution of data. However, it is often the case that the test distribution may differ from the training
distribution and can also change significantly over time. Examples include: evolving road and weather
conditions for self-driving cars, new rooms and scenes for indoor robots, and cultural shifts over
time for online posts. Unfortunately, model performance tends to degrade as the data distribution
diverges from the training distribution, since models remain unchanged once deployed (Torralba &
Efros, 2011). Since supervised learning is relatively weak to distribution shifts, current mitigation
approaches require repeatedly re-collecting labels and retraining models. This can be expensive and
impractical; we would prefer models that adapt online to new data in an unsupervised fashion. In this
paper, we investigate methods for adapting models to changing data distributions, focusing on image
classification.

Prior work proposes multiple settings that address different aspects of the problem. In the unsuper-
vised domain adaptation (UDA) setting (Vapnik, 2006; Quionero-Candela et al., 2009; Joachims,
1999; Ganin & Lempitsky, 2015), access to the full test distribution at training time is typically
assumed; this is unrealistic for models deployed in the real world. More complex forms of UDA
proceed through a sequence of separate discrete domains in the test set (Lao et al., 2020; Wu et al.,
2019) (e.g. images→ paintings→ sketches) or shift the test distribution continuously from a start
point to an end point (Kumar et al., 2020; Wulfmeier et al., 2018; Liu et al., 2020a) (e.g., images of
cars from 1950→ cars from 2010). These don’t model the fact that real world distribution shifts can
be discrete, continuous, cyclic patterns (e.g., day-night cycles or seasons), or a combination of all
three.

We first present a realistic test setting, Semantic Domain Shift, that aims to address the above issues.
In this setting:
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• The test set may contain labels unseen at training time. We term this static shift.
• The distribution of labels may change throughout the test phase. We term this continual

shift.
• After training, models must adapt incrementally during the test phase without access to

gold-standard labels.

While a number of non-neural approaches (Hoffman et al., 2014; Kulis et al., 2011; Gong et al., 2012;
Gopalan et al., 2011; Saenko et al., 2010; Fernando et al., 2013; Jain & Learned-Miller, 2011) for
incrementally adapting to domain shift have been proposed, little work has addressed adaptation for
deep neural networks. One exception is Test-Time-Training (Sun et al., 2020), which optimizes a
self-supervised loss at training and testing time. Additionally, TENT (Wang et al., 2021) updates
normalization parameters by minimizing prediction entropy at test time. However, these works only
adapt to synthetic distribution shifts (applying image corruptions including Gaussian blur, salt and
pepper noise) as opposed to natural ones (e.g., weather, lighting, style, attributes). Furthermore, by
requiring training at test time, they impose extra computational requirements and add latency. This
may not be possible in resource-constrained settings. Finally, Zhang et al. (2020) introduce Adaptive
Risk Minimization (ARM), a metalearning objective for test sets that contain different subgroups than
the training set, but do not consider shifting label distributions.

We introduce here a class of models that directly “Learn to Adapt” to semantic domain shift. We
evaluate two classes of models: learned Hebbian plasticity and recurrent models. The earliest pro-
posed mechanism for unsupervised learning and adaptation in neural networks is Hebbian plasticity
(Hebb, 1949). By modifying synaptic weights between an input and output neuron according to the
correlation of their activities, Hebbian plasticity is believed to play an important role for adaptation
and learning in animals (Morgan; Sardi et al., 2020; Noguchi et al., 2004). Given the biological
plausibility, we test a learned version of Hebbian Plasticity, building off Najarro & Risi (2020) who
use it to solve reinforcement learning problems. Recurrent networks are also thought to play a role
in biological adaptation (Kohn, 2007). They have been used in learning-to-learn (Andrychowicz
et al., 2016; Schmidhuber, 1992) and for their ability to remember information over time (Haviv
et al., 2019). We test a multi-layer LSTM (Hochreiter & Schmidhuber, 1997), training both with
i.i.d. sampling and under continual shift at train time.

Using the MIT-States dataset (Isola et al., 2015), which labels each image instance with both a class
annotation and an attribute annotation, we construct a test setting for evaluating model performance
on static shift, continual shift, and both together. Surprisingly, we found that TENT, TTT, and ARM
did not improve performance significantly in our setting, sometimes underperforming a single static
model; cf. Section 4.3. We demonstrate that models trained directly for adaptation can outperform
these methods without requiring training at test time.

Our Contributions. We introduce a more realistic test setting where domain shifts occur seman-
tically. We show that current methods for adaptation based on optimizing a fixed self-supervised
criterion perform comparably to a model that does not change its weights at test time, sometimes
even underperforming. We demonstrate that both a recurrent model and learned hebbian update rules
outperform previous methods that optimize a fixed self-supervised criterion at test time or optimize a
meta-learning criterion at train time.

2 RELATED WORK

2.1 SETTINGS

Domain Adaptation. Many variants of Unsupervised Domain Adaptation (Vapnik, 2006), each
focusing on different aspects of the problem have been explored. Generally, the majority of settings
(Zhao et al., 2020) assume access to the entire test set at training time. Compound domain adaptation
(Liu et al., 2020b) contains multiple domains with real-world variations (e.g., lighting, weather, etc.),
but also assumes access to the full test distribution at train time. Open set DA (Busto & Gall, 2017;
Busto et al., 2020) is similar to our setting in that novel labels can appear at test time. However,
the setting tasks the model with predicting whether an instance has a novel label or not. In our
setting, the model is tasked with explicitly predicting the label. Other settings (Kumar et al., 2020;
Wulfmeier et al., 2018; Liu et al., 2020a) have proposed adapting to a gradually changing distribution,
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but they assume that the test distribution shifts continuously from a start distribution (often the train
distribution) to an end distribution, which is a limiting assumption for the real world (e.g. day-night
cycles or seasons). Wang et al. (2020) propose a setting where the test distribution continually shifts
along multiple axes (e.g. digit rotation and class), but they are only able to evaluate on simple images.
Other settings focus on subpopulation shift Santurkar et al. (2021), in conjunction with domain
generalization Koh et al. (2021), but do not have a shift in the predicted label distribution across train
and test. Koh et al. (2021). Wu et al. (2019) propose a realistic setting most similar to ours, with 2
minor but important differences: We primarily focus on predicting the shifting labels in an image
classification task, where they focus on remaining invariant to the changing test distribution for the
task of semantic segmentation.

Continual Learning. Both the ability to adapt continually and the ability to continually learn
are crucial for models and agents operating in the real world. In the continual learning setting
(Parisi et al., 2019), a model must sequentially learn to solve a series of tasks without catastrophic
forgetting - forgetting how to solve earlier tasks it was trained on (Nguyen et al., 2019). Our setting
can be straightforwardly compared to the continual learning setting, with one subtle, but important
difference.

The continual learning setting consists of two phases. First, the training phase: where models are
incrementally provided tasks with labeled instances. Second, the testing phase: where frozen models
are tested on unseen unlabeled instances for those tasks. Our setting also consists of two phases. First,
the training phase, where models are provided a training set of labeled instances they can arbitrarily
use for learning. Second, the testing phase: where models are asked to make predictions on unseen
unlabeled instances under a series of changing tasks or conditions. Generally, Continual Learning
asks a model to learn from a continually changing distribution and not forget, whereas our setting
asks models to learn from a fixed distribution and adapt to a continually changing test distribution.

van de Ven & Tolias (2019) split experimental setups for continual learning into 3 categories:
Task-incremental learning, Domain-incremental learning, and Class-incremental learning. In task-
incremental learning, models are provided with the task identity. In our case, the test-time analogue
would correspond to asking the model: “With a given possible set of attributes, what is the class of
this instance?” or “With a given possible set of classes, what is the attribute of this instance?”. In
domain-incremental learning, models must solve the task at hand without being provided with the
task identity. In our case, the test-time analogue would correspond to asking the model: “Without
knowing the attribute, what is the class of this instance?” or “Without knowing the class of this
instance, what is its attribute?”. In class-incremental learning, models must solve the task at hand and
predict the task identity. In our case, the test-time analogue would correspond to asking the model:
“What are the attribute and class of this instance?”.

We adopt the class-incremental structure and procedure from continual learning for constructing an
ordering over examples at test time (See Sec 3). We evaluate the impact of catastrophic forgetting via
repeating label subsets at different times during the test phase.

Setting Static Shift Continuous Shift
(class shift)

Continuous Shift
(class & attribute shift)

Compare with: Domain Adaptation Class-Incremental
Learning

Class-Incremental
Learning

Difference: Shift in label distribution. Labels not given Labels not given,
more complex semantic shift.

Table 1: Comparing the components of our setting with existing settings.

2.2 METHODS

Self-Supervised Adaptation. Previous work has proposed adapting to a (potentially changing) test-
distribution by minimizing a self-supervised criterion on instances throughout the test phase. TENT
(Wang et al., 2021) updates model normalization parameters (batch-normalization scale and shift
(Ioffe & Szegedy, 2015)) by minimizing the mean entropy of model predictions on each test batch.
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Test-Time-Training (Sun et al., 2020) adds a linear self-supervised head to the feature backbone with
a rotation prediction (Gidaris et al., 2018) proxy task at training time. At test time, they update the
parameters of the convolutional backbone to minimize the same rotation prediction loss on each test
batch or instance. TENT and TTT shift the test distribution by applying image corruptions including,
but not limited to: Gaussian blur, salt and pepper noise. In contrast, we change the distribution of
labels (i.e. semantics) encountered at test time. In the interest of experimental completeness, we also
evaluate our methods on the image corruption task (See the appendix). TENT builds on work by Li
et al. (2016), who proposed adapting by using running statistics at test time to compute mean and
standard deviation for batch-normalization layers.

Learning synaptic update rules. In contrast to artificial neural networks, biological neural net-
works learn rapidly, display significant adaptive behavior, and adjust to new domains quickly (Morgan;
Sardi et al., 2020; Noguchi et al., 2004). Synaptic plasticity is believed to play an important role
in adaptation and learning, particularly through local mechanisms that rely solely on local neuron-
specific activity to modulate synaptic connections. The most well-known and earliest proposed
mechanism, Hebbian plasticity, (Hebb, 1949) states: “Neurons that fire together, wire together”
– concretely that the weight of a synapse betweeen neurons changes proportionally to correlated
activity between the two neurons. Previous work has used Hebbian plasticity for continual learning
(Thangarasa et al., 2020) on visual tasks, as well as learning-to-learn (Miconi, 2016), where they
demonstrate capabilities for pattern completion, one-shot learning, and reversal learning. Other work
has used differentiable plasticity to outperform standard LSTMs on language modeling tasks with an
order of magnitude fewer parameters (Miconi et al., 2019). Closest to our approach is Najarro & Risi
(2020), where connection-specific Hebbian update rules are learned to perform selected reinforcement
learning tasks. We build off their formulation, adding a momentum term to ease optimization and
weight normalization to deal with exploding weights.

3 SEMANTIC DOMAIN SHIFT

We assume a dataset where each image has two annotations: attributes (e.g., “wet,” “melted,” “de-
flated”) and classes (e.g., “dog,” “chocolate,” “ball”). This allows us to predict unseen compound
labels during testing without requiring test-time supervision. Additionally this allows us to examine
more complex semantic shifts between the train and test set than a difference in relative frequencies
of classes. For example, a model can be asked to predict the class of a wet dog when it has only seen
dry dogs (and wet non-dog objects) at train time.

3.1 STATIC SHIFT

We define static shift as a shift in the distribution of labels between the train and test set. The simplest
form of static shift is a shift in relative frequencies of classes between the train and test sets (e.g.,
the test set consists almost entirely of dogs when very few dogs are seen at train time). We use
the fact that our assumed dataset contains both class and attribute labels to evaluate more complex
static shift. We build a test set consisting of class-attribute combinations that are unseen at train time
while all attributes and classes are seen at train time. In order to do this, we iteratively randomly
sample compound labels with at least 5 instances that are not the only label containing a given class
or attribute in the training set, moving those instances into the test set until it has at least 20% of the
examples in the dataset. Once the dataset has been split into a train-val set and a test set, we conduct
the same procedure on the train-val set to generate the training set and a validation set (with at least
10% of the examples in the train-val set).

3.2 CONTINUAL SHIFT

We define continual shift as a setting where the distribution of labels changes throughout the test
phase. For example, early in the test phase, a model may see mostly dogs and cats, midway through
mostly cats and trees, and late in the test set see dogs again.

Class Shift. We adopt the task-based ordering used in continual learning, where the test set is split
into a number of tasks such that each class appears only within a single task. These tasks may occur
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Figure 1: Classes are split into tasks, and each task is split into occurrences/subsets such that all
classes in the task appear in each subset. We then randomly order these subsets and the contained
instances to generate an ordering for the test set.

several times over the test phase; every example is still seen once. In order to construct an ordering
for the test set, we use the following procedure.

Classes are randomly divided equally into k tasks. We split each task into n subsets or occurrences.
This is done by splitting each class in a task into n subsets, and joining these subsets across classes in
a task. This results in n subsets for each task, each of which contains examples from all classes in the
task. Given k tasks, each split into n subsets, we randomly order the examples within each subset,
then randomly order the k ∗ n subsets to produce a test set ordering; see Figure 1.

The division of classes into k tasks ensures that the distribution of labels changes over the test-set
ordering. The division of each task into n occurrences allows us to test the effects of catastrophic
forgetting and repetition on model adaptation. For example, with n = 1, once all the instances in a
given task have been evaluated, no instances from the same classes will be seen for the rest of the test
set. As n grows larger, the test set ordering approaches i.i.d. sampling.

Class-Attribute Shift. In this setting, we modify class shift to make it more difficult. When we
split each class into n subsets, we do so in an attribute-disjoint way, so that no examples of the same
class share the same attribute across the subsets. Since intraclass visual differences can often be larger
than interclass visual differences due to attributes (e.g., there exists a larger visual difference between
“Scrambled Eggs” and “Hardboiled Eggs” than between “Hardboiled Eggs” and “Ping Pong Balls”),
it can be difficult to classify an object instance where the instance’s class has not been seen with
that attribute before. In the Class Shift setting, a model could potentially use temporal context (e.g.,
scrambled egg images appearing close in time together with hardboiled egg images) to determine the
label. This becomes more difficult in the Class-Attribute Shift setting, particularly as the number of
occurrences n increases.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We use MIT-States (Isola et al., 2015), a dataset of objects, scenes, and materials in
transformed states. The dataset consists of 63, 440 images depicting 245 nouns (classes) modified
by a total of 115 adjectives (attributes). Concretely, each example consists of an image, along with
2 labels: the class and an attribute or state for the object. The dataset was originally collected to
study transformations in the physical world carrying semantic meaning (e.g. wetting, bending, aging).
Images were collected of objects in transformed states, with transformations common across multiple
object classes.
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Model Architectures & Loss & Training All models use a Resnet-18 backbone (He et al., 2015),
with two independent prediction heads. Adaptive models initialize backbone parameters from a
resnet-18 pretrained on Imagenet (Russakovsky et al., 2015). We train all models with a sum of cross-
entropy losses on attribute prediction and class prediction. Detailed descriptions of hyperparameters
as well as the setup for fine-tuning models under class-shift are included in the appendix (??).

4.2 METHODS EVALUATED

We evaluate both static models that do not change parameters or state at test time, and adaptive models
which update their parameters at test time. We compare to previous work that update parameters:
BN (Li et al., 2016), TENT (Wang et al., 2021), and Test-Time-Training (Sun et al., 2020), giving a
high level description below. We point the reader to Zhang et al. (2020) and Kang et al. (2020) for
descriptions of the Adaptive Risk Minimization and τ -norm methods.

Static Baseline. In order to predict both classes and attributes, we combine a convolutional back-
bone f with two independent MLP heads gc and ga for predicting the class and attribute, respectively.
The loss for a given instance x with class ŷc and attribute ŷa is then:

Lsup = LCE(ŷc, gc(f(x))) + LCE(ŷa, ga(f(x))) , (1)

where LCE denotes the cross-entropy loss. We use a Resnet-18 (He et al., 2015) as a backbone for all
methods. The MLP head consists of a linear layer that doubles the feature size (from 512 to 1024), a
ReLU nonlinearity (Nair & Hinton, 2010), and a final linear layer that outputs class scores. Further
methods build on this architecture.

Adaptation by Batch Normalization. Li et al. (2016) propose using test-time batch statistics to
compute the mean and standard deviation for batch normalization layers instead of using values
obtained from the training set. This can be easily accomplished by setting the batch normalization
layers in the network into “training mode.”

TENT. Wang et al. (2021) propose adapting during testing by minimizing the entropy of model
predictions to update batch normalization scale and shift parameters. After every test batch, we
minimize the sum of entropies for attribute and class predictions, updating the batch normalization
scale and shift parameters. They also set batch normalization layers to use running statistics at test
time, as in Li et al. (2016).

LTENT = H(gc(f(x))) +H(ga(f(x))) , (2)

Test-Time-Training (TTT). Sun et al. (2020) propose adding a linear self-supervised head gss
and a self-supervised loss Lss. Following Sun et al. (2020), we use rotation prediction as the
self-supervised task, resulting in training loss:

LTTT = Lsup + LCE(gss(r, f(rotate(x, r)))) , (3)

where the rotation r is randomly selected from [0, 90, 180, 270] degrees. At test time, TTT updates
parameters for the backbone f by minimizing the rotation prediction loss.

LSTM: Memory via Recurrence. We seek to learn a recurrent mechanism for modulating image
features given the history of images so far. The model proceeds through a given batch of examples
sequentially (feature extraction by the backbone can be done in parallel). We insert a 2 layer residual
LSTM with a hidden size of 512 (same as the resnet backbone feature size), between the model
backbone and the predictor heads. We optimize using BPTT over the batch, detaching gradients for
the LSTM state between batches. The LSTM state is reset to zero every epoch.

A Hebbian Learning Rule. We seek to learn connection-specific Hebbian update rules that will
convert a randomly initialized layer into one with high performance on the task. We replace the first
linear layer in each prediction head with a Hebbian layer (defined below), leaving the rest of the
network architecture unchanged. The model proceeds through a given batch of examples sequentially
(feature extraction by the backbone can be done in parallel). We build off work by Najarro & Risi
(2020) in optimizing Hebbian rules for reinforcement learning, using a modified generalized ABCD
rule (Soltoggio et al., 2007) for updating weights
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Concretely, at time t, A Hebbian layer with weightsW t calculates the pre-update output ot = W txt

for an input xt. The weights are then updated with a 4 factor rule combined with a momentum
term ∆W t−1

i,j . The 4 factor rule is a linear combination of 4 terms: the pre-synaptic post-synaptic
correlation xtio

t
j , the pre-synaptic activation xi, the post-synaptic activation oj and the current weight

W t
i,j :

∆W t
i,j = ηi,j · (Ai,j · xtiotj +Bi,j · xti + Ci,j · otj −Di,j ·W t

i,j) + Ei,j ·∆W t−1
i,j , (4)

where i and j index input and output neurons, respectively, and η,A,B, C,D, E are connection-
specific learning rates, correlation coefficients, presynaptic coefficients, postsynaptic coefficients,
and momentum coefficients, respectively.

In order to prevent weights from growing too large or too small, we normalize input weights for each
output neuron j after each update using the l2 norm

Ŵ t+1
i,j = W t

i,j + ∆W t
i,j , W t+1

i,j =
Ŵ t+1

i,j√∑
i Ŵ

t+12

i,j

. (5)

The Hebbian layer then returns outputW t+1xt, using the updated weights. To regularize the model,
we reset the weights for each output neuronW t

j by drawing randomly from the unit sphere every k
examples, where k is a hyperparameter (See ?? for details).

4.3 EXPERIMENTAL RESULTS

4.3.1 ADAPTING TO STATIC SHIFT

In Tab 2. we see a clear difference in performance between static shift and no semantic shift,
demonstrating the relative difficulty of the two settings.

No Semantic Shift
(Seen Combinations)

Static Shift
(Unseen Combinations)

Method Att Cls Att+Cls Att Cls Att+Cls

Fi
xe

d
M

od
el Resnet(18) 23.34 26.3 10.14 13.63 15.03 1.20

+IN Pretrain 28.02 34.58 14.57 14.57 20.55 2.31
+τ -norm 28.05 34.54 14.69 13.09 16.75 1.73

A
da

pt
iv

e
M

od
el

ARM-CML 26.07 32.13 12.33 13.89 19.8 1.87
ARM-BN 27.87 34.23 14.87 13.72 21.93 2.21
BN 28.31 34.29 14.86 13.79 19.94 2.32
TTT 28.38 35.71 14.96 14.47 18.19 2.13
TENT 28.53 34.17 14.80 14.25 19.96 2.28
Hebb 28.15 36.19 15.32 14.02 22.30 2.38
LSTM 28.97 36.35 15.39 14.23 20.63 2.23

ARM-CML (Cls:25x10)∗ 28.89 36.34 15.2 14.57 21.04 1.83
ARM-BN (Cls:25x10)∗ 29.26 37.01 16.22 14.62 19.71 2.06
LSTM (Cls:25x10)∗ 31.04 39.30 17.61 14.7 22.21 2.32

Table 2: Att, Cls, and Att+Cls refer to Attribute, Class, and joint Attribute-Class prediction accuracy,
respectively. Best performance is bolded and best performance in section (i.e. Fixed, Adaptive,
Adaptive (finetuned)) is underlined.
∗ - MODEL (Cls:25x10) is MODEL finetuned on the training set with a class-shift ordering (25 tasks,
10 occurrences) - See Sec 4.1 and appendix.

ARM approaches underperform all other adaptive methods, even when finetuned on shifting data. Self-
Supervised adaptation methods (TTT & TENT) slightly improve performance, but are outperformed
by the recurrent and Hebbian method consistently in both settings. Interestingly, fine-tuning the
recurrent model on a train set ordering containing continual class shift improves performance when
testing without continual shift (i.e. i.i.d. sampling of batches).

7



Under review as a conference paper at ICLR 2022

4.3.2 ADAPTING TO CONTINUAL CLASS SHIFT

In order to test the effects of catastrophic forgetting and repetition on model performance, we vary
the number of occurrences n ∼ [1, 2, 5, 10, 20] of each task, while keeping the number of tasks fixed
at k = 25. Each model is evaluated over 5 different randomly generated test orderings for a given
n. We report means in the figures. Model performance was very stable across different orderings,
resulting in standard deviations of below 0.1 percentage points (accuracy) in all cases. For continual
shift, we additionally evaluate “LSTM-tuned”, which is the LSTM method first trained by sampling
i.i.d. batches from the train set, then finetuned by simulating continual class shift on the training set
(See Sec 4.1, appendix).
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Figure 2: Performance under Class Shift (seen combinations).

TENT significantly underperforms both other adaptive methods as well as the baseline static model.
However, its performance improves uniformly as the number of occurrences increases, suggesting
that i.i.d. batches are important to the usefulness of the entropy objective for the task. While
recurrent and Hebbian methods consistently outperform both the static model and self-supervised
adaptation methods on continual shift alone, the improvement over TTT is small, suggesting that
rotation prediction is not only a useful task for self-supervised learning (Gidaris et al., 2018), but
also for adapting to continually shifting domains. LSTM, Hebb, and TTT, appear to achieve similar
performance for all selected values of n occurrences, implying they are not particularly reliant on i.i.d.
data for effectiveness. The LSTM method tuned on the training set with continual shift significantly
outperforms all other methods for continual shift alone. Future methods for adapting to continual
shift may derive significant improvements from simulating shift at test time.
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Figure 3: Performance under Class Shift + Static Shift (unseen combinations).

When continual shift is combined with static shift, the results become more complicated. Adaptive
methods only improve over the baseline on class prediction (where they see a large gain over TTT), but
all models fail to consistently outperform the static method on attribute and combination prediction.
All-together, these results suggest that dealing with continual shift and static shift is a much more
difficult task than dealing with continual shift alone.
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4.3.3 ADAPTING TO CONTINUAL CLASS-ATTRIBUTE SHIFT

R18 TENT TTT LSTM Hebb LSTM (tuned)
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Figure 4: Performance under Class-Attribute Shift (seen combinations).

Without static shift, we see a similar trend for class-attribute shift and for class shift for all methods
except for TENT, where we see the opposite trend. TENT uniformly decreases in performance both
with and without static shift, suggesting that it relies heavily on co-occurrence of instances with
the same class and different attributes for adaptation. When static shift is added, we see a more
pronounced version of the effect under class shift, with adaptive methods generally underperforming
more with smaller improvements over the static baseline. All-together, results demonstrate that
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Figure 5: Performance under Class-Attribute Shift + Static Shift (unseen combinations).

class-attribute shift is more difficult than class-shift, both with static shift and without. Additionally
it is clear that a recurrent model fine-tuned under continual shift on the train set dominates all other
methods when tested on the same parametrization of continual shift on a test set, even if the label
combinations were unseen during training. This suggests that learning to adapt to continual shifts at
train time can be a strong method for improving performance if they mirror expected test-time shifts.

5 CONCLUSION

In this paper, we introduce the setting of adapting to Semantic Domain Shift, aimed at covering many
of the unrealistic assumptions in current Domain Adaptation settings. We define static shift and
continual shift. Through extensive experiments, we demonstrate that previous methods for distribution
adaptation (both self-supervised and meta-learning based) surprisingly provide little improvement
in this setting, sometimes even underperforming a static model that does not change parameters at
test time. We introduce models that “learn to adapt” to shifting distributions, outperforming both the
static baseline and self-supervised adaptation methods. We demonstrate that recurrence and Hebbian
learning can be useful tools for “Learning to adapt”. Finally, we provide evidence that training a
recurrent model that learns to adapt under continual shift on the training set dominates methods that
do not do so if the training shift and test shift are similar.
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